

ť

Third Quarterly Progress Report

of

BENTONITE SEALING INVESTIGATIONS

For the Period

 \mathbf{of}

August 1, 1960 to November 1, 1960

by

R. D. Dirmeyer, Jr.

Prepared for the

Southeastern Colorado Water Conservancy District

and the

Colorado Water Conservation Board

BLOGMED

NOV 13 1960 COLU. WATER CONSERVATION DEARD

Colorado State University Experiment Station Engineering Research

November 1960

CER60RDD66

1027

INTRODUCTION

This report contains several condensed but detailed tabulations of information, which at this early stage in the resource-evaluation and application-research-and-development work are of a tentative incomplete nature¹. Widespread interest in the work and numerous inquiries for information make it desirable to present a fairly detailed summary of work at this time. Common questions include:

- 1. <u>Procedure</u>--what are the best procedures for canal or reservoir sealing work with local clays?
- 2. <u>Quality</u>--what are the specifications for a clay, satisfactory for sealing purposes?
- 3. <u>Results--what results have been produced in the field trials</u> with local clays?

As a partial answer to the above questions, consider the information compiled by the early efforts of the bentonite (or clay) sealing project at CSU, in cooperation with many irrigation organizations, individuals, and clay producers.

SAMPLING AND EVALUATION OF SAMPLES

Tables I and II summarize the results of the initial sampling and laboratory testing of bentonites or clays from locations as shown on Map I.

In the laboratory evaluation work, samples of clays are being tested that have been collected both (a) by CSU project people, and (b) by interested individuals or prospectors. We are especially encouraging the latter type of sampling and will be glad to furnish additional details of what to look for to any interested parties. An Extension Service circular, Testing Bentonite for Sealing Purposes (No. 205-A), is available at most County Agent offices in Colorado (and in Wyoming as well--Circular No. 161).

The test procedures used in the laboratory evaluation work have involved existing procedures to the maximum extent possible, but in order to fully characterize and evaluate the clays or bentonites from a canal and reservoir sealing standpoint, the development of new test procedures, including major modification of existing procedures, has been necessary. A brief description of the test procedures used in the evaluations to date is included at the bottom of Table I. More complete details of the test procedures can be obtained, if desired, by writing to us.

5

¹Tentative in a sense that the work is in its beginning stages--having been fully funded starting July 1, 1960.

Testing with procedures, in addition to those outlined in Table I, is planned and will be completed as time permits.

EVALUATION OF FIELD TRIALS

Table III summarizes briefly the results of the evaluations, to date, of field trials at locations as shown on Map 2.

While the table is essentially self-explanatory, it is very brief (perhaps even fragmentary). Detailed records are being compiled on each of the jobs included in the table. Thus, if additional information relating to any particular trial is desired, or if you have additional information to supply for any trial, please write us.

Additional evaluations are planned, both for the trials in the present table and for new trials or other trials not included in this summary.

DISCUSSION OF RESULTS AND FUTURE PLANS

As mentioned in the two preceding quarterly reports, the objectives of the CSU bentonite project are (a) to inventory the clay resource of Colorado, and (b) to develop methods of utilizing the local clays in sealing canals and reservoirs in Colorado. Thus, the two important justifications for this State-funded work relate to (a) development of new mineral industry, and (b) conservation of water. Thus, while the market potential aspects are not involved directly in many research studies, they are definitely involved in this inventory, research and development project -- organization of the bentonite project work clearly reflects this influence.

<u>Clay inventory</u>--with the valuable assistance of many cooperators (individuals, companies, districts), the initial sampling efforts by the CSU project have revealed a good range of available clay (bentonite?) deposits (See Map I). As a result of this, we are convinced (a) that a significant potential of clay deposits is available for development in Colorado, and (b) that the initial sampling efforts as outlined in this report have covered only a small fraction of the total potential. Because of the magnitude of the clay resource inventory work remaining to be completed, plans are being made for continuing this work by the CSU Geology Department in the next fiscal year--provided funding is available. The field work is planned for the summer and the clay mineral identification (including X-ray and D-T analyses) for the winter. Chemical testing of the better clay samples by the CSU Soils Department is also planned.

-2-

TABLE I: SUMMARY OF TEST RESULTS (PART I) FROM INITIAL LABORATORY EVALUATIONS OF COLORADO CLAY SAMPLES

Sample	Nome and	[F11	ter Lo	ss Test	Fil	ter (ake							
No.	Location	0-	45-	Over	Over	t_con:	Under	}		0ver	SU	10111	cy	- M3	Kability in	dex		Sveit I	naex (A	Over
		45%	655	_65%	10%	10-5%	<u>5</u> *	0-10	10-50	. 50	Pour	Fair	Good	0-25	25-50 50-75	75-100	0-50	50-100	100-150	150
020-1	N. of Canon City	29.5				0 <u>.</u> 0		5.1					x			77+5		97.8		
528-2	Fox-Dilley N. of Canon City	39.6				7.9		4.8					x		34.9			88.0		
531-1	Wyble		57.7				1.8	8.6				x			32.8				108.0	
\$31A-3	Wyble	36.2					3.0	5.3					x		32.5			78.0		
\$33-1	Monroe			73-3			3.1			189.0	x					82.7			143.0	
	N. of Ft. Collins													L						
\$33-2	Monroe	ļ		78.2	ļ		2.0	9.9			ļ	x		ļ	47.1		ļ			162.8
\$36-4	Schrader		52.3				1.7		26.7		x				47.0				132.0	
\$36-5	N. of Ft. Morgan Schrader		57.6			5.5			44.3		x					77.9		99.0		
\$37-2	N. of Ft. Morgan Strainland		56.2		12.81				15.5			x		12.3			30.0			
cz 7 r	N. of Golden		50.0		41.4		1.8		02 7						68.7		50.0			
1 301-5	N. of Golden	[50.0				1.0		2011		^				0.011					
S42-1	Rump		47.2	_		9.4		1.5					x	14.7						170.5
S43-1	EV of Grand Junction Burton-Tuttle	36.0				7.0		1	17.1			x			46.9			55.0		
շեր և	W. of Aspen			66.1	ļ	•	۱.8	1.2			ļ		x	8.5						253.0
	S. of Las Animas		(00.1		7.0	1.0	1.2	10 T					,	z 8 o				130.0	
\$45-1	Wagner Near Las Animas	Ι.	55.0		,	(19			10.5			x			20.2	70 o			1,0.0	
\$47-1	Moss Near Westcliffe	24.3			12.2 35.8				40.1		x					10.0	25.0			
s48-1	Mumma	30.6			11.1		2.41	4.3			\vdash		x		· ·	89.7			110.0	
s49-3	W. of Salida Lamberg	35.6				6.7		2.6				x				77.7		90.0		
552-1	SE of Salida Marren-			67.7			3.7			172.0	x				36.4			60.0		
	N. of Ft. Collins	[-6 0	•1•1						160.0						08.0		75.0		
552-18	Marren N. of Ft. Collins	ļ	56.0				2.2	ļ		102.2	x			ļ		2019		10.0		
\$53-1	White Rose Near Carr		47.5		ĺ		0.9	-		129.3	x				30.0		50.0			
S54-1	Brick Plant	35-5					0.8	<u> </u>	45.9		x			21.4			30.0			
\$55-1	S. of Ft. Collins Clover Basin	29.9					0.8			52.0	x			19.4			46.0			
\$56-1	SW of Longmont	26.4			1	5,4			31.7		x			13.2			10.0			
660 1	NE of Morrison	37 3					2 5			07 O				-	62.1		30.0			
300-11	N. of Colorado Springs	1.0								7,10	^				01.11		10.0			
\$62-1	Near Castle Rock		52.4				2.1		12.3			x		15.0			40.0			
\$62-2	Wisenbunt	43.1			1	5.2		1	10.4			x		10.9			20.0			
563-1	Near Castle Rock Last Chance	41.9					1.7		19.7			x		24.3				57.8		
564-1	SW of Akron Harvey	44.4			18.8					304.0	x				38.1		40.0			
\$67-2	W. of Canon City Bennett	!	49.5				0.2	6.8					x	16.8			40.0			
c68.1	N. of Golden Lindsev	33.4			ļ		2.8	5.7					x		66.7		30.0			
	N. of Golden																ļ			
\$71-1	Highway 63	34-3			16.4				42.5		x				25.7		25.0			
S72-1	Peach Valley-~	Į	60.8		l	7.3		Į	15.1		l	x		l	46.1		ļ		132	
\$73-2	Mahan	31.7					3.2		32.5		x					82.4	50.0			
\$74-1	Near (?) Pueblo Schrader	36.2					1.1			112.3		x			32.7			70.0		
and 2 500-5	N. of Ft. Morgan Wyoming bentonite			86.8			2.8	0.9					x							627

With extra washing

Supplemental Procedure Notes

Sample Preparation--All samples are registered for identification, oven-dried at 100°C, and a test portion crushed to pass a U.S. No. δ sieve.

<u>Colloidal Yield--is the percent of sample that vill remain sus-</u> pended or dispersed in water after 24 hours. A high yield normally means a high clay content, and usually a high sealing potential.

<u>Grit Content</u>--is the percent of sample left on a U.S. No. 200 seive after vashing. A low percentage of grit is desired for most sealing applications.

<u>Filter Loss</u>-is the loss[#] in ml./min when 400 ml. of a 2% mixture of bentonite in water is placed in a pressure cell, subjected to an air pressure (equal to 34' of water), and filtered through a standard filter paper. A low rate of loss is desired.

Compiled by R. W. Hansen and C. C. Smith

Filter Cake Stability--is obtained by subjecting the clay coating left on the filter paper from the <u>Filter Loss</u> test to a small jet of water. This gives an approximate idea of the resistance to erosion of the clay sediment.

<u>Mixability Index</u>--is obtained by dividing the weight of sample lost (after a standard washing test) by the original weight. A high index indicates easy mixing.

Swell Index--is obtained by measuring the increase in volume when a dry sample of known bulk volume is saturated or completely wetted. Some swell is desirable but not too much.

*For comparison note that a: 1/8-inch layer of -40 Ottawa sand had a seepage rate equal to 1440 ml./min 1/8-inch layer of local sandy soil had a seepage rate equal to 1005 ml./min Filter paper alone had a seepage rate equal to 651 ml./min

TABLE II1: SUMMARY OF TEST RESULTS (PART II) FROM INITIAL LABORATORY EVALUATIONS OF COLORADO CLAY SAMPLES

Samule	Name and			-				Sample	Name and		Colloide) Yield	6-	it Cont	ent
No.	Location	Coll	oidal Yi	eld Over	Gri Over	t Cont	ent Under	1 <u>No</u> .	Location	Under	COLIDIDA	Over	Over		Under
		25% 25-4	5% 45-6	5\$ 65\$	10%	10-5%	5\$	∦		25%	25-459	45-65% 65%	10%	10-5%	- 5%
S14-1 ²	FisherNear		56.	4	19.1			539-2	Standley LakeNear		39.7				
514-2	Granby MorrisNear	43.	.ο		26.5			S40-1	Charman (Mailed)	3.3			73.7		
316 1	Granby Rump-Near	_	53.4	8			2.7	S41-1	SmithNear	16.8				9.3	
510-1	Grand Junction			•				Տևև-1	Fort Collins RodgersS. of			50.4		5.7	
S16-2A	Upper Pond'sNear Grand Junction	40.	7			7.2			Las Animas			57)ı			4.6
S16-2B	Lower Pond'sNear		47.	6		6.7		544-2	RodgersS. or Las Animas			· · · · · · · · · · · · · · · · · · ·			
S16-3	Lime KilnNear	36	0			7.7		S44-3	Stough S. of			48.0		7.4	
	Grand Junction	33	.a			9.7		S44-5	SchoolS. of	1		47.2	ļ		3-3
510-4	Grand Junction			<i>(</i>				S46-1	Las Animas McAlpinNear		34.6		27.2		
S16-5	Smith (upper)Near Grand Junction			07.2			741		Redwing	1.8.6			21.4		
\$164-1	Wells (25-30)Near	43	.2			5.6		840-2	Salida	10.4					
S16A-2	Fruita Wells (4)Near	26	.1			8.3		S19-4	LambergNear Howard			49.8	22.1		
	Fruita		3			6.7		550-1	SkinnerNear	7.6			34.6		
5104-2	Fruits		.,			6 1		551-1	Golden SmithE. of		25.6		31.4		
\$16A-1	Wells (25)Near Fruita	31	•9			0.1			Fort Collins	- T	-•				1.6
\$16A-5	Wells (15)Near	39	.3			8.0		552-2	Fort Collins	20.1			i i		
S16A-6	Fruita Wells (10)Near	35	•5			5.9		\$52-3	WarrenN. of Rest Collins	18.0				η,ο	
617.1	Fruita Foster-Near	22.7			22.8			552-4	WarrenN. of	(35.0		16.3		
	Durango				112 8			552-5	Fort Collins WarrenN. of	20.9					4.6
\$19-1	VinderNear Craig	10.9			14.0			550.6	Fort Collins		31.8		38.7		
521-1	Lost CanyonNear	20.1			34.2			572-0	Fort Collins		/		56 7		
S22-1	StraffordNear (?)	25	.7				0.5	\$52-7	WarrenN. of Fort Collins	15.6			1.00		
\$23-1	Schrader-Near (?)	18.5					2.6	S52-8	WarrenN. of	8.7			77.7		
501 1	Fort Collins	32	.6			6.6		\$52-9	WarrenN. of]	33.0		17-5		
024-1	Durango				<u> </u>		0.7	552-10	Fort Collins		31.1		24.5	•	
52l+-2	FloraNear (?) Durango	l l	59	•4	1		0.1	0,2-10	Fort Collins		-	63.0	15.6		
525-1	DilleyN. of	17.8				8.9		S52-11	Fort Collins			0).2	1.0	<u> </u>	i
\$25-2	DilleyN. of	30	.0			5.0		\$52-12	WarrenN. of			60.1		8.3	
000	Canon City			81.8	1		3.2	S52-13	WarrenN. of			48.3		7.4	
520-1	Las Animas							1 552-14	Fort Collins		32.0			8.6	
\$27-1	JohnsonNear Nathrop	8.8			ver	ry nign			Fort Collins				115 0		
S28-32	Fox-DilleyN.	3	.0			9.1		S52-15	WarrenN. of Fort Collins	9.8			40.9		
\$28-4	Fox-DilleyN. of		4 9	.3			2.0	S52-16	WarrenN. of			55.4		9.7	
COB. E	Canon City Fox-BilleyerN. of	30	1.2			5.8		\$52-1	WarrenN. of			51.6		9.3	
5200)	Canon City				1	60		663-0	Fort Collins	j	36.0			B.7	
s28-6	Fox-DilleyN. of Canon City	43	5.8			6.0		377-2	Near Carr						
S29-1	PachekNear	24.7					1.8	\$57-1	RobinsonNear . Payton	10.0					
\$30-1	HopkinsNear	24.9			39.3	5		S58-1	RobinsonNear		29.8		25.1		
\$51-2	Center Wyble (Ash ?)	Floccu	lated			8.2		S58-2	RobinsonNear		35.8		25-3		
670.3	Devideon N of	2			ł	8.7		859-1	Calhan WandsNear	11.3			67.2		
592-1	Canon City	, [,]	•••				7		Pueblo		97.6		27.0		
53h-1	Kessler (Red)Near Howard	2	5.1				نو.o *.	579-2	Pueblo		06 3			Q.L	
S314-2	Kessler (Pink) Nea	r 22.9					0.82	S60-1	WelteN. of Colorado Springs		201)				
534-3	Kessler (lihite)	20.2			28.4	3	· · · · • • • · · · ·	560-2	WelteN. of	1	33.2				5.0
szh_h	Near Howard Kessler (Green)	14.2			51.4	3		\$60-3	WelteN. of		31.3			6.5	
	Near Howard						03	561-1	Colorado Springs HarrisNear	21.3			30.3		
\$34-5	Kessler (Mailed) Near Howard	2	7-7				2.0		Castle Rock	1	c9 7		18 ^		
534-6	Kessler (Mailed)	22.5					1.40	\$64-2	HarveyNear Parkúale		20.7		10.0		
\$35-1	EmbryNear (?)	7.0			49.9	I.		\$64-3	HarveyNear	23-9	•		1	8.4	
526.7	Pueblo Schrader (Payner)		h/	.9	+		2.6		HarrisNear	+	26.6		18.9	1	
1+0(6	N. of Ft. Morgan								Kiova Dallagna Noor	24.0			41.7	r	
536-2	Schrader (Fawnee) N. of Ft. Morgan	4	3•7				5*0	200-1	Morrison				R		
\$36-3	Schrader (Pawnee)	1	54	••5	Ì		2.5	567-1	BennettsN. of Golder	6.1	1				
537-1	Rocky Flats N. of	15.7			49.7			\$69-1	HarrisNear	9-3	•		65.1	•	
GT 7 7	Golden FleinviewN of	15.0				5.6		570-1	Laporte YahnNear	9.2	2		43.6	ı	
0-100	Golden		<u> </u>					050 0	Iliff	11.7	,		25.6		
537-4	Rocky FlatsN. of Golden	2	8.6		12.5	,		\$10-2	Iliff	1			27 0	2	
\$38-1	NortonNear	1	6	2,2			0.2	\$70-3	YahnNear	10.6	2		12(*)	-	
538-2	NortonNear		40	5.7	1		1.4	570-1	BauerNear		28.9		12.	7	
ST0_1	LaPorte Standley LakeNear	.	5.h		17.8	3		s73-1	Iliff BauerNear	12.9	,		65.	5	
	Arvada	· · ·							Iliff						-

See Table I for remaining test results in this same series.
Samples S14-1 through 527-1 tested prior to July 1960--528-3 to S75-1 tested after July 1960
Required extra washing.

.

Compiled by R. D. Dirmeyer,

-4-

I--LOCATION MAP OF

SUMMARY OF PRELIMINARY RESULTS FROM FIELD TRIALS WITH COLORADO CLAYS

No.	Job Title Location	Capacity Grade	WP1 L2	Bed Material	Before ³ Losses	Install. Date Amt. of Bent.	Method of Application and Costs	Results
Ť1	Climax Canal No. 1	100-20 cfs	9 ft	Rocky	*	*	*	*
12	NE of Climax Wellington Lake Canal	medium 40-10 cfs	5700 ft . 13 ft	Decomposed	20%-June	91 ton (S-49) July 1960	Multiple dam - dump truck backed	Apparently very good - evaluation
73	SE of Bailey Cottonwood Creek	60 cfs-July	22 ft	Cobbles	(measured) (est.) 15%	July 1960	30-40-30 ton dama in upper part	to be made in spring Bentonite dispersed and carried
F 4	Kelly Ditches	2-8 cfs	16,000 ft 4 ft	Rocky	(est.) 25	June 1960	of creek - mix/crawler tractor 12-multiple dams placed and	Good - (est.) 5-10% loss after
15	S. of Buena Vista Saylor Seep Ditch	2 cfs	13,000 ft 4 ft	Rocky	100% Aug.	20 ton (S-49) Sep. 1960	5-multiple damsnear upper	Good, Sept., 1/4 cfs out of 1/3 cfs
1 6	E. Of Buena Vista Tvin Silos Ditch	4 cfs	4000 ft3 ft	Rocky	(est.) 95%	June 1960	4-multiple damsupper half, 1	Good, (est.) loss 5-10% after
17	V. of Bucns Vista Tegler Ditch	10 cfs	8000 ft	Rocky	(est.) 20%	26 ton (S-49) Apr. 1960	load at head gate, \$9/ton Material placed in dams over	Cood, (est.) 5% loss after treat-
т6	W. of Buena Vista Irwin Ditch	steep 10 cfs	4000 ft 4 ft	Rocky	(est.) 20%	4 ton (S-49) Apr. 1960	Material placed in dams over	Good, (est.) 0-5% loss after
 179	Lee Diversion Ditch	steep L cfs	5000 ft 3 ft	Rocky	(est.) 50%	6 ton (S-49) Apr. 1960	Bentonite sluiced in at 4	Good, (est.) 10% loss after treat-
T 10	W. of Buena Vista Esgar Ditch	steep 2 cfs	3000 ft 3 ft	Rocky-	(est.) 40%	25 ton (S-49) June 1960	points over upper half Majority sluiced into flow at	ment Good, 10-15% loss (est.) after
	Buena Vista	medium 2 cfs	2600 ft 2 ft	gravel Rocky	1075	4 ton (S-49) July 1960	upper end or upper half Bentonite dummed into flow at	treatment Fair, 80% loss after treatment.
112	SW of Buena Vista	very steep	8000 ft	Booku	(act.) 40%	20 ton (S-49)	at upper end, \$9/ton	additional bentoniting planned
	SW of Nathrop	steep	4000 Ft	ROCKY	(000.) 40%	42 ton (8-49)	near mid-point of ditch	treatment
T13	Branch of Fost Ditch NW of Salida	5 cfs medium	0 ft 1300 ft	Rocky	(est.) 30%	June 1950 5 ton (S-49)	10-multiple dams, dispersion ponded with rock dams, \$9/ton	(Est.) 5-105 loss after treatment, seep areas dried up below ditch
T14	Missouri Park Ditch NW of Salida	70-10 cfs medium	10 ft 34,000 ft	Rocky- gravel	100% loss of 10 cfs	Aug. 1959 203 ton (S-49)	27 multiple dams, upper 1-1/2 miles received 100 tons, \$7/ton	Excellent installation, 1-1/2 cfs will carry thru 7 mile stretch
F15	Sunnyside Ditch N. of Salida	40-15 cfs medium	10 ft 3000 ft	Gravel- sandy	5-10 cfs (est.)	Apr. 1960 69 ton (S-49)	30 ton in multiple dams, 40 ton sluiced-head end, \$9/ton	(Est.) stopped 75~ of total seepage loss
T16	Pass Creek Diversion W. of Poncha Springs	6 cfs medium	4 ft 21,000 ft	Loose-rock shale	4 cfs in 1/2 mile	1948 24 ton (8-49)	Placed near head end, added where concentration decreases	14, loss of 4 cfs over 4 miles (measured)
T17	John Boyce Pond Maysville	1/2 AF		Loose-Sand gravel	(est.) 50% in 12 hrs	1957 1/4 ton (S-49)	Distributed and spread manually with shovel	Practically no seepage loss after treatment
T18	Everett Stock Pond N. of Salida	Stockwater		Peat- gravel	100,.	1959 1 top (8-49)	Spread manually with shovel	Bentoniting developed enough water for 50 head of cattle
F19	C'Brien Diversion Ditch Ne of Crestone	9 cfs steep	6 ft 19,000 ft	Rocky-sand gravel	4 efs in 3/4 mile	Nov. 1959 136 ton (6-49)	35 multiple dams, 81 ton, 55 ton, head end \$12/ton	Good results, 1 ofs out of 4 ofs will carry 3-1/2 miles now
120	Shellabarger Ditch No. 1 NE of Moffat	10 cfs steep	6 ft 11,000 ft	Gravelly-	(est.) 30%	1959-1960 50 ton (S-49)	Multiple dams placed upper part of ditch (est.) \$12/ton	Good results, 5-10% loss after treatment
121	Coors Farm Lateral NE of Center	8 cfs 4 ft/mi	7 ft 3000 ft	Gravel	(est.) 10%	July 1959 * (S-49)	6 multiple dams and part sluiced in at head end	Good (est.) 3-4% loss after treat- ment
125	Coors Farm Lateral NE of Center	7 cfs 4 ft/mi	7 ft 1500 ft	Gravel	Similar to T21 site	Aug. 1959 16 ton (S-49)	8 multiple dams; V-ditcher run thru several times to mix, spread	Good, extensive seep areas along ditch bank - dried up
T23	Arthur Benson Ditch NE of Del Norte	3 cfs medium	4 ft 1500 ft	Cobbles	(est.) 50%	Aug. 1960 13 ton (8-49)	Multiple dams, greatest amount near high loss area,\$14.50/ton	Very good, (est.) 5-10% loss after treatment
12/	Chevalter Fond 5. of Foncha Pass	G-1/2 AP	 	Shaloy- gravel	(est.) 50% per day	1959-1960 117_ton (8-49)	2 lbs per sq ft, leveled with tractor and blade, \$9/ton	Majority of sampage loss stopped
125	Sangre De Cristo Fond Mosca	1/2 AF	•••	Sandy- loam	100% in 24 hrs	Oct. 1959 18 ton (6-49)	Spread, leveled manually compac- ted, rubber tire roller, \$14.75/ton	Fair, 100% loss in approximately 1-month
126	fangre De Cristo Fond Hooper	1/3 AF	• •	Sandy- loam	100% in 10 hrs	Nov. 1959 15 ton (S-49)	Spread and leveled manually, no compaction	Poor, 100% loss in approx. 2-wks. re-treatment planned/compaction
T 27	Parlin-Quartz Ditch N. of Parlin	32 cfs medium	9 ft 3000 ft	Sandy	*	Oct. 1959 37 ton (8-49)	8 multiple dams, additional mixing with crawler tractor	Scepage areas below ditch dried up or reduced
128	Garden Park Ditch N. of Canyon City	9 cfs steep	4 ft 4000 ft	Rocky- pandy	(est.) 30%	May 1960 32 ton (2-28)	Majority of material dumped in near head of ditch	Good, (est.) 5-10% loss after, easp areas dried up below ditch
T29	Nelson-Culifer Ditch N. of Canyon City	2 cfs medium	3 ft 3000 ft	Rocky- candy	(ast.) 50,-	May 1960 16 ton (8-28)	Multiple doms, mix manually with shovels	Good, (est.) 5-10% loss after treatment
1 30	Fountain Mutual Ditch NE of Fountain	5 cfa medium	4 ft 6500 ft	Bandy	(est.) 20/2	July 1960 ± 20 ton (5-26)	Bentonite added with front loader tractor near head and of ditch	Material dispersed into water readily after losses not avail.
731	Redlands 2nd Lift Ditch V. of Grand Junction	13 ofe flat	11 ft 2600 ft	Sandy- clay	17» for system	Mar. 1960 40 ton (8-42)	Material distributed 1/2" thick with truck and chute set-up	Fair, seepage reduced initially, some scepage beginning again
T32	East Mrsa Ditch 5. of Carbondale	28 cfn medium	15 ft 500 ft	Rocky	(est.) 3 cfs	Arr. 1960 60 ton (S-42)	Spread on bottom and bank, back- hos mulched $6-8"$, compacted	Good, extensive sespage area below elevated saction dried up
733	Goodman Storage Pond SE of Howard	8 AF	• • • •	Rocky- gravel	2 ft drop in 24 hrs	Apr. 1960 160 ton (8-34)	Spread on bottom with tractor and blade	Loss reduced to 4-inch drop in 24 hrs
1 73%	Adamson Storage Pond SE of Howard	5 AF		Cobbles- rocky	New pond	Apr, 1960 B0 ton (8-34)	Spread on bottom with tractor and blade	Loss reduced to 4-inch drop in 24 hrs
T35	West Burlington Ext-Canal GW of Rudson	40-10 ofs flat	12 ft 50,000 ft	Eandy	35-70%	Sept. 1960 52 ton (8-57)	40 ton, head end; 6 ton below mid-point; 6 ton, near end	*
T 56	Smith Farm Fond E. of Fort Collins	6 AF		Clay- send	l ft drop in 24 hrs	Oct. 1960 120 ton (8-33)	Spread with front loader tractor, manually on bottom and sides ±1/2"	Installation not complete*
T37	Brace Fond No. 1 NY of Center	to af		Gravelly	*	Jan. 1960 120 ton (8-40)	Material leveled with land leveler mulched with renovator - releveled	Fair, water surface drops approxi- mataly 1 ft in 10 days
T 38	Brace Fond No. 2 NW of Center	12 AF		Rocky	*	Jan. 1957 300 ton (8-40)	Material leveled with land leveler mulched with renovator, releveled	Fair, water surface drops approxi- mately. 1 ft in 10 days

Compiled by M. M. Skinner

.

•

÷

а

*Information not available at date of compilation MP^1 (average vetted perimeter) x L² (length of treated section) x A (application for bentonite = total amount of bentonite required. ³Losses considered over length (L)

. .

.

.

1023

-7-

Photo 1--Potential clay deposit (S-52) north of Fort Collins, Colorado. Badland topography with little or no vegetation cover, typical of better bentonite outcrops.

Photo 2--Developed clay deposit (S-49) near Howard, Colorado. Clay deposit has been stripped of overburden so that air-drying of clay can take place. In-place moisture content of clay or bentonite deposits has ranged as high as 50 percent; by air-drying in the pit this can be reduced to 15 to 30 percent.

Photo 3 -- Most common method of application consists of placing dams of bentonite in dry canal, then running in small head of water and washing bentonite down canal.

the water as the dam some cases, as above, a small bulldozer has been used.

Photo 4 -- The bentonite can be shovelled into is washed out, but in

> Photo 5--Several high loss natural channels have also been sealed by washing bentonite downstream with the water.

Photo 6--In several instances, the dams of bentonite have been spaced along a canal and then spread with a V-ditcher rather than with water.

Photo 7--Bentonite has been used for sealing small ponds or reservoirs. It is spread in a layer 1/2 to 2-inches thick over the pond area, worked into the sub-soil, and compacted, if possible.

Photo 8--In the evaluations carried out by the bentonite project, inflowoutflow measurements have been obtained when possible. Laboratory evaluations--In addition to the laboratory identification work mentioned above, the clay samples are also being tested to determine their sealing potential (See Tables I and II). While general agreement has been noted between the laboratory test results and the field trial results (See Table III), some descrepancies have been found. Excellent materials from a lab test angle have produced poor sealing results in field trials. Conversely, clay materials rated poor in the laboratory have produced excellent field trial results. Undoubtedly, part of the problem is related to the need for better test procedures; thus, new and modified procedures are being developed. The general objective of the work is to develop simple economical lab test procedures that can be used for clay specification purposes. However, it is also obvious that the correlation problem between lab and field also reflects a need for improved field trial procedures.

Procedure development trials -- As may be seen in Table III and Map II, the field trial phase of the procedure development work is well advanced for a relatively few clays in several restricted areas of the State. For example, consider the canal (multiple-dam) and reservoir (blanketing) work with the S49 clay in the area surrounding Salida. As time and funds become available, work in new areas of the State will be initiated. However, since the trial work is funded and organized at local level, it is important to realize that the presence or absence of trials in any particular area of the State depends largely on the local interest in initiating such work--from the standpoint of either or both (a) the owners of canals, and (b) the producers of clays. Past project experience indicates that finding contractors or irrigation districts willing to invest their ingenuity and funds in field trials is not normally a problem; nevertheless, the local interest is necessary before the trial work will materialize. For a general idea of the installation procedures utilized in development work to date, see Photos 1 through 8. Detailed procedure write-ups are planned and will be prepared when the results and evaluations for any particular method warrant such publications. Several publications, subject to change as additional evaluations are completed, are available now upon request.

Quality of clay-Another important part of the development work is concerned with the clay itself. Producing a suitably uniform clay product of acceptable quality for sealing purposes is a tougher problem than commonly appreciated. While it is true that the sealing quality and consequently also the reputation of good local clays have been damaged by careless mining and production methods, in fairness to the clay producers, it should be pointed out that they are faced with several important unresolved problems. For example, many clay deposits are extremely variable--in quality, in thickness, and in lateral extent. Perhaps the most pressing problem, however, is the absence, at present, of suitable specifications for canal and reservoir sealing clays. Of the various problems, the specification problem is probably the most important: removing that problem would remove the major uncertainty of the present quality control procedures. Actually, however, sufficient experience information for a State-wide specification is not now available, but as a helpful interim arrangement, tentative specifications for areas with an ample experience background with local clays could be prepared. The CSU project will gladly assist in such local determinations (by County ACP committees, etc.) of specifications for the clay quality, and installation procedures as well.

٠,

Skilled applicators--The development of people skilled in the use of local clays for sealing of canals and reservoirs is being accomplished in several different ways. For example, in some areas, the clay producer will also haul and install the bentonite or clay. Actually, the bulk of the favorable work has been installed on this basis. In some areas, the larger irrigation districts prefer to do their own mining, hauling, and installation work. In other areas, especially where the irrigation group has limited equipment, local dirt-moving contractors are assisting in the development work. In any case, continuity of effort from the mining to the installation process is important.

The market potential--In summary, the major market potential of interest to this project relates to water conservation--specifically, to the sealing of leaky canals and reservoirs.¹ As a result of the initial sampling efforts, we believe that ample quantities of suitable clays can be found and developed within a 100-mile radius of every major irrigated area in Colorado. However, to development, this market and its water conservation potential will require coordinated efforts of mining, procedure development, installation, and evaluation. Major problems that must be overcome, more or less concurrently, include (a) development of installation procedures to fit the local clays to the local canal and reservoir conditions, (b) development of local contractors or irrigation districts with men skilled in the sealing applications of the local clays, (c) development of clay deposits so as to insure porduction of clays of resonably uniform and known characteristics for sealing purposes, and (d) acceptance of methods and materials (as developed) for USDA-ACP cost sharing program.

÷

⁺Other important potential markets beyond the scope of this project include (a) foundry sand additive, (b) brick and tile clay, (c) desiccator (moisture control) materials, (d) filter (decolorizer) materials, and (e) drilling mud (oil well) use.