# Monitoring Report for CSMRI Site Fourth Quarter 2010

# **Prepared for:**

Colorado School of Mines Golden, Colorado

# Prepared by:

The S.M. Stoller Corporation Broomfield, Colorado

February 2011

# TABLE OF CONTENTS

| 1. INTROI     | OUCTION                                                       | ]  |
|---------------|---------------------------------------------------------------|----|
| 2. SAMPL      | ING AND ANALYSIS                                              | 1  |
| 2.1 Grou      | NDWATER SAMPLING                                              |    |
| 2.2 SURFA     | ACE WATER SAMPLING                                            | 2  |
| 2.3 ANAL      | YSES                                                          | 2  |
| 2.3.1         | Groundwater Quality Analyses                                  |    |
|               | Surface Water Analyses                                        |    |
|               | TH AND SAFETY PROGRAM                                         |    |
|               | TS                                                            |    |
|               | NDWATER CONDITIONS                                            |    |
|               | NDWATER QUALITY                                               |    |
|               | Ionic Balance Evaluation                                      |    |
|               | Comparison of Upgradient and Downgradient Groundwater Quality |    |
|               | Comparison with Previous Groundwater Quality Analyses         |    |
|               | Comparison with Colorado Groundwater Standards                |    |
|               | ACE WATER QUALITY                                             |    |
|               | E ACTIVITIES                                                  |    |
| 5. REFERI     | ENCES                                                         | 9  |
|               |                                                               |    |
|               | LIST OF TABLES                                                |    |
|               | IMARY OF RADIOISOTOPES IN GROUNDWATER                         |    |
|               | IMARY OF METALS IN GROUNDWATER                                |    |
|               | IMARY OF ANIONS AND CATIONS IN GROUNDWATER                    |    |
|               | IMARY OF RADIOISOTOPES IN SURFACE WATER                       |    |
|               | IMARY OF METALS IN SURFACE WATER                              |    |
|               | IMARY OF ANIONS AND CATIONS IN SURFACE WATER                  |    |
| TABLE 2-7 CSP | VIKI HISTORICAL GROUNDWATER DATA (FREVIOUS CONSULTANTS)       | 12 |
|               | LIST OF FIGURES                                               |    |
| Figure 1      | GROUNDWATER POTENTIOMETRIC ELEVATION MAP – SEPTEMBER 2010     |    |
| Figure 2      | CSMRI ALL MONITOR WELLS HYDROGRAPH                            |    |
| Figure 3      | CSMRI-2 Hydrograph                                            |    |
| Figure 4      | CLEAR CREEK GAUGING GRAPH (OCTOBER – DECEMBER 2010)           |    |
| FIGURE 5      | CSMRI-4 HISTORICAL TOTAL URANIUM CONCENTRATION (1991 – 2010)  |    |
| FIGURE 6      | CSMRI-4 URANIUM CONCENTRATION AND POTENTIOMETRIC ELEVATION    |    |
| FIGURE 7      | CSMRI-9 URANIUM CONCENTRATION AND POTENTIOMETRIC ELEVATION    |    |
|               | LIST OF APPENDICES                                            |    |
| APPENDIX A    | GROUNDWATER SAMPLING PROCEDURES                               |    |
| APPENDIX B    | SAMPLE COLLECTION FORMS                                       |    |
| APPENDIX C    | SURFACE WATER SAMPLING PROCEDURES                             |    |
| APPENDIX D    | DATA VALIDATION REPORTS                                       |    |
| APPENDIX E    | RESULTS OF ANALYSES ON CD                                     |    |
| APPENDIX F    | CHAIN-OF-CUSTODY DOCUMENTATION                                |    |
| APPENDIX G    | HISTORICAL SUMMARY TABLES                                     |    |
| APPENDIX H    | ANION AND CATION BALANCES AND PIPER DIAGRAM                   |    |

# 1. Introduction

This report presents the fourth quarter (October, November, December) 2010 results for groundwater and surface water monitoring conducted at the Colorado School of Mines Research Institute (CSMRI) site in Golden, Colorado. The monitoring was conducted by the S.M. Stoller Corporation (Stoller).

# 2. Sampling and Analysis

Stoller obtained quarterly samples of groundwater and surface water on December 7, 8, 9, and 10, 2010, from nine groundwater monitor wells and three Clear Creek surface water sample locations. Water levels in all monitor wells were obtained on December 6, 2010. Groundwater quality samples were obtained on December 7 (CSMRI-4, CSMRI-5, CSMRI-9, and CSMRI-10) and December 8 (CSMRI-1, CSMRI-1B, CSMRI-2, CSMRI-6C, and CSMRI-11B). Monitor wells CSMRI-1B, CSMRI-2, and CSMRI-6C required purging on one day and sample collection on subsequent visits over the following days to obtain sufficient sample volume.

Clear Creek surface water samples were collected on December 8, 2010, from sampling locations SW-1, SW-2, and SW-3. All aqueous samples were placed on ice in coolers and couriered to ALS Laboratory Group in Fort Collins, Colorado or to TestAmerica, Inc. in Arvada, Colorado for analyses.

Figure 1 presents the monitor well and Clear Creek surface water sample locations at the CSMRI site. The figure also shows the groundwater potentiometric surface elevations posted adjacent to each monitor well location. Potentiometric surface elevations are based on depth to groundwater relative to the surveyed top-of-casing and represent groundwater elevations as measured before purging. Groundwater levels are measured at each well to the nearest 1/100th of a foot (0.01) prior to purging and sample collection. The potentiometric surface from surveyed piezometers installed in test pits within the flood plain has been integrated into Figure 1 to further define the direction of groundwater flow. The figure shows a northeasterly component of flow on the bench terrace area and then a northerly component of flow as groundwater flows over the bench terrace slope and into the flood plain area. The figure suggests uniform flow occurring along the interface of surficial deposits and bedrock down the terrace slope; however, preferential pathways resulting from an uneven bedrock/alluvial interface are thought to exist explaining the occasionally dry well CSMRI-7B.

Figure 2 presents hydrographs of groundwater potentiometric elevations for monitor wells CSMRI-1, CSMRI-1B, CSMRI-4, CSMRI-5, CSMRI-6B (abandoned July 2008), CSMRI-6C, CSMRI-7B (abandoned October 2010), CSMRI-8 (abandoned October 2010), CSMRI-9, CSMRI-10, CSMRI-11 (abandoned July 2008), and CSMRI-11B. Gaps in the graph denote the intermittent presence of groundwater in the monitor wells because occasionally groundwater is below the bottom depth of a monitor well, even though the bottom of the screened interval is within the underlying bedrock. Monitor wells included on Figure 2 are located within the CSMRI site proper and illustrate historical trends in the water table fluctuations throughout the site.

Figure 3 is a hydrograph of monitor well CSMRI-2. Monitor well CSMRI-2 is located near the southeast corner of the freshman parking lot on West Campus Drive and the former Welch Ditch. CSMRI-2 is upgradient of the CSMRI site and historically has been used to provide background groundwater quality conditions. Early potentiometric data reflect the use of and leakage from the nearby irrigation ditch. For example, this hydrograph shows a marked seasonal rise in the potentiometric surface during the summer months in 2005 and 2006. In 2007, the Welch Ditch was diverted upstream of CSMRI and piped to Washington Avenue in Golden and then to downditch users. From late 2006 through late 2007, the water level remained elevated. From early 2008 through mid-2010, water levels reflect a more typical seasonal pattern of fluctuation.

# 2.1 Groundwater Sampling

Water quality samples were collected following the procedure outlined in Appendix A, Groundwater Sampling Procedures.

Sample collection forms provide a record of water quality parameters as measured in the field as groundwater was purged from monitor wells. These forms also indicate the volume of water removed from each well. Sample collection forms are provided as Appendix B. After three casing volumes of groundwater were purged, water samples were filtered through a 0.45 micron ( $\mu$ ) filter, collected in laboratory-provided containers, and preserved in the field as appropriate for the analyte and analytical method. Monitor wells CSMRI-1, CSMRI-2, and CSMRI-6C were purged dry before three casing volumes of groundwater were removed. Monitor wells CSMRI-1B and CSMRI-7B required multiple visits to collect sufficient sample volume because they recharge so slowly.

# 2.2 Surface Water Sampling

Surface water samples from Clear Creek were collected on December 8, 2010, from two locations: one upstream of the site (SW-1) and one downstream of the site (SW-2) (Figure 1). Clear Creek surface water sample SW-3 was collected at a location between the upstream and downstream sample locations and due north of monitor well CSMRI-8. All surface water samples were collected following the procedure outlined in Appendix C, Surface Water Sampling Procedures. Surface water samples are filtered through a  $0.45\mu$  filter, collected in laboratory-provided containers, and preserved in the field as appropriate for the analyte and analytical method.

Discharge data of stream flow for Clear Creek, as measured by the U.S. Geological Survey (USGS), at Clear Creek gauging station #06719505 (USGS Surface Water Online Database) for the quarter from October 1, 2010 through December 31, 2010 are presented as Figure 4. Tabulated stream flow data for the time period of December 6 through 10, 2010 indicate the mean stream flow measurements at the gauging station were affected by ice. On December 11, 2010, the stream gauge became free of ice and recorded an average flow measurement of 46 cubic feet per second, the day following the last day of sample collection.

# 2.3 Analyses

All samples collected were analyzed using a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA)-certified analytical laboratory. The results received from the laboratory were evaluated based on the following parameters:

- Data completeness
- Holding times and preservation
- Instrument initial calibrations
- Instrument performance checks
- Preparation blanks
- Duplicate sample results
- Laboratory control sample results
- Compound quantization and reporting limits (full validation only)

As a quality control/quality assurance (QA/QC) check, an equipment blank sample was collected in the field by pouring distilled water through a sample bailer. The equipment blank sample was submitted for the identical analytical parameters as the groundwater and surface water samples. The results of the equipment blank analyses did not identify interferences or anomalies in the laboratory data.

The concentration of sodium from monitor well CSMRI-10 is qualified as Estimated (J) due to serial dilutions outside criteria limits.

Data validation results are presented in Appendix D.

# 2.3.1 Groundwater Quality Analyses

Summaries of groundwater results for radioisotopes, metals, and inorganic anions and cations are presented in Table 2-1, Table 2-2, and Table 2-3, respectively. Groundwater parameters are reported as picoCuries per liter (pCi/L) for radioisotopes, micrograms per liter ( $\mu$ g/L) for uranium and iron, and milligrams per liter ( $\mu$ g/L) for all other metals and ions.

ALS Laboratory Group in Fort Collins, Colorado and TestAmerica Laboratories, Inc. in Arvada, Colorado conducted laboratory analyses of the aqueous samples. Analytical samples submitted to ALS were analyzed for radium isotopes (Ra-226 and Ra-228), uranium (U), calcium (Ca), potassium (K), magnesium (Mg), sodium (Na), phosphorus (P), chloride (Cl), sulfate (SO<sub>4</sub>), carbonate as calcium carbonate (CO<sub>3</sub>), bicarbonate as calcium carbonate (HCO<sub>3</sub>), alkalinity, and dissolved organic carbon (DOC). Pursuant to an agreement with the Colorado Department of Public Health and Environment (CDPHE), a broader analyte list of metals is sampled only during the second quarter (June) sampling event. Specifically, these metals include silver (Ag), arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), mercury (Hg), and vanadium (V).

Analytical samples submitted to TestAmerica were tested for the presence of nitrate (NO<sub>3</sub>), nitrite (NO<sub>2</sub>), ferrous (Fe<sup>2</sup>) iron, ferric (Fe<sup>3</sup>) iron, sulfide, and total dissolved solids (TDS). TestAmerica conducts the short holding time analyses because of their close proximity to the CSMRI site.

Groundwater samples were measured onsite for temperature, pH, specific conductance, dissolved oxygen (DO), oxidation-reduction potential (ORP), and turbidity as nephlometer turbidity units (NTU) during the purging and sampling process using a Horiba U-22 multi-probe. Onsite parameters measurements of groundwater and purge volumes are presented on the sample collection forms in Appendix B.

From the first quarter of monitoring in February 2005 until the last quarter of 2006, the concentration of total uranium in  $\mu$ g/L was analyzed using ALS (formerly Paragon) method 714R9. With this method, the concentration of uranium is calculated based on the activity of the uranium isotopes U-234, U-235, and U-238. Effective since the first quarter 2007 sampling event, the concentration of uranium has been analyzed using mass spectrometry method EPA 6020, which analyzes for total uranium and not for the activity of the individual isotopes.

Analytical data from ALS and TestAmerica were transmitted as an electronic data deliverable (EDD) and are included in Appendix E on a compact disk. Data are formatted as series of Excel spreadsheets. Appendix F presents copies of the chain-of-custody for the CSMRI samples.

#### 2.3.2 Surface Water Analyses

Clear Creek surface water results for radioisotopes, metals, and inorganic anions and cations are presented in Table 2-4, Table 2-5, and Table 2-6, respectively. Surface water parameters are reported as pCi/L for radioisotopes, µg/L for uranium and iron, and mg/L for all other metals and ions. Surface water samples were measured onsite for temperature, pH, specific conductance, DO, ORP, and NTU as the sampling was conducted. Onsite parameter measurements are presented on the sample collection forms in Appendix B.

# 2.4 Health and Safety Program

Stoller implements a program to protect the health and safety of field personnel during the environmental monitoring at the CSMRI site. This program has been developed in accordance with requirements of 29 Code of Federal Regulations (CFR) 1910.120.

# 3. Results

Groundwater analytical results for samples collected from the CSMRI site during the fourth quarter 2010 for radioisotopes, metals, and anions and cations are summarized on Table 2-1, Table 2-2, and Table 2-3, respectively. Surface water analytical results for samples collected from the CSMRI site during the fourth quarter 2010 for radioisotopes, metals, and anions and cations are summarized on Table 2-4, Table 2-5, and Table 2-6, respectively. Table 2-7 presents historical data collected by previous consultants for select contaminants of potential concern in groundwater at the site. The historical uranium data presented in Table 2-7 are presented in pCi/L as "activity," more recent (2005 through 2010) analytical data are presented in µg/L as "mass concentration." The December 7, 2000, *Federal Register* discusses the final uranium maximum contaminant level (MCL) and presents a conversion factor of a geometric average mass: activity ratio of 0.9 pCi/g for values near the National Primary Drinking Water Standards MCL, based on data from the National Inorganics and Radionuclides Survey.

Tables G-1 and G-2 in Appendix G present the quarterly historical groundwater radioisotopic and metals sample results, respectively, collected by Stoller since February 2005. Tables G-3 and G-4 in Appendix G present the quarterly historical Clear Creek surface water radioisotopic and metals sample results, respectively, collected by Stoller since February 2005.

#### 3.1 Groundwater Conditions

Groundwater monitor wells are located in areas likely to detect impacts, if any, to groundwater emanating from the site and at locations that represent background water quality. Monitor wells

CSMRI-4 and CSMRI-5 are downgradient of the site in the Clear Creek flood plain. Well CSMRI-1 is located along Clear Creek upstream of the site, and well CSMRI-2 is located offsite in the southeast corner of the freshman parking lot on West Campus Drive. Both monitor wells CSMRI-1 and CSMRI-2 are upgradient of the site.

In February 2007, seven new groundwater monitor wells were installed to assess the effectiveness of the source removal excavation that was conducted in 2006. Monitor well CSMRI-8 is located along Clear Creek within the flood plain area; and monitor wells CSMRI-1B, CSMRI-6B, CSMRI-7B, CSMRI-9, CSMRI-10, and CSMRI-11 are located on the bench terrace and essentially encircle the CSMRI site.

In July 2008, two monitor wells (CSMRI-6B and CSMRI-11) were abandoned due to construction activities at the CSMRI site. These two wells were replaced in December 2008 as CSMRI-6C and CSMRI-11B, respectively.

In October 2010, two monitor wells (CSMRI-7B and CSMRI-8) were abandoned in advance of soil characterization activities associated with the flood plain area and the hillside area west of monitor well CSMRI-8. Two replacement monitor wells (CSMRI-7C and CSMRI-8B) plus three new flood plain monitor wells (CSMRI-12, CSMRI-13, and CSMRI-14) were installed in January 2011. Monitor wells CSMRI-12 and CSMRI-13 were installed in the shallow alluvial aquifer and monitor well CSMRI-14, as a deep twin to CSMRI-13, is screened within the underlying Foxhills sandstone.

# 3.2 Groundwater Quality

Groundwater samples were collected from nine monitor wells and tested for the presence of metals and radioisotopes as identified in Section 2.3.1. The sample volumes collected from monitor well CSMRI-6C were limited due to insufficient water. Because of the limited water volume at this well, analytical testing was conducted only for uranium.

Uranium was detected in monitor wells CSMRI-4 at 73  $\mu$ g/L and CSMRI-9 at 37  $\mu$ g/L at concentrations exceeding the State of Colorado groundwater standard of 30  $\mu$ g/L. Uranium was also detected in the remaining seven groundwater monitor wells but at concentrations well below the groundwater standard.

In the flood plain area, uranium was detected in monitor wells CSMRI-4 at 73  $\mu$ g/L and CSMRI-5 at 14  $\mu$ g/L. Monitor well CSMRI-4 historically has had elevated concentrations of uranium. Values had been declining since 1991 until the last several quarterly sampling events as depicted on Figure 5. Historically, the concentration of uranium in this monitor well spiked once in 1999 and again in 2003. The spike in the uranium concentration in 2003 was attributed to precipitation effects and removal of asphalt and concrete as discussed in Section 4.2.2 of the New Horizons RI/FS (New Horizons 2004). The recent (2009) rise in the uranium concentration in this monitor well appears to be attributed to stormwater discharge from the new Colorado School of Mines (CSM) artificial turf soccer field subdrains. Precipitation collected in the subdrains, discharged near the northern edge of the bench terrace, and flowed down a riprapembedded concrete rundown onto the flood plain. During the process, the discharge water became oxygenated and was introduced into the poorly oxygenized environment of the flood

plain area. Uranium present in the saturated sediments of the flood plain was mobilized by the oxygenated discharge water and flowed toward monitor well CSMRI-4. In early 2010, the soccer field discharge pipe was relocated to the east. Recent analytical data suggest the soccer field discharge pipe is no longer affecting this monitor well.

Figure 6 presents the potentiometric surface elevation of groundwater in CSMRI-4 (left Y axis) and the uranium concentration (right Y axis) from 2005 through the fourth quarter 2010. The figure indicates the uranium concentration had previously been fluctuating seasonally from slightly above to slightly below the groundwater standard of 30  $\mu$ g/L for seven quarterly sampling events in 2005 and 2006. An ice chest from the fourth quarter 2006 (December) sampling event was lost by the courier service resulting in a gap in the analytical data for CSMRI-4. The concentration of uranium in this well has increased since the 2006 surface soil remediation activities and also spiked during the third quarter 2009 sampling event. The uranium concentration in this monitor well has decreased significantly since the third quarter 2009 sampling event and reflects the relocation of the soccer field discharge pipe.

The uranium concentration in CSMRI-9 of 37  $\mu$ g/L increased slightly from the previous quarterly sample value of 31  $\mu$ g/L and is within the range of the 2007 and 2008 analytical data. This monitor well is located at the top of the bench terrace that rises above the flood plain and is downgradient of the CSMRI site. Figure 7 presents the historical water table elevations and uranium concentrations since January 2007.

#### 3.2.1 Ionic Balance Evaluation

The ionic testing and balancing is conducted to determine the different groundwater hydrochemical facies within the CSMRI site and to assess the analytical laboratory quality control procedures since the sum of the major anions should equal the sum of the major cations when the ionic concentrations are converted to millequivalents per liter.

Groundwater and surface water samples were collected and tested for major anions and cations, DOC, and at select locations (CSMRI-1, CSMRI-4, and CSMRI-5) ferric/ferrous iron. The presence of sulfide was also analyzed for in samples from the two flood plain monitor wells (CSMRI-4 and CSMRI-5). Analytical results for these parameters are presented in Table 2-3 for groundwater and Table 2-6 for surface water.

AqQA® geochemical software is used to calculate ionic balances of water samples and to present the graphical representation of anions and cations. Ionic balance calculations for the anions and cations for the water samples generally range from 5.0 to 14.5 percent (monitor well CSMRI-2). Significant inequalities of the ionic balance between the anions and cations suggest internal analytical laboratory quality issues or an ion is present and is not being tested for.

Summary sheets from the AqQA® geochemical software for each of the water samples are presented in Appendix H. Dominant water types identified at the CSMRI site include Ca-Cl (CSMRI-1, CSMRI-1B, CSMRI-4, CSMRI-5, CSMRI-9, and CSMRI-10); Ca-HCO<sub>3</sub> (CSMRI-2); and Ca-SO<sub>4</sub> (SW-1, SW-2, and SW-3 [all Clear Creek surface water samples]). Only analytical results from monitor wells in which a sufficient volume of groundwater was obtained for a complete ionic analyses are presented; ionic analyses were not conducted on monitor wells CSMRI-6C and CSMRI-11B.

A Piper quadrilateral diagram is included in Appendix H and illustrates the overall ionic properties for each water sample. The cation triangle in the lower left of the figure indicates the cation composition of the water samples are generally similar, with the exception of CSMRI-10, as exhibited by the tight grouping of the plotted results. The anion triangle in the lower right of the figure indicates the anion composition of the water samples is more diverse as exhibited by the dispersed nature of the plotted results.

## 3.2.2 Comparison of Upgradient and Downgradient Groundwater Quality

Monitor wells CSMRI-4 and CSMRI-5 are downgradient from the upper terrace portion of the site and are located on the Clear Creek flood plain. Monitor well CSMRI-9 is located downgradient of the CSMRI site at the top of the bench terrace above the flood plain. Monitor wells CSMRI-10 and CSMRI-11B are located at the eastern edge of the site, and monitor wells CSMRI-1B and CSMRI-6C are located upgradient of the site.

Uranium was detected in monitor wells CSMRI-4 at concentrations of 73  $\mu$ g/L and CSMRI-9 at 37  $\mu$ g/L, exceeding the groundwater standard of 30  $\mu$ g/L. Monitor well CSMRI-9 is located at the downgradient position on the bench terrace at the CSMRI site. Uranium was detected in all other groundwater monitor wells, including upgradient and cross-gradient positions, but at concentrations well below the groundwater standard.

# 3.2.3 Comparison with Previous Groundwater Quality Analyses

Table 2-7 presents historical groundwater analytical results from past sampling events dating back to 1991 for radioisotopes of concern. The data indicate fluctuating concentrations of tested analytes, particularly for monitor well CSMRI-4.

As additional data are collected for each sampling quarter and trends become more defined, graphs of concentration versus time are produced and presented. These analytical data are incorporated to show long-term trends and correlation between the detected concentration of uranium in groundwater, the fluctuating water table, and seasonal variability if present.

#### 3.2.4 Comparison with Colorado Groundwater Standards

As discussed previously, the groundwater standard of 30  $\mu$ g/L for uranium in groundwater was exceeded in monitor wells CSMRI-4 (73 $\mu$ g/L) and CSMRI-9 (37  $\mu$ g/L). In January 2008, the CDPHE Water Quality Control Commission adopted the surface water quality standard of 30  $\mu$ g/L as the groundwater quality standard in an effort to keep both uranium standards consistent.

The historic spikes in the concentration of uranium in CSMRI-4, as shown on Figure 5, have been attributed to increased precipitation from December 2006 through February 2007 and surface soil remediation activities in the flood plain. Recent analytical results indicate a decreasing trend back to 2007 and 2008 levels prior to impacts from the soccer field storm drain.

No exceedances of the MCL for Ra-226 and Ra-228 were detected in any of the groundwater samples for this sampling quarter.

Monitoring wells CSMRI-7B and CSMRI-8 were abandoned in October-2010 to accommodate soil characterization activities in the flood plain. Abandonment forms were completed and

submitted to the State Engineer's Office, Colorado Division of Water Resources to document the abandonment process. After soil characterization is complete, these monitor wells will be replaced and integrated into the quarterly sampling schedule. Sampling of these new wells and other site wells will continue and the reason(s) for observed elevated levels of uranium will be evaluated.

# 3.3 Surface Water Quality

Surface water samples are collected from three locations at the site. Location SW-1 is located over 400 feet upstream from the CSMRI site, SW-2 is downstream from the site, and SW-3 is typically located adjacent to the Clear Creek bank in the vicinity of monitor well CSMRI-8. Due to construction of a new security fence along the south bank of Clear Creek, access to sample location SW-3 was not possible. The fourth quarter 2010 SW-3 sample was collected on the opposite (north) bank of Clear Creek. Adjustments to the security fence have since been made and future sampling of SW-3 will return to the south-side bank, near the location of monitor well CSMRI-8.

All surface-water concentrations of tested parameters detected at the CSMRI site from stations SW-1, SW-2, and SW-3 are similar. Established surface water quality standards were not exceeded at any location.

## 4. Future Activities

Construction activities associated with the flood plain soil characterization effort began in mid-October 2010 and were completed by late November 2010. The characterization activities were being conducted predominately in the vicinity of monitor well CSMRI-8 and to the west along the hillside where previous characterization studies indicate elevated concentrations of metals and radioactivity above background.

During characterization activities, monitor wells CSMRI-7B and CSMRI-8 were abandoned. In January 2011, these wells were replaced very close to their former locations following completion of the soil characterization effort. Monitor wells CSMRI-6C and CSMRI-11B were overdrilled and extended to the top of underlying bedrock so that the screened interval spanned the full thickness of the saturated alluvial deposits. These groundwater monitoring wells will be sampled, along with three new flood plain monitor wells, during the March 2011 sampling event.

# 5. References

Colorado Department of Public Health and Environment, Water Quality Control Commission, Regulation No. 41, *The Basic Standards for Ground Water*. Amended: January 14, 2008, Effective: May 31, 2008.

New Horizons Environmental Consultants, Inc. Remedial Investigation/Feasibility Study and Proposed Plan, Colorado School of Mines Research Institute Site, Golden, CO, January 21, 2004.

Stoller 2010. Final Work Plan, Environmental Assessment and Characterization, Colorado School of Mines Research Institute Site, Flood Plain Area, Golden, Colorado, Prepared by The S.M. Stoller Corporation For Colorado School of Mines, August 2010.

USGS Surface Water website: http://nwis.waterdata.usgs.gov

**Table 2-1 Summary of Radioisotopes in Groundwater** 

| Summary of Radioisotopes in Groundwater |             |              |               |                   |             |  |  |  |  |  |
|-----------------------------------------|-------------|--------------|---------------|-------------------|-------------|--|--|--|--|--|
| Sample                                  |             |              | -226<br>Ci/L) | Ra-228<br>(pCi/L) |             |  |  |  |  |  |
| Station                                 | Sample Date | Result       | Uncertainty   | Result            | Uncertainty |  |  |  |  |  |
| CSMRI-1                                 | 12/8/10     | 0.37         | ±0.27         | 0.96              | ±0.4        |  |  |  |  |  |
| CSMRI-1B                                | 12/8/10     | 0.24         | ±0.22         | 0.34              | ±0.34       |  |  |  |  |  |
| CSMRI-2                                 | 12/8/10     | 0.98         | ±0.42         | 2.16              | ±0.72       |  |  |  |  |  |
| CSMRI-4                                 | 12/7/10     | 0.66         | ±0.38         | 0.99              | ±0.44       |  |  |  |  |  |
| CSMRI-5                                 | 12/7/10     | 0.67         | ±0.32         | 0.71              | ±0.37       |  |  |  |  |  |
| CSMRI-6C                                | 12/8/10     | NT           | NT            | NT                | NT          |  |  |  |  |  |
| CSMRI-7B                                | NT          | NT           | NT            | NT                | NT          |  |  |  |  |  |
| CSMRI-8                                 | NT          | NT           | NT            | NT                | NT          |  |  |  |  |  |
| CSMRI-9                                 | 12/7/10     | 0.23         | ±0.29         | 0.8               | ±0.4        |  |  |  |  |  |
| CSMRI-10                                | 12/7/10     | 0.28         | ±0.21         | 0.63              | ±0.31       |  |  |  |  |  |
| CSMRI-11B                               | 12/8/10     | 0.38         | ±0.3          | 0.53              | ±0.38       |  |  |  |  |  |
| M                                       | CL*         | Total Ra = 5 |               |                   |             |  |  |  |  |  |

<sup>\*</sup>Maximum Contaminant Level – National Primary Drinking Water Regulations

pCi/L = picoCuries per Liter NT – Not Tested

Table 2-2 **Summary of Metals in Groundwater** 

|                   | Summary of Metals in Groundwater |              |              |              |              |              |              |              |             |              |              |              |             |             |
|-------------------|----------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|-------------|-------------|
| Sample<br>Station | Sample<br>Date                   | Ag<br>(mg/L) | As<br>(mg/L) | Ba<br>(mg/L) | Ca<br>(mg/L) | Cd<br>(mg/L) | Cr<br>(mg/L) | Hg<br>(mg/L) | K<br>(mg/L) | Mg<br>(mg/L) | Na<br>(mg/L) | Pb<br>(mg/L) | U<br>(µg/L) | V<br>(mg/L) |
| CSMRI-1           | 12/8/10                          | NT           | NT           | NT           | 48           | NT           | NT           | NT           | 3.5         | 15           | 38           | NT           | 2           | NT          |
| CSMRI-1B          | 12/8/10                          | NT           | NT           | NT           | 140          | NT           | NT           | NT           | 6.5         | 57           | 53           | NT           | 10          | NT          |
| CSMRI-2           | 12/8/10                          | NT           | NT           | NT           | 88           | NT           | NT           | NT           | 6.5         | 39           | 21           | NT           | 0.97        | NT          |
| CSMRI-4           | 12/7/10                          | NT           | NT           | NT           | 150          | NT           | NT           | NT           | 12          | 62           | 60           | NT           | 73          | NT          |
| CSMRI-5           | 12/7/10                          | NT           | NT           | NT           | 150          | NT           | NT           | NT           | 4.9         | 52           | 62           | NT           | 14          | NT          |
| CSMRI-6C          | 12/8/10                          | NT           | NT          | NT           | NT           | NT           | 21          | NT          |
| CSMRI-7B          | NT                               | NT           | NT           | NT           | NT           | NT           | NT           | NT           | NT          | NT           | NT           | NT           | NT          | NT          |
| CSMRI-8           | NT                               | NT           | NT           | NT           | NT           | NT           | NT           | NT           | NT          | NT           | NT           | NT           | NT          | NT          |
| CSMRI-9           | 12/7/10                          | NT           | NT           | NT           | 140          | NT           | NT           | NT           | 5.6         | 63           | 54           | NT           | 37          | NT          |
| CSMRI-10          | 12/7/10                          | NT           | NT           | NT           | 140          | NT           | NT           | NT           | 4.9         | 51           | 54 J         | NT           | 16          | NT          |
| CSMRI-11B         | 12/8/10                          | NT           | NT          | NT           | NT           | NT           | 8.1         | NT          |
| Detection         | n Limits                         | 0.01         | 0.01         | 0.1          | 1            | 0.005        | 0.01         | 0.0002       | 1           | 1            | 1            | 0.003        | 0.1         | 8.1         |
| MCI               | *                                | NE           | 0.010        | 2            | NE           | 0.005        | 0.1          | 0.002        | NE          | NE           | NE           | NT           | 30          | NE          |

mg/L – milligrams per liter

NT - Not Tested

J – Estimated value

μg/L- micrograms per liter

<sup>\*</sup>Maximum Contaminant Level – National Primary Drinking Water Regulations

NE - Not Established

ND – Tested but not detected above the Detection Limits

Table 2-3
Summary of Anions and Cations in Groundwater

|           | 1           |             |              |               |           |           | 1 minons and |             | 1            |            |         |         |             |         |         |
|-----------|-------------|-------------|--------------|---------------|-----------|-----------|--------------|-------------|--------------|------------|---------|---------|-------------|---------|---------|
|           |             |             |              | Total         |           | Total     | Dissolved    |             |              |            |         |         |             |         |         |
|           |             | Bicarbonate | Carbonate as | Alkalinity as |           | Dissolved | Organic      |             |              |            |         |         | Dissolved   |         |         |
| Sample    |             | as CaCO₃    | CaCO₃        | CaCO₃         | Chloride  | Solids    | Carbon       | Ferric Iron | Ferrous Iron | Total Iron | Nitrate | Nitrite | Phosphorous | Sulfate | Sulfide |
| Station   | Sample Date | (mg/L)      | (mg/L)       | (mg/L)        | (mg/L)    | (mg/L)    | (mg/L)       | (mg/L)      | (mg/L)       | (µg/L)     | (mg/L)  | (mg/L)  | (mg/L)      | (mg/L)  | (mg/L)  |
| CSMRI-1   | 12/8/10     | 83          | ND           | 83            | 87        | 320       | 1            | NT          | NT           | NT         | 1       | ND      | NT          | 62      | NT      |
| CSMRI-1B  | 12/8/10     | 210         | ND           | 210           | 270       | 700       | 1.5          | NT          | NT           | NT         | 4.2     | ND      | NT          | 91      | NT      |
| CSMRI-2   | 12/8/10     | 300         | ND           | 300           | 24        | 420       | 1            | NT          | NT           | NT         | ND      | ND      | NT          | 78      | NT      |
| CSMRI-4   | 12/7/10     | 300         | ND           | 300           | 200       | 860       | 2.1          | ND          | ND           | ND         | 1.8     | ND      | NT          | 150     | ND      |
| CSMRI-5   | 12/7/10     | 230         | ND           | 230           | 220       | 810       | 1.6          | ND          | ND           | ND         | 6.4     | ND      | NT          | 130     | ND      |
| CSMRI-6C  | 12/8/10     | NT          | NT           | NT            | NT        | NT        | NT           | NT          | NT           | NT         | NT      | NT      | NT          | NT      | NT      |
| CSMRI-7B  | NT          | NT          | NT           | NT            | NT        | NT        | NT           | NT          | NT           | NT         | NT      | NT      | NT          | NT      | NT      |
| CSMRI-8   | NT          | NT          | NT           | NT            | NT        | NT        | NT           | NT          | NT           | NT         | NT      | NT      | NT          | NT      | NT      |
| CSMRI-9   | 12/7/10     | 280         | ND           | 280           | 230       | 810       | 1.6          | NT          | NT           | NT         | 4.7     | ND      | NT          | 110     | NT      |
| CSMRI-10  | 12/7/10     | 250         | ND           | 250           | 210       | 760       | 1.5          | NT          | NT           | NT         | 8.4     | ND      | NT          | 97      | NT      |
| CSMRI-11B | 12/8/10     | NT          | NT           | NT            | NT        | NT        | NT           | NT          | NT           | NT         | NT      | NT      | NT          | NT      | NT      |
| Reportir  | ng Limits   | 5, 10 or 20 | 5, 10 or 20  | 5, 10 or 20   | 1, 2 or 4 | 10        | 1            | 0.20        | 0.20         | 100        | 0.50    | 0.50    | 0.05        | 5 or 20 | 0.050   |

mg/L – milligrams per liter

μg/L- micrograms per liter

ND – Non Detect

NT - Not Tested

Table 2-4
Summary of Radioisotopes in Surface Water

|         |         | y of fundiousotopes in surface water |             |                |             |  |  |  |
|---------|---------|--------------------------------------|-------------|----------------|-------------|--|--|--|
| Sample  | Sample  | Ra-226                               | (pCi/L)     | Ra-228 (pCi/L) |             |  |  |  |
| Station | Date    | Result                               | Uncertainty | Result         | Uncertainty |  |  |  |
| SW-1    | 12/8/10 | 0.03                                 | ±0.28       | 0.58           | ±0.34       |  |  |  |
| SW-2    | 12/8/10 | 0.02                                 | ±0.16       | 0.24           | ±0.3        |  |  |  |
| SW-3    | 12/8/10 | 0.06                                 | ±0.11       | 0.26           | ±0.28       |  |  |  |
| M       | CL*     |                                      | Total I     | Ra = 5         |             |  |  |  |

\*Maximum Contaminant Level – National Primary Drinking Water Regulations pCi/L = picoCuries per Liter

Table 2-5
Summary of Metals in Surface Water

|                   |               |              |              |              | Σ.           | anning of    | TITE COLLEGE | surface wat  | <b>-</b>    |              |              |              |             |             |
|-------------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|-------------|-------------|
| Sample<br>Station | Sample Date   | Ag<br>(mg/L) | As<br>(mg/L) | Ba<br>(mg/L) | Ca<br>(mg/L) | Cd<br>(mg/L) | Cr<br>(mg/L) | Hg<br>(mg/L) | K<br>(mg/L) | Mg<br>(mg/L) | Na<br>(mg/L) | Pb<br>(mg/L) | U<br>(µg/L) | V<br>(mg/L) |
| SW-1              | 12/8/10       | NT           | NT           | NT           | 38           | NT           | NT           | NT           | 2.5         | 8.3          | 14           | NT           | 1.6         | NT          |
| SW-2              | 12/8/10       | NT           | NT           | NT           | 40           | NT           | NT           | NT           | 2.5         | 8.8          | 14           | NT           | 1.7         | NT          |
| SW-3              | 12/8/10       | NT           | NT           | NT           | 38           | NT           | NT           | NT           | 2.5         | 8.3          | 15           | NT           | 1.7         | NT          |
| Dete              | ection Limits | 0.01         | 0.01         | 0.1          | 1            | 0.005        | 0.01         | 0.0002       | 1           | 1            | 1            | 0.003        | 0.01        | 0.01        |
|                   | MCLs*         | 0.01         | 0.010        | 2            | NE           | 0.005        | 0.1          | 0.002        | NE          | NE           | NE           | 0.015        | 30          | NE          |

mg/L = milligrams per Liter

 $\mu$ g/L = micrograms per Liter

\*Maximum Contaminant Level – National Primary Drinking Water Regulations

NE - Not Established

ND = Not Detected at or above the detection limit

The S.M. Stoller Corporation 11

**Table 2-6 Summary of Anions and Cations in Surface Water** 

|                   |                |                                               |                                 |                                           |                    | J                                   |                                          |                       |                        |                      |                   |                   |                                |                   |
|-------------------|----------------|-----------------------------------------------|---------------------------------|-------------------------------------------|--------------------|-------------------------------------|------------------------------------------|-----------------------|------------------------|----------------------|-------------------|-------------------|--------------------------------|-------------------|
| Sample<br>Station | Sample<br>Date | Bicarbonate<br>as CaCO <sub>3</sub><br>(mg/L) | Carbonate<br>as CaCO₃<br>(mg/L) | Total<br>Alkalinity<br>as CaCO₃<br>(mg/L) | Chloride<br>(mg/L) | Total Dissolved<br>Solids<br>(mg/L) | Dissolved<br>Organic<br>Carbon<br>(mg/L) | Ferric Iron<br>(mg/L) | Ferrous Iron<br>(mg/L) | Total Iron<br>(µg/L) | Nitrate<br>(mg/L) | Nitrite<br>(mg/L) | Total<br>Phosphorous<br>(mg/L) | Sulfate<br>(mg/L) |
| SW-1              | 12/8/10        | 43                                            | ND                              | 43                                        | 24                 | 200                                 | 1                                        | NT                    | NT                     | NT                   | ND                | ND                | NT                             | 79                |
| SW-2              | 12/8/10        | 46                                            | ND                              | 46                                        | 24                 | 210                                 | 1                                        | NT                    | NT                     | NT                   | ND                | ND                | NT                             | 86                |
| SW-3              | 12/8/10        | 45                                            | ND                              | 45                                        | 24                 | 210                                 | 1                                        | NT                    | NT                     | NT                   | ND                | ND                | NT                             | 83                |
| Reportir          | ng Limits      | 5                                             | 5                               | 5                                         | 0.2                | 10                                  | 1                                        | NT                    | NT                     | NT                   | 0.50              | 0.50              | 0.05                           | 1                 |

ND = Not Detected at or above the Reporting Limits

NT = Not Tested

**Table 2-7 CSMRI Historical Groundwater Data (Previous Consultants)** 

(All results in picoCuries per liter)

| Well ID (d) | Analyte | 1/1991 (a) | 6/1991 (a) | 3/1999 (b) | 6/1999 (b) | 10/1999 (b) | 2/2003 (c) | 4/2003 (c) | 7/2003 (c) | 10/2003 (c) |
|-------------|---------|------------|------------|------------|------------|-------------|------------|------------|------------|-------------|
|             | Ra-226  |            |            | 0.1        | 0.3        | 0.2         | < 0.55     | <0.45      | ND (<0.38) | ND (<0.31)  |
| CSMRI-1     | U Total |            |            | 2.09       | 2.59       | 1.44        | 2.4        | 2.9        | 0.87       | 1.4         |
|             | Th-230  |            |            | 0.4        | 0.2        | 0.2         | <0.19      | 0.21       | ND (<0.13) | <0.15       |
|             | Ra-226  |            | 1.9        | 1.9        | 1.4        | 1.4         | 1.4        | 2.8        | 2.1        | 1.7         |
| CSMRI-2     | U Total | 11         | 5.7        | 0.55       | 1.46       | 0.71        | 1.5        | 1.3        | 1.9        | 1.3         |
|             | Th-230  |            | 0          | 0.1        | 0.1        | 0.9         | <0.17      | 0.43       | 0.20       | 0.31        |
|             | Ra-226  |            | 0.6        | 1.5        | 1.2        | 1.6         | <0.75      | <0.81      | ND (<0.49) | < 0.98      |
| CSMRI-3     | U Total | 17         | 10.4       | 8.41       | 12.4       | 10          | 12         | 12         | 9          | 10          |
|             | Th-230  |            | 0          | 0.3        | 0.3        | 1.1         | <0.12      | ND (<0.15) | ND (<0.17) | ND (<0.14)  |
|             | Ra-226  |            | 1          | <0.4       | 0.6        | 0.4         | <0.85      | <0.42      | < 0.32     | ND (<0.64)  |
| CSMRI-4     | U Total | 86         | 57.3       | 23.4       | 58.6       | 33.7        | 16         | 34.2       | 53         | 19          |
|             | Th-230  |            | 0          | 0.7        | 0.3        | 0.4         | < 0.099    | ND (<0.15) | ND (<0.17) | ND (<0.12)  |
|             | Ra-226  |            | 0.6        | 2.4        | 3.3        | 2.7         | ND (<0.49) | 1.1        | 2.6        | 1.59        |
| CSMRI-5     | U Total | 14         | 16.8       | 3.6        | 3.6        | 4           | 2.8        | 2.3        | 2.7        | 3.3         |
|             | Th-230  |            | 0          | 0.2        | 0.2        | 1.4         | 0.062      | ND (<0.14) | ND (<0.19) | ND (<0.13)  |

Notes: ND = Not Detected

a - Samples collected by Grant and Associates and analyzed by Barringer Labs
b - Samples collected by URS Greiner Woodward Clyde and analyzed by CORE Labs
c - Samples collected by New Horizons Environmental Consultants and analyzed by Paragon Analytics; Total U activity (pCi/L) calculated from concentration (μg/L) reported by Paragon.
d - Well Identification numbers changed from the 1991 data to the 1999 data. Data presented account for this change

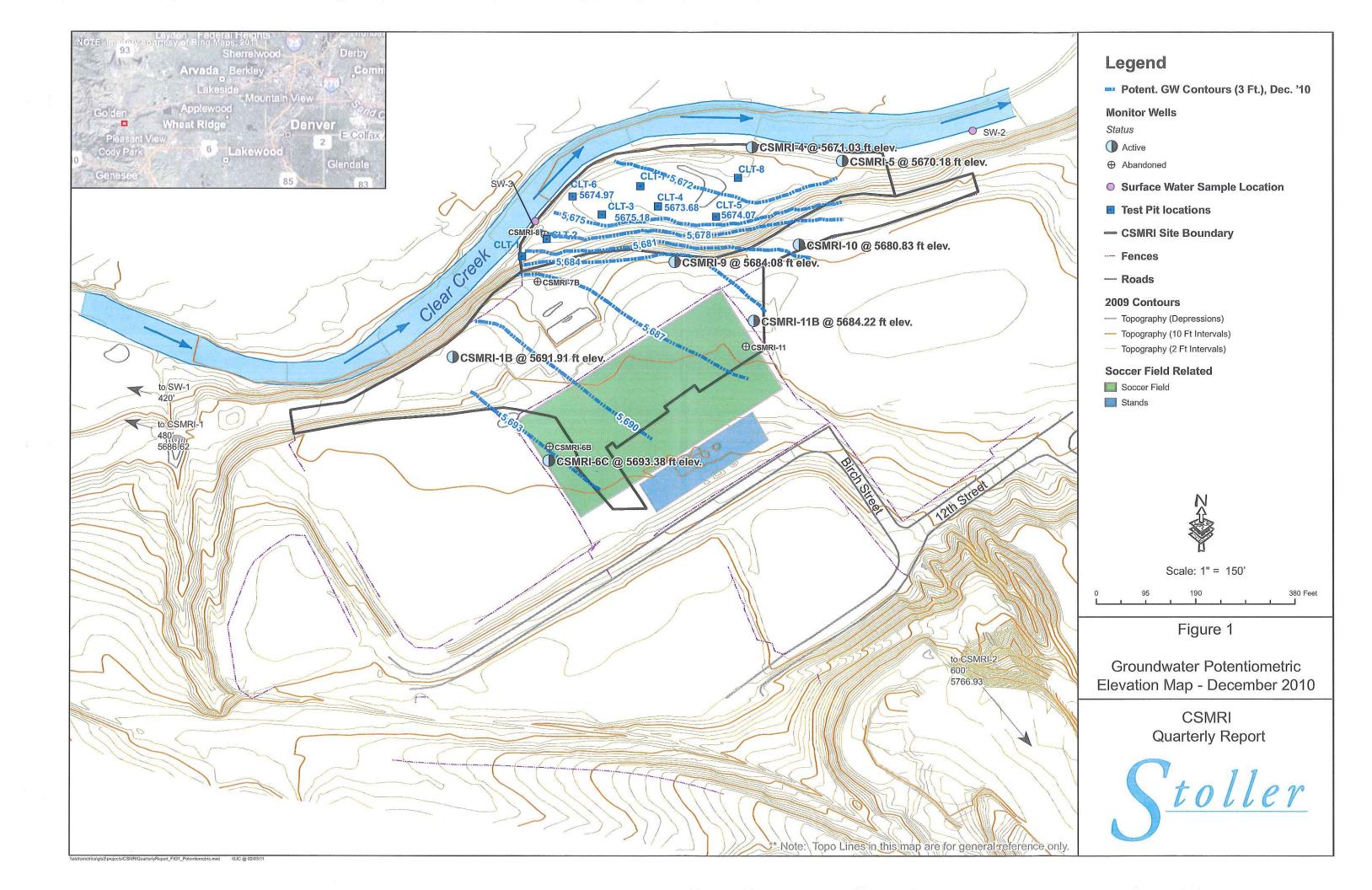
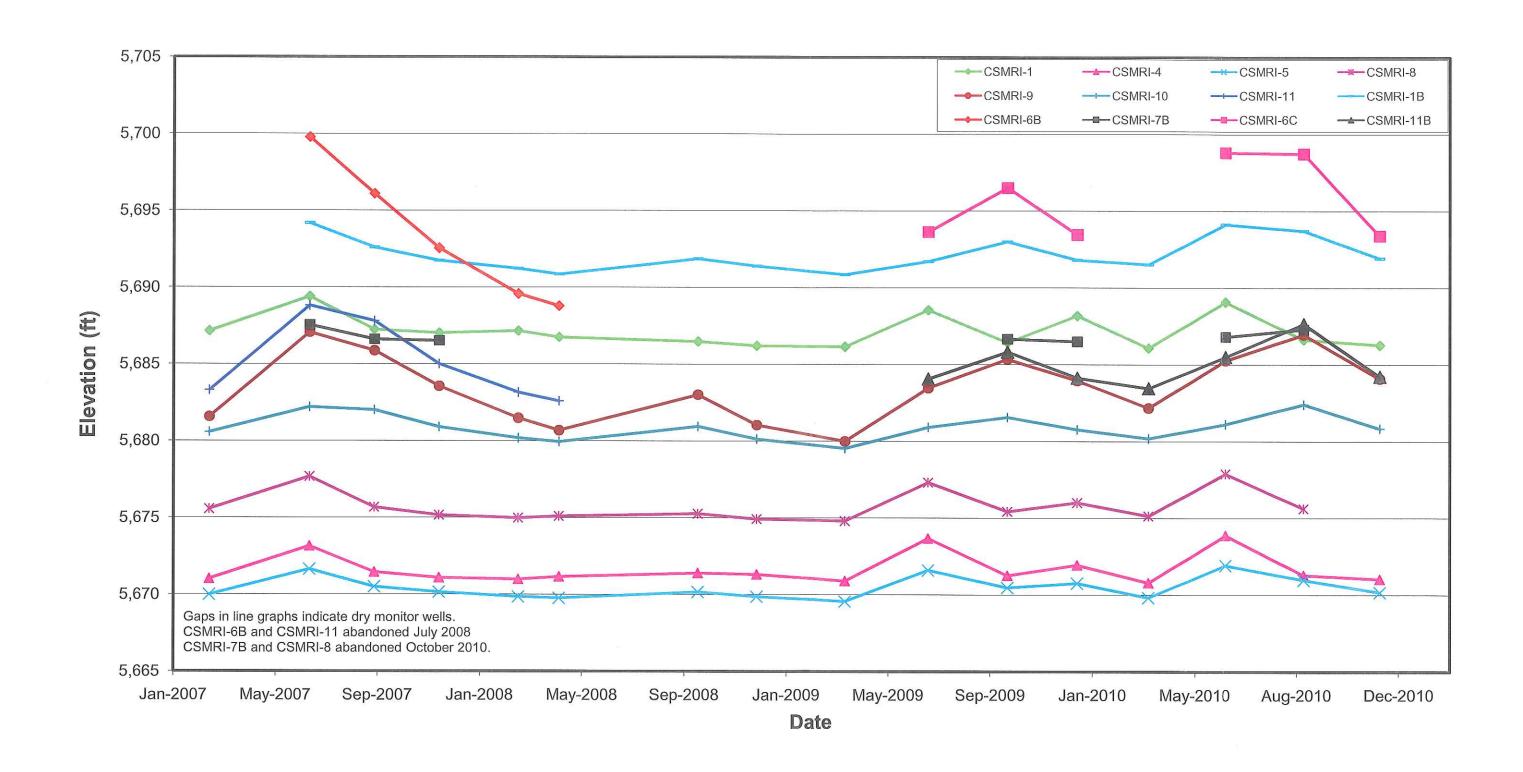
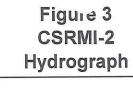





Figure 2
CSMRI
All Monitor Wells Hydrograph





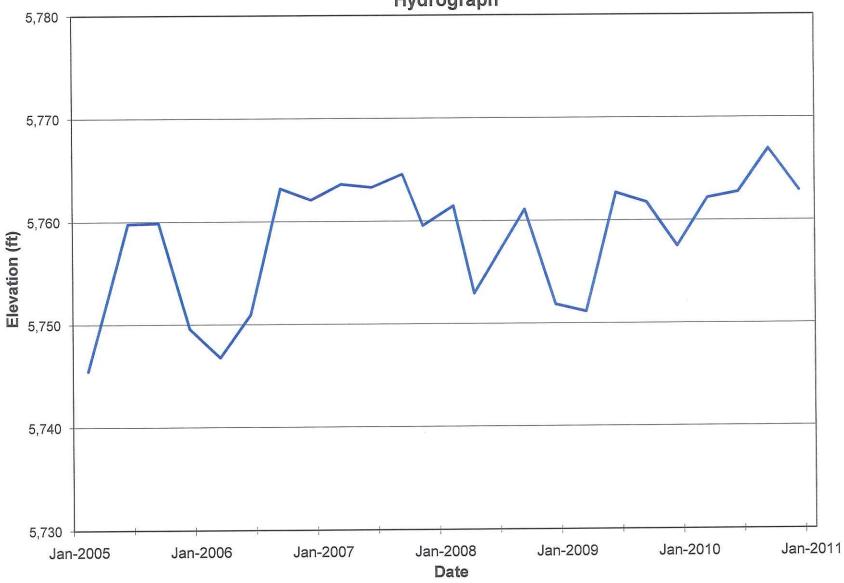



Figure 4 Clear Creek Gauging Graph October - December 2010

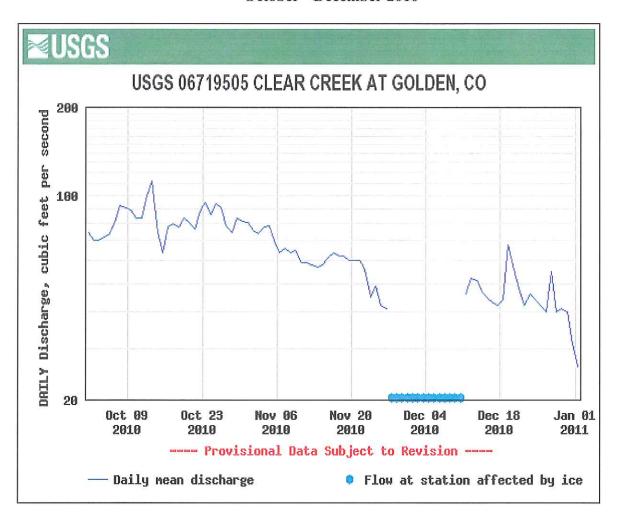



Figure 5 CSMRI-4 Historical Total Uranium Concentration (1991 - 2010)




Figure 6
CSMRI-4
Uranium Concentration and Potentiometric Elevation

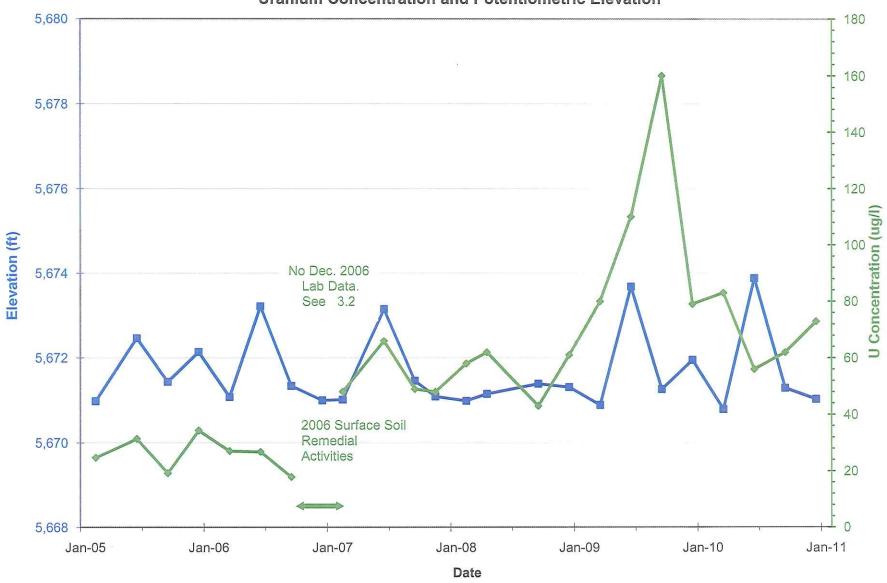
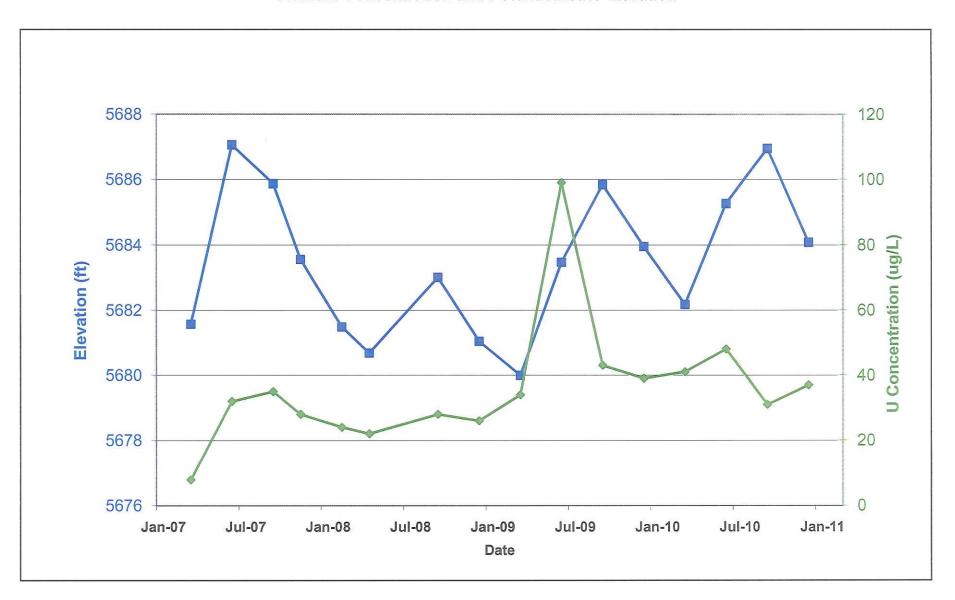




Figure 7
CSMRI-9
Uranium Concentration and Potentiometric Elevation



# Appendix A Groundwater Sampling Procedures

# **Groundwater Sampling**

# 1.0 Purpose

This procedure describes actions to be used to sample groundwater from monitoring wells and piezometers. Monitoring wells are generally sampled on a semiannual, quarterly, or monthly basis, or by special request in support for specific projects. All wells are to be sampled using this procedure unless superseded by specific site, facility, or client procedures.

This procedure describes equipment decontamination and transport, site preparation, detection and sampling of immiscible layers, water level measurements, well purging, sample collection, field and analytical parameters, quality assurance/quality control (QA/QC) requirements, and documentation that shall be used for field data collection.

# 2.0 Scope

This document describes acceptable methods for the sampling of wells and piezometers.

# 3.0 Responsibilities and Qualifications

Personnel performing groundwater sampling procedures are required to have completed the initial 40-hour OSHA classroom training that meets the Department of Labor requirements at 29 CFR 1910.120(e)(3)(i), and must maintain a current training status by completing the appropriate annual 8-hour OSHA refresher courses. Personnel must also have read the appropriate project, site, or facility Health and Safety Plan(s). Prior to engaging in groundwater sampling activities, personnel must have a complete understanding of the procedures described within this procedure and, if necessary, will be given specific training regarding these procedures by other personnel experienced in the methods described within this procedure.

# 4.0 Groundwater Sampling Procedures

#### 4.1 Introduction

Many monitoring wells are constructed of either 2-inch stainless steel, or 2- or 4-inch flush threaded PVC casing. Some piezometers are completed as monitoring wells, and they are usually constructed of ¾-inch inside diameter, flush threaded PVC casing. Some wells have been constructed to incorporate a sump below the well screen. Because these vary in length, the well construction diagrams should be consulted to determine the sump lengths for specific wells. Most piezometers are constructed with a flush threaded cap at the bottom of the well screen. However, the well construction diagrams should also be consulted for information about specific piezometers.

Procedures for groundwater sampling are designed to obtain a sample that is representative of the formation water beneath the site in question. Since an analysis of the quality of formation water is desired, standing water within the well must be purged before sampling. Also, a measure of the static water elevations is important to determine the effect of seasonal horizontal and vertical flow gradient changes during site characterization activities.

Groundwater sampling procedures can be initiated after sampling personnel take the required water level measurements and purge the well in accordance with this procedure. Methods for accomplishing each of these activities are included in this procedure in the following sequence:

- Collection of immiscible layers samples, if present
- Well purging
- Groundwater sampling using a bailer



Page 1 of 20 ST\_Rad\_24

- Groundwater sampling using a peristaltic pump
- Groundwater sampling with a bladder pump

# 4.2 General Equipment Requirements

Down-hole sampling equipment shall be constructed of inert material such as polytetrafluoroethylene (Teflon®) or stainless steel. This equipment shall be assessed on an individual basis prior to use in the field.

The following is a primary list of well sampling and associated equipment:

- Bailers Teflon<sup>®</sup>, stainless steel, or other appropriate inert materials
- Teflon<sup>®</sup> coated stainless steel cable with reels
- Peristaltic pumps and tubing
- Water level measuring devices sufficiently accurate to measure water levels to the nearest 0.01 foot
- Graduated purge water containers
- Plastic sheeting
- Distilled or deionized water
- Decontamination equipment and supplies
- Organic vapor detector (OVD)
- Gloves (nitrile)
- Calculator and watch
- Sample containers precleaned to EPA specifications
- pH paper
- Custody tape
- Coolers with sufficient blue ice to cool samples to 4°C
- Preservatives (trace metals grade)
- Disposable in-line 0.45-micron membrane filters
- Logbooks and field forms
- Black waterproof pens
- Portable laboratory equipment for measuring field parameters for pH, temperature, specific conductance, and turbidity
- Total alkalinity reagent
- Beakers and graduated cylinders

Additional equipment may be required to meet project or client health and safety standards, to perform specialized sampling, or to meet personnel and equipment decontamination requirements.

# 4.3 Equipment Decontamination and Transport

Equipment associated with the tasks involved in groundwater sampling shall be decontaminated upon arrival at the sampling location. All sampling equipment shall be decontaminated between



Page 2 of 20 ST\_Rad\_24

sample locations. Decontamination frequency shall be increased appropriately as field conditions dictate.

Transportation of all equipment shall be performed in a manner that eliminates any possibility of cross-contamination. Calibration solutions, fuel, decontamination solutions and wastewater, and all other sources of contamination shall be segregated from sampling equipment during transport. Purge water being transported to holding areas shall be kept in closed containers.

If the decontamination of downhole equipment is not performed at the well, used downhole equipment shall be wrapped in plastic sheeting and/or segregated from clean equipment to eliminate the possibility of cross contamination. The equipment shall then be decontaminated as soon as possible.

#### 4.3.1 Routine Field Decontamination

Decontamination of delicate equipment and the routine decontamination of sampling equipment prior to use at each well shall consist of the following steps:

- Vigorously scrub the equipment with a brush and solution of phosphate-free laboratory grade detergent (e.g., Liquinox) and distilled water.
- Rinse the equipment thoroughly with approved distilled water.
- If the decontaminated equipment is not immediately packaged to eliminate any adhesion of airborne impurities, perform an additional final rinse, or decontamination and rinse, immediately prior to actual sampling operations.

# 4.3.2 Routine Decontamination of Sampling Pumps

The external surfaces of all non-dedicated pumping equipment shall be decontaminated as described in Subsection 4.3.1. Internal surfaces shall be decontaminated according to the following procedures, except under special situations where the pump(s) must be disassembled and the internal parts cleaned separately (see Subsection 4.3.3). For routine decontamination, the following procedures shall be followed.

- Pump several pump volumes of a solution of a phosphate-free laboratory grade detergent (e.g., Liquinox) and water through the equipment.
- Displace the soap solution immediately by pumping approved distilled water, equivalent to three or more volumes of the pump storage capacity, through the equipment.
- If any detergent solution remains in the pump, continue pumping distilled water through the system until the detergent is no longer visibly present. Sudsing is the common indicator used to determine incomplete rinsing.

#### 4.3.3 Unusual Decontamination Requirements

When equipment becomes grossly contaminated, such as from the collection of immiscible layer samples (see Subsection 4.5), routine decontamination of sampling equipment is not considered sufficient and thus is not allowed. This situation and other unusual equipment decontamination problems shall be reported to the field site supervisor. Under certain circumstances, a pump can be disassembled and the parts cleaned separately using approved solvents (i.e., hexane, alcohol, etc.). If specific instructions are required, the field site supervisor shall consult with a management representative for proper decontamination procedures.

## 4.3.4 Disposition of Decontamination Water



Page 3 of 20 ST\_Rad\_24

All water generated during the decontamination of equipment used for the sampling of wells shall be containerized in either a satellite container or in the purge water container in the groundwater sampling vehicle. It will then be disposed of according to the procedure designated in Subsection 4.6.3 of this procedure.

# 4.4 Site Preparation

Sheet plastic may be used to protect clean equipment from contacting contaminated surfaces. Plastic bags and sheeting, along with the segregation of clean and dirty equipment, can be used to reduce the chances of cross contamination. If a mechanical bailer retrieval system is used, the amount of plastic appropriate for protection of sampling equipment may be lessened. The sampling crew members are responsible for determining the amount of plastic sheeting required.

Disposable nitrile gloves, or gloves made of other approved materials, shall be used at all times when handling sampling equipment. Gloves shall be changed between each site and as often as necessary to ensure the integrity of clean sampling equipment.

# 4.5 Collection of Immiscible Layer Samples

When specified in the project sampling plan, or when the well to be sampled contains immiscible layers, immiscible phases must be collected before purging activities begin. The method of choice for collecting light non-aqueous phase liquids (LNAPLS) is a bottom valve bailer or peristaltic pump. Dense non-aqueous phase liquids (DNAPL) or "sinkers" shall be collected with a bottom double check valve bailer or peristaltic pump.

In all cases, the bailer shall be carefully lowered into the well so that agitation of the immiscible layer is minimal. Any bailer used to collect immiscible layers shall be dedicated to the well that is sampled. Peristaltic pumps shall be equipped entirely with silicon, or other chemical compatible tubing, when sampling immiscible layers. The project manager shall be responsible for determining the type materials to be used for specific projects. Dedicated equipment used for collecting immiscible layers shall be decontaminated prior to and after use as described in Subsection 4.3 of this procedure, if removed from the well.

Immiscible layer sampling shall be performed as follows.

- Remove dedicated bailers from the well and decontaminate as specified in Subsection 4.3 of this procedure. Decontaminate dedicated pump tubing, if used, prior to use.
- For LNAPLs, carefully lower the bailer intake or sampling port to the midpoint of the
  immiscible layer and allow it to fill while it is held at this level. The bailer must be
  lowered into the immiscible layer slowly so that minimal agitation of the immiscible
  layer occurs. Peristaltic pump intakes must also be lowered to the midpoint of the
  immiscible layer.
- If a DNAPL layer is being sampled, use either the double check valve bailer or peristaltic pump. Lower the bailer into the well until bottom is encountered. Lower peristaltic pump intakes also to the well bottom. Care must be taken not to immerse the pump intake into accumulated sediments.
- Do not allow the bailer or line to touch the ground at any time or allow the ground to come in contact with other physical objects that might introduce contaminants into the well.
- Decontaminate all equipment immediately after sampling is completed. Suspend dedicated bailers in the well from the well cap above the high water level. Discard silicon tubing used with peristaltic pumps.



Page 4 of 20 ST\_Rad\_24

# 4.6 Well Purging

Purging stagnant water from a well is required so that the collected sample is representative of the formation groundwater. The device used (bailer or pump) depends upon aquifer properties, individual well construction, and data quality objectives. Wells that contain immiscible layers will not be purged unless specified in the site-specific work plan. Any well scheduled for purging and sampling that subsequently is found to contain immiscible layers must be reported to the site supervisor or project manager. The project manager shall be notified immediately prior to continued activities.

Before obtaining water level elevations or initiating purge activities, obtain the following information in reference to the well to be sampled, and enter the applicable information on the sample collection log.

- Location code (well number)
- Previous purge volume (information only)
- Depth to top of screen (bailed wells only)
- Well sample number
- Report Identification Number (RIN)
- Sample event number

Record the location code (well number), date, sampling team members, visitors, well condition, and any other pertinent information on the sample collection log. Enter the well number, time well is opened, and other information regarding the field activities on the Field Activity Daily Log.

The field instruments shall be standardized (to check calibration) and the results recorded on the sample collection form.

Measure the depth to the top of the water column and the total depth of the well in order to determine the height of the water column in the well. Calculate the well casing volume using the well casing inner diameter and the height of the water column in the well. The formula for calculating the volume in gallons of water in the well casing is as follows:

```
(\pi r^2 h) 7.481 = gallons; where \pi = 3.142 r = inside radius of the well pipe in feet <math>h = linear feet of water in well 7.481 = gallons per cubic foot of water 1 gallon = 3785 ml
```

Calculations of the volume of water in typical well casings may be done as follows:

```
a. 2" diameter well:
0.16 gal./ft x (linear ft of water) = gallons of water
b. 4" diameter well:
0.65 gal./ft x (linear ft of water) = gallons of water
c. 3/4" diameter well:
```



Page 5 of 20 ST\_Rad\_24

87 ml./ft x (linear ft of water) = milliliters of water

#### 4.6.1 Purging Duration

Purging shall be considered complete if any of the following conditions are met.

- 1. Purging is complete if at least three casing volumes of water are removed from the well, and the last three consecutive pH, specific conductance, and temperature measurements do not deviate by more than the following: 1) pH = ±0.1 pH units; 2) Specific Conductance = ±10% and; 3) temperature ±0.5°C. A turbidity measurement will be taken for every other purge sample for wells that are purged using a bailer. For wells that are equipped with a dedicated bladder pump, the turbidity will be measured each time the parameters are taken. The purge rate should be such that the turbidity is maintained at 5 NTU units or less (if possible). If the readings are not stabilized after three volumes, continue purging until stabilization or until five volumes have been removed. Field parameter measurements shall be collected after every half-casing volume (approximate) is removed from the well. When casing volumes are less than 1-liter, parameter measurements will be collected after each whole casing volume is removed. If readings do not stabilize after five well volumes have been recovered, obtain additional guidance from the project manager concerning the proper course of action.
- 2. A well is considered dewatered when only a few milliliters of water (or none) can be recovered each time the bailer is lowered into the well. When this occurs, a 10-minute recharge rate will be calculated (linearly). If, at the end of the 10-minute period, the well has not recovered sufficiently to continue the purge in thirty minutes, the purge is considered completed. If, at the end of the 10-minute period, there is sufficient water to collect the VOA samples, the samples may be collected at that time. If the well has not recovered sufficient water during the 10 minutes, and depending upon the well history, the samplers may elect to return to the well the same day (preferably within two hours), check the water level, and collect the VOA samples (first), and other samples as feasible. If the sample team cannot return the same day, the well will be checked in 24 hours to determine if sample collection is feasible. If an extended period of time is required to collect samples, the procedures in Subsection 4.8.1 shall be followed. The well will not require an additional purge before sampling.

Wells that dewater (have a slow recharge rate as specified in 2 above) will not be restricted by parameter stabilization requirements. Sampling of these wells will follow the protocol established in Subsection 4.8.

# 4.6.2 Purging Methods

Wells will be purged by either bailing or pumping. When purging a well, the rate of water withdrawal during purging should not exceed the rate of withdrawal at which the well was developed (if known). All purge times (initiation and completion) and the rate of purging will be recorded on the field log sheets.

### 4.6.2.1 Bailing

Generalized procedures for purging a well with a bailer are as follows.

Prepare the sampling site as discussed in Subsection 4.4. Use properly
decontaminated equipment to determine the static water level of the well.
Measure the total depth of the well. Use this information to determine the
volume of water in the well casing.



Page 6 of 20 ST\_Rad\_24

- Decontaminate all dedicated bailers prior to initiating purging as described in Subsection 4.3 of this procedure.
- Use a mechanical reel equipped with Teflon® coated stainless steel cable attached to a bailer for bailing and sampling operations. Lower the bailer slowly into the well until water is encountered. Minimize agitation of the well water. Avoid lowering the bailer to the bottom of the well so sediments accumulated in the bottom do not become suspended. For wells that dewater, do not allow the bailer to strike the well bottom with force. Raise and lower the bailer carefully to limit surge energy and ensure that cable does not come in contact with any potentially contaminated surfaces. Do not allow the cable to drag along the well casing or against other objects that will cause fraying. Monitor the amount of water purged.

Wells with significant levels of contamination may have dedicated bailers installed. Dedicated bailer systems shall consist of a Teflon<sup>®</sup> bailer with check valve or double check valve for DNAPLS and a 5-foot leader of Teflon<sup>®</sup> coated stainless steel cable. Bailer sampling attachments and the stainless steel reel cable will not be dedicated to individual wells.

Dedicated bailers will be decontaminated at the conclusion of sampling activities and suspended from the well cap above the high water table. If the well interval above the high water table is not adequate to allow for storage in the casing, the dedicated bailers will be stored in labeled and sealed plastic bags at the equipment trailer.

### 4.6.2.2 **Pumping**

Pump designs that meet the following criteria are allowed for purging.

- The pump is constructed of a material that does not introduce a source of contamination to the well.
- The pump drive system does not introduce a source of contamination into the well.
- All downhole parts to the pump can be easily decontaminated.
- A return check system that does not allow pumped water to return to the well is integral in the pump design.
- The pump is easily used and does not require excessive amounts of time to install, use, remove, and decontaminate.

The pumps currently in use to purge groundwater include peristaltic pumps and dedicated submersible bladder pumps. A procedure for the use of each style of pump is specific to its applications. User manuals, which accompany each pump, shall be referenced for operating procedures.

Basic operating procedures common to all pumps are as follows.

- Prepare the sampling site as described in Subsection 4.4 regardless of the type of pump being used.
- Use properly decontaminated equipment to determine the static water level and the total depth of the well. This information is utilized to determine the volume of water in the well casing.



Page 7 of 20 ST\_Rad\_24

- For wells with dedicated pumps, calculate the minimum purge volume using the pump storage volume and the volume of the discharge tubing. A total depth of a 2-inch well cannot be taken without the removal of the pump.
- Position a dedicated pump near the bottom of the well or according to the
  information on the well construction form. Monitor the discharge rates and
  the amount of water purged during purging. The pumping rate for purging
  can be higher than the pumping rate for sampling, however, the water level
  in the well should be monitored during purging to avoid excessive water
  level drawdown.
- Ensure that any tubing that enters the well casing is composed of inert
  material. Disposable silicon tubing will be used in the drive mechanism of
  peristaltic pumps and discarded after each well is purged. The air supply
  for all air-driven pumps (dedicated bladder pumps) will be free of oil (i.e.,
  no hydrocarbon containing substances will be added to the compressor).

## 4.6.3 Disposition of Purge Water

All water removed from a well during sampling operations shall be collected either in a satellite container or the purge water collection container in the groundwater sampling vehicle. The water from these containers will then be transferred to another approved collection container on the sampling or project site. When the collection container is filled, or is near capacity, it will be transported for disposition or treatment in accordance with approved project plans.

#### 4.7 Measurement of Field Parameters

The following field parameters will be measured during groundwater purging operations unless otherwise specified by the project manager or the approved project work plans.

| Parameter                     | Relative Precision  | Minimum Calibration                                                         |
|-------------------------------|---------------------|-----------------------------------------------------------------------------|
| pH                            | 0.01 pH units       | Daily                                                                       |
| Conductivity                  | $10 \mu\text{S/cm}$ | Daily                                                                       |
| Temperature                   | 0.1 °C              | Weekly                                                                      |
| Total Alkalinity (unfiltered) | 1 mg/l              | None                                                                        |
| Turbidity (photometric)       | 2 FTU (or NTU)      | Specified purge samples (bailed wells) Daily (dedicated bladder pump wells) |

The measuring equipment shall be stored and handled in a manner that will maintain the integrity of the equipment. Appropriate field manuals will accompany each instrument in the field. Each instrument will also be given an identification number. All logbook and field form references to individual instruments will refer to this number for ease of identification.

Field parameters will be measured at the following intervals.

• Conductivity, pH, temperature, and turbidity shall be measured from the first water removed from the well when initiating well purging procedures. For bailed wells, the initial bail of water will be carefully removed from the well and the water transferred to a sample beaker by decanting the bailer through a bottom control valve. For wells



Page 8 of 20 ST\_Rad\_24

- purged with a peristaltic pump, similarly collect the first water removed in a sample beaker and then measure parameters. For wells with dedicated pumps, measure the parameters of the first recovered water that is collected in the continuous sampler.
- During purging operations, conductivity, pH, and temperature shall be measured for every half-casing volume (one half of the initial casing volume as calculated on the sample collection log form) of water removed from the well (because of the accuracy of the graduated containers for the purge water, the purge volume will be estimated as close as feasible). For wells that have half volumes less than the volume of a sample bailer (approximately 1 liter), only measure parameters after each full casing volume of water is removed from the well. Turbidity will be measured on every other sample recovered for parameters for bailed wells, or wells purged with a peristaltic pump. All parameters, including turbidity, will be measured at predetermined intervals while purging wells with dedicated pumps.
- During purging, if a well is dewatered prior to the measurement of the final required set of parameters, then conductivity, pH, temperature, and turbidity shall be measured immediately before the start of sample collection. These parameters may be delayed until sampling is completed if, at the discretion of the sampling crew, the well recharge has provided insufficient water volume to collect all the samples and also measure parameters. If there is insufficient water for samples and field parameters, the parameters will not be measured.
- Total alkalinity measurements shall be collected only once upon completion of purging. For wells that do not dewater and sample collection proceeds to completion immediately after purging, alkalinity will be measured after the completion of all other final purge field parameters. Wells that dewater and require repeated visits for the collection of samples will have alkalinity measured subsequent to the collection of the sample for inorganic water chemistry. Alkalinity will not be measured if sufficient water is not available.
- For micro purged wells, a purge is considered completed when the parameters have stabilized.
- Whenever a method used to remove well water is changed, a set of field parameters shall be recorded from water removed with the new method.

# 4.8 Groundwater Sampling

Techniques used to withdraw groundwater samples from a well shall be based on consideration of the parameters of interest. The order of collection, collection techniques, choice of sample containers, preservatives, and equipment are all critical to ensuring that samples are not altered or contaminated. The preferred methods for collection of groundwater samples are either bailing and/or the use of bladder pumps.

Sites shall be prepared prior to sampling as described in Subsection 4.4. All necessary and appropriate information will be recorded on the sample collection log and on the Field Activity Daily Log.

#### 4.8.1 Sample Collection

The following discussion involves collection of groundwater samples using bailers and peristaltic or bladder pumps. Regardless of the collection method, care shall be taken not to alter the chemical nature of the sample during the collection activity by agitating the sample or allowing prolonged contact with the atmosphere. To minimize the potential for



Page 9 of 20 ST\_Rad\_24

altering the sample and to maximize the available water, the following sample collection sequence is preferred.

- Radiation Screening
- VOC
- Nitrate/Nitrite, as N
- Dissolved Metals TAL, with Cs, Li, Sr, Sn, Mo, Si
- <sup>239/240</sup> Plutonium, <sup>241</sup> Americium
- <sup>233/234</sup>U, <sup>235</sup>U, <sup>238</sup>U
- Gross alpha and beta
- <sup>89/</sup>Strontium
- <sup>137</sup>Cesium
- <sup>226,228</sup>Radium
- Tritium
- Total Metals TAL, with Cs, Li, Sr, Sn, Mo, Si
- TDS, CL, F, SO<sup>4</sup>, CO3, HCO<sup>3</sup>
- TSS
- BNA
- Pesticides/PCB
- Cyanide
- Orthophosphate

VOC samples shall be collected first and as soon as possible after the well has been purged. If a well is purged using a peristaltic pump, then all other samples shall be collected prior to removing the pump from the well. The VOC sample will then be collected using a bailer.

For wells that dewater, if a sufficient volume of water for VOC sample collection has still not accumulated within 48 hours after the completion of purging, VOCs will not be collected for that well. Other samples may be collected using a maximum of five attempts to recover sufficient sample water for analysis. This procedure is discussed in the following paragraph.

The containers used for sample collection from poor producing wells may differ from those used for high yield wells in some instances due to constraints on obtaining enough sample to fill sample containers. In some instances smaller containers may be utilized, or analyte samples normally collected in separate containers may be combined into a single container. Well histories can be used to identify which wells may require a modified sample suite and an extended sampling period. These wells will initially be sampled for a period of 48 hours after the completion of purging, with the exception of VOC sample collection, which is discussed in the previous paragraphs. The completion of purging will be considered 0 hour. At the end of 48 hours, any partial sample will be measured. The accumulated sample will be compared to the minimum volume requirement identified in Table 1 and the allowed sample holding time. If the minimum volume requirement for the target analyte has not been achieved, then sampling may continue as determined from the well recharge



Page 10 of 20 ST\_Rad\_24

history. All analyte samples that have only minimum sample volumes collected, and all uncollected samples will be documented on the sample collection log.

Table 1
Sample Containers and Preservatives for Groundwater Samples

| Parameter                                                        | Minimum Container <sup>1</sup> | Preservative                                                    | Holding Time |
|------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------|--------------|
| Radiation Screen                                                 | 120 ml poly                    | None                                                            | NA           |
| VOC - CLP                                                        | 3 – 40 ml amber glass          | Cool to 4° C                                                    | 4 Days       |
| BNA                                                              | 1 L amber glass                | Cool to 4° C                                                    | 7 Days       |
| Pesticides/PCB                                                   | 1 L amber glass                | Cool to 4° C                                                    | 7 Days       |
| TSS                                                              | 125 ml poly                    | Cool to 4° C                                                    | 7 Days       |
| TDS, CI, F, SO <sub>4</sub> , CO <sub>3</sub> , HCO <sub>3</sub> | 1 L poly                       | Cool to 4° C                                                    | 7 Days       |
| Dissolved Metals - CLP, with Cs,<br>Li, Sr, Sn, Mo, Si           | 1 L poly                       | *Filtered, HNO <sub>3</sub> to pH <2, Cool to 4° C              | 6 Months     |
| TOC                                                              | 125 ml poly                    | H <sub>2</sub> SO <sub>4</sub> < pH <sub>2</sub> , Cool to 4° C | 28 Days      |
| COD                                                              | 125 ml poly                    | H <sub>2</sub> SO <sub>4</sub> < pH <sub>2</sub> , Cool to 4° C | 28 Days      |
| Total Metals - CLP with Cs, Li,<br>Sr, Sn, Mo, Si                | 1 L poly                       | Unfiltered, HNO <sub>3</sub> to pH <2, Cool to 4° C             | 6 Months     |
| Orthophosphate                                                   | 250 ml poly                    | Filtered, Cool to 4° C                                          | 2 Days       |
| Nitrate / Nitrite as N                                           | 250 ml poly                    | H <sub>2</sub> SO <sub>4</sub> to pH <2, Cool to 4° C           | 28 Days      |
| Cyanide                                                          | 1 L poly                       | NaOH to pH >12, Cool to 4° C                                    | 14 Days      |
| Gross Alpha / Beta                                               | 550 ml poly                    | HNO <sub>3</sub> to pH <2                                       | 6 Months     |
| 233/234 📗 235 📗 238 📗                                            | 100 ml poly                    | Filtered, HNO <sub>3</sub> to pH <2                             | 6 Months     |
| <sup>239/240</sup> Pu                                            | 1 L poly                       | HNO <sub>3</sub> to pH <2                                       | 6 Months     |
| <sup>241</sup> Am                                                | 1 L poly                       | HNO <sub>3</sub> to pH <2                                       | 6 Months     |
| <sup>89/90</sup> Sr                                              | 700 ml poly                    | Filtered, HNO <sub>3</sub> to pH <2                             | 6 Months     |
| <sup>226/228</sup> Ra                                            | 750 ml poly                    | Filtered, HNO₃ to pH <2                                         | 6 Months     |
| <sup>137</sup> Cs                                                | 2.5 L poly                     | Filtered, HNO <sub>3</sub> to pH <2                             | 6 Months     |

<sup>&</sup>lt;sup>1</sup> The volume listed is the minimum amount required for analysis. Actual sample volumes may be slightly higher and some parameters may be combined in a single container.

The order of sample collection may be changed at the discretion of the sampling team. Changes in the order shall be based on the predicted volume of water that will be recovered and the priority stated in the controlling document. The sampling team shall document their sample selections on the sample collection log.

Sample containers shall be stored away from sunlight and cooled to 4°C prior to filling. Immediately after collection, samples requiring cooling shall be cooled to 4°C. A chilled cooler shall be used as the storage container. Whenever a sample bottle that requires chilling is not being physically handled, it will be placed in the cooler to prevent heating or freezing, exposure to sunlight, and possible breakage.

VOC samples shall be collected using a bailer equipped with a bottom-decanting control valve or directly from the pump discharge line on wells equipped with bladder pumps. The procedures for collecting VOC samples are discussed in Subsections 4.8.1.1 and 4.8.1.2 of this procedure.



Page 11 of 20 ST\_Rad\_24

<sup>\*</sup> Some samples may not require filtering if taken from a well with a dedicated pump and turbidity of 5 NTU or less.

VOC vials shall never be filled and stored below capacity because of insufficient quantities of water in the well. Except for the VOC vials, adequate air space should be left in the sample bottles to allow for expansion.

Samples shall be placed in the appropriate containers and packed with ice in coolers as soon as practical. VOC samples will be stored in the cooler in an inverted position immediately after collection. When sampling is complete, the well cap shall be replaced and locked.

Sampling tools, instruments, and equipment shall be protected from sources of contamination before use and decontaminated after use as specified in Subsection 4.3. *Liquids from decontamination operations will be handled in accordance with the procedures in Subsection 4.6.3 of this procedure.* Sample containers shall also be protected from sources of contamination. Sampling personnel shall wear chemical-resistant gloves (e.g., nitrile) when handling samples, and the gloves will be disposed of between well sites.

#### 4.8.1.1 Groundwater Sampling Using a Bailer

This subsection describes the use of a bailer for collecting groundwater samples that may be used to obtain physical, chemical, or radiological data.

A bailer attached to a Teflon<sup>®</sup> coated stainless steel cable is carefully lowered into the well. After filling within the well, the bailer is withdrawn by rewinding the bailer line, and the bailer contents are drained into the appropriate containers. Certain recommendations and/or constraints should be observed when using bailers for sampling groundwater monitoring wells, as follows.

- Use only bottom-filling Teflon® bailers or bailers made of other inert materials
- Ensure that bailers are attached to a Teflon® coated stainless steel line that is pre-wound on a reel.
- Do not use bailers constructed with adhesive joints.
- Lower the bailer slowly to the interval from which the sample is to be collected.

VOC samples shall be collected using a bailer equipped with a bottom-decanting control valve. The first water through the valve assembly will be discarded into the purge water container. Vials will be filled by dispensing water through the control valve along the inside edge of the slightly tilted sample vial. Care shall be taken to eliminate aeration of the sample water. The vials will be filled beyond capacity so the resulting meniscus will produce an airtight seal when capped. The capped vial will be checked for trapped air by lightly tapping the vial in an inverted position. If air becomes trapped in the vial, the sample water shall be discarded, and the vial refilled. If two consecutive attempts to fill a VOC vial result in trapped air bubbles, the vial shall be discarded.

The remainder of the sampling water shall be collected in a stainless steel container from which the remaining sample bottles will be filled. Samples requiring filtration shall be filtered and then containerized.

# 4.8.1.2 Groundwater Sampling Using a Peristaltic Pump

Use of peristaltic pumps shall generally be limited to collecting sample aliquots for radionuclides, metals, and other species that are not subject to volatilization and degassing. Peristaltic pumps shall never be used to collect VOCs or other



Page 12 of 20 ST\_Rad\_24

volatile species in routine wells, although such samples may be collected for special screening applications. All downhole tubing shall be Teflon® except in areas of special concern (e.g., where immiscible layers exist) where special tubing, such as stainless steel or Viton®, may be required. If so, the project manager will make this determination. Only the portion of tubing that is inserted into the mechanical drive shall be made of silicon. This drive portion of the tubing shall be discarded after each use.

#### 4.8.1.3 Groundwater Sampling Using a Downhole Bladder Pump

Some wells are equipped with dedicated downhole bladder pumps for purging and sampling. These are wells that will normally produce an adequate amount of water during a single visit to complete the required sampling suite. The equipment required to purge and sample a well consists of a pump control unit, a portable air compressor, a continuous sampler for measuring the field parameters, and the necessary sample containers, graduated cylinders, and container(s) to collect the purge and excess water. The following precautions should be observed during the sampling operation.

- Locate the compressor used to power the pump downwind from the well to eliminate the contamination of equipment and samples with exhaust.
- If the flow-through cell will not maintain a full sample chamber (tends to drain back), then clean the check valve on the pump if it is fouled, or replace the pump.
- Calculate the minimum purge volume using the procedure in Section 4.6.
   Note that a purge is considered completed only when the groundwater parameters have stabilized.
- Upon completion of purging, initiate sampling with the collection of the VOC sample(s). The pump should operate with minimum interruptions while the full sample suite is collected. Allowing the pump to stop for an extended period of time will cause the water trapped in the discharge lines to equilibrate to ambient temperatures, which is not acceptable. During sampling, the pump can be slowed to any rate that allows efficient sampling while also maintaining stable field parameters.
- Measure groundwater parameters periodically during sample collection and record them on the sample collection log to document conditions during sampling.
- Because micropurging is the method used for sampling, adjust the flow rate
  to limit the drawdown in the well. Also adjust the rate such that the
  turbidity is below 5 NTU for sampling. If this criterion is met, the samples
  need not be filtered.
- Operate the pump, pump control unit, and the flow-through cell according to the manufacturer's recommendations.

### 4.8.1.4 Groundwater Sampling Using a Push Type Sampler

This portion of this procedure describes the use of a Geoprobe<sup>®</sup> Screen Point 15 Groundwater Sampler, or similar type equipment, for collecting groundwater samples at predetermined depths. These samples may be used to obtain physical, chemical, or radiological analyses.



Page 13 of 20 ST\_Rad\_24

A Geoprobe<sup>®</sup> Screen Point 15 Groundwater Sampler, or equivalent tool, is driven to a predetermined depth by a push type-sampling rig. The Screen Point 15 Groundwater Sampler is equipped with a 41-inch retractable screen and expendable drive point. It can then be partially or fully withdrawn (up to 41 inches) to expose a portion or the entire deployed well screen. After groundwater enters the exposed screen, a sample is collected using either the procedures in Subsection 4.8.1.1, Groundwater Sampling Using a Bailer, or in Section 4.8.1.2, Groundwater Sampling Using a Peristaltic Pump. Note that these samples are collected only for screening purposes because the sampling tool hole has not been completed as a well.

The method for obtaining QC samples using the push type-sampling tool is provided in Subsection 4.8.4.1 for groundwater sampling. Duplicate groundwater samples shall be collected only if there is enough water to collect two full suites of analytes without dewatering the annulus. If insufficient water is available for the collection of a planned QC sample, it shall be explained and documented in the field log book, and the project manager informed. If insufficient water is available for two full suites of analytes, it may be come necessary to prioritize the analyte list. The prioritization sequence should be described in the project-specific work plan.

# 4.8.2 Sample Filtering and Preservation

Samples for dissolved metals, Gross Alpha/Beta, <sup>233/234</sup>Uranium, <sup>235</sup>Uranium, <sup>238</sup>Uranium, <sup>89/90</sup>Strontium, <sup>137</sup>Cesium, <sup>226</sup>Radium, <sup>228</sup>Radium, and orthophosphate shall be filtered in the field at the well location during the sampling event through a disposable 0.45-micrometer membrane filter. If a peristaltic or bladder pump is used, a disposable filter may be attached directly to the sample delivery line so that the sample is filtered directly into the sample container as it exits the delivery line. Discharge pressure shall be gauged so it does not exceed 50 psi. Alternatively, sample water may be collected in a stainless steel container and filtered with a peristaltic pump. Before sample collection, 100 to 200 milliliters of sample water shall be passed through the filter in order to rinse the filter and filtration apparatus of possible contaminating substances.

Preservatives shall be added to the sample bottles prior to the introduction of the filtered sample water. The preservative shall be added in aliquots appropriate to the size of the bottle.

After sample collection has been completed, the pH of preserved samples shall be checked as follows.

- Pour a small amount of sample from the sample bottle directly onto approved pH paper. Use care so that the threaded neck of the bottle does not contact the pH paper. Do not, under any circumstances, insert the pH paper into the sample bottle.
- Check the pH paper against the supplied color chart. If the appropriate pH has not been achieved, add additional preservative to the sample in 5 ml aliquots and repeat the pH test after each addition.

#### 4.8.3 QA/QC Samples

The frequency and types of field QA/QC samples collected during groundwater sampling are described in project-specific work plans or quality assurance plan documents. These documents detail the applicable criteria for collecting QA/QC samples.

#### 4.8.3.1 Duplicates



Page 14 of 20 ST\_Rad\_24

Duplicate samples shall be collected only from wells that produce enough water to collect two full suites of analytes without dewatering. Wells that produce sufficient water shall be incorporated into the sampling program such that the required duplicate frequency can be maintained.

Wells scheduled for duplicate sample collection shall be sampled as described in Subsection 4.8 of this procedure, and in relevant sections of project-specific work plans and/or quality assurance documents. Field duplicates are collected following the same sampling procedures used to obtain the real samples. With the exception of VOCs, the typical procedure for a location is to collect the real and duplicate of each sample at the same time, in two equal portions, with each portion going to the laboratory in separate containers. This is accomplished by alternately filling two sample bottles one half at a time to minimize heterogeneity. Note that real and duplicate VOC samples shall be collected independently to reduce the possibility of volatilization of the sample.

When a well with a dedicated pump is being used for sample collection, all samples shall be collected in the normal order, with duplicate VOC samples being collected first. The remaining samples will be sampled as described above.

If a well is being used for matrix spike (MS) and matrix spike duplicate (MSD) samples, the duplicate shall be collected after collection of the MS and MSD.

All duplicate samples shall be given a sample number different from the original sample and the information recorded on the sample collection log and/or the field QC sample collection log.

#### 4.8.3.2 Matrix Spike and Matrix Spike Duplicate

MS and MSD samples shall be collected only from wells that produce enough water to collect the required suites of analytes without dewatering. MS and MSD samples are not collected on a routine basis, but will be collected if so designated in a site-specific sampling plans, or if requested by the project manager.

MS and MSD samples shall be collected as follows.

- Purge the well as described in Subsection 4.6 of this procedure..
- After completion of purging, collect VOC samples. Collect the real sample followed by the MS and MSD. Collect these samples in immediate succession.
- Collect the remaining samples not requiring filtering. For each sample parameter, collect the original sample, MS, and MSD concurrently. Fill the original sample bottle one-third full followed by the MS and MSD sample bottles, which are also filled one-third full. Rotate each bottle in the sequence, filling in one-third full until all three bottles are full. For analytes not requiring an MSD, collect only the original sample and the MS.
- After the real sample, MS, and MSD (where appropriate) are collected for one parameter, repeat the process for the next parameter.
- Similarly, collect samples requiring filtering. When a bailer is used, fill a stainless steel bucket with sample water. As samples are collected and the reservoir of water in the bucket is depleted, add more water with discretion. When a pump is used, attach the filter directly to the discharge line. Fill



Page 15 of 20 ST\_Rad\_24

sample bottles as described above, partially filling the original sample, MS, and MSD in rotating sequence until each parameter bottle is full.

- Radiochemistry samples may have more than one bottle for each parameter group. In this case, include all required bottles in the rotating sequence.
- Field parameter measurements are not be required for MS and MSD samples.
- Retain the original sample number for MS and MSD samples. However, add a suffix of MS or MSD to the sample number to correspond with each QA/QC sample. Record all information on the field QC groundwater sample collection log.

#### 4.8.3.3 Replicates and Splits

Replicate and split samples shall be collected in the same manner as described for the MS and MSD. Seek instruction from the project manager for replicates and splits exceeding three samples. Record all information will be recorded on the groundwater sample collection logs.

#### 4.8.3.4 Field Equipment Rinses

Wells scheduled for equipment rinsate samples shall be sampled as described in Subsection 4.8 of this procedure, and field equipment rinses shall be collected as described in this Subsection and in relevant portions of project-specific QC documents and work plans. Field equipment rinses shall be collected in a manner designed to reflect sampling techniques. All equipment used during sampling will be fully decontaminated as described in Subsection 4.3, then rinsed with distilled or deionized water. The rinse water will then be collected in bottles identical to those used for the original sample, and assigned a separate sample number. Analytes requiring filtration will be filtered using a new filter and tubing as required for the real sample. All information will be recorded on groundwater sample collection logs.

#### 4.8.3.4.1 Bailed Wells

After completion of sampling, all equipment shall be decontaminated. Prior to leaving the well location, the equipment rinse will then be collected as follows.

- Fill the bailer with distilled or deionized water by pouring the water into the top opening.
- Decant the rinse water to the VOC vials through the bottom valve just as was done during sample collection.
- For the remaining unfiltered samples, fill the bailer with distilled or deionized water each time additional rinsate is needed.
   Transfer the rinsate to sample bottles or to a stainless steel bucket and then to sample containers in the same manner used during collection.
- Collect filtered samples in an identical manner as the real samples. Fill the bailer with distilled or deionized water. Then transfer the rinse water to a stainless steel bucket. Filter the rinse water in the bucket through a new disposable filter.



Page 16 of 20 ST\_Rad\_24

• Preserve rinse samples in the same manner as the real samples.

#### 4.8.3.4.2 Pumped Wells

Rinsate samples are not routinely collected from wells that are equipped with dedicated bladder pumps because the samples from these wells are collected directly from the pump discharge line. However, wells sampled using peristaltic pumps for sampling may be selected for rinsate sampling, with equipment used in sample collection (down hole tubing, filter tubing and the stainless steel bucket used for sample water collection, etc.) being decontaminated prior to rinsate sampling. The tubing at the pump head will be replaced, and a new filter used for filtered analytes. To collect the samples, distilled or deionized water will be poured into the decontaminated stainless steel bucket and pumped, using the decontaminated tubing, into the sample containers. The equipment used to collect the real VOC samples will also be decontaminated, rinsed, and used to collect the VOC rinse samples. All samples will be preserved at the same pH levels as the real samples.

#### 4.8.3.5 Distilled Water Blanks

Distilled water sample blanks are not submitted on a routine basis, but will be made up if so designated in a site-specific sampling plan. Samples of the distilled or deionized water used for the final decontamination of equipment will be transferred directly to sample bottles to determine any baseline contamination the water may have introduced into the samples. Five-gallon bottles of the distilled or deionized water will be opened in a controlled area, such as the bottle storage room, and then poured directly into the appropriate sample bottle. A Teflon<sup>®</sup>, glass, or stainless steel funnel may be used to help control flows into small mouth bottles. Blank samples will be preserved to the appropriate pH required for each analyte. All information will be recorded on groundwater sample collection logs.

#### 4.9 Sample Handling and Control

Pre-cleaned sample containers will be obtained from a contract analytical sample container source. Preserving solution will be added to the bottles by a laboratory, the sample manager or qualified sampling personnel. The bottles will be labeled to indicate the preservative added.

The sampling containers, preservation requirements, and holding times for the various types of analyses are shown in Table 1. Groundwater samples will be properly labeled so that they can be easily identified. The sample numbering system will be assigned by project-specific sampling plan documents. A sample identification (ID) number will be assigned to each sample suite. The sample ID number will contain the following information as part of a nine to twelve character, alpha-numeric code:



Page 17 of 20 ST\_Rad\_24

| Character(s)   | Description      | Code                                                |
|----------------|------------------|-----------------------------------------------------|
| 1 and 2        | Project ID       | GW                                                  |
| 3 through 7    | Sample Number    | 00001 to 99999                                      |
| 8 and 9        | Subcontractor ID | Alpha (e.g. TE = Tierra Environmental Consultants)  |
| 10, 11, and 12 | QA/QC            | MS for matrix spike, MSD for matrix spike duplicate |

In addition to a sample number, each well sampled will be assigned a current Record Identification Number (RIN), an event number (specific to the RIN), and bottle numbers that are specific to the RIN and event number.

#### 5.0 Records

All field activities shall be recorded on a Field Activity Daily Log or Groundwater Sample Collection Log. Additional logs may be required to record QC samples and for recording well status. Refer to specific project, site, or facility work plans for further information. Summary information of the day's activities or other pertinent information should always be recorded on the field forms. Under some circumstances, the project manager may assign a bound field logbook to the field personnel that will remain in their custody during all sampling activities. The cover of each logbook shall contain the following information at a minimum:

- Name of the organization to which the book is assigned
- Book number
- Project name
- Start and end dates

Logbook pages shall be sequentially numbered and marked with the book number before any data are recorded. All data and information pertinent to field sampling shall be recorded in the logbook or on the field forms that identify all required data entries. Enough detail must be included in the documentation to reconstruct the sampling event. Field form entries shall include the following minimum information:

- Date and time
- Names of field personnel
- Names of all visitors
- Location of field activities
- Description of sampling sites including weather conditions
- All field observations and comments
- Field parameters
- Sample identification information
- References to all prepared field activity forms and chain-of-custody records

Field logbooks, when required on specific projects, shall normally be kept only by the field sampling team leaders and the site supervisor and shall typically be used only to summarize field activities and to document project information not required by the procedure field forms.



Page 18 of 20 ST\_Rad\_24

Permanent ink shall be used for all entries in the logbooks and on the field forms. Mistakes shall be crossed out with a single line, initialed, and dated. Unused pages or partial pages shall be voided by drawing a line through the blank sections and initialing and dating the mark. Any deviation from this procedure shall require documentation in the site supervisor's logbook.

The field activity daily log narrative should create a chronological record of the sampling team's activities, including the time and location of each activity. Descriptions of problems encountered, personnel contacted, deviations from the procedure, and visitors on site shall also be included. The weather conditions, date, signature of the person responsible for entries, and the number of field activity daily log sheets used to record media team activities for a given day shall also be included.

The Groundwater Levels Measurement/Calculations Form and the Chain of Custody Record (see *Containing, Preserving, Handling, and Shipping Soil and Water Samples*) shall also be completed for each site. All blank fields on the forms must be completed or voided.

#### 6.0 References

- Environmental Protection Agency, 1982, Test Methods for Evaluating Solid Waste, SW-846, Volume II. Field Methods, 2nd edition.
- Environmental Protection Agency, 1986a, Engineering Support Branch Standard Operating Procedures and Quality Assurance Manual, EPA Region IV Environmental Service Division.
- Environmental Protection Agency, September 1986b, RCRA Ground Water Monitoring Technical Enforcement Guidance Document, OSWER-9950.1.
- Environmental Protection Agency, 1987a, A Compendium of Superfund Field Operations Methods, EPA/540/P-87/001. 1987.
- Environmental Protection Agency, 1987b, Data Quality Objectives for Remedial Activities, Development Process, EPA/540/G-87/003.
- Environmental Protection Agency, December 1988, User's Guide to the Contract Laboratory Program.



Page 19 of 20 ST\_Rad\_24

### **APPENDIX A**

STANDARD GROUNDWATER FORMS



# Appendix B Sample Collection Forms

105 Technology Dr., Suite 190 Broomfield, CO 80021 (303) 546-4300

| Project Name:   | erado Schoo | 1 of M       | lines | Sample Location: CSMRT - 1     |
|-----------------|-------------|--------------|-------|--------------------------------|
| Project Number: | 349-430     |              |       | Date: 12/3 /10                 |
| Sample Type:    | Duplicate   | SW<br>Other: | EB    | Sampler:<br>N Malezyk, P Dalen |

| Purge Volume Calcular  | Sample Collection    |                           |                  |              |            |       |
|------------------------|----------------------|---------------------------|------------------|--------------|------------|-------|
| Measured TD =          | 25.05 (f             | t) Analysis               | Container        | Preservative | Date       | Time  |
| Total Depth =          | (+.28)<br>25-, 33 (f | Za-226<br>-228<br>Dies. U | I gel<br>cube    | 4103         | 12/8/10    | 1205  |
| Depth to Water =       | 8,15 (f              |                           | 500ml<br>Plestre | HNOZ         | ızl flo    | 1205  |
| Initial Water Column = | 17.18 (fi            | Antons                    | 500ml<br>Plestie |              | 12/8/10    | 1201  |
| Initial Water Volume = | 2.74 (gal            | DOC                       | 125mL<br>Amber   | Hz Soy       | 12/8/10    | 1205  |
| 3 X Water Volume       | 8,27 (gal            | Lab: #25-                 | Ft. Collins      | Test A       | merica - p | truda |

| Time  | Volume  | Temperature | ·pH  | Conductivity | DO     | ORP  | Turbidity | Appearance |
|-------|---------|-------------|------|--------------|--------|------|-----------|------------|
|       | (gal)   | _ (O, °F)   | (SU) | (uS/cm)      | (mg/L) | (mV) | (NTU)     | 4          |
| 115-1 | 1.37    | 11.50       | 6.49 | 420          | 7.73   | 95-1 | 10000     | born       |
| 1153  | 2.74    | 11.77       | 6.77 | 48-2         | 5.809  | 90.0 | 1000 +    | 1          |
| 1156  | 4.11    | 11.85       | 6.85 | 576          | 5.47   | 86.2 | 1000      |            |
| 1158  | 5.48    | 11.47       | 6.88 | 437          | 6.66   | 85.0 | 1000t     |            |
| 1200  | 6.85    | 11.80       | 6.91 | 514          | 6.09   | 83.0 | 1000+     |            |
| 1030  | 8,22    | 11.69       | 6.94 | 482          | 5.49   | 78.5 | 10004     | <b>*</b>   |
| vem.  |         |             |      |              |        |      |           |            |
|       | * along |             |      |              |        |      |           |            |
|       |         |             |      |              |        |      |           |            |
|       |         |             |      |              |        |      |           | Nan        |

| Comme | ents: Analysis | Contines      | Preservative | Defe | Time     |
|-------|----------------|---------------|--------------|------|----------|
| TA    | NO2, NO2       | 16 Plestre    | none         | 12/8 | 110 1205 |
| TA    | TOS            | 12 Plestre    | none         | 12/8 | 10 1205  |
| TA    | Ferrors Fe     | 12 Plestiz    | Kerk         | 12/  | teo van  |
| 14    | Femir Fe       | 500ml Plante  | HWO.         | 14   | 100-even |
| TA    | Scilide        | 250ml Plantez | -inte        |      | HONOM    |

1202

| Project Name:   | rado Schoo | 1 of Mines | Sample Location:                      |
|-----------------|------------|------------|---------------------------------------|
| Project Number: | 349-430    | 200        | Date: 12/6/10, 13/7/10, 12/8/10,12/9/ |
| Sample Type:    | Duplicate  | SW E       |                                       |

| Purge Volume Calcula   | Sample Collection    |                           |                  |              |            |       |
|------------------------|----------------------|---------------------------|------------------|--------------|------------|-------|
| Measured TD =          | 23.39 (ft)           | Analysis                  | Container        | Preservative | Date       | Time  |
| Total Depth =          | (+.28)<br>23.67 (ft) | Za-226<br>-228<br>Dies. U | lgel             | 41103        | 12/8/10    | 1330  |
| Depth to Water =       | ZO. Z 3              | Cattons                   | 500ml<br>Plestre | HNOZ         | ızl8lıo    | 1330  |
| Initial Water Column = | 3.44 (ft)            | Antons                    | 500ml<br>Plestie | -            | 12/8/10    | OEEI  |
| Initial Water Volume = | <b>り。</b> (gal)      | DOC                       | 125mL<br>Amber   | Hz 504       | 12/8/10    | 1330  |
| 3 X Water Volume       | 1,65 (gal)           | Lab: ALS-                 | Ft. Collins      | Test A       | menica - h | trudo |

| Time | Volume | Temperature     | рН   | Conductivity | DO     | ORP  | Turbidity | Appearance |
|------|--------|-----------------|------|--------------|--------|------|-----------|------------|
|      | (gal)  | <b>€</b> C)°F)_ | (SU) | (uS/cm)      | (mg/L) | (mV) | (NTU)     | 100        |
| 1/03 | 0.55   | 13.25           | 6,79 | 1490         | 9.95   | 102  | 649       | Brown      |
| 1113 | 1.10   | 12,06           | 6.40 | 1470         | 9.87   | 93   | 1000      | Brown      |
| _    | #1.65  |                 |      |              |        |      |           | 1          |
|      |        |                 |      |              |        |      |           |            |
|      |        |                 |      |              |        |      |           |            |
|      |        |                 |      |              |        |      |           |            |
|      |        |                 |      |              |        |      |           |            |
|      |        |                 |      |              |        |      |           |            |
|      |        |                 |      |              |        |      |           |            |
|      |        |                 |      |              |        |      |           | win        |

| Comme | ents: Analys rs | Contines     | Preservative | Defe    | Time  |
|-------|-----------------|--------------|--------------|---------|-------|
| TA    | NO2, NO.        | 11 Pleafre   | none         | 12/8/10 | 1330  |
| TA    | TOS             | 12 Plestre   | none         | 12/2/10 | 1330  |
| TA    | Ferrors Fe      | IL Plasto    | - none       | 12/ 10  | win   |
| 74    | Ferniz Fe       | 5000L Pleshe | Hare.        | 12/10   | 27.14 |
| TA    | SLIRide         | 250ml Plants | 己、施          | 12/110- | nn    |

| Project Name:   | rado Schoo | 1 of m | lines | Sample Location: SMR1 - 2 |
|-----------------|------------|--------|-------|---------------------------|
| Project Number: | 349-430    |        |       | Date: 12/8/16             |
| Sample Type:    | EW         | SW     | EB    | Sampler:                  |
|                 | Duplicate  | Other: |       | NMalezyk, P Dalen         |

| Purge Volume Calculatio | Sample Collection     |                           |                  |              |            |        |
|-------------------------|-----------------------|---------------------------|------------------|--------------|------------|--------|
| Measured TD =           | 95.10 (ft)            | Analysis                  | Container        | Preservative | Date       | Time   |
| Total Depth =           | (+.28)<br>95.38 (ft)  | Za-226<br>-228<br>Dies. U | l gel<br>cube    | 4103         | 12/8/10    | 1115   |
| Depth to Water =        | 56.67 <sup>(ft)</sup> | Cattons                   | 500ml<br>Plestre | HNOZ         | 12/8/10    | 1115   |
| Initial Water Column =  | 38.71 (#1)            | Antons                    | 500mL<br>Plestiz | _            | 12/8/10    | 1115   |
| Initial Water Volume =  | 6-20 (gal)            | DOC                       | 125ml<br>Amler   | Hzsoy        | 12/8/10    | 1116   |
| 3 X Water Volume        | 18,58(gal)            | Lab: ALS-                 | Ff. Collins      | Test A       | menico - A | tovada |

| Time | Volume | Temperature | рН    | Conductivity | DO     | ORP  | Turbidity | Appearance |
|------|--------|-------------|-------|--------------|--------|------|-----------|------------|
|      | (gal)  | (°9, °F)    | (SU)  | (uS/cm)      | (mg/L) | (mV) | (NTU)     |            |
| 11/3 | 3,10   | 72.50       | 2,32  | 462          | 521    | 80.6 | 1000+     | Brown      |
| 1117 | 6.20   | 12.69       | 7.35  | 473          | 4.95   | 69.4 | 1000+     | 1 1        |
| 1127 | 9.30   | 12.41       | 7.17  | 518          | 3.33   | 57.7 | 10004     |            |
| 1139 | 12.40  | 12.37       | '7.09 | 567          | 3.79   | 54.3 | 100 t     | 4          |
| _    |        |             |       |              |        |      |           |            |
|      |        |             | -     |              |        |      |           |            |
|      |        |             |       |              |        |      |           |            |
|      |        |             |       |              |        |      |           |            |
|      |        |             |       |              |        |      | <u> </u>  |            |
|      |        |             |       |              |        |      |           | NEM        |

| Comme | ents: Analys rs | Contines      | Preservative | Defe    | Time  |
|-------|-----------------|---------------|--------------|---------|-------|
| TA    | NO2, NO2        | 1L Plastre    | none         | 12/8/10 |       |
| Ta    | TOS             | 12 Plestre    | none         | 12/5/10 | 1115  |
| 74    | Ferrow Fe       | IL Plastic    | none         | 12/ 110 | ww    |
| 14    | FERNZ FE        | Soome Pleshe  | HNO.         | 12/ 110 | - NZM |
| 74    | SLIFICE         | 250ml Plantie | ZKKE         | 12/ 110 | - Nin |

| Project Name:   | rado Schoo | 1 AM         | ines | Sample Location: LSMRT - 4     |
|-----------------|------------|--------------|------|--------------------------------|
| Project Number: | 4349-430   |              |      | Date: 12/7/10                  |
| Sample Type:    |            | SW<br>Other: | EB   | Sampler:<br>N Malezyk, P Dalen |

| Purge Volume Calculations |                   | Sample Collection             |                  |              |            |       |  |
|---------------------------|-------------------|-------------------------------|------------------|--------------|------------|-------|--|
| Measured TD =             | 17:35 (           | ft) Analysis                  | Container        | Preservative | Date       | Time  |  |
| Total Depth =             | (+.28)<br>17.63 ( | Za-226<br>-ZZ8<br>ft) Dies. U | I gel<br>cube    | HNOZ         | 12/7/10    | 1215  |  |
| Depth to Water =          |                   | (cottons                      | 500ml<br>Plestre | HNOZ         | 12/7/10    | 1215  |  |
| Initial Water Column =    | 10.41             | ft) Antons                    | 500ml<br>Plestre |              | 12/7/10    | 1215  |  |
| Initial Water Volume =    | 1.67 (ga          | DOC                           | 125mL<br>Amber   | Hzsoy        | 12/7/10    | 1215  |  |
| 3 X Water Volume          | 5.00 (gž          | l) Lab: <i>ALS</i> -          | Ft. Collins      | Test A       | Merica - A | trudo |  |

| Time    | Volume                   | Temperature | рН   | Conductivity | DO     | ORP  | Turbidity | Appearance |
|---------|--------------------------|-------------|------|--------------|--------|------|-----------|------------|
|         | (gal)                    | (°C) °F)    | (SU) | (uS/cm)      | (mg/L) | (mV) | (NTU)     |            |
| 1203    | 1.67                     | 10.74       | 6.78 | 1069         | 4.94   | 67.5 | 120       | brownish   |
| LD 1207 |                          | 10.62       | 6.80 | 1070         | 4.39   | 57.1 | 107       | -1         |
| 1210    | 5.00                     | 10.79       | 6.80 | 1071         | 4.30   | 55.3 | 138       | 1          |
|         |                          | -           |      |              |        |      |           |            |
|         |                          |             |      |              |        |      |           |            |
|         |                          |             |      |              |        |      |           |            |
|         |                          |             |      |              |        |      |           |            |
|         | Secretary and the second |             |      |              |        | 70   |           |            |
|         |                          |             |      |              |        |      |           |            |
|         |                          |             |      |              |        |      |           | TEM        |

| Comme | ents: Analys rs | Contines      | Preservative | Defe     | Time |
|-------|-----------------|---------------|--------------|----------|------|
| TA    | NO2, NO2        | 14 Plastre    | none         | 12/7/10  | 1215 |
| TA    | TOS             | 12 Plestre    | MORE         | 12/7/10  | 1215 |
| TA    | Ferrous Fe      | 12 Plastiz    | none         | 12/7/10  | 1215 |
| 14    | Ferriz Fe       | 500ml Plestie | HNO.         | 12/7/10  | 1215 |
| 74    | 5-1 Ride        | 250ml Plestiz | Znte         | 12/ 7/10 | 1215 |

| Project Name:                                  | rado Schoo       | 1 of M       | ines | Sample Location: CSMR 7-5    |
|------------------------------------------------|------------------|--------------|------|------------------------------|
| roject Number:  4349-430  ample Type: 6W SW EB |                  |              |      | Date: 12/7/10                |
| Sample Type:                                   | GVV<br>Duplicate | SW<br>Other: | EB   | Sampler:  N Malezuk, P Dalen |

| Purge Volume Calculations |                      | Sample Collection         |                  |              |          |        |  |  |
|---------------------------|----------------------|---------------------------|------------------|--------------|----------|--------|--|--|
| Measured TD =             | 10.98(ft)            | Analysis                  | Container        | Preservative | Date     | Time   |  |  |
| Total Depth =             | (+.28)               | Za-226<br>-228<br>Dies. U | I gal<br>cube    | HNOZ         | 12/7/10  | 1305   |  |  |
| Depth to Water =          | 6.43 (ft)            | Cattons                   | 500ml<br>Plestre | HNOZ         | vel 7/10 | 1305   |  |  |
| Initial Water Column =    | 7.83 <sup>(ft)</sup> | Antons                    | 500mL<br>Plestiz | -            | 12/7/10  | 1305   |  |  |
| Initial Water Volume =    | 1.25 (gal)           | DOC                       | 125mL<br>Amber   | Hzsoy        | ızl7 lio |        |  |  |
| 3 X Water Volume          | 3.75 (gal)           | Lab: #15-                 | Ft. Collina      | Test A       | menica-1 | 4rvada |  |  |

| Time        | Volume | Temperature | рН   | Conductivity | DO     | ORP  | Turbidity | Appearance |
|-------------|--------|-------------|------|--------------|--------|------|-----------|------------|
|             | (gal)  | (°C,)°F)    | (SU) | (uS/cm)      | (mg/L) | (mV) | (NTU)     |            |
| 1254        | 1.25   | 8.87        | 6.75 | 954          | 6.79   | 508  | 578       | 5000       |
| 1258        | 2.50   | 8.82        | 6.78 | 960          | 5,97   | 48.5 | 624       | 1          |
| 1300        | 3.75   | 8.77        | 6.86 | 964          | 6.40   | 46.6 | 478       | 4          |
|             |        |             |      |              |        |      |           |            |
|             |        |             |      |              |        |      |           |            |
|             |        |             |      |              |        |      |           |            |
|             |        |             |      |              |        |      |           |            |
|             |        |             |      |              |        |      |           |            |
|             |        |             |      |              |        |      |           |            |
|             |        |             |      |              |        |      |           | Are m      |
| olume purge | d.     | 5-9-1       |      | I            |        |      | -         | 1 1        |

| Comme | ents: Analys 13 | Contines      | Preservative | Def | le   | Time |
|-------|-----------------|---------------|--------------|-----|------|------|
| TA    | NO2, NO2        | 11 Pleafre    | none         |     | 7/10 | 1305 |
| TA    | TOS             | 12 Plestre    | nore         | 12) | 7/10 | 1305 |
| TA    | Ferrors Fe      | 11 Plastiz    | none         | 12/ | 7/10 | 1305 |
| 924   | Ferniz Fe       | 500ml Pleshe  | HNO.         | 12/ | 7/10 | 1305 |
| TA    | 5-1 Ride        | 250ml Plestrz | Znte         | ızl | 7/10 | 1305 |

|                 |                              |             |            |                |             |                     |                                       | Abres to the state of the same |
|-----------------|------------------------------|-------------|------------|----------------|-------------|---------------------|---------------------------------------|--------------------------------|
| Project Name    |                              | lo School   | of Min     | es             | Sample Loca | tion:<br>MRI-+      | 13 6C                                 |                                |
| Project Numl    |                              |             | 2, 1 2,71  |                | Date:       |                     | ,                                     |                                |
|                 | 4349                         | -430        |            |                | 12/6/10     | 12/9/               | 0                                     |                                |
| Sample Type     |                              | (SW)        | SW         | EB             | Sampler:    | 1-1-1               |                                       |                                |
|                 |                              | Duplicate   | Other:     |                |             | Malezza             | K. P. Dal                             | en                             |
|                 | and the second of the second |             |            |                |             |                     |                                       |                                |
| Purge Vol       | lume Calcu                   | lations     |            | Sample Co      | ollection   |                     |                                       |                                |
| Measured TD     | ) =                          |             | 29.85 (ft) | Analysis       | Container   | Preservative        | Date                                  | Time                           |
|                 |                              |             | (+.28)     | Za-226<br>-228 | Igel        |                     | B #                                   | ~ C                            |
| Total Depth =   | =                            |             | 30.23(ft)  | Dies. U        | cale        | 4103                | 12/9/10                               | 1300                           |
| Depth to Wat    | ter =                        |             | (ft)       |                | 500mL       | Company of the same | 9 9                                   |                                |
|                 |                              |             | 29.65      | Cottons        | Plestre     | HNOZ                | 12/ 10                                | ben                            |
| Initial Water ( | Column =                     |             | ≤ ~ (ft)   |                | 500mL       |                     |                                       |                                |
|                 |                              |             | Ó.58 (ft)  | Harons         | Plestiz     |                     | 12/ 110                               | 1722                           |
| Initial Water \ | Volume =                     |             | O.09 (gal) |                | 125mL       |                     | 1 0                                   | NIA                            |
|                 | x 16                         |             | 0.0[       | DOC            | Amser       | Hz 504              | 12/ 110                               |                                |
| 3 X Water Vo    |                              |             | 0.28 (gal) | Lab: ALS-      |             | Tret A              | menica -                              | frenda                         |
|                 |                              |             |            |                | 1           | , ,                 | 100                                   |                                |
| Purge Vol       | umes and                     | Field Water | Quality Me | easuremen      | ts          |                     |                                       |                                |
| Time            | Volume                       | Temperature | рН         | Conductivity   | DO          | ORP                 | Turbidity                             | Appearance                     |
| MC20.2.5        | (gal)                        | (°C, °F)    | (SU)       | (uS/cm)        | (mg/L).     | (mV)                | (NTU)                                 | 10.0                           |
|                 | 0.09                         |             |            |                |             |                     | · · · · · · · · · · · · · · · · · · · |                                |
|                 | 0.0                          |             |            |                |             |                     |                                       |                                |
|                 |                              |             |            |                |             |                     |                                       |                                |
|                 |                              |             |            |                |             |                     |                                       |                                |
|                 |                              |             |            |                |             |                     |                                       |                                |
|                 |                              |             |            |                |             |                     |                                       |                                |
|                 |                              |             |            |                |             |                     |                                       |                                |
|                 |                              |             |            |                |             |                     |                                       |                                |
|                 |                              |             |            |                |             |                     |                                       |                                |
|                 |                              |             |            |                |             |                     |                                       | 12.11                          |
| Volume purge    | ed:<br>0-11 o                | 121         |            |                |             |                     |                                       |                                |
|                 |                              |             |            |                |             |                     | S                                     |                                |
| Comments        | : Analys r                   | 5           | Contine    | <u> </u>       | Preserv     | stive i             | Defe                                  | Time                           |
| TA              | NO2, NO                      |             | 11 Dlaste  |                | none        |                     | 2/ /10                                | 1221                           |
| TA              | TOS                          | ,           | 12 Plest   |                | None        |                     | 2/ 110                                | NZM                            |
| TA              | FETTOL                       | Fe          | IL Plesti  |                | nore        |                     | 6 9 0                                 | NEM                            |
|                 | Ferriz                       |             | 500mL P    |                | HNO.        |                     | 2/ /10                                |                                |
| 14 TA           | Sulfide                      | -           | 250ml 1    | Plestrz        | Zntz        |                     | 60                                    | inzn                           |
|                 |                              |             |            |                |             |                     |                                       | 988<br>- 988                   |
| , 0             | A. 1                         | weter       | to is      | eller p        | cremete     | 0                   |                                       |                                |
| insut           | ticient                      | weils       |            |                |             |                     |                                       |                                |

| Project Name:   | rado Scho    | ol of s       | lia  | es       | Sample Loca | tion: (SM)   | RI-9  | 7    |
|-----------------|--------------|---------------|------|----------|-------------|--------------|-------|------|
| Project Number: |              | Date: 12/7/10 |      |          |             |              |       |      |
| Sample Type:    | Duplicate    | SW<br>Other:  |      | EB       | Sampler:    | Malezyk      | P Dal | en   |
| Purge Volume C  | Calculations |               |      | Sample C | ollection   |              |       |      |
| Measured TD =   |              | 33.10         | (ft) | Analysis | Container   | Preservative | Date  | Time |

| Purge Volume Calculations |                      | Sample C                  | ollection        |              |          |        |
|---------------------------|----------------------|---------------------------|------------------|--------------|----------|--------|
| Measured TD =             | 33.10 (ft)           | Analysis                  | Container        | Preservative | Date     | Time   |
| Total Depth =             | (+.28)<br>33.38 (ft) | Za-226<br>-228<br>Dies. U | l gel<br>cube    | 4103         | 12/7/10  | 1020   |
| Depth to Water =          | 23.63 (ft)           |                           | 500ml<br>Plestre | HNOZ         | 12/7/10  | 1020   |
| Initial Water Column =    | 9.75 (ft)            | Antons                    | Plestre          | _            | 12/7/10  | 1020   |
| Initial Water Volume =    | 1.56 (gal)           | DOC                       | 125mL<br>Amber   | Hzsoy        | ızl7 lio |        |
| 3 X Water Volume          | 4.68 (gal)           | Lab: ALS-                 | Ft. Collin       | Test A       | merica-1 | fruido |

| Time        | Volume   | Temperature | рН   | Conductivity | DO     | ORP   | Turbidity | Appearance |
|-------------|----------|-------------|------|--------------|--------|-------|-----------|------------|
|             | (gal)    | (6°F)       | (SU) | (uS/cm)      | (mg/L) | (mV)  | (NTU)     |            |
| 1010        | 1.56     | 12.92       | 6.84 | 1182         | 4.39   | 213.4 | 1600+     | Brown      |
| 1014        | 3.12     | 13.86       | 6.73 | 1892         | 4.43   | 214.9 | 1000      | Brown      |
| 1017        | 4.68     | 13.07       | 6.76 | 1087         | 4.87   | 213.5 | 1000 t    | Brown      |
|             |          | 1.          |      |              |        | •     |           |            |
|             |          |             |      |              |        |       |           |            |
|             |          |             |      |              |        |       |           |            |
|             |          |             |      |              |        |       |           |            |
|             |          |             |      |              |        |       |           |            |
|             |          |             |      |              |        |       |           |            |
|             |          |             |      |              |        |       |           | aiz m      |
| /olume purg | ed: 4.68 | 24          |      |              |        |       | •         |            |

| Comme | ents: Analys rs | Contines         | Preservative | Def | <u>e</u> | Time  |
|-------|-----------------|------------------|--------------|-----|----------|-------|
| TA    | NO2, NO2        | 16 Plastre       | none         | 12/ | 7/10     | 1020  |
| TA    | TOS             | 12 Plestre       | NORL         | 12/ | 7/10     | 1020  |
| 74    | -Ferros Fe      | 11 Plastic       | node         | 12/ | 110_     | area  |
| 14    | Ferriz Fe       | SOOML Pleshe     | HWO.         | 12/ | 110      | Aren  |
| TA    | 5-18-de         | - 25 ONL Plastiz | Entre        | 12/ | 110      | = MIM |

| Project Name:   | rado Schee      | 1 AM         | Sample Location: CSMRI-10 |                                |
|-----------------|-----------------|--------------|---------------------------|--------------------------------|
| Project Number: | 349-430         |              |                           | Date: 12/7/10                  |
| Sample Type:    | GW<br>Duplicate | SW<br>Other: | EB                        | Sampler:<br>N Malezyk, P Dalen |

| Purge Volume Calculation: | S                    | Sample Collection |                  |              |          |        |  |
|---------------------------|----------------------|-------------------|------------------|--------------|----------|--------|--|
| Measured TD =             | 27.86 (ft)           | Analysis          | Container        | Preservative | Date     | Time   |  |
| Total Depth =             | (+.28)<br>28.14 (ft) | Za-226            | I gel<br>cube    | 4103         | 12/7/10  | 1000   |  |
| Depth to Water =          | 23.47 (ft)           | 1                 | 500ml<br>Plestre | HNOZ         | 12/7/10  | 1806   |  |
| Initial Water Column =    | 4.67 (ft)            | Antons            | 500ml<br>Plestiz |              | 12/7/10  | 1000   |  |
| Initial Water Volume =    | 6.75 (gal)           | DOC               | 125mL<br>Amber   | Hzsoy        | 12/7/10  | 1200   |  |
| 3 X Water Volume          | 2.74 (gal)           | Lab: ALS-         | Ft. Collins      | . Test A.    | merica-1 | frenda |  |

| Time  | Volume | Temperature     | рН   | Conductivity | DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ORP   | Turbidity | Appearance |
|-------|--------|-----------------|------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|------------|
|       | (gal)  | <b>(5</b> , °F) | (SU) | (uS/cm)      | (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (mV)  | (NTU)     |            |
| 0943. | 0.75   | 12.76           | 6.87 | 1011         | 6.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 227.1 | 1500+     | Brown      |
| 6948  | 1.50   | 12.71           | 6.86 | 1008         | 6.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 225.0 | 1000+     | 1200mg     |
| 29.52 | 2.24   | 12.77           | 6.83 | 1011         | 6,23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 224.0 | 1600 t    | Brown      |
| 1     |        |                 |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |           |            |
|       |        |                 |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |           |            |
|       |        |                 |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |           |            |
|       |        |                 |      |              | The state of the s |       |           |            |
|       |        |                 |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |           |            |
|       |        |                 |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |           |            |
|       | 2.24   |                 |      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |           | ven        |

| Comme | ents: Analysis | Contines      | Preservative | Defe | S   | Time  |
|-------|----------------|---------------|--------------|------|-----|-------|
| TA    | NO2, NO2       | 1 L Plestre   | none         | 12/7 | 10  | 1000  |
| 74    | TOS            | 12 Plestre    | nore         | 12/7 | 10  | 1000  |
| TA    | Ferrors Fe     | 11 Plantie    | noAt         | 13/  | 110 | vin   |
| 74    | Forme Fo       | 500ml Plestre | HNO          | 12/  | 110 | ww    |
| TA    | Sulfiele       | 250ml Plestre | Ente         | 14   | Ho. | · NEM |

|                 |            |             |                      |                | ,           |              |           | 5.00       |
|-----------------|------------|-------------|----------------------|----------------|-------------|--------------|-----------|------------|
| Project Nam     |            | lo School   | of Min               | es             | Sample Loca | tion:<br>CSN | 1RI-11.   | B          |
| Project Num     |            |             |                      |                | Date:       |              |           |            |
|                 | 4349       | 7-430       |                      |                | 12/7/10     | )            |           |            |
| Sample Type     | e:         | EVI .       | SW                   | EB             | Sampler:    |              |           |            |
|                 |            | Duplicate   | Other:               |                | N.          | Malezy       | K. P Dal  | en         |
|                 |            |             |                      |                |             |              | •         |            |
|                 | lume Calcu | equilibrium |                      | Sample Co      | ollection   |              |           |            |
| Measured TI     | ) =        |             | 38,57 (ft)           |                | Container   | Preservative | Date      | Time       |
|                 |            |             | (+.28)<br>28.85 (ft) | Za-226<br>-228 | Igel        | . 1          | 101       |            |
| Total Depth :   |            |             | 28.86 (ft)           | Dres. U        | cole        | 41103        | 12/9/10   | 1330       |
| Depth to Wa     | ter =      |             | 17-69 (ft)           |                | 500mL       |              | , ,       |            |
|                 |            | u u         | ا ۵-۰                | Cottons        | Plestic     | HNOZ         | 12/ 110   | NOM        |
| Initial Water   | Column =   |             | 1.16 (ft)            |                | 500mL       |              | , ,       | NEN        |
|                 |            |             | 0.1                  | Antons         | Plestiz     |              | 14/10     |            |
| Initial Water ' | Volume =   | 1 .         | 0.19 (gal)           |                | 125mL       | 11 60        | / /       | 14         |
|                 | 52         |             | -                    | DOC            | Amser       | H2509        | izl ho    | - ZVCM     |
| 3 X Water Vo    | olume      |             | 56 (gal)             | Lab: ALS-1     | 7. Collins  | . Test A.    | menica-1  | 4rvada     |
|                 |            |             |                      |                |             |              |           | 36.        |
| Purge Vol       | umes and   | Field Water | Quality Me           | easurement     | ts          |              |           |            |
| Time            | Volume     | Temperature | pН                   | Conductivity   | DO          | ORP          | Turbidity | Appearance |
|                 | (gal)      | (Ø, °F)     | (SU)                 | (uS/cm)        | (mg/L)      | (mV)         | (NTU)     |            |
| 1049            | 0.56       | 12.14       | 6.88                 | 950            | 6.55        | 218.9        | 1000+     | Brown      |
|                 |            |             |                      |                |             |              |           |            |
|                 |            |             |                      |                |             |              |           |            |
|                 |            |             |                      |                |             |              |           |            |
|                 |            |             |                      |                |             |              |           |            |
|                 |            |             |                      |                |             |              |           |            |
|                 |            |             |                      |                |             |              |           |            |
|                 |            |             |                      |                |             |              |           |            |
|                 |            |             |                      |                |             |              |           | 3.00       |
|                 |            |             |                      |                |             |              |           | wih        |
| Volume purge    | ed:        |             |                      |                |             |              |           | 1          |
|                 | 0.56       | 901         |                      |                |             |              |           |            |
|                 |            | 1050        |                      |                |             |              |           |            |
| Comments        | : Analyst  | 5 (         | Contine              | _              | Preserv     | elsue s      | refe      | Time       |
| A               | NO2. NO    |             | 16 Plesto            |                | none        |              | 21 110    | 1171       |
| TA              | 105        | 3           | 12 Plesto            |                | KOR         |              | 1 110     | - NZ4      |
| 4               | Ferrors    |             | IL Plesto            |                | none        | [1           | 11        | NZA        |
| 4               | Ferniz F   |             |                      |                |             |              | * 0 P     | , VIA      |
|                 |            |             | soome Vl             | SINZ           | HNO.        | 1.7          | 110-      | NEW        |

|               |              |             |            |              | Antonia de la compania del compania del compania de la compania del compania de la compania de la compania del compania de la compania de la compania de la compania de la compania del compania del compania del compania del compania del la compania del |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|---------------|--------------|-------------|------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Project Nan   |              | 1-11        | l of Min   | Water as     | Sample Loca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tion: SW      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
| Desired None  |              | eo School   | of Mia     | es           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| Project Nun   |              | 3-1105      |            |              | Date: 12/8/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| Camala Tun    |              | -430        | ~          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>7</b>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| Sample Typ    | oe:          | GW          | <b>®</b>   | EB           | Sampler:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                       |
|               |              | Duplicate   | Other:     |              | N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Malezy        | K, P Dal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | en                                      |
| D 1/          |              | :           |            | 10 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | - Alle Anno and a second a second and a second a second and a second a second and a second and a second and a |                                         |
| -             | olume Calcu  | llations    |            | Sample C     | ollection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | 400000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |
| Measured T    | D =          |             | (ft)       | -            | Container                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Preservative  | Date ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Time                                    |
|               | 8            |             | (+.28)     | Za-226       | 1 gel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1.460-       | -181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1020                                    |
| Total Depth   |              |             | (ft)       | DIES. U      | cube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41103         | 12/8/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (dw)                                    |
| Depth to Wa   | ater =       |             | (ft)       |              | SOOML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1220                                    |
|               |              | h           | 121        | Cattons      | Plestre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H1103         | 12/8/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1235                                    |
| Initial Water | Column =     |             | (ft)       |              | 500mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1276                                    |
|               |              |             |            | Antons       | Plestre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 12/8/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1225                                    |
| Initial Water | Volume =     |             | (gal)      |              | 125 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11 60         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1275                                    |
|               |              |             | /          | DOC          | Amser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HESOY         | 12/8/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1223                                    |
| 3 X Water V   | olume        |             | (gal)      | Lab: ALS-    | Ft. Colling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tret A        | menica -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-vada                                  |
|               |              |             | V          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , , , , , , , |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| Purge Vo      | lumes and    | Field Water | Quality Me | easuremen    | ts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| Time          | Volume       | Temperature |            | Conductivity | DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ORP           | Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Appearance                              |
| 3 2575        | (gal)        | (€ °F)      | (SU)       | (uS/cm)      | (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (mV)          | (NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rippedianoc                             |
| 1230          | NIA          | 0.05        | 7.68       | 184          | 15-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 602           | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Clear                                   |
| 1000          | 10/17        | 0.01        | 7.00       | 101          | 12 = 0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (00. X        | ~ /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cicar                                   |
|               | $\leftarrow$ |             |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|               |              |             |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|               |              |             |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|               |              |             |            | ~            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|               |              |             |            | >            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|               | 1            |             |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|               | <del> </del> |             |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|               | <b>-</b>     |             |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|               | 1            |             |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mn                                      |
| Volume purg   | ed: NA       |             |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|               | / / /        | V           |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|               | A 1          |             |            |              | //=8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W. St. 1920                             |
|               | S: Analyst   |             | Contine.   |              | Preserv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | )efe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time                                    |
| TA            | NO2, NE      | 9           | 11 Plesto  |              | none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ι             | 2/8/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1535                                    |
| T4            | TOS          |             | 12 Plests  | 2            | none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 1 8/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1235                                    |
| 4             | Fermi        | Fe          | 11 Plast   |              | none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · vem                                   |
| _             |              |             |            | 0 0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | ° 9 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |             | NA CONTRACTOR OF THE PARTY OF T |             |              | The Colonia Co |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Project Nam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | lo Schan    | l of Min    | ee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample Loca | tion: 5 W    | 1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |
| Project Num                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 000000      | 0, , ,,,,,  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date:       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4349       | 1-430       | 725         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/8/10     | )            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Sample Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e:         | GW          | \$W)        | EB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sampler:    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Duplicate   | Other:      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N.          | Malezu       | K. P Dal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | en         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             | 00100000    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| A STATE OF THE PARTY OF THE PAR | lume Calcu | ılations    |             | Sample C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ollection   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Measured TI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) =        | \           | (ft)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Container   | Preservative | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |             | (+.28)      | Za-226<br>-228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Igel        | _            | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 - 21     |
| Total Depth :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | =          |             | (ft)        | DIES. U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cube        | 4103         | 12/8/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0945       |
| Depth to Wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ter =      |             | (ft)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500mL       |              | 9 A B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2011       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |             | Cattons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Plastre     | HNOZ         | 12/8/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0775       |
| Initial Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Column =   |             | (ft)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500mL       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 1           | \ '         | Antons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dleston     | _            | 12/8/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0945       |
| Initial Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Volume =   |             | (gal)       | 210000713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 125 mL      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |             | DOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Amber       | Hz SOy       | 12/8/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0946       |
| 3 X Water Vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | olume      | 100         | (usl)       | lah: Ale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | =1 2 11.    | = 10         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7141110    |             | (gai)       | Lab: #15-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7. Collins  | 1884 H       | menica -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4rVada     |
| Puras Val                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | umes and   | Field Weter | 0.10164.11  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volume     | Temperature |             | Conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DO          | ORP          | Turbidity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Appearance |
| 6430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (gal)      | (% °F)      | (SU)        | (uS/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (mg/L)      | (mV)         | (NTU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| 0937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA         | 0.04        | 6.62        | 195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.37       | 224.2        | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Clean      |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NEM        |
| Volume purge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ed:        |             |             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NI         | 7           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Commente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | : Analyst  |             | <i>-</i> 1. | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |              | ž                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             | Contine     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Preserv     |              | Dete !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Time       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NO2, NO    |             | 12 Plasto   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | none        |              | 2/8/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0945       |
| T4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TOS .      | 2           | 1 - Plesto  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NORL        |              | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0945       |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FEFFORS    | 100         | 11 Plastin  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | none        |              | 8 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - Are M    |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ferniz F   | -2          | 500ml Pl    | estre_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6-110g      | 13           | 1 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7/211      |

| D1- (1)         |            |                                         |              |                | Ta                                      |              | · · · · · · · · · · · · · · · · · · · |            |
|-----------------|------------|-----------------------------------------|--------------|----------------|-----------------------------------------|--------------|---------------------------------------|------------|
| Project Nam     |            | lo School                               | l of Min     | es             | Sample Loca                             | tion: SW     | 43                                    |            |
| Project Num     |            |                                         |              |                | Date:                                   |              |                                       |            |
|                 | 4349       | 1-430                                   |              |                | 12/8/10                                 | 9            |                                       | IN PICE TO |
| Sample Type     |            | GW                                      | (SV)         | EB             | Sampler:                                |              |                                       |            |
|                 |            | Duplicate                               | Other:       |                | N.                                      | Malezy       | K. P Dal                              | en         |
|                 |            |                                         |              |                |                                         |              |                                       |            |
|                 | lume Calcu | ılations                                |              | Sample C       | ollection                               |              |                                       |            |
| Measured TD     | ) =        | 1                                       | (ft)         |                | Container                               | Preservative | Date                                  | Time       |
|                 |            |                                         | (+.28)       | Za-226<br>-228 | Igel                                    |              | 101                                   | 11         |
| Total Depth =   | =          |                                         | (ft)         | Dres. U        | cube                                    | HN03         | 12/8/10                               | 1000       |
| Depth to Wat    | ter =      |                                         | (ft)         | 93.93          | 500ml                                   |              | Pal                                   | 1111       |
|                 |            | M                                       | r.M          | Cattons        |                                         | 141103       | 12/8/10                               | 1000       |
| Initial Water   | Column =   |                                         | (ft)         |                | 500mL                                   |              | . 101                                 | 1000       |
|                 |            |                                         |              | Anrons         | Plestiz<br>125mL                        |              | 12/8/10                               | 1000       |
| Initial Water \ | Volume =   |                                         | (gal)        |                | 125mL                                   | 11 60        | . 101                                 | 1000       |
|                 |            |                                         |              | DOC            | Amber                                   |              | ızl 8110                              |            |
| 3 X Water Vo    | olume      |                                         | (gal)        | Lab: ALS-      | 4. Colling                              | . Test A     | merica-1                              | frenda     |
|                 |            |                                         |              |                |                                         | ,            |                                       |            |
| Purge Vol       | umes and   | Field Water                             | r Quality Me | easuremen      | ts                                      |              |                                       |            |
| Time            | · Volume   | Temperature                             | pН           | Conductivity   | DO                                      | ORP          | Turbidity                             | Appearance |
|                 | (gal)      | (C) °F) .                               | (SU) ·       | (uS/cm)        | (mg/L)                                  | (m∨)         | (NTU)                                 |            |
| 0950            | NA         | 0.46                                    | 6.91         | 194            | 13.38                                   | -26.0        | 25                                    | Ucar       |
|                 |            |                                         |              |                |                                         |              |                                       |            |
|                 |            |                                         |              | ***            |                                         |              |                                       |            |
|                 |            |                                         |              |                |                                         |              |                                       |            |
|                 |            |                                         |              |                |                                         |              |                                       |            |
|                 |            |                                         |              |                |                                         |              |                                       |            |
|                 |            |                                         |              |                |                                         |              |                                       |            |
|                 |            |                                         |              |                |                                         |              |                                       |            |
|                 |            |                                         |              |                |                                         |              |                                       |            |
|                 |            |                                         |              |                |                                         |              |                                       | Ser or     |
| Volume purge    | ed: 1.     | <del>'</del>                            |              |                |                                         |              |                                       |            |
| 1.00. (1.00)    | w/14       | -                                       |              |                |                                         |              |                                       | - 1        |
|                 |            | *************************************** |              |                | *************************************** |              |                                       |            |
| Comments        | : Analyst  | \$                                      | Contine      | 5              | Preserv                                 | alive i      | refe                                  | Time       |
| A               | NO2, NE    |                                         | 1L Plesto    |                | none                                    |              | 2/8/10                                | 1000       |
| TA              | TOS        | ,                                       | 12 Plesto    |                | none                                    |              | 15/10                                 | 1000       |
| 4               | Ferrors    | FE                                      | 11 Plasti    |                | none-                                   | 13           | 6 9                                   | 1000       |
| 4               | Ferriz 1   |                                         | 500ml Pl     |                | 4.00.                                   | - (7         | 1 1.                                  | Nan        |
| 4               | 5. 15:de   |                                         | 250ml P      |                | Znhe                                    | l2           | 10 0                                  | · Nan      |

| D             |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |            |
|---------------|------------|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|------------|
| Project Nan   |            | 1 11        | 1 1          | nd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | Sample Loca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | D/ /      |            |
| Project Num   |            | do Schoo    | 1 of         | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | es                        | Date: 201)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ment         | Blank     |            |
| i roject Null |            | 9-430       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 12/8/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,            |           |            |
| Sample Typ    |            | GW          | SW           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EB                        | Sampler:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |           |            |
|               |            | Duplicate   | Other:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                  | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Malezy       | K. P Dal  | len        |
| D 1/-         | . l        | 1 /:        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |            |
|               | olume Calc | ulations    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample C                  | The state of the s |              | Y         |            |
| Measured T    | D =        |             | 10200 950000 | (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | Container                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Preservative | Date      | Time       |
| Total Depth   | =          |             | (+.28)       | (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Za-226<br>-228<br>Dies. U | l gel<br>cube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4103         | 12/8/10   | 1100       |
| Depth to Wa   | ater =     |             |              | (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17167. 01                 | 500mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | 1         |            |
|               |            | 1 h         | ren          | (1.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cattons                   | Plestre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HNOZ         | 12/8/10   | 1100       |
| Initial Water | Column =   |             | \            | (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | 500mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | 1 1       |            |
|               |            |             | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Antons                    | Plestre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 12/8/10   | 1100       |
| Initial Water | Volume =   |             |              | (gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | 125mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11 (0        |           | 780 3      |
|               | 19.        |             | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DOC                       | Amber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | 12/8/10   |            |
| 3 X Water Vo  | olume      |             |              | (gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lab: ALS-                 | Ft. Colling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Test A       | merica -  | 4rvada     |
| 5 17          |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |            |
|               |            | Field Water |              | STREET, SQUARE, SQUARE |                           | ts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |           |            |
| Time          | Volume     | Temperature | pН           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conductivity              | DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ORP          | Turbidity | Appearance |
|               | (gal)      | (°C, °F)    | (SL          | 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (uS/cm)                   | (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (mV)         | (NTU)     |            |
|               |            | -           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |            |
|               |            |             |              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |            |
|               | -          |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |            |
|               | -          |             |              | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |            |
|               | -          |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |            |
|               |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |            |
|               |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |            |
|               |            | -           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |            |
|               | -          |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |            |
|               |            |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           | win        |
| /olume purge  | ed:<br>~/  | 10          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           | 7          |
|               | 10/        | <i>(1)</i>  | - Contract   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |           |            |
| ^             | A 1        |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | _         |            |
|               | : Analys 1 |             | Cont         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | Preserv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | >efe_     | Time       |
| A             | NO2, NE    | 3           | ILPI         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 2/3/10    | 1160       |
| 14            | TOS        |             | 12 PC        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | MORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t            | 4 8/10    | 400        |
| 4             | PETTOL     |             | tt-P6        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | rone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10           | 6.0       | 127        |
| 4             | FRANZ      |             | 500m         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 4110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15           | An .      | nen        |
| A             | Sulfrede   | Urta Total  | 250m         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CATTE                     | Zm Fra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10           | 110       | · 1/2m     |

# Appendix C Surface Water Sampling Procedures

### **Surface Water Sampling**

### 1.0 Scope and Objective

#### 1.1 Scope

This procedure provides instructions and establishes requirements for the collection and documentation of surface water samples by Stoller personnel. This procedure applies to the collection of surface water samples from streams, rivers, ponds, lakes, seeps, impoundments, and other surface sources.

#### 1.2 Objective

The objective of this procedure is to establish a uniform method for the collection of surface water samples that provides representative samples in a safe and responsible manner.

### 2.0 Definitions

**Composite Sample** – A sample that is comprised of roughly equal amounts of water collected from a set of sample locations known as a sample group.

**Grab Sample** – A single sample collected at one sampling point over a short period of time. Grab sample results are representative of the sample location at the time of sample collection. Also called a catch sample.

**Peristaltic Pump** – A self-priming, low volume pump consisting of a rotor and ball bearing rollers. Tubing placed around the rotors is squeezed by the rotors as they revolve. The squeezing produces a wavelike contractual movement which causes water to be drawn through the tubing. The peristaltic pump is limited to sampling at depths of less than 25 feet.

### 3.0 Responsibilities and Qualifications

#### 3.1 Project Manager

The Project Manager is responsible for ensuring that surface water samples are properly and safely collected. This will be accomplished through staff training and by maintaining quality control (QC). At a minimum, project management shall:

- 3.1.1 Verify that personnel have reviewed, and are familiar with, site-specific work plans which address surface water sampling, this procedure, and any associated procedures.
- 3.1.2 Ensure that hazards are identified and analyzed with respect to collecting surface water samples, and develop and implement controls to minimize hazards.
- 3.1.3 Provide personnel with training in the operation of surface water sampling equipment and the requirements of this procedure.
- 3.1.4 Periodically review field generated documentation associated with surface water sampling to ensure compliance with project requirements and implement corrective action if necessary.
- 3.1.5 Receive feedback from field sampling personnel in order to continually improve surface water sampling process.

#### 3.2 Site Supervisor

The Site Supervisor is responsible for directing and overseeing all field activities, including sampling, to ensure that site-specific plan requirements are met in a safe and efficient manner within the established safety envelope.



Page 1 of 4 ST\_Rad\_19

#### 3.3 Field Sampling Personnel

Field sampling personnel are responsible for the proper sample collection and documentation of the sampling event in accordance with this procedure. At a minimum, field sampling personnel have the responsibility to:

- 3.3.1 Familiarize themselves with site-specific work plans, surface water sampling procedures, potential hazards, and health and safety plan.
- 3.3.2 Implement the controls to minimize hazards.
- 3.3.3 Be familiar with sampling equipment and its proper use.
- 3.3.4 Properly complete field documentation.
- 3.3.5 Provide feedback to project manager in order to improve sampling process.

### 4.0 Equipment/Materials and Calibration

#### 4.1 Equipment/Materials

A number of devices are available for the collection of surface water samples. These devices are constructed of a number of materials including, but not limited to: stainless steel, glass, Teflon®, Tygon®. The sampling and analytical requirements, as well as site characteristics, must be taken into account when determining the proper surface water sampling equipment to use. The site-specific work plans should identify the specific equipment to be used, and methods for safely using equipment.

#### 4.2 Calibration

Equipment shall be calibrated in accordance with manufacturer's recommendations and calibration documentation shall be maintained in project files.

#### 5.0 Method

#### 5.1 Field Preparation

Field preparation requires the organization of sample containers, sample labels, and documentation in an orderly, systematic manner to promote consistency and traceability of all data.

- 5.1.1 General sampling areas will be predetermined to ensure coverage of the various impact scenarios and should be described in project-specific work plans. The location of each sampling point shall be surveyed or mapped and staked as described in Section 5.1.6 prior to sampling.
- 5.1.2 In flowing water, surface water sampling shall be conducted from downstream locations first, then proceed to upstream locations to avoid potential cross contamination from disturbing the substrate.
- 5.1.3 Prior to sampling and between sampling locations, sampling equipment shall be decontaminated.
- 5.1.4 Appropriate personal protective equipment shall be used, as specified in the project-specific health and safety plan.
- 5.1.5 All pertinent information (date, site name, identification number, and location) shall be recorded on a Field Activity Daily Log (FADL) and a Sample Collection Log, as appropriate. Field conditions, unusual circumstances, and weather conditions shall be noted.



Page 2 of 4 ST\_Rad\_19

- 5.1.6 Due to the nature of sampling an aqueous environment, additional steps are required to verify and mark sample locations. Depending on the project needs, it may be useful to use a Global Positioning System (GPS) to verify and mark the sample locations. Refer to *Field Mapping with a Global Positioning System* for details. The following steps shall be followed by the sampler in addition to the field preparation requirements described in Section 5.1.1.
  - 5.1.6.1 Place a marker (stake) on the shore approximately perpendicular to the sampling location and mark the sample number on the stake.
  - 5.1.6.2 If the sample location is accessible by foot, use a measuring tape to measure the distance between the marked point and the sample location station. Record the compass bearing from the sample location to the shore marker.
  - 5.1.6.3 If the sample location is accessible only by boat, use a rangefinder to estimate the distance to the shore marker to obtain the most accurate measurement. Record the compass bearing from the sample location to the shore marker. It is recommended that the boat's position on the water be stabilized to prevent drifting.
  - 5.1.6.4 Determine and record the distance and direction of each shore marker from a reference point shown on the topographic map and mark all points on a map or use a GPS, if available.
- 5.1.7 Quality Control samples, including field and source blanks, shall be collected in accordance with the project-specific work plan.

#### 5.2 Surface Water Sample Collection Using a Transfer Container

The device most commonly used to collect grab surface water samples is a transfer container (beaker, flask, etc.) made of inert material such as glass, stainless steel or Teflon<sup>®</sup>. When sampling with a transfer container, the procedure is as follows:

- 5.2.1 Survey and clearly map sampling points as described in Section 5.1.6 prior to sampling. The sample should be collected as close to the mapped location as possible. If the collection point must be moved, the new location must be approved and documented.
- 5.2.2 Dip the transfer container into the surface water. Always use a clean, properly decontaminated transfer container at each sample location.
- 5.2.3 Filter the sample if required.
- 5.2.4 Fill the sample bottle, allowing the sample stream to flow gently down the inside of the bottle with minimal turbulence.
- 5.2.5 Cap the bottle and handle the sample according to the procedures outlined in Project *Sample Shipping*.
- 5.2.6 Label the sample and document the sampling event.

#### 5.3 Surface Water Sample Collection Using a Peristaltic Pump

A device used to collect composite surface water samples is a peristaltic pump. Samples to be analyzed for volatile organic analysis cannot be composited. When sampling with a peristaltic pump, the procedure is as follows:

5.3.1 Survey and clearly map sampling points as described in Section 5.1.6 prior to sampling. The sample should be collected as close to the mapped location as possible. If a collection point must be moved, the new location must be approved and documented.



Page 3 of 4 ST\_Rad\_19

- 5.3.2 Attach the appropriate tubing to the peristaltic pump. Always use new tubing at each sample location. Do not try to decontaminate and reuse tubing.
- 5.3.3 If filtering is required, attach the filtering device to the discharge end of the tubing.
- 5.3.4 Lower the intake end of the tubing into the water and begin pumping. If the pump is computerized, program the pump to collect the sample at the desired intervals and flow rate. If the pump is not programmable, record the discharge rate (compute discharge rate by dividing an amount of water collected by the time it took to collect it). Collect the sample at the desired interval.
- 5.3.5 Fill the sample bottle, allowing the sample stream to flow gently down the inside of the bottle with minimal turbulence. The programmable pump will perform this automatically.
- 5.3.6 Cap the bottle and handle the sample according to the procedures outlined in Project *Sample and Shipping*.
- 5.3.7 Label the sample and document the sampling event.

### 6.0 Required Inspection/Acceptance Criteria

None.

#### 7.0 Records

The following records generated as a result of implementation of this procedure shall be maintained in a safe manner and submitted to project central files for storage and disposition.

Field Activity Daily Log

Sample Collection Log

Chain of Custody

#### 8.0 References

#### 8.1 Others

- U.S. Environmental Protection Agency. 1987. *EPA Compendium of Superfund Field Operations Methods*, EPA 540/P-87/001a, OSWER 9355.0-14. Washington, DC.
- U.S. Environmental Protection Agency. 1988. *EPA Guidance for Conducting Remedial Investigation and Feasibility Studies under CERCLA*, Interim Final OSWER Directive 9355.3-01. Washington, DC.
- American Public Health Association, American Water Works Association, Water Pollution Control Federation. 1985. *Standard Methods for the Examination of Water and Wastewater*, 16th Edition, American Public Health Association, Washington, DC.



Page 4 of 4 ST\_Rad\_19

# Appendix D Data Validation Reports

#### DATA VALIDATION REPORT

To:

Robert Hill

From:

John Garrett

Date:

February 2, 2011

Project/Site:

Colorado School of Mines

Project No.:

4349-410

SDG No .:

1012117

This report presents the inorganic anions data validation for the data obtained for eleven CSMRI water sample collected on December 07, 2010 and December 08, 2010 and submitted to ALS Laboratory Group on December 10, 2010 for the above referenced work assignment. The purpose of this review is to provide a technical evaluation of the inorganic anions results that were obtained by preparation method MCAWW, May 1994, and EMSL Rev 2.1 Alkalinity, Bicarbonate, and Carbonate by Method 310.1 ALS SOP 1106R8, Sulfate, and Chloride by Method 300.0 Rev 2.1 ALS SOP 1113R11 from ALS Laboratory Group. (Fort Collins, CO). The water samples were analyzed for Bicarbonate, Carbonate, and Total Alkalinity, on December 20, 2010, Sulfate and Chloride on December 14, 2010. All analyses were conducted by ALS Laboratory Group. The field sample numbers and corresponding laboratory numbers are presented below:

| Client Sample Number | Laboratory Sample Number | Matrix | Collection Date   |
|----------------------|--------------------------|--------|-------------------|
| CSMRI-10             | 1012117-1                | Water  | December 07, 2010 |
| CSMRI-9              | 1012117-2                | Water  | December 07, 2010 |
| CSMRI-4              | 1012117-3                | Water  | December 07, 2010 |
| CSMRI-5              | 1012117-4                | Water  | December 07, 2010 |
| SW-2                 | 1012117-5                | Water  | December 08, 2010 |
| SW-3                 | 1012117-6                | Water  | December 08, 2010 |
| EQUIPMENT BLANK      | 1012117-7                | Water  | December 08, 2010 |
| CSMRI-2              | 1012117-8                | Water  | December 08, 2010 |
| CSMRI-1              | 1012117-9                | Water  | December 08, 2010 |
| SW-1                 | 1012117-10               | Water  | December 08, 2010 |
| CSMRI-1B             | 1012117-11               | Water  | December 08, 2010 |

Data validation was conducted in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review.

The Inorganic data were evaluated based on the following parameters:

- \* Data Completeness
- \* Holding Times and Preservation
- \* Initial and Continuing Calibration Verification
- \* Contract Required Detection Limit (CRDL)
- \* Preparation/Initial (ICB)/ and Continuing (CCB) Calibration Blanks
- \* Interference Check Sample (ICSA) Results
- \* Matrix Spike Results
- \* Duplicate Sample Results
- \* Laboratory Control Samples (LCS) Results
- \* Serial Dilution Sample Results
- \* Compound Quantitation and Reporting Limits (full validation only)
- \* All criteria were met for this parameter

#### Data Completeness

The data package was complete. No results were qualified as a result of the missing data.

#### Holding Times and Preservation

The water samples were all found to be field filtered and had a pH less than 2. Samples were received at a temperature of 1.8 °C and 2.4 °C.

#### Initial and Continuing Calibration Verification

Initial and Continuing Calibration Verification standards were analyzed at the required frequency and all were within the required 90-110%. No action was necessary.

#### Contract Required Detection Limit (CRDL)

All CRDL %Rs CRI %Rs were within 80-120% limits. No action was necessary.

#### Preparation and Initial/Continuing Calibration Blanks

Preparation and Initial/Continuing Calibration Blank analyses were performed at the required frequency. Preparation and Initial/ Continuing Calibration Blanks are evaluated to assess the level of contamination in the preparation and analytical processes.

Preparation and Initial/ Continuing Calibration Blanks were prepared and analyzed at the required frequencies.

All of the blanks that were analyzed had concentrations that were below their respective Reporting Limits (RLs).

However, if blank results were above the Instrument Detection Limits (IDLs) and below the RLs, it caused the associated sample results to be qualified for contamination as estimated and non-detected [UJ 107]. If blank results were below the negate IDL and above the negate RL, it caused the associated sample results to be qualified for negative contamination as estimated [J 107]. No sample results were qualified due to blank contamination.

### Matrix Spike/Matrix Spike Duplicate Results

MS/MSD analyses were performed at the required frequency. All MS/MSD percent recoveries were within 75-125% limits with the following exception:

The chloride concentration was above the analytical range in the native sample CSMRI-1B and MS/MSD recoveries could not be evaluated. The associated LCS, ICV, and CCV results were within control limits and no action was necessary.

### <u>Duplicate Sample Analysis</u>

Duplicate analyses were performed at the required frequency. All original sample/duplicate sample and MS/MSD differences were less than 20% RPD or less than the RDL for results less than (5)(RDL). No actions were necessary.

### <u>Laboratory Control Samples</u>

LCS analyses were performed at the required frequency. The laboratory analyzed laboratory control samples for all analytes. All recoveries were within 80-120% limits. No action was necessary.

#### Serial Dilution Results

All %Ds were less than 10% for all analytes.

#### Analyte Quantitation and Reporting Limits

Analyte quantitation was evaluated for all samples. No calculation or transcription errors were found. The results and reporting limits were correctly reported.

#### **Overall Comments**

The chloride Matrix Spike and Matrix Spike Duplicate recoveries were outside criteria low in sample CSMRI-10 and the Matrix spike recovery low in CSMRI-1B but greater than 75%. The sample results were greater than 4X the Spike level and the associated LCS, ICV, and CCV results were within control limits and no action was necessary.

Samples CSMRI-10, CSMRI-9, CSMRI-4, CSMRI-5, SW-2, SW-3, CSMRI-2, CSMRI-1, SW-1, and CSMRI-1B were analyzed at a dilution in order to bring chloride concentrations into analytical range of the IC.

Reduced aliquots were analyzed for samples CSMRI-10, CSMRI-9, CSMRI-4, CSMRI-5, CSMRI-1, and CSMRI-1B for alkalinity, bicarbonate, and carbonate. The laboratory elevated the reporting limits accordingly.

The results as reported are accepted without qualification.

#### DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- NR Result was not used from a particular sample analysis. This typically occurs when more than one result for an element is reported due to dilutions and reanalyses.

### DATA VALIDATION REPORT

To:

Robert Hill

From:

John Garrett

Date:

February 2, 2011

Project/Site:

Colorado School of Mines

Project No.:

4349-410

SDG No.:

1012117

This report presents the inorganic metals data validation for the data obtained for thirteen dissolved metals and dissolved Uranium for the CSMRI water samples collected on December 07 and December 08, 2010 and submitted to ALS Laboratory Group on December 10, 2010 for the above referenced work assignment. The purpose of this review is to provide a technical evaluation of the inorganic metals results that were obtained by SW-846, 3<sup>rd</sup> edition, Method 6010B and ALS Laboratory Group SOP 834R8 for trace metals by Inductively Coupled Plasma (ICP) atomic emission spectrometry analysis, Method 6020A ALS Laboratory Group Procedure SOP 827R7 for dissolved metals by Inductively Coupled Plasma mass spectrometry (ICP-MS) (Uranium only) analysis for SDG 1012117 by ALS Laboratory Group (Fort Collins, CO). The water samples were extracted on December 15, 2010 and analyzed for dissolved ICP trace metals and dissolved uranium by ICP-MS on December 15, 2010. All analyses were conducted by ALS Laboratory Group. The field sample numbers and corresponding laboratory numbers are presented below:

| CII: 4 Clean-1- Non-Isaa | Talandar Carrela Nivelan | Matrix | Collection Date   |
|--------------------------|--------------------------|--------|-------------------|
| Client Sample Number     | Laboratory Sample Number | Matrix | Collection Date   |
| CSMRI-10                 | 1012117-1                | Water  | December 07, 2010 |
| CSMRI-9                  | 1012117-2                | Water  | December 07, 2010 |
| CSMRI-4                  | 1012117-3                | Water  | December 07, 2010 |
| CSMRI-5                  | 1012117-4                | Water  | December 07, 2010 |
| SW-2                     | 1012117-5                | Water  | December 08, 2010 |
| SW-3                     | 1012117-6                | Water  | December 08, 2010 |
| EQUIPMENT BLANK          | 1012117-7                | Water  | December 08, 2010 |
| CSMRI-2                  | 1012117-8                | Water  | December 08, 2010 |
| CSMRI-1                  | 1012117-9                | Water  | December 08, 2010 |
| SW-1                     | 1012117-10               | Water  | December 08, 2010 |
| CSMRI-1B                 | 1012117-11               | Water  | December 08, 2010 |
| CSMRI-11B                | 1012117-12               | Water  | December 08, 2010 |
| CSMRI-6C                 | 1012117-13               | Water  | December 08, 2010 |

Data validation was conducted in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review.

The metals data were evaluated based on the following parameters:

- \* Data Completeness
- \* Holding Times and Preservation
- \* Initial and Continuing Calibration Verification
- \* Contract Required Detection Limit (CRDL) Preparation/ Initial (ICB)/ and Continuing (CCB) Calibration Blanks
- \* Interference Check Sample (ICSA) Results
- \* Matrix Spike Results
- \* Duplicate Sample Results
- \* Laboratory Control Samples (LCS) Results Serial Dilution Sample Results
- \* Compound Quantitation and Reporting Limits (full validation only)
- \* All criteria were met for this parameter

### Data Completeness

The data package was complete except for the missing CRDL (2B) and IDL (10) QC Summary Forms. No results were qualified as a result of the missing data.

#### Holding Times and Preservation

Analytical holding times were evaluated and all criteria were met.

The water samples were all found to be field filtered and had a pH less than 2. Samples were received at a temperature of 1.8 °C and 2.4 °C.

#### Initial and Continuing Calibration Verification

Initial and Continuing Calibration Verification standards were analyzed at the required frequency and all were within the required 90-110% limits for ICP trace. No action was necessary.

#### Contract Required Detection Limit (CRDL)

No CRDL or CRI standard recovery summary forms (EPA Form 2b) were included in the data package. The reviewer obtained the %Rs from the instrument raw data. All CRDL %Rs for ICP were within 80-120% limits. No action was necessary.

#### Preparation and Initial/Continuing Calibration Blanks

Preparation and Initial/Continuing Calibration Blank analyses were performed at the required frequency. Preparation and Initial/ Continuing Calibration Blanks are evaluated to assess the level of contamination in the preparation and analytical processes.

Preparation and Initial/ Continuing Calibration Blanks were prepared and analyzed at the required frequencies.

All of the blanks that were analyzed had concentrations that were below their respective Reporting Limits (RLs).

However, if blank results were above the Instrument Detection Limits (IDLs) and below the RLs, it caused the associated sample results to be qualified for contamination as estimated and non-detected [UJ 107]. If blank results were below the negate IDL and above the negate RL, it caused the associated sample results to be qualified for negative contamination as estimated [J 107]. No sample results were qualified due to blank contamination.

#### Interference Check Sample (ICSA) Results

Interference Check Samples were prepared and analyzed at the required frequencies.

No aqueous concentrations of aluminum, calcium, iron, or magnesium exceeded the ICSA values in any of the samples. No action was necessary.

### Matrix Spike/Matrix Spike Duplicate Results

MS/MSD analyses were performed at the required frequency. All ICP and ICP-MS percent recoveries were within 75-125% limits. No action was necessary.

### **Duplicate Sample Analysis**

Duplicate analyses were performed at the required frequency. All ICP, and ICP-MS original sample/duplicate sample and MS/MSD differences were less than 20% RPD or

less than the RDL for results less than (5)(RDL). No actions were necessary.

#### Laboratory Control Samples

LCS analyses were performed at the required frequency. The laboratory analyzed laboratory control samples for all metals. All recoveries were within 80-120% limits. No action was necessary.

#### Serial Dilution Results

All %Ds were less than 10% for Uranium by ICP-MS and trace metals by ICP with the exception of sodium in sample CSMRI-10 (15 %D) and is qualified as Estimated (J).

### Analyte Quantitation and Reporting Limits

Analyte quantitation was evaluated for all samples. No calculation or transcription errors were found. The results and reporting limits were correctly reported.

#### **Overall Comments**

The data are acceptable as reported with the following exception: Sodium in sample CSMRI-10 is qualified as Estimated (J) due to Serial dilution outside criteria.

Uranium by ICP-MS samples were analyzed at a dilution in order to bring uranium into analytical range.

No CRDL or CRI standard recovery summary forms (EPA Form 2b) were included in the data package. The reviewer obtained the results from the raw data. No action was necessary.

#### DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- NR Result was not used from a particular sample analysis. This typically occurs
  when more than one result for an element is reported due to dilutions and
  reanalyses.

#### DATA VALIDATION REPORT

To:

Robert Hill

From:

John Garrett

Date:

January 29, 2011

Project/Site:

Colorado School of Mines

Project No.:

4349-410

SDG No.:

1012117 Radium-226

This report presents the radiological data validation for the data obtained during the field activities for the above referenced work assignment. The purpose of this review is to provide a technical evaluation of the radiological results that were obtained by ALS Laboratory Group Procedure SOP 783R9 for Radium-226 by Radon Emanation Counting for SDG 1012117 from ALS Laboratory Group (Fort Collins, CO). This report consists of twelve water samples for the Colorado School of Mines/4349-410 project collected on December 07, 2010 and December 08, 2010 and submitted to ALS Laboratory Group on December 10, 2010. The samples were analyzed for Radium-226 by Radon Emanation Counting on January 03, 2011. All analyses were conducted by ALS Laboratory Group. The field sample numbers and corresponding laboratory numbers are presented below:

| Client Sample Number | Laboratory Sample Number | Matrix | Collection Date   |
|----------------------|--------------------------|--------|-------------------|
| CSMRI-10             | 1012117-1                | Water  | December 07, 2010 |
| CSMRI-9              | 1012117-2                | Water  | December 07, 2010 |
| CSMRI-4              | 1012117-3                | Water  | December 07, 2010 |
| CSMRI-5              | 1012117-4                | Water  | December 07, 2010 |
| SW-2                 | 1012117-5                | Water  | December 08, 2010 |
| SW-3                 | 1012117-6                | Water  | December 08, 2010 |
| EQUIPMENT BLANK      | 1012117-7                | Water  | December 08, 2010 |
| CSMRI-2              | 1012117-8                | Water  | December 08, 2010 |
| CSMRI-1              | 1012117-9                | Water  | December 08, 2010 |
| SW-1                 | 1012117-10               | Water  | December 08, 2010 |
| CSMRI-1B             | 1012117-11               | Water  | December 08, 2010 |
| CSMRI-11B            | 1012117-12               | Water  | December 08, 2010 |

Data validation was conducted in accordance with the Analytical Services Statement of Work for the following modules: Gas Proportional Counting Module RC04-v2, October 1, 2002, and U.S. DOE Quality Systems for Analytical Services Revision 2.6 (QSAS).

The radiological data were evaluated based on the following parameters:

- \* Data Completeness
- \* Holding Times and Preservation
- \* Instrument Initial Calibrations
- \* Instrument Performance Checks
- \* Preparation Blanks
- \* Duplicate Sample Results
- \* Laboratory Control Samples (LCS) Results
- \* Laboratory Control Samples Duplicate (LCSD) Results
- \* Compound Quantitation and Reporting Limits (full validation only)

#### Data Completeness

The data package was complete as per ALS Laboratory Group Procedure SOP 783R9 for Radium-226 by Radon Emanation Counting.

#### Holding Times and Preservation

Analytical holding times were evaluated and all criteria were met. However, holding time requirements are not applicable to radiochemistry analyses unless the isotopes of interest have short half-lives.

#### Calibrations

The instruments were calibrated at the required frequency.

Initial Calibration

All instruments were calibrated properly using NIST traceable SRM.

Instrument Performance Checks

All isotopes were within criteria.

#### Preparation Blanks

Preparation/Method Blanks were performed at the required frequency. All isotopes that were analyzed had activities that were below their respective MDCs in their QC batch preparation blanks.

#### **Duplicate Sample Analysis**

Duplicate analyses were performed at the required frequency. Due to limited sample volume the laboratory prepared a LCSD in lieu of a client sample Duplicate. All isotopic activities for Radium-226 LCS Duplicate and LCS original analysis were within the limits of the statistical test for equivalency. No action was required.

#### Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicates were not performed for the samples in this SDG, nor were any required.

#### Laboratory Control Samples

LCS analyses were performed at the required frequency. All recoveries were within 75-125% limits. No calculation errors or transcription errors were found.

#### Analyte Quantitation and Reporting Limits

Analyte quantitation was evaluated for all samples. No calculation or transcription errors were found. The results and reporting limits were correctly reported.

#### **Overall Comments**

Overall, the data are of good quality and are usable as reported by the laboratory without qualification.

The laboratory reported that the ICP-AES measurement of the added barium carrier prior to chemical separation. Several samples showed barium concentrations less than zero. The laboratory manually adjusted the values to 0.0 in order to avoid a low bias. All QC criteria were within control limits and no action was necessary. The data are not affected.

#### DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- NR Result was not used from a particular sample analysis. This typically occurs
  when more than one result for an element is reported due to dilutions and
  reanalysis.

#### DATA VALIDATION REPORT

To:

Robert Hill

From:

John Garrett

Date:

January 28, 2011

Project/Site:

Colorado School of Mines

Project No.:

4349-410

SDG No.:

1012117 Radium-228

This report presents the radiological data validation for the data obtained during the field activities for the above referenced work assignment. The purpose of this review is to provide a technical evaluation of the radiological results that were obtained by ALS Laboratory Group PA SOP 724R11 for Radium-228 by gas proportional counting for SDG 1012117 from ALS Laboratory Group (Fort Collins, CO). This report consists of twelve water samples for the Colorado School of Mines/4349-410 project collected on December 07, 2010 and December 08, 2010 and submitted to ALS Laboratory Group on December 10, 2010. The samples were analyzed for Radium-228 by Radon Gas Proportional Counting on January 10, 2011. All analyses were conducted by ALS Laboratory Group. The field sample numbers and corresponding laboratory numbers are presented below:

| Client Sample Number | Laboratory Sample Number | Matrix | Collection Date   |
|----------------------|--------------------------|--------|-------------------|
| CSMRI-10             | 1012117-1                | Water  | December 07, 2010 |
| CSMRI-9              | 1012117-2                | Water  | December 07, 2010 |
| CSMRI-4              | 1012117-3                | Water  | December 07, 2010 |
| CSMRI-5              | 1012117-4                | Water  | December 07, 2010 |
| SW-2                 | 1012117-5                | Water  | December 08, 2010 |
| SW-3                 | 1012117-6                | Water  | December 08, 2010 |
| EQUIPMENT BLANK      | 1012117-7                | Water  | December 08, 2010 |
| CSMRI-2              | 1012117-8                | Water  | December 08, 2010 |
| CSMRI-1              | 1012117-9                | Water  | December 08, 2010 |
| SW-1                 | 1012117-10               | Water  | December 08, 2010 |
| CSMRI-1B             | 1012117-11               | Water  | December 08, 2010 |
| CSMRI-11B            | 1012117-12               | Water  | December 08, 2010 |

Data validation was conducted in accordance with the Analytical Services Statement of Work for the following modules: Gas Proportional Counting Module RC04-v2, October 1, 2002, and U.S. DOE Quality Systems for Analytical Services Revision 2.6 (QSAS).

The radiological data were evaluated based on the following parameters:

- \* Data Completeness
- \* Holding Times and Preservation
- \* Instrument Initial Calibrations
- \* Instrument Performance Checks
- \* Preparation Blanks
- \* Duplicate Sample Results
- \* Laboratory Control Samples (LCS) Results
- \* Laboratory Control Samples Duplicate (LCSD) Results
- \* Compound Quantitation and Reporting Limits (full validation only)

#### **Data Completeness**

The data package was complete as per ALS Laboratory Group Procedure SOP 724R11 for Radium-228 by Gas Flow Proportional Counting for SDG 1012117.

#### **Holding Times and Preservation**

Analytical holding times were evaluated and all criteria were met. However, holding time requirements are not applicable to radiochemistry analyses unless the isotopes of interest have short half-lives.

#### Calibrations

The instruments were calibrated at the required frequency.

Initial Calibration

All instruments were calibrated properly using NIST traceable SRM.

Instrument Performance Checks

All isotopes were within criteria.

#### Preparation Blanks

Preparation/Method Blanks were performed at the required frequency. All isotopes that were analyzed had activities that were below their respective MDC's in their QC batch preparation blanks.

#### <u>Duplicate Sample Analysis</u>

Duplicate analyses were performed at the required frequency. Due to insufficient sample volume the laboratory prepared and analyzed a Laboratory Control Sample Duplicate (LCSD) in lieu of a client sample duplicate.

All isotopic activities for Radium-228 duplicate (LCS) and original (LCSD) analyses were within the limits of the statistical test for equivalency. No action was required.

#### Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicates were not performed for the samples in this SDG, nor were any required.

#### **Laboratory Control Samples**

LCS analyses were performed at the required frequency. All recoveries were within 75-125% limits. No calculation errors or transcription errors were found.

#### Analyte Quantitation and Reporting Limits

Analyte quantitation was evaluated for all samples. No calculation or transcription errors were found. The results and reporting limits were correctly reported.

#### **Overall Comments**

The laboratory reported that the ICP-AES measurement of the added barium carrier prior to chemical separation had a concentration of less than the concentration added. The laboratory manually adjusted the values to the known concentration to calculate the chemical yield in order to avoid a low bias in all samples including the QC. All samples reported barium concentrations less than that known to be added. The results as reported are accepted without qualification.

#### DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- NR Result was not used from a particular sample analysis. This typically occurs
  when more than one result for an element is reported due to dilutions and
  reanalyses.

#### DATA VALIDATION REPORT

To:

Robert Hill

From:

John Garrett

Date:

January 28, 2011

Project/Site:

Colorado School of Mines

Project No.:

4349-410

SDG No.:

1012117 DOC

This report presents the Dissolved Organic Carbon data validation for the data obtained for eleven CSMRI water sample collected on December 07 and December 08, 2010 and submitted to ALS Laboratory Group on December 10, 2010 for the above referenced work assignment. The purpose of this review is to provide a technical evaluation of eleven Dissolved Organic Carbon results that were obtained by MCAWW, May 1994, Method 415.1, SOP 670R14 Dissolved Organic Carbon by Method 415.1 from ALS Laboratory Group (Fort Collins, CO). The water samples were analyzed December 23, 2010. All analyses were conducted by ALS Laboratory Group. The field sample numbers and corresponding laboratory numbers are presented below:

| Client Sample Number | Laboratory Sample Number | Matrix | Collection Date   |
|----------------------|--------------------------|--------|-------------------|
| CSMRI-10             | 1012117-1                | Water  | December 07, 2010 |
| CSMRI-9              | 1012117-2                | Water  | December 07, 2010 |
| CSMRI-4              | 1012117-3                | Water  | December 07, 2010 |
| CSMRI-5              | 1012117-4                | Water  | December 07, 2010 |
| SW-2                 | 1012117-5                | Water  | December 08, 2010 |
| SW-3                 | 1012117-6                | Water  | December 08, 2010 |
| EQUIPMENT BLANK      | 1012117-7                | Water  | December 08, 2010 |
| CSMRI-2              | 1012117-8                | Water  | December 08, 2010 |
| CSMRI-1              | 1012117-9                | Water  | December 08, 2010 |
| SW-1                 | 1012117-10               | Water  | December 08, 2010 |
| CSMRI-1B             | 1012117-11               | Water  | December 08, 2010 |

Data validation was conducted in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (CLP).

The Dissolved Organic Carbon data were evaluated based on the following parameters:

- \* Data Completeness
- \* Holding Times and Preservation
- \* Initial and Continuing Calibration Verification
- \* Contract Required Detection Limit (CRDL)
- \* Preparation/Initial (ICB)/ and Continuing (CCB) Calibration Blanks
- \* Interference Check Sample (ICSA) Results
- \* Matrix Spike Results
- \* Duplicate Sample Results
- \* Laboratory Control Samples (LCS) Results
- \* Serial Dilution Sample Results
- \* Compound Quantitation and Reporting Limits (full validation only)
- \* All criteria were met for this parameter

#### Data Completeness

The data package was complete. No results were qualified as a result of the missing data.

#### Holding Times and Preservation

Analytical holding times were evaluated and all criteria were met.

The water samples were all found to be field filtered and had a pH less than 2. Samples were received at a temperature of 1.8 °C and 2.4 °C.

#### Initial and Continuing Calibration Verification

Initial and Continuing Calibration Verification standards were analyzed at the required frequency and all were within the required 90-110%. No action was necessary.

#### Contract Required Detection Limit (CRDL)

All CRDL %Rs CRI %Rs were within 80-120% limits. No action was necessary.

#### Preparation and Initial/Continuing Calibration Blanks

Preparation and Initial/Continuing Calibration Blank analyses were performed at the required frequency. Preparation and Initial/ Continuing Calibration Blanks are evaluated to assess the level of contamination in the preparation and analytical processes.

Preparation and Initial/ Continuing Calibration Blanks were prepared and analyzed at the required frequencies.

All of the blanks that were analyzed had concentrations that were below their respective Reporting Limits (RLs).

However, if blank results were above the Instrument Detection Limits (IDLs) and below the RLs, it caused the associated sample results to be qualified for contamination as estimated and non-detected [UJ 107]. If blank results were below the negate IDL and above the negate RL, it caused the associated sample results to be qualified for negative contamination as estimated [J 107]. No sample results were qualified due to blank contamination.

#### Matrix Spike/Matrix Spike Duplicate Results

MS/MSD analyses were performed at the required frequency. All MS/MSD percent recoveries were within 75-125% limits. No action was necessary.

#### **Duplicate Sample Analysis**

Duplicate analyses were performed at the required frequency. All original sample/duplicate sample and MS/MSD differences were less than 20% RPD or less than the RDL for results less than (5)(RDL). No actions were necessary.

#### **Laboratory Control Samples**

LCS analyses were performed at the required frequency. The laboratory analyzed laboratory control samples for all analytes. All recoveries were within 80-120% limits. No action was necessary.

#### Serial Dilution Results

No dilutions were required.

#### **Analyte Quantitation and Reporting Limits**

Analyte quantitation was evaluated for all samples. No calculation or transcription errors were found. The results and reporting limits were correctly reported.

#### **Overall Comments**

The overall data are acceptable as reported.

#### DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- Result was not used from a particular sample analysis. This typically occurs
  when more than one result for an element is reported due to dilutions and
  reanalyses.

# Appendix E Results of Analyses CD

# Appendix F Chains of Custody

S Laboratory Group

Commerce Drive, Fort Collins, Colorado 80524

of-Custody

 $\ddot{\circ}$ 

|                        | , Commerce Drive, Fort Collins, Colorado 80524<br>TF: (800) 443-1511 PH: (970) 490-1511 FX: (970) 490-1522 | 522                |                |                                   |              |          |               |                |                     | Form 202r8 | МОВКОЯБЕЯ<br># |            |                  |
|------------------------|------------------------------------------------------------------------------------------------------------|--------------------|----------------|-----------------------------------|--------------|----------|---------------|----------------|---------------------|------------|----------------|------------|------------------|
| (ALS)                  |                                                                                                            | SA                 | SAMPLER \      | Makezyk                           | Ť            |          |               | DATE           | (Z)                 | 0//0/      | PAGE           | ^          | of 7             |
| PROJECT NAME           | CO School of Mines                                                                                         |                    | SITE ID        |                                   |              |          | 1             | TURNAROUND     | · +3                | 2          | DISPOSAL       | (By Lab or | Return to Client |
| PROJECT No.            | 4349-430                                                                                                   | EDD FORMAT         | DRMAT          |                                   |              |          |               |                |                     |            |                |            |                  |
|                        |                                                                                                            | PURCHASE ORDER     | ORDER          |                                   |              |          | -             |                |                     |            |                |            |                  |
| COMPANY NAME           | Steller                                                                                                    | BILL TO COMPANY    | MPANY          |                                   |              |          | \$ 2          | \al -          |                     | 70         |                | *          |                  |
| SEND REPORT TO         | Robert Hill                                                                                                | INVOICE ATTN TO    | OT NT          |                                   |              |          | 2. ~          | n i u-         |                     |            |                |            |                  |
| ADDRESS                | 105 Technolow Or #190 W                                                                                    | AD                 | ADDRESS        |                                   |              |          | 92            | 2.1 y          |                     |            |                |            |                  |
| CITY / STATE / ZIP     | Broom Rich, co good                                                                                        | CITY / STATE / ZIP | TE / ZIP       |                                   |              |          |               | n )            |                     |            |                |            |                  |
| PHONE                  | 44-945(808)                                                                                                |                    | PHONE          |                                   |              |          | ind.          | 5~             | 54                  |            |                |            |                  |
| FAX                    | (303) 443-1408                                                                                             |                    | FAX            |                                   |              |          | 7. <i>f</i> * | 195            | 20                  |            |                |            |                  |
| E-MAIL                 | rhill @ stoller, corn                                                                                      |                    | E-MAIL         |                                   |              |          |               | <sup>3</sup> フ |                     |            |                |            |                  |
| Lab ID                 | Field ID                                                                                                   | Matrix             | Sample<br>Date | Sample<br>Time                    | Bottles P    | Pres. QC |               |                |                     |            |                | 1          |                  |
|                        | CSMRJ-10                                                                                                   | 3                  | 01/4/21        | 0001                              | /            | 2        | X             |                |                     |            |                |            |                  |
|                        |                                                                                                            | ~                  |                | -                                 | _            | 7        |               | ×              |                     |            |                |            |                  |
|                        |                                                                                                            |                    |                |                                   |              | -        |               |                | ×                   |            |                |            |                  |
|                        | 7                                                                                                          | -                  |                | <b>→</b>                          |              | M        |               |                | X                   |            |                |            |                  |
|                        | CSA11RJ-9                                                                                                  |                    |                | 1020                              |              | 2        | ×             |                |                     |            |                |            |                  |
|                        |                                                                                                            |                    |                | _                                 |              | N        |               | ×              |                     |            |                |            |                  |
|                        |                                                                                                            |                    | ·              |                                   |              | )        |               |                | $\overline{\times}$ |            |                |            |                  |
|                        | 7                                                                                                          |                    |                | <del>-}</del>                     |              | Μ        |               |                | X                   |            |                |            |                  |
|                        | 17-INNS)                                                                                                   |                    |                | 1215                              |              | 2        | ×             |                |                     |            |                |            |                  |
|                        | <b>→</b>                                                                                                   | <b>†</b>           | ÷              | <b>A</b>                          | <b>→</b>     | 7        |               | X              |                     |            |                |            |                  |
| *Time Zone (Circle): 1 | *Time Zone (Circle): EST CST (MST) PST Matrix: 0 = oil S = soil NS = non-soil solid W = water L            | il NS = non-soil s | olid W = water | L = liquid E = extract F = filter | tract F=filt | Ja Ja    |               |                |                     |            |                |            |                  |

For metals or anions, please detail analytes below.

Comments:

/// semples ware Altored
// semples ware Giltored
// semples

LEVEL II (Standard QC)

QC PACKAGE (check below)

| 1. Les 5.                                                                           | 2     |        | , ,     |        | 4        |         | LEVEL III     | LEVEL III (Std QC + forms)             |
|-------------------------------------------------------------------------------------|-------|--------|---------|--------|----------|---------|---------------|----------------------------------------|
| , '3, K, 'Va                                                                        | 7     | 37 K   | Ø       |        |          |         | LEVEL IV      | - LEVEL IV (Std QC + forms + raw data) |
|                                                                                     |       |        |         |        |          |         |               |                                        |
| Preservative Key: 1-HCl 2-HNO3 3-H2SO4 4-NaOH 5-NaHSO4 7-Other 8-4 degrees C 9-5035 | 1-HCI | 2-HNO3 | 3-H2SO4 | 4-NaOH | 5-NaHSO4 | 7-Other | 8-4 degrees ( | 9-5035                                 |

|                 | SIGNATURE     | PRINTED NAME | DATE          | TIME |
|-----------------|---------------|--------------|---------------|------|
| RELINQUISHED BY | Jelly Comment | Will Maler K | 12/10/10 1030 | 1030 |
| RECEIVED BY     |               |              |               |      |
| RELINQUISHED BY |               |              |               |      |
| RECEIVED BY     |               |              |               |      |
| RELINQUISHED BY |               |              |               |      |
| RECEIVED BY     |               | 额            |               |      |

-S Laboratory Group

1-of-Custody O

Return to Client of By Lab or PAGE DISPOSAL WORKORDER Form 202r8 0//0/ 200 DATE X TURNAROUND X X X X 922 o Pres. N -N M ) N 3 3 N 1 Matrix: O = oil S = soil NS = non-soil solid W = water L = liquid E = extract F = filter # Bottles Malor L Sample Time 2121 1500 300 + 01/8/21 01/2/21 Sample Date SAMPLER PHONE FAX **EDD FORMAT** INVOICE ATTN TO ADDRESS PURCHASE ORDER BILL TO COMPANY CITY / STATE / ZIP E-MAIL Matrix 2 3 Commerce Drive, Fort Collins, Colorado 80524 TF: (800) 443-1511 PH: (970) 490-1511 FX: (970) 490-1522 CO School of Mines 13-Field ID ISMRI INVSD PST l C N "Time Zone (Circle): EST CST (MST) PROJECT NAME PHONE FAX PROJECT No. SEND REPORT TO ADDRESS COMPANY NAME CITY / STATE / ZIP E-MAIL Lab ID

For metals or anions, please detail analytes below.

| Comments:                                                                           |       |        |         |        |          | U        | C PACE | QC PACKAGE (check below) | below)                               |
|-------------------------------------------------------------------------------------|-------|--------|---------|--------|----------|----------|--------|--------------------------|--------------------------------------|
| 26.00 Den.                                                                          | 70.00 | _      |         |        |          | <b>-</b> |        | LEVEL II (Standard QC)   | andard QC)                           |
| ,                                                                                   |       |        |         |        |          |          |        | LEVEL III (S             | LEVEL III (Std QC + forms)           |
|                                                                                     |       |        |         |        |          | 1        | X      | LEVEL IV (S<br>raw data) | LEVEL IV (Std QC + forms + raw data) |
|                                                                                     |       |        |         |        |          |          |        |                          |                                      |
| Preservative Key: 1-HCI 2-HNO3 3-H2SO4 4-NaOH 5-NaHSO4 7-Other 8-4 degrees C 9-5035 | 1-HCI | 2-HN03 | 3-H2SO4 | 4-NaOH | 5-NaHSO4 | 7-Other  | 8-4    | Jearees C                | 9-5035                               |

|                 | SIGNATURE       | PRINTED NAME               | DATE   | TIME   |
|-----------------|-----------------|----------------------------|--------|--------|
| RELINQUISHED BY | RELINQUISHED BY | Nick Males K 12/10/10 1030 | Pholos | 0 2 07 |
| RECEIVED BY     |                 |                            |        |        |
| RELINQUISHED BY |                 |                            |        |        |
| RECEIVED BY     |                 |                            |        |        |
| RELINQUISHED BY |                 |                            |        |        |
| RECEIVED BY     |                 |                            | 2      |        |

-of-Custody

 $\ddot{\circ}$ 

S Laboratory Group
Commerce Drive, Fort Collins, Colorado 80524

|                      | s Laboratory Group                                                                                         |                 |                |                | ÷                 | -ot-Custody |                |             |            | GEOGONGOM    |             |                  |
|----------------------|------------------------------------------------------------------------------------------------------------|-----------------|----------------|----------------|-------------------|-------------|----------------|-------------|------------|--------------|-------------|------------------|
|                      | Commerce Drive, Fort Collins, Colorado 80524<br>TF: (800) 443-1511 PH: (970) 490-1511 FX: (970) 490-1522   | 522             |                |                |                   |             |                |             | Form 202r8 | *            |             |                  |
| (ALS)                |                                                                                                            | SA              | SAMPLER        | Lalow 1        | ・シア               |             | DATE           | 1/2/1       | 0/         | PAGE         | ~           | Jo Jo            |
| PROJECT NAME         | 10 Shool of Minrs                                                                                          |                 | SITE ID        |                |                   |             | TURNAROUND     | 1           | 1          | DISPOSAL     | (By Lab) or | Return to Client |
| PROJECT No.          | 5xx 10011                                                                                                  | EDD FORMAT      | DRIMAT         |                |                   |             |                |             |            |              |             |                  |
|                      | -                                                                                                          | PURCHASE ORDER  | ORDER          |                |                   | 2.          |                |             |            |              |             |                  |
| COMPANY NAME         |                                                                                                            | BILL TO COMPANY | MPANY          |                |                   | 22          | 411            |             |            |              |             |                  |
| SEND REPORT TO       |                                                                                                            | INVOICE ATTN TO | OT NTI         |                |                   | ?- ';       |                |             |            |              |             |                  |
| ADDRESS              |                                                                                                            | AD              | ADDRESS        |                |                   | 92.         | <sup>y</sup> n |             |            |              |             |                  |
| CITY / STATE / ZIP   |                                                                                                            | CITY/STATE/ZIP  | TE/ZIP         |                |                   | 2 -         | 7              |             |            |              |             |                  |
| PHONE                |                                                                                                            |                 | PHONE          |                |                   | W -         | أردو           |             |            |              |             |                  |
| FAX                  |                                                                                                            |                 | FAX            |                |                   | 11/0        | 4°             | امر<br>ان ز |            |              |             |                  |
| E-MAIL               | 1                                                                                                          |                 | E-MAIL         |                |                   | [Se.        | ")             |             |            |              |             |                  |
| Lab ID               | Field ID                                                                                                   | Matrix          | Sample<br>Date | Sample<br>Time | Bottles Pres.     | 8           |                |             |            |              |             |                  |
|                      | ∑ · ns                                                                                                     | C               | 01/2/21        | 000/           | 2 /               | X           | ×              |             |            |              |             |                  |
|                      |                                                                                                            |                 |                |                | 1 2               |             | X              |             |            |              |             |                  |
|                      |                                                                                                            |                 |                |                | 1                 |             | ×              | 27          |            |              |             |                  |
|                      | <del>-</del> >                                                                                             | - 17            |                | +              | M                 |             |                | ×           |            |              |             |                  |
|                      | Equipment Blank                                                                                            |                 |                | 1100           | 2                 | X           | ×              |             |            |              |             |                  |
| •                    |                                                                                                            |                 |                | -              | <u></u> ∧         |             | ×              |             |            |              |             |                  |
|                      |                                                                                                            |                 |                | _              | 1                 |             | X              | 5.7         |            |              |             |                  |
|                      | <b>→</b> }~                                                                                                |                 |                | +              | M                 |             |                | ×           |            |              |             |                  |
|                      | CSA1RI-2                                                                                                   |                 |                | 1115           | <b>∧</b>          | X           | ×              |             |            |              |             |                  |
|                      | +                                                                                                          | 4               | +              | <del>-</del>   | N                 |             | X              |             |            |              |             |                  |
| *Time Zone (Circle): | EST CST (MST) PST Matrix: O = oil S = soil NS = non-soil soild W = water L = liquid E = extract F = filter | NS = non-soil s | olid W = water | L=liquid E=e   | xtract F = filter |             |                |             |            |              |             |                  |
| For metals or anic   | For metals or anions, please detail analytes below.                                                        |                 |                |                |                   | 1           | SIGNA          | SIGNATURE   | PR         | PRINTED NAME | DATE        | TIME             |

For metals or anions, please detail analytes below.

| Comments:                                                                           |                |             |         |        |          | ဗ္ဗ     | PACK  | QC PACKAGE (check below)             |
|-------------------------------------------------------------------------------------|----------------|-------------|---------|--------|----------|---------|-------|--------------------------------------|
|                                                                                     | /<br>          | -           |         |        |          | L       |       | LEVEL II (Standard QC)               |
| ^                                                                                   | > = 1 = e= > c | <u>کر</u> ( |         |        |          |         |       | LEVEL III (Std QC + forms)           |
|                                                                                     |                |             |         |        |          | 1       | X     | LEVEL IV (Std QC + forms + raw data) |
|                                                                                     |                |             |         |        |          |         |       |                                      |
| Preservative Key: 1-HCI 2-HNO3 3-H2SO4 4-NaOH 5-NaHSO4 7-Other 8-4 degrees C 9-5035 | 1-HCI          | 2-HNO3      | 3-H2SO4 | 4-NaOH | 5-NaHSO4 | 7-Other | 8-4 d | edrees C 9-5035                      |

| RELINQUISHED BY RECEIVED BY RECEIVED BY RECEIVED BY | - Malier Let 1: | 01/31/21 | 020/ |
|-----------------------------------------------------|-----------------|----------|------|
|                                                     |                 |          |      |
| RELINQUISHED BY                                     |                 |          |      |
| RECEIVED BY                                         |                 |          |      |
|                                                     |                 |          |      |
| RELINQUISHED BY                                     |                 |          |      |
| RECEIVED BY                                         |                 |          |      |

Return to Client of 01/01/21 DATE ö (By Lab) 7 Melczyk PAGE DISPOSAL WORKORDER PRINTED NAME Form 202rB 01/01/ 200 X SIGNATURE DATE X TURNAROUND X -of-Custody 922 RELINQUISHED BY RECEIVED BY RELINQUISHED BY RECEIVED BY RELINQUISHED BY RECEIVED BY OC Pres. N 1 3 N M N M İ Matrix: O = oil S = soil NS = non-soil solid W = water L = liquid E = extract F = filter # . Bottles Ö 人のイクアンな Sample Time 511 VOK! N 7 LEVEL IV (Std QC + forms + raw data) LEVEL III (Std QC + forms) LEVEL II (Standard QC) 2-HNO3 3-H2SO4 4-NaOH 5-NaHSO4 7-Other 8-4 degrees C 9-5035 QC PACKAGE (check below) 00 Sample Date 12/21 PHONE SITEID FAX SAMPLER EDD FORMAT PURCHASE ORDER BILL TO COMPANY INVOICE ATTN TO ADDRESS CITY / STATE / ZIP E-MAIL Matrix 3 Commerce Drive, Fort Collins, Colorado 80524 TF: (800) 443-1511 PH: (970) 490-1511 FX: (970) 490-1522 S Laboratory Group For metals or anions, please detail analytes below. of Mints N Field ID アメラン \*Time Zone (Circle): EST CST (MST) PST CO School į CSW12. Z 305 1-HCI PROJECT NAME FAX PROJECT No. PHONE SEND REPORT TO COMPANY NAME ADDRESS CITY / STATE / ZIP E-MAIL Preservative Key: Lab ID Comments:

1030 TIME

S Laboratory Group

Cl -of-Custody

Sommerce Drive, Fort Collins, Colorado 80524 1r: (800) 443-1511 PH: (970) 490-1511 FX: (970) 490-1522

| -                  |                    |                 |                            |                 |           |             |            | Form 202r8   | 218      |           |                  |
|--------------------|--------------------|-----------------|----------------------------|-----------------|-----------|-------------|------------|--------------|----------|-----------|------------------|
| (ALS)              |                    | SAMPLER         | 1 161                      | COL             |           |             | DATE       | 12/10/10     | PAGE     | U         | of               |
| PROJECT NAME       | CO School of Mines | SITEID          | 1.00                       | ٧.              |           | TUR         | TURNAROUND |              | DISPOSAL | B<br> ∑   | Return to Client |
| PROJECT No.        | See parce 1        | EDD FORMAT      |                            |                 |           |             |            |              |          | $\forall$ | -                |
|                    |                    | PURCHASE ORDER  | *****                      |                 |           | - /-<br>  · |            |              |          |           |                  |
| COMPANY NAME       | 33.                | BILL TO COMPANY |                            |                 |           | 82          | T          |              |          |           |                  |
| SEND REPORT TO     |                    | INVOICE ATTN TO |                            |                 |           |             | 14, 1-     |              |          |           |                  |
| ADDRESS            |                    | ADDRESS         |                            |                 |           | 92          | 171        |              |          |           |                  |
| CITY / STATE / ZIP |                    | CITY/STATE/ZIP  |                            |                 |           | 77.         | · .~       |              |          |           |                  |
| PHONE              |                    | PHONE           | 200                        |                 |           | 10          | 50         |              |          |           |                  |
| FAX                |                    | FAX             |                            |                 |           | 70-<br>1:)  | 117 m      | つ (          |          |           |                  |
| E-MAIL             | -D                 | E-MAIL          |                            |                 |           | (1)         | ヤフ         | 7()          |          |           |                  |
| Гар ID             | Field ID           | Matrix Sar      | Sample Sample<br>Date Time | le #<br>Bottles | Press. QC | 0           |            |              |          |           |                  |
|                    | 51-1045)           | W 12/           | 18/10 133                  | 1 0             | 2         | X           |            |              |          |           |                  |
|                    |                    | -               | -                          |                 | Ν         |             | ×          |              |          |           |                  |
|                    |                    |                 |                            |                 | ١         |             | X          |              |          |           |                  |
|                    | +                  | ~               | - F                        |                 | 3         |             |            | <br>  \times |          |           |                  |
|                    | 811-IUN57          |                 | 1330                       |                 | N         | X           |            |              |          |           |                  |
|                    | CS ~ RI - 6C       | 1               | 4 130                      | →<br>→          | Ŋ         | X           |            |              |          |           |                  |
|                    |                    |                 |                            |                 |           |             |            |              |          |           |                  |
|                    |                    |                 |                            |                 |           |             |            |              |          |           |                  |
|                    |                    |                 |                            |                 |           |             |            |              |          |           |                  |

For metals or anions, please detail analytes below.

| Comments:                                                                           |       |        |         |        |          | 8       | PACK  | QC PACKAGE (check below) | below)                               |
|-------------------------------------------------------------------------------------|-------|--------|---------|--------|----------|---------|-------|--------------------------|--------------------------------------|
|                                                                                     | ,     | Š      | -       |        |          |         |       | LEVEL II (St             | LEVEL II (Standard QC)               |
|                                                                                     | ÷     |        | _       |        |          |         |       | EVEL III (S              | LEVEL III (Std QC + forms)           |
|                                                                                     |       |        |         |        |          |         | X     | LEVEL IV (S<br>raw data) | LEVEL IV (Std QC + forms + raw data) |
|                                                                                     |       |        |         |        |          |         |       |                          |                                      |
| Preservative Key: 1-HCl 2-HNO3 3-H2SO4 4-NaOH 5-NaHSO4 7-Other 8-4 degrees C 9-5035 | 1-HCI | 2-HNO3 | 3-H2SO4 | 4-NaOH | 5-NaHSO4 | 7-Other | 8-4 d | egrees C                 | 9-5035                               |

|                 | SIGNATURE | PRINTED NAME | DATE         | TIME        |
|-----------------|-----------|--------------|--------------|-------------|
| RELINQUISHED BY | 17 102    | Not Aleba 4  | 12 July 1020 | 0 201       |
| RECEIVED BY     |           |              | 11/2/12      | )<br>)<br>) |
| RELINQUISHED BY |           |              |              |             |
| RECEIVED BY     |           |              |              |             |
| RELINQUISHED BY |           |              |              |             |
| RECEIVED BY     |           |              |              |             |

Chain o. Custody Record

Temperature on Receipt — . \_\_\_\_ Sampler ID \_

Drinking Water? Yes □ No □

|   | O                     | 16125110  |
|---|-----------------------|-----------|
|   | Ū                     |           |
| D |                       | Section 2 |
|   | 0                     |           |
|   |                       | 2         |
|   | X                     |           |
|   | 1                     | SS - SS   |
|   | S                     |           |
|   | W                     | 100       |
|   | ON THE REAL PROPERTY. |           |

THE LEADER IN ENVIRONMENTAL TESTING

| TAL-4124-280 (0508)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | )                |                                         |                                  | THE RESIDENCE OF THE PERSON OF |             |                             |                                                   |                         |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------|-----------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------|---------------------------------------------------|-------------------------|-----------------------|
| Client                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | Project Manager  |                                         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Date                        | 1 1                                               | Chain of Custody Number |                       |
| Nother.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | Robert           | 17 H 11                                 |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 1.5                         | 17/11                                             | 77                      | いなない                  |
| Address Treken len 12 #190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | æ          | Telephone / S.E. | Telephone Number (Area Code)/Fax Number | ode)/Fax Number<br>/ (, / k / () |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Lab Number                  | umber <sup>r</sup>                                | Page/                   | . of                  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | Site Contact     | ot.                                     | Lab Contact                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Analysis (A<br>more space   | Analysis (Attach list if<br>more space is needed) |                         |                       |
| ion (State)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | Carrier/Wa       | Carrier/Waybill Number                  |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 2-                          |                                                   |                         |                       |
| Company and and and the control of t | 00         |                  |                                         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>2/     | 7                           |                                                   | · Special II            | Special Instructions/ |
| Contract/Furchase Order/Lydote No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                  | Matrix                                  | Con                              | Containers &<br>Preservatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.<br>V 1   | 10° J/<br>21-<br>8 321      |                                                   | Condition               | Conditions of Receipt |
| Sample I.D. No. and Description (Containers for each sample may be combined on one line)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date       | Time             | Aqueous Sed.                            | Unpres.                          | HOBN<br>NOBN<br>NOBN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 77V         | 1 5<br>14 5<br>14 5<br>14 5 |                                                   |                         |                       |
| CSN RT-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | father 1   | 1000             | X                                       | X                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×           |                             |                                                   |                         |                       |
| ege.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×          |                  | >                                       | ×                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \\ \        |                             |                                                   |                         |                       |
| 4 - 1 0 11 - 5 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34         | 0 801            | ×                                       | Ж                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X           |                             |                                                   |                         |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1. (a)    | مأسد             | `*:                                     | ×                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~           |                             |                                                   |                         |                       |
| 7. (7.1.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 5121             | ×                                       | 3.                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×           |                             |                                                   |                         |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | .,               | >×'                                     | ×                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.          |                             |                                                   |                         |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4          |                  | ×                                       | 入                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | ×                           |                                                   |                         |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | a                | ×                                       | ><                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | ×                           |                                                   |                         |                       |
| - <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · A second |                  | X                                       |                                  | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | ×                           |                                                   |                         |                       |
| 13 × 2 11 11 3 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 373/             | 3-7                                     | Х                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×           |                             |                                                   |                         |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                  | Y                                       | ×                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×           |                             |                                                   |                         |                       |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -h-        | }-               | ×                                       | .><                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 \         | ×                           |                                                   |                         |                       |
| Possible Hazard Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                  | Sample Disposal                         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                             | (A fee may be ass                                 | sessed if samples are r | etained               |
| 📈 Non-Hazard 🔻 Flammable 🔲 Skin Irritant 🔝 Pc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ☐ Poison B | □ Unknown        | ☐ Return To Client                      |                                  | 🖂 Disposal By Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Archive For | Months                      |                                                   | longer than 1 month)    |                       |
| Turn Around Time Required  24 Hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21 Days    | ∑ other          | 110 ale 15                              | .                                | Spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0           |                             |                                                   |                         |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Date             | Time // C/S                             | 1. Received By                   | ved By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1           | × .                         |                                                   | Date /77/10             | Time //655            |
| 2. Relinquished By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | Date 5           | Time                                    | 2. Received By                   | ved By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                             |                                                   | Date                    | Time                  |
| 3. Relinquished By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | Date             | Time                                    | 3. Received By                   | ved By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                             |                                                   | Date                    | Time                  |
| Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                  |                                         |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                             |                                                   |                         |                       |

Custody Record Chain o

City

Special Instructions/ Conditions of Receipt (A fee may be assessed if samples are retained longer than 1 month) Chain of Custody Number of Page. THE LEADER IN ENVIRONMENTAL TESTING **TestAmerica** Analysis (Attach list if more space is needed) Lab Number Months Date ☐ Archive For (0/1 QC Requirements (Specify) NaOH NaOH Disposal By Lab Containers & Preservatives HOBN HCI Telephone Number (Area Code)/Fax Number Lab Contact EONH No #0\$ZH 0/2/24 - 2/27 (505) Unpres Temperature on Receipt . Drinking Water? Yes ☐ Return To Client 11 11 Sample Disposal 1!os Carrier/Waybill Number Matrix 410 of pas Project Manager snoanby 7. Sampler ID Site Contact Oate ☐ Unknown Time 21 Days ☐ Poison B Date 10 CH Zip Code 14 Days (Containers for each sample may be combined on one line) Skin Irritant State 05/12 Sample I.D. No. and Description 7 Days Non-Hazard | Flammable Contract/Purchase Order/Quote No. 0 Project Name and Location (State) 24 Hours 48 Hours Possible Hazard Identification Turn Around Time Required TAL-4124-280 (0508) stoller Address

. S. S. S.

1. Received By

2. Received By

Date

1. Relinquished By

2. Relinquished By

3. Relinquished By

Comments

3. Received By

Time

Date

Time

Date

Chain o. Custody Record

Sampler ID \_ Tempe

|                  | No              |
|------------------|-----------------|
| Receipt _        | ∑ sə√           |
| Temperature on R | Drinking Water? |

|   | Ŭ        |
|---|----------|
| D |          |
|   | M        |
|   | $\angle$ |
|   | S        |
|   | <u>Ψ</u> |

THE LEADER IN ENVIRONMENTAL TESTING

| TAL-4124-280 (0508)                                                                      |             |              |                                         |                               |                                                 | 5                                                                   |
|------------------------------------------------------------------------------------------|-------------|--------------|-----------------------------------------|-------------------------------|-------------------------------------------------|---------------------------------------------------------------------|
| Client                                                                                   |             | Project I    | Project Manager                         |                               | Date /                                          | Chain of Custody Number                                             |
| Soller                                                                                   |             | 12           | 17 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                               | 12/1/10                                         | ECC OCC                                                             |
| Address Hickory Or # 190                                                                 |             | Telepho      | Telephone Number (Area Code)/Fax Number | rer (Area Code)/Fax Number    | nber                                            | Page of                                                             |
| N                                                                                        | p Code      | Site Contact |                                         | Lab Contact                   | Analysis (Attach list if more space is needed)  | 4.5                                                                 |
| State)                                                                                   |             | Carrier/     | Carrier/Waybill Number                  |                               | 22 - 22 - 22 - 22 - 22 - 22 - 22 - 22           | C                                                                   |
| ar/Quote No.                                                                             | - 1         | 2            | Matrix                                  | Containers &<br>Preservatives | 21-3-1-2-12-5:                                  | Conditions of Receipt                                               |
| Sample I.D. No. and Description (Containers for each sample may be combined on one line) | Date        | Time         | Air<br>Aqueous<br>Sed.<br>Soil          | Unpres., HOSO4 HOSO4 HOSO4    | +3<br>201<br>2-L<br>201                         |                                                                     |
| 2.05                                                                                     | 12/ No      | Jako         |                                         |                               | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \           |                                                                     |
| +                                                                                        | 7.00        | 7            | X                                       | ×                             | ×                                               |                                                                     |
| S                                                                                        |             | 7150         | ×                                       | ×                             | ×                                               |                                                                     |
| \(\frac{1}{2}\)                                                                          |             | <u></u> }-   | ×                                       | ×.                            | Y                                               |                                                                     |
| And Burney Land                                                                          |             | 17.77        | Х.                                      | ×                             | ×                                               |                                                                     |
| *                                                                                        |             | -1           | ×                                       | ×                             | ×.                                              |                                                                     |
|                                                                                          |             | 2 411        | >                                       | ×                             | ×                                               |                                                                     |
| - 1                                                                                      | -           | +            | ×                                       | ×                             | ×                                               |                                                                     |
|                                                                                          |             | 5221         | ×                                       | ×                             | ×                                               |                                                                     |
| +-                                                                                       |             |              | ×                                       | ×                             | ×                                               |                                                                     |
| 1                                                                                        | raan boo    | 5541         | X                                       | ×                             | ×                                               |                                                                     |
| 4                                                                                        | +           |              | ×                                       | ×                             | ×                                               |                                                                     |
| n<br>mmable 🔲 Skin Irritant                                                              | □ Poison B  | П Ипкпоwп    | Sample Disposal                         | (文 Disposal By Lab            | (A fee mai                                      | (A fee may be assessed if samples are retained longer than 1 month) |
| Turn Around Time Required  24 Hours                                                      | s 🔲 21 Days | s 🗵 Other_   | 510/ 11/                                | , QC Requirements (Spe        | (4)                                             |                                                                     |
| 1. Relinquished By                                                                       |             |              | 10 Time                                 | 1. Received By                | N. W. W. S. | Date /2/0   Time                                                    |
| 2. Relinquished By                                                                       |             | Date         | Time                                    | 2. Received By                | 7.7                                             | Date Time                                                           |
| 3. Relinquished By                                                                       |             | Date         | Time                                    | 3. Received By                |                                                 | Date                                                                |
| Comments                                                                                 |             |              |                                         |                               |                                                 |                                                                     |

Custody Record Chain o

Temperature on Receipt Sampler ID

|                |       |      | ) |
|----------------|-------|------|---|
|                |       |      | 1 |
|                | 1     |      |   |
| 1              |       | 7    | ) |
| (              |       |      | ) |
| SCHOOL SECTION | UII S | 9.63 |   |

THE LEADER IN ENVIRONMENTAL TESTING

No

Drinking Water? Yes □

Special Instructions/ Conditions of Receipt Time / (:/:: Chain of Custody Number (A fee may be assessed if samples are retained longer than 1 month) of Time Date 10110 Analysis (Attach list if more space is needed) Lab Number Months 1. Disposal By Lab Archive For 25 1 木 QC Requirements (Specify) \oAnZ HO<sub>B</sub>N 11211 00.7 Containers & Preservatives HOPN 1. Received By 2. Received By 3. Received By IOH Telephone Number (Area Code)/Fax Number Lab Contact EONH 017412 - 3173 (818) ⊅OSZH Unpres X X ☐ Return To Client Dother 17 1 1 6 1 7 Sample Disposal lios Time Carrier/Waybill Number Matrix 7772 Sed. 2/2 Project Manager noenb∀ Site Contact λiγ ☐ Unknown CAS ! Date Time Eschelles 10 21 Days 04/8/10 ノロのシング ☐ Poison B Date ...! Zip Code 16 15 16 ☐ 14 Days Sample I.D. No. and Description (Containers for each sample may be combined on one line) Skin Irritant ☐ 7 Days 113 1115 Technolow | Flammable Contract/Purchase Order/Quote No. Project Name and Location (State) 1 71 17 24 Hours 48 Hours Possible Hazard Identification Turn Around Time Required 27/01/101 1. Relinquished By 2. Relinquished By 3. Relinquished By TAL-4124-280 (0508) Non-Hazard Comments Address

## Appendix G Historical Summary Tables

Table G-1 Historical Summary of Radioisotopes in Groundwater (Stoller)

| CSMRI-1   | 2/25/2005 6/14/2005 9/7/2005 12/20/2005 3/15/2006 6/14/2006 9/13/2006 3/15/2007 6/27/2007 9/11/2007 11/27/2007 2/27/2008 4/18/2008 9/25/2008 12/3/2009 9/24/2009 12/17/2007 3/9/2010 6/10/2010 9/9/2010 3/8/2007 6/26/2007 9/11/2007 11/27/2007 2/28/2008 4/18/2008 4/18/2009 9/24/2009 9/24/2009 9/25/2008                                                 | -0.11 0.16 0.1 -0.19 -0.15 0.42 0.25 0.32 0.51 -0.3 -0.2 0.2 -0.02 0.26 0.32 0.09 0.19 2.64 0.39 0.11 0.13 0.13 0.09 -0.13 0.11 0.32 0.09 -0.13 0.11 0.32 0.005 | 0.81 0.44 0.63 0.59 0.58 0.05 0.34 0.78 0.91 0.53 0.72 0.85 0.66 0.88 1.39 0.96 0.16 J 1.01 0.96 0.38 0.93 0.85 1.19 0.3 0.65 1.16            | 0.007 0.018 0.068 -0.045 0.025 0.15 0.11 0.052 0.17 -0.031 0.71 0.035 -0.03 NT OD NT | 0.07 -0.021 0.167 0.32 0.032 -0.06 -0.079 -0.031 0.064 0.019 0.101 0.032 -0.004 NT       | (pCi/l) 0.01 0.012 0.114 0.014 -0.004 0.062 0.027 0.012 -0.005 0.001 0.02 0.011 0.01 NT NT NT NT NT NT NT               | (pCi/l)   0.77   0.43   0.85   0.94   1.76   0.18   0.45   NT   NT   NT   NT   NT   NT   NT   N | 0.043 0.011 0.053 0.073 0.11 0.18 0.051 NT | (pCi/l) 0.53 0.217 0.43 0.46 0.92 0.08 0.25 NT                                                                                                  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | 9/7/2005 12/20/2005 12/20/2005 3/15/2006 6/14/2006 9/13/2006 3/1/2007 6/27/2007 9/11/2007 11/27/2008 4/18/2008 9/25/2008 12/3/2009 9/24/2009 9/24/2009 12/17/2007 11/27/2007 11/27/2007 11/27/2009 3/9/2010 6/10/2010 9/9/2010 3/8/2007 6/26/2007 9/11/2007 11/27/2007 2/28/2008 4/18/2008 9/24/2008 12/5/2008 3/18/2009 6/24/2009                          | 0.1 -0.19 -0.15 0.42 0.25 0.32 0.51 -0.3 -0.2 0.2 -0.02 0.26 0.32 0.09 0.19 2.64 0.39 0.11 0.13 0.13 0.09 -0.13 0.11 0.32 0.09 -0.13 0.11 0.32 0.09             | 0.63 0.59 0.58 0.05 0.34 0.78 0.91 0.53 0.72 0.85 0.66 0.88 1.39 0.96 0.16 J 1.01 0.96 0.38 0.93 0.85 1.19 0.3 0.65                           | 0.068 -0.045 0.025 0.15 0.11 0.052 0.17 -0.031 0.71 0.035 -0.03 NT                                                    | 0.167 0.32 0.032 -0.06 -0.079 -0.031 0.064 0.019 0.101 0.032 -0.004 NT                         | 0.114<br>0.014<br>-0.004<br>0.062<br>0.027<br>0.012<br>-0.005<br>0.001<br>0.02<br>0.011<br>0.01<br>NT<br>NT<br>NT<br>NT | 0.85 0.94 1.76 0.18 0.45 NT                                 | 0.053 0.073 0.11 0.18 0.051 NT             | 0.43 0.46 0.92 0.08 0.25 NT                                                                                                                     |
|           | 12/20/2005 3/15/2006 6/14/2006 9/13/2006 6/14/2006 9/13/2007 6/27/2007 9/11/2007 11/27/2008 4/18/2008 9/25/2008 12/3/2009 9/24/2009 12/17/2009 3/9/2010 6/10/2010 9/9/2010 3/8/2007 6/26/2007 9/11/2007 11/27/2007 21/28/2008 4/18/2008 9/24/2008 12/5/2008 3/18/2009 6/24/2009                                                                             | -0.15 0.42 0.25 0.32 0.51 -0.3 -0.2 -0.02 0.26 0.32 0.09 0.19 2.64 0.39 0.11 0.13 0.03 0.03 0.01 0.13 0.09 -0.13 0.00                                           | 0.59 0.58 0.05 0.34 0.78 0.91 0.53 0.72 0.85 0.66 0.88 1.39 0.96 0.16 J 1.01 0.96 0.38 0.93 0.85 1.19 0.3 0.65                                | -0.045 0.025 0.15 0.11 0.052 0.17 -0.031 0.71 0.035 -0.03 NT                                                          | 0.32<br>0.032<br>-0.06<br>-0.079<br>-0.031<br>0.064<br>0.019<br>0.101<br>0.032<br>-0.004<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT | 0.014 -0.004 0.062 0.027 0.012 -0.005 0.001 0.02 0.011  NT                          | 0.94 1.76 0.18 0.45 NT                                      | 0.073 0.11 0.18 0.051 NT                   | 0.46 0.92 0.08 0.25 NT                                                                                                                          |
|           | 6/14/2006<br>9/13/2006<br>3/13/2007<br>6/27/2007<br>9/11/2007<br>11/27/2007<br>2/27/2008<br>4/18/2008<br>9/25/2008<br>12/3/2008<br>3/17/2009<br>6/24/2009<br>12/17/2009<br>3/9/2010<br>6/10/2010<br>9/9/2010<br>3/8/2007<br>6/26/2007<br>9/11/2007<br>11/27/2007<br>2/28/2008<br>4/18/2008<br>9/24/2008<br>12/5/2008<br>3/18/2009<br>6/24/2009<br>6/24/2009 | 0.42 0.25 0.32 0.51 -0.3 -0.2 0.2 -0.02 0.26 0.32 0.09 0.19 2.64 0.39 0.11 0.13 0.03 0.09 -0.13 0.11 0.32 0.09                                                  | 0.05 0.34 0.78 0.91 0.53 0.72 0.85 0.66 0.88 1.39 0.96 0.16 J 1.01 0.96 0.38 0.93 0.85 1.19 0.3 0.65                                          | 0.15 0.11 0.052 0.17 -0.031 0.71 0.035 -0.03 NT OOB NT                               | -0.06 -0.079 -0.031 0.064 0.019 0.101 0.032 -0.004 NT                                    | 0.062<br>0.027<br>0.012<br>-0.005<br>0.001<br>0.02<br>0.011<br>0.01<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT                 | 0.18 0.45 NT                                                | 0.18 0.051 NT                              | 0.08 0.25 NT                                                                                                                                    |
|           | 9/13/2006 3/1/2007 6/27/2007 9/11/2007 11/27/2007 2/27/2008 4/18/2008 9/25/2008 12/3/2008 3/17/2009 6/24/2009 12/17/2009 3/9/2010 6/10/2010 9/9/2010 3/8/2007 6/26/2007 9/11/2007 11/27/2007 2/28/2008 4/18/2008 9/24/2008 12/5/2008 3/18/2009 6/24/2009                                                                                                    | 0.25 0.32 0.51 -0.3 -0.2 0.2 -0.02 0.26 0.32 0.09 0.19 2.64 0.39 0.11 0.13 0.13 0.09 -0.13 0.11 0.32 0.09                                                       | 0.34<br>0.78<br>0.91<br>0.53<br>0.72<br>0.85<br>0.66<br>0.88<br>1.39<br>0.96<br>0.16 J<br>1.01<br>0.96<br>0.38<br>0.93<br>0.85<br>1.19<br>0.3 | 0.11<br>0.052<br>0.17<br>-0.031<br>0.71<br>0.035<br>-0.03<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT                                     | -0.079 -0.031 0.064 0.019 0.101 0.032 -0.004 NT                                          | 0.027<br>0.012<br>-0.005<br>0.001<br>0.02<br>0.011<br>0.01<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT                          | 0.45 NT                                                     | 0.051  NT  NT  NT  NT  NT  NT  NT  NT  NT  N                                   | 0.25     NT     NT |
|           | 6/27/2007<br>9/11/2007<br>11/27/2007<br>2/27/2008<br>4/18/2008<br>9/25/2008<br>12/3/2008<br>3/17/2009<br>6/24/2009<br>12/17/2009<br>3/9/2010<br>6/10/2010<br>9/9/2010<br>3/8/2007<br>6/26/2007<br>9/11/2007<br>11/27/2007<br>2/28/2008<br>4/18/2008<br>9/24/2008<br>12/5/2008<br>3/18/2009<br>6/24/2009                                                     | 0.51 -0.3 -0.2 0.2 -0.02 0.26 0.32 0.09 0.19 2.64 0.39 0.11 0.1 0.13 0.09 -0.13 0.01 0.32 0.09                                                                  | 0.91<br>0.53<br>0.72<br>0.85<br>0.66<br>0.88<br>1.39<br>0.96<br>0.16 J<br>1.01<br>0.96<br>0.38<br>0.93<br>0.85<br>1.19<br>0.3                 | 0.17 -0.031 0.71 0.035 -0.03 NT O NT                                                 | -0.031 0.064 0.019 0.101 0.032 -0.004 NT                                                 | 0.012<br>-0.005<br>0.001<br>0.02<br>0.011<br>0.01<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT                                   | NT N                                                        | NT N                                       | NT N                                                                                                                                            |
|           | 9/11/2007<br>11/27/2007<br>2/27/2008<br>4/18/2008<br>9/25/2008<br>12/3/2008<br>3/17/2009<br>6/24/2009<br>9/24/2009<br>12/17/2009<br>3/9/2010<br>6/10/2010<br>9/9/2010<br>3/8/2007<br>6/26/2007<br>9/11/2007<br>11/27/2007<br>2/28/2008<br>4/18/2008<br>9/24/2008<br>12/5/2008<br>3/18/2009<br>6/24/2009                                                     | -0.3 -0.2 0.2 -0.02 0.26 0.32 0.09 0.19 2.64 0.39 0.11 0.1 0.13 0.09 -0.13 0.11 0.32 0.03                                                                       | 0.53<br>0.72<br>0.85<br>0.66<br>0.88<br>1.39<br>0.96<br>0.16 J<br>1.01<br>0.96<br>0.38<br>0.93<br>0.85<br>1.19<br>0.3                         | -0.031 0.71 0.035 -0.03 NT OT NT                                                           | 0.019 0.101 0.032 -0.004 NT                                                              | 0.001<br>0.02<br>0.011<br>0.01<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT                                                      | NT N                                                        | NT N                                       | NT N                                                                                                                                            |
|           | 11/27/2007 2/27/2008 4/18/2008 9/25/2008 12/3/2008 3/17/2009 6/24/2009 9/24/2009 12/17/2009 3/9/2010 6/10/2010 9/9/2010 3/8/2007 6/26/2007 9/11/2007 11/27/2007 2/28/2008 4/18/2008 9/24/2008 12/5/2008 3/18/2009 6/24/2009                                                                                                                                 | -0.2 0.2 -0.02 0.26 0.32 0.09 0.19 2.64 0.39 0.11 0.1 0.13 0.13 0.09 -0.13 0.11 0.32 0.03                                                                       | 0.72<br>0.85<br>0.66<br>0.88<br>1.39<br>0.96<br>0.16 J<br>1.01<br>0.96<br>0.38<br>0.93<br>0.85<br>1.19<br>0.3                                 | 0.71<br>0.035<br>-0.03<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT                                                                        | 0.101<br>0.032<br>-0.004<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT                                               | 0.02<br>0.011<br>0.01<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT                                                               | NT N                                                        | NT N                                       | NT N                                                                                                                                            |
|           | 2/27/2008<br>4/18/2008<br>9/25/2008<br>12/3/2008<br>3/17/2009<br>6/24/2009<br>9/24/2009<br>12/17/2009<br>3/9/2010<br>6/10/2010<br>9/9/2010<br>3/8/2007<br>6/26/2007<br>9/11/2007<br>11/27/2007<br>2/28/2008<br>4/18/2008<br>9/24/2008<br>12/5/2008<br>3/18/2009<br>6/24/2009                                                                                | 0.2<br>-0.02<br>0.26<br>0.32<br>0.09<br>0.19<br>2.64<br>0.39<br>0.11<br>0.1<br>0.13<br>0.09<br>-0.13<br>0.09<br>-0.13<br>0.09                                   | 0.85<br>0.66<br>0.88<br>1.39<br>0.96<br>0.16 J<br>1.01<br>0.96<br>0.38<br>0.93<br>0.85<br>1.19<br>0.3                                         | 0.035 -0.03 NT OT NT                                                                    | 0.032<br>-0.004<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT                                                              | 0.011<br>0.01<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT                                                                       | NT                                                          | NT                                         | NT N                                                                                                                                            |
| CSMRI-1B  | 9/25/2008<br>12/3/2008<br>3/17/2009<br>6/24/2009<br>9/24/2009<br>12/17/2009<br>3/9/2010<br>6/10/2010<br>9/9/2010<br>3/8/2007<br>6/26/2007<br>9/11/2007<br>11/27/2007<br>2/28/2008<br>4/18/2008<br>9/24/2008<br>12/5/2008<br>3/18/2009<br>6/24/2009                                                                                                          | 0.26 0.32 0.09 0.19 2.64 0.39 0.11 0.1 0.13 0.13 0.09 -0.13 0.11 0.32 0.03 0.05                                                                                 | 0.88<br>1.39<br>0.96<br>0.16 J<br>1.01<br>0.96<br>0.38<br>0.93<br>0.85<br>1.19<br>0.3                                                         | NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>O.03                                                                                          | NT                                                                                          | NT<br>NT<br>NT<br>NT<br>NT<br>NT                                                                                        | NT                                                                   | NT                                                  | NT                                                                                                                                              |
| CSMRI-1B  | 12/3/2008<br>3/17/2009<br>6/24/2009<br>9/24/2009<br>12/17/2009<br>3/9/2010<br>6/10/2010<br>9/9/2010<br>3/8/2007<br>6/26/2007<br>9/11/2007<br>11/27/2007<br>2/28/2008<br>4/18/2008<br>9/24/2008<br>12/5/2008<br>3/18/2009<br>6/24/2009                                                                                                                       | 0.32<br>0.09<br>0.19<br>2.64<br>0.39<br>0.11<br>0.1<br>0.13<br>0.13<br>0.09<br>-0.13<br>0.11<br>0.32<br>0.03<br>0.05                                            | 1.39<br>0.96<br>0.16 J<br>1.01<br>0.96<br>0.38<br>0.93<br>0.85<br>1.19<br>0.3<br>0.65                                                         | NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>O.03                                                                                                | NT                                                                                             | NT<br>NT<br>NT<br>NT<br>NT<br>NT                                                                                        | NT<br>NT<br>NT<br>NT<br>NT<br>NT                                                                | NT<br>NT<br>NT<br>NT<br>NT                                                     | NT<br>NT<br>NT<br>NT<br>NT<br>NT                                                                                                                                                    |
| CSMRI-1B  | 3/17/2009<br>6/24/2009<br>9/24/2009<br>12/17/2009<br>3/9/2010<br>6/10/2010<br>9/9/2010<br>3/8/2007<br>6/26/2007<br>9/11/2007<br>11/27/2007<br>2/28/2008<br>4/18/2008<br>9/24/2008<br>12/5/2008<br>3/18/2009<br>6/24/2009                                                                                                                                    | 0.09<br>0.19<br>2.64<br>0.39<br>0.11<br>0.1<br>0.13<br>0.13<br>0.09<br>-0.13<br>0.11<br>0.32<br>0.03<br>0.05                                                    | 0.96<br>0.16 J<br>1.01<br>0.96<br>0.38<br>0.93<br>0.85<br>1.19<br>0.3<br>0.65                                                                 | NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>-0.03                                                                                                     | NT<br>NT<br>NT<br>NT<br>NT<br>NT                                                                                             | NT<br>NT<br>NT<br>NT<br>NT                                                                                              | NT<br>NT<br>NT<br>NT<br>NT                                                                      | NT<br>NT<br>NT<br>NT<br>NT                                                     | NT<br>NT<br>NT<br>NT<br>NT                                                                                                                                                          |
| CSMRI-1B  | 6/24/2009<br>9/24/2009<br>12/17/2009<br>3/9/2010<br>6/10/2010<br>9/9/2010<br>3/8/2007<br>6/26/2007<br>9/11/2007<br>11/27/2007<br>2/28/2008<br>4/18/2008<br>9/24/2008<br>12/5/2008<br>3/18/2009<br>6/24/2009                                                                                                                                                 | 0.19 2.64 0.39 0.11 0.1 0.13 0.13 0.09 -0.13 0.11 0.32 0.03 0.05                                                                                                | 0.16 J<br>1.01<br>0.96<br>0.38<br>0.93<br>0.85<br>1.19<br>0.3                                                                                 | NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>-0.03                                                                                                                 | NT<br>NT<br>NT<br>NT<br>NT                                                                                                   | NT<br>NT<br>NT<br>NT                                                                                                    | NT<br>NT<br>NT<br>NT                                                                            | NT<br>NT<br>NT<br>NT                                                           | NT<br>NT<br>NT<br>NT                                                                                                                                                                |
| CSMRI-1B  | 12/17/2009<br>3/9/2010<br>6/10/2010<br>9/9/2010<br>3/8/2007<br>6/26/2007<br>9/11/2007<br>11/27/2007<br>2/28/2008<br>4/18/2008<br>9/24/2008<br>3/18/2009<br>6/24/2009                                                                                                                                                                                        | 0.39<br>0.11<br>0.1<br>0.13<br>0.13<br>0.09<br>-0.13<br>0.11<br>0.32<br>0.03<br>0.05                                                                            | 0.96<br>0.38<br>0.93<br>0.85<br>1.19<br>0.3                                                                                                   | NT<br>NT<br>NT<br>NT<br>-0.03                                                                                                                             | NT<br>NT<br>NT<br>NT                                                                                                         | NT<br>NT                                                                                                                | NT<br>NT                                                                                        | NT<br>NT                                                                       | NT<br>NT<br>NT                                                                                                                                                                      |
| CSMRI-1B  | 3/9/2010<br>6/10/2010<br>9/9/2010<br>3/8/2007<br>6/26/2007<br>9/11/2007<br>11/27/2007<br>2/28/2008<br>4/18/2008<br>9/24/2008<br>12/5/2008<br>3/18/2009<br>6/24/2009                                                                                                                                                                                         | 0.11<br>0.1<br>0.13<br>0.13<br>0.09<br>-0.13<br>0.11<br>0.32<br>0.03<br>0.05                                                                                    | 0.38<br>0.93<br>0.85<br>1.19<br>0.3<br>0.65                                                                                                   | NT<br>NT<br>NT<br>-0.03<br>0.001                                                                                                                          | NT<br>NT<br>NT                                                                                                               | NT                                                                                                                      | NT                                                                                              | NT                                                                             | NT<br>NT                                                                                                                                                                            |
| CSMRI-1B  | 6/10/2010<br>9/9/2010<br>3/8/2007<br>6/26/2007<br>9/11/2007<br>11/27/2007<br>2/28/2008<br>4/18/2008<br>9/24/2008<br>12/5/2008<br>3/18/2009<br>6/24/2009                                                                                                                                                                                                     | 0.1<br>0.13<br>0.13<br>0.09<br>-0.13<br>0.11<br>0.32<br>0.03<br>0.05                                                                                            | 0.93<br>0.85<br>1.19<br>0.3<br>0.65                                                                                                           | NT<br>NT<br>-0.03<br>0.001                                                                                                                                | NT<br>NT                                                                                                                     |                                                                                                                         |                                                                                                 |                                                                                | NT                                                                                                                                                                                  |
| CSMRI-1B  | 3/8/2007<br>6/26/2007<br>9/11/2007<br>11/27/2007<br>2/28/2008<br>4/18/2008<br>9/24/2008<br>12/5/2008<br>3/18/2009<br>6/24/2009                                                                                                                                                                                                                              | 0.13<br>0.09<br>-0.13<br>0.11<br>0.32<br>0.03<br>0.05                                                                                                           | 1.19<br>0.3<br>0.65                                                                                                                           | -0.03<br>0.001                                                                                                                                            |                                                                                                                              | 10.50503                                                                                                                | NT                                                                                              |                                                                                |                                                                                                                                                                                     |
| CSMRI-1B  | 6/26/2007<br>9/11/2007<br>11/27/2007<br>2/28/2008<br>4/18/2008<br>9/24/2008<br>12/5/2008<br>3/18/2009<br>6/24/2009                                                                                                                                                                                                                                          | 0.09<br>-0.13<br>0.11<br>0.32<br>0.03<br>0.05                                                                                                                   | 0.3<br>0.65                                                                                                                                   | 0.001                                                                                                                                                     | 0.00                                                                                                                         | NT                                                                                                                      | NT                                                                                              | NT                                                                             | NT                                                                                                                                                                                  |
| CSMRI-1B  | 9/11/2007<br>11/27/2007<br>2/28/2008<br>4/18/2008<br>9/24/2008<br>12/5/2008<br>3/18/2009<br>6/24/2009                                                                                                                                                                                                                                                       | -0.13<br>0.11<br>0.32<br>0.03<br>0.05                                                                                                                           | 0.65                                                                                                                                          |                                                                                                                                                           | -0.09<br>0.002                                                                                                               | 0.02<br>0.012                                                                                                           | NT                                                                                              | NT                                                                             | NT                                                                                                                                                                                  |
| CSMRI-1B  | 11/27/2007<br>2/28/2008<br>4/18/2008<br>9/24/2008<br>12/5/2008<br>3/18/2009<br>6/24/2009                                                                                                                                                                                                                                                                    | 0.11<br>0.32<br>0.03<br>0.05                                                                                                                                    |                                                                                                                                               | 1 0.019                                                                                                                                                   | 0.002                                                                                                                        | 0.012                                                                                                                   | NT<br>NT                                                                                        | NT<br>NT                                                                       | NT<br>NT                                                                                                                                                                            |
| CSMRI-1B  | 4/18/2008<br>9/24/2008<br>12/5/2008<br>3/18/2009<br>6/24/2009                                                                                                                                                                                                                                                                                               | 0.03<br>0.05                                                                                                                                                    |                                                                                                                                               | 0.004                                                                                                                                                     | 0.06                                                                                                                         | 0.016                                                                                                                   | NT                                                                                              | NT                                                                             | NT                                                                                                                                                                                  |
| CSMRI-1B  | 9/24/2008<br>12/5/2008<br>3/18/2009<br>6/24/2009                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                            | 0.61                                                                                                                                          | 0.01                                                                                                                                                      | 0.058                                                                                                                        | 0.033                                                                                                                   | NT                                                                                              | NT                                                                             | NT                                                                                                                                                                                  |
| CSMRI-1B  | 12/5/2008<br>3/18/2009<br>6/24/2009                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                 | 0.72                                                                                                                                          | -0.004<br>NT                                                                                                                                              | -0.046<br>NT                                                                                                                 | 0<br>NT                                                                                                                 | NT<br>NT                                                                                        | NT<br>NT                                                                       | NT<br>NT                                                                                                                                                                            |
|           | 6/24/2009                                                                                                                                                                                                                                                                                                                                                   | 0.02                                                                                                                                                            | 0.88                                                                                                                                          | NT                                                                                                                                                        | NT                                                                                                                           | NT                                                                                                                      | NT                                                                                              | NT                                                                             | NT                                                                                                                                                                                  |
|           |                                                                                                                                                                                                                                                                                                                                                             | 0.2                                                                                                                                                             | 1.15                                                                                                                                          | NT                                                                                                                                                        | NT                                                                                                                           | NT                                                                                                                      | NT                                                                                              | NT                                                                             | NT                                                                                                                                                                                  |
|           |                                                                                                                                                                                                                                                                                                                                                             | 0.05                                                                                                                                                            | 0.69 J<br>0.89                                                                                                                                | NT<br>NT                                                                                                                                                  | NT<br>NT                                                                                                                     | NT<br>NT                                                                                                                | NT                                                                                              | NT<br>NT                                                                       | NT                                                                                                                                                                                  |
|           | 12/17/2009                                                                                                                                                                                                                                                                                                                                                  | -0.03                                                                                                                                                           | 0.89                                                                                                                                          | NT<br>NT                                                                                                                                                  | NT<br>NT                                                                                                                     | NT<br>NT                                                                                                                | NT<br>NT                                                                                        | NT<br>NT                                                                       | NT<br>NT                                                                                                                                                                            |
|           | 3/11/2010                                                                                                                                                                                                                                                                                                                                                   | 0.09                                                                                                                                                            | 0.42                                                                                                                                          | NT                                                                                                                                                        | NT                                                                                                                           | NT                                                                                                                      | NT                                                                                              | NT                                                                             | NT                                                                                                                                                                                  |
|           | 6/9/2010                                                                                                                                                                                                                                                                                                                                                    | 0.23                                                                                                                                                            | -0.03 R                                                                                                                                       | NT                                                                                                                                                        | NT                                                                                                                           | NT                                                                                                                      | NT                                                                                              | NT                                                                             | NT                                                                                                                                                                                  |
|           | 9/8/2010<br>2/25/2005                                                                                                                                                                                                                                                                                                                                       | 0.35                                                                                                                                                            | 0.61<br>1.85                                                                                                                                  | NT<br>0.07                                                                                                                                                | -0.02                                                                                                                        | NT<br>0.01                                                                                                              | NT<br>0.6                                                                                       | NT<br>0.05                                                                     | NT<br>0.16                                                                                                                                                                          |
|           | 6/14/2005                                                                                                                                                                                                                                                                                                                                                   | 1.47                                                                                                                                                            | 3                                                                                                                                             | 0.14                                                                                                                                                      | 0.003                                                                                                                        | 0.026                                                                                                                   | 0.68                                                                                            | 0.05                                                                           | 0.16                                                                                                                                                                                |
|           | 9/7/2005                                                                                                                                                                                                                                                                                                                                                    | 1.78                                                                                                                                                            | 2.71                                                                                                                                          | 0.162                                                                                                                                                     | 0.108                                                                                                                        | 0.049                                                                                                                   | 0.65                                                                                            | 0.05                                                                           | 0.31                                                                                                                                                                                |
| -         | 12/20/2005<br>3/15/2006                                                                                                                                                                                                                                                                                                                                     | 1.35<br>1.25                                                                                                                                                    | 1.62<br>2.53                                                                                                                                  | 0.108                                                                                                                                                     | 0.285<br>0.204                                                                                                               | 0.024                                                                                                                   | 0.83                                                                                            | 0.002                                                                          | 0.35                                                                                                                                                                                |
| -         | 6/14/2006                                                                                                                                                                                                                                                                                                                                                   | 0.99                                                                                                                                                            | 1.79                                                                                                                                          | 0.03                                                                                                                                                      | 0.204                                                                                                                        | 0.012<br>0.049                                                                                                          | 0.83                                                                                            | 0.066                                                                          | 0.45<br>0.25                                                                                                                                                                        |
|           | 9/13/2006                                                                                                                                                                                                                                                                                                                                                   | 1.01                                                                                                                                                            | 2.35                                                                                                                                          | 0.088                                                                                                                                                     | -0.039                                                                                                                       | -0.008                                                                                                                  | 0.46                                                                                            | 0.014                                                                          | 0.28                                                                                                                                                                                |
|           | 3/8/2007                                                                                                                                                                                                                                                                                                                                                    | 0.76                                                                                                                                                            | 2.15                                                                                                                                          | 0.022                                                                                                                                                     | -0.01                                                                                                                        | 0.011                                                                                                                   | NT                                                                                              | NT                                                                             | NT                                                                                                                                                                                  |
| -         | 6/28/2007<br>9/11/2007                                                                                                                                                                                                                                                                                                                                      | 1.4<br>0.78                                                                                                                                                     | 3.2                                                                                                                                           | -0.075<br>0.016                                                                                                                                           | -0.01<br>0.101                                                                                                               | -0.007<br>0.014                                                                                                         | NT<br>NT                                                                                        | NT<br>NT                                                                       | NT<br>NT                                                                                                                                                                            |
| CSMRI-2   | 11/27/2007                                                                                                                                                                                                                                                                                                                                                  | 0.45                                                                                                                                                            | 2.05                                                                                                                                          | 0.037                                                                                                                                                     | 0.035                                                                                                                        | 0.006                                                                                                                   | NT                                                                                              | NT                                                                             | NT                                                                                                                                                                                  |
| CSIVIRI-2 | 2/28/2008                                                                                                                                                                                                                                                                                                                                                   | 1.37                                                                                                                                                            | 2.26                                                                                                                                          | 0.043                                                                                                                                                     | 0.085                                                                                                                        | 0.044                                                                                                                   | NT                                                                                              | NT                                                                             | NT                                                                                                                                                                                  |
| 1         | 4/17/2008<br>9/24/2008                                                                                                                                                                                                                                                                                                                                      | 1.08<br>0.97                                                                                                                                                    | 1.89<br>1.41                                                                                                                                  | 0.041<br>NT                                                                                                                                               | -0.021                                                                                                                       | 0.008                                                                                                                   | NT                                                                                              | NT                                                                             | NT                                                                                                                                                                                  |
|           | 12/5/2008                                                                                                                                                                                                                                                                                                                                                   | 1.1                                                                                                                                                             | 1.88                                                                                                                                          | NT                                                                                                                                                        | NT<br>NT                                                                                                                     | NT<br>NT                                                                                                                | NT<br>NT                                                                                        | NT<br>NT                                                                       | NT<br>NT                                                                                                                                                                            |
|           | 3/18/2009                                                                                                                                                                                                                                                                                                                                                   | 2.37                                                                                                                                                            | 2.68                                                                                                                                          | NT                                                                                                                                                        | NT                                                                                                                           | NT                                                                                                                      | NT                                                                                              | NT                                                                             | NT                                                                                                                                                                                  |
| -         | 6/24/2009                                                                                                                                                                                                                                                                                                                                                   | 0.78                                                                                                                                                            | 2.64 J                                                                                                                                        | NT                                                                                                                                                        | NT                                                                                                                           | NT                                                                                                                      | NT                                                                                              | NT                                                                             | NT                                                                                                                                                                                  |
| -         | 9/25/2009<br>12/18/2009                                                                                                                                                                                                                                                                                                                                     | 0.63<br>1.02                                                                                                                                                    | 2.12                                                                                                                                          | NT<br>NT                                                                                                                                                  | NT<br>NT                                                                                                                     | NT<br>NT                                                                                                                | NT<br>NT                                                                                        | NT<br>NT                                                                       | NT<br>NT                                                                                                                                                                            |
| t         | 3/11/2010                                                                                                                                                                                                                                                                                                                                                   | 2.4                                                                                                                                                             | 1.16                                                                                                                                          | NT                                                                                                                                                        | NT                                                                                                                           | NT                                                                                                                      | NT                                                                                              | NT                                                                             | NT                                                                                                                                                                                  |
| F         | 6/10/2010                                                                                                                                                                                                                                                                                                                                                   | 0.27                                                                                                                                                            | 2.25                                                                                                                                          | NT                                                                                                                                                        | NT                                                                                                                           | NT                                                                                                                      | NT                                                                                              | NT                                                                             | NT                                                                                                                                                                                  |
|           | 9/10/2010<br>2/25/2005                                                                                                                                                                                                                                                                                                                                      | 0.29<br>-0.03                                                                                                                                                   | 1.52<br>0.16                                                                                                                                  | NT<br>0.019                                                                                                                                               | NT<br>-0.009                                                                                                                 | NT<br>0.013                                                                                                             | NT<br>9.7                                                                                       | NT<br>0.52                                                                     | NT                                                                                                                                                                                  |
|           | 6/14/2005                                                                                                                                                                                                                                                                                                                                                   | 0.26                                                                                                                                                            | 0.16                                                                                                                                          | 0.013                                                                                                                                                     | 0.014                                                                                                                        | 0.005                                                                                                                   | 11.4                                                                                            | 0.53<br>0.49                                                                   | 8.2<br>10.6                                                                                                                                                                         |
|           | 9/7/2005                                                                                                                                                                                                                                                                                                                                                    | 0.17                                                                                                                                                            | 0.78                                                                                                                                          | -0.013                                                                                                                                                    | 0.164                                                                                                                        | 0.086                                                                                                                   | 6.4                                                                                             | 0.33                                                                           | 6.4                                                                                                                                                                                 |
| -         | 12/20/2005                                                                                                                                                                                                                                                                                                                                                  | 0.13                                                                                                                                                            | 0.1                                                                                                                                           | 0.033                                                                                                                                                     | 0.311                                                                                                                        | 0.012                                                                                                                   | 11.5                                                                                            | 0.61                                                                           | 11.4                                                                                                                                                                                |
| ⊢         | 3/15/2006<br>6/15/2006                                                                                                                                                                                                                                                                                                                                      | 0.41                                                                                                                                                            | 0.38                                                                                                                                          | 0.004<br>0.11                                                                                                                                             | 0.174<br>0.17                                                                                                                | 0.007<br>0.061                                                                                                          | 9.2                                                                                             | 0.43                                                                           | 9<br>8.9                                                                                                                                                                            |
|           | 9/13/2006                                                                                                                                                                                                                                                                                                                                                   | -0.05                                                                                                                                                           | 0.79                                                                                                                                          | 0.056                                                                                                                                                     | -0.015                                                                                                                       | 0.007                                                                                                                   | 6.5                                                                                             | 0.35                                                                           | 6                                                                                                                                                                                   |
|           | 3/8/2007                                                                                                                                                                                                                                                                                                                                                    | 0.09                                                                                                                                                            | 0.37                                                                                                                                          | -0.034                                                                                                                                                    | -0.037                                                                                                                       | 0.013                                                                                                                   | NT                                                                                              | NT                                                                             | NT                                                                                                                                                                                  |
| F         | 6/27/2007<br>9/11/2007                                                                                                                                                                                                                                                                                                                                      | 0.07                                                                                                                                                            | 0.87<br>1.12                                                                                                                                  | 0.011<br>0.024                                                                                                                                            | 0.035                                                                                                                        | 0.004                                                                                                                   | NT                                                                                              | NT                                                                             | NT                                                                                                                                                                                  |
|           | 11/26/2007                                                                                                                                                                                                                                                                                                                                                  | 0.99                                                                                                                                                            | 0.73                                                                                                                                          | 0.024                                                                                                                                                     | 0.112<br>0.149                                                                                                               | 0.021<br>0.016                                                                                                          | NT<br>NT                                                                                        | NT<br>NT                                                                       | NT<br>NT                                                                                                                                                                            |
| CSMRI-4   | 2/27/2008                                                                                                                                                                                                                                                                                                                                                   | 0.24                                                                                                                                                            | 0.78                                                                                                                                          | 0.011                                                                                                                                                     | 0.038                                                                                                                        | 0.014                                                                                                                   | NT                                                                                              | NT                                                                             | NT                                                                                                                                                                                  |
| F         | 4/17/2008                                                                                                                                                                                                                                                                                                                                                   | 0.11                                                                                                                                                            | 0.71                                                                                                                                          | 0.017                                                                                                                                                     | -0.019                                                                                                                       | 0.002                                                                                                                   | NT                                                                                              | NT                                                                             | NT                                                                                                                                                                                  |
| F         | 9/25/2008<br>12/5/2008                                                                                                                                                                                                                                                                                                                                      | 0.32                                                                                                                                                            | 0.8                                                                                                                                           | NT<br>NT                                                                                                                                                  | NT<br>NT                                                                                                                     | NT<br>NT                                                                                                                | NT<br>NT                                                                                        | NT<br>NT                                                                       | NT<br>NT                                                                                                                                                                            |
|           | 3/17/2009                                                                                                                                                                                                                                                                                                                                                   | 0.09                                                                                                                                                            | 0.56                                                                                                                                          | NT                                                                                                                                                        | NT                                                                                                                           | NT                                                                                                                      | NT                                                                                              | NT<br>NT                                                                       | NT<br>NT                                                                                                                                                                            |
|           | 6/23/2009                                                                                                                                                                                                                                                                                                                                                   | 0.21                                                                                                                                                            | 0.89 J                                                                                                                                        | NT                                                                                                                                                        | NT                                                                                                                           | NT                                                                                                                      | NT                                                                                              | NT                                                                             | NT                                                                                                                                                                                  |
| -         | 9/24/2009<br>12/16/2009                                                                                                                                                                                                                                                                                                                                     | 0.11                                                                                                                                                            | 0.73                                                                                                                                          | NT<br>NT                                                                                                                                                  | NT<br>NT                                                                                                                     | NT                                                                                                                      | NT                                                                                              | NT<br>NT                                                                       | NT                                                                                                                                                                                  |
| -         | 12/16/2009<br>3/10/2010                                                                                                                                                                                                                                                                                                                                     | 0.21<br>8.6                                                                                                                                                     | 0.68                                                                                                                                          | NT<br>NT                                                                                                                                                  | NT<br>NT                                                                                                                     | NT<br>NT                                                                                                                | NT<br>NT                                                                                        | NT<br>NT                                                                       | NT<br>NT                                                                                                                                                                            |
|           | 5/3/2010                                                                                                                                                                                                                                                                                                                                                    | 0.38                                                                                                                                                            | NT                                                                                                                                            | NT                                                                                                                                                        | NT                                                                                                                           | NT                                                                                                                      | NT                                                                                              | NT                                                                             | NT                                                                                                                                                                                  |
|           | 6/8/2010                                                                                                                                                                                                                                                                                                                                                    | 0.6                                                                                                                                                             | 1.42                                                                                                                                          | NT<br>NT                                                                                                                                                  | NT                                                                                                                           | NT<br>NT                                                                                                                | NT                                                                                              | NT<br>NT                                                                       | NT                                                                                                                                                                                  |
|           | 9/10/2010<br>2/25/2005                                                                                                                                                                                                                                                                                                                                      | 0.12<br>1.06                                                                                                                                                    | 1.64<br>0.53                                                                                                                                  | NT<br>0.009                                                                                                                                               | NT<br>0.007                                                                                                                  | NT<br>0.034                                                                                                             | NT<br>1.22                                                                                      | NT<br>0.056                                                                    | NT<br>0.93                                                                                                                                                                          |
|           | 6/14/2005                                                                                                                                                                                                                                                                                                                                                   | 2.51                                                                                                                                                            | 0.44                                                                                                                                          | -0.018                                                                                                                                                    | 0.039                                                                                                                        | 0.011                                                                                                                   | 1.51                                                                                            | 0.086                                                                          | 1.2                                                                                                                                                                                 |
| F         | 9/7/2005                                                                                                                                                                                                                                                                                                                                                    | 2.5                                                                                                                                                             | 0.76                                                                                                                                          | 0.06                                                                                                                                                      | 1.25                                                                                                                         | 0.051                                                                                                                   | 1.85                                                                                            | 0.051                                                                          | 1.47                                                                                                                                                                                |
| -         | 12/20/2005<br>3/15/2006                                                                                                                                                                                                                                                                                                                                     | 1.97<br>0.57                                                                                                                                                    | 0.52<br>0.45                                                                                                                                  | 0.032<br>0.038                                                                                                                                            | 0.126<br>0.144                                                                                                               | 0.01<br>0.019                                                                                                           | 1.45                                                                                            | 0.066                                                                          | 1.21                                                                                                                                                                                |
| -         | 6/15/2006                                                                                                                                                                                                                                                                                                                                                   | 2.13                                                                                                                                                            | 0.45                                                                                                                                          | 0.036                                                                                                                                                     | 0.144                                                                                                                        | 0.019                                                                                                                   | 1.03                                                                                            | 0.058                                                                          | 0.92                                                                                                                                                                                |
|           | 9/13/2006                                                                                                                                                                                                                                                                                                                                                   | 2.29                                                                                                                                                            | 0.56                                                                                                                                          | 0.053                                                                                                                                                     | -0.053                                                                                                                       | 0.005                                                                                                                   | 3.18                                                                                            | 0.17                                                                           | 2.32                                                                                                                                                                                |
| -         | 3/8/2007                                                                                                                                                                                                                                                                                                                                                    | 1.78                                                                                                                                                            | 0.39                                                                                                                                          | -0.012                                                                                                                                                    | -0.061                                                                                                                       | 0 013                                                                                                                   | NT                                                                                              | NT                                                                             | NT                                                                                                                                                                                  |
| -         | 6/27/2007<br>9/11/2007                                                                                                                                                                                                                                                                                                                                      | 2.22<br>1.91                                                                                                                                                    | 0.86<br>1.2                                                                                                                                   | 0.008<br>0.091                                                                                                                                            | -0.023<br>0.003                                                                                                              | 0.013<br>0.006                                                                                                          | NT<br>NT                                                                                        | NT<br>NT                                                                       | NT<br>NT                                                                                                                                                                            |
|           | 11/26/2007                                                                                                                                                                                                                                                                                                                                                  | 1.52                                                                                                                                                            | 0.49                                                                                                                                          | 0.004                                                                                                                                                     | -0.008                                                                                                                       | 0.006                                                                                                                   | NT                                                                                              | NT                                                                             | NT                                                                                                                                                                                  |
| CSMRI-5   | 2/27/2008                                                                                                                                                                                                                                                                                                                                                   | 1.05                                                                                                                                                            | 0.17                                                                                                                                          | -0.011                                                                                                                                                    | 0.02                                                                                                                         | 0.051                                                                                                                   | NT                                                                                              | NT                                                                             | NT                                                                                                                                                                                  |
| F         | 4/17/2008                                                                                                                                                                                                                                                                                                                                                   | 1.37                                                                                                                                                            | 0.64                                                                                                                                          | 0.068                                                                                                                                                     | 0.029                                                                                                                        | 0.017                                                                                                                   | NT                                                                                              | NT                                                                             | NT                                                                                                                                                                                  |
| -         | 9/25/2008<br>12/4/2008                                                                                                                                                                                                                                                                                                                                      | 2.87<br>0.78                                                                                                                                                    | 0.47                                                                                                                                          | NT<br>NT                                                                                                                                                  | NT<br>NT                                                                                                                     | NT<br>NT                                                                                                                | NT<br>NT                                                                                        | NT<br>NT                                                                       | NT<br>NT                                                                                                                                                                            |
| -         | 3/17/2009                                                                                                                                                                                                                                                                                                                                                   | 0.78                                                                                                                                                            | 1.24                                                                                                                                          | NT                                                                                                                                                        | NT                                                                                                                           | NT NT                                                                                                                   | NT                                                                                              | NT                                                                             | NT                                                                                                                                                                                  |
|           | 6/23/2009                                                                                                                                                                                                                                                                                                                                                   | 1.96                                                                                                                                                            | 1.15 J                                                                                                                                        | NT                                                                                                                                                        | NT                                                                                                                           | NT                                                                                                                      | NT                                                                                              | NT                                                                             | NT                                                                                                                                                                                  |
|           | 9/24/2009                                                                                                                                                                                                                                                                                                                                                   | -0.15                                                                                                                                                           | 0.85                                                                                                                                          | NT                                                                                                                                                        | NT                                                                                                                           | NT                                                                                                                      | NT                                                                                              | NT                                                                             | NT                                                                                                                                                                                  |
| -         | 12/16/2009<br>3/10/2010                                                                                                                                                                                                                                                                                                                                     | 1.28<br>3.9                                                                                                                                                     | 0.44                                                                                                                                          | NT<br>NT                                                                                                                                                  | NT<br>NT                                                                                                                     | NT<br>NT                                                                                                                | NT<br>NT                                                                                        | NT<br>NT                                                                       | NT<br>NT                                                                                                                                                                            |
| -         | 5/3/2010                                                                                                                                                                                                                                                                                                                                                    | 0.83                                                                                                                                                            | 0.4<br>NT                                                                                                                                     | NT<br>NT                                                                                                                                                  | NT<br>NT                                                                                                                     | NT<br>NT                                                                                                                | NT<br>NT                                                                                        | NT<br>NT                                                                       | NT<br>NT                                                                                                                                                                            |
|           | 6/8/2010<br>9/10/2010                                                                                                                                                                                                                                                                                                                                       | 2.42                                                                                                                                                            | 0.75<br>0.39                                                                                                                                  | NT<br>NT                                                                                                                                                  | NT<br>NT                                                                                                                     | NT<br>NT                                                                                                                | NT<br>NT                                                                                        | NT<br>NT                                                                       | NT<br>NT                                                                                                                                                                            |

Table G-1 Historical Summary of Radioisotopes in Groundwater (Stoller)

| Sample<br>Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sample Date          | Ra-226<br>(pCi/l) | Ra-228<br>(pCi/l) | Th-228<br>(pCi/l) | Th-230<br>(pCi/l) | Th-232<br>(pCi/l) | U-234<br>(pCi/l) | U-235<br>(pCi/l) | U-23<br>(pCi/ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|---------------|
| MANUAL DESCRIPTION OF THE PROPERTY OF THE PROP | 2/27/2007            | NT                | NT                | NT                | NT                | NT NT             | NT               | NT NT            | (pci)<br>NT   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6/26/2007            | 0.46              | 0.63              | -0.009            | -0.006            | 0.024             | NT               | NT               | NT            |
| 0140100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9/10/2007            | 0.15              | 0.91              | 0.046             | 0.025             | 0.023             | NT               | NT               | NT            |
| SMRI-6B -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11/27/2007           | -0.02             | 0.77              | -0.002            | 0.069             | 0.004             | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2/28/2008            | 0.26              | 1                 | -0.009            | 0.022             | 0.022             | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4/18/2008            | 0.36              | 0.88              | -0.005            | -0.022            | 0.021             | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7/11/08 (DRY)        | NT                | NT                | NT                | NT                | NT NT             | NT               | NT               | NT            |
| +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/3/08 (DRY)        | NT                | NT                | NT                | NT                | NT                | NT               |                  |               |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3/16/09 (DRY)        | NT                | NT                | NT                |                   |                   |                  | NT               | NT            |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6/24/2009            |                   |                   |                   | NT                | NT                | NT               | NT               | NT            |
| CMBLCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | -0.11             | 1.81 J            | NT                | NT                | NT                | NT               | NT               | NT            |
| SMRI-6C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9/24/2009            | 0.09              | 1.39              | NT                | NT                | NT                | NT               | NT               | NT            |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/18/2009           | NT                | NT                | NT                | NT                | NT                | NT               | NT               | NT            |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3/8/10 (DRY)         | NT                | NT                | NT                | NT                | NT                | NT               | NT               | NT            |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6/8/2010             | 0.34              | 1.48              | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/8/2010             | 0.11              | 0.97              | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2/27/2007            | NT                | NT                | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6/26/2007            | 0.65              | 0.22              | 0.036             | 0.054             | 0.027             | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/10/2007            | NT                | NT                | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11/26/2007           | NT                | NT                | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2/26/2008            | NT                | NT                | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4/15/08 (DRY)        | NT                | NT                | NT                | NT                | NT                | NT               | NT               | NT            |
| Ţ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9/24/08 (DRY)        | NT                | NT                | NT                | NT                | NT                | NT               | NT               | NT            |
| SMRI-7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12/3/08 (DRY)        | NT                | NT                | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3/16/09 (DRY)        | NT                | NT                | NT                | NT                | NT                | NT               | NT<br>NT         | -             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6/24/09 (DRY)        | NT                | NT                |                   |                   |                   |                  |                  | NT            |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                   |                   | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/25/09 (DRY)        | NT                | NT                | NT                | NT                | NT                | NT               | NT               | NT            |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/18/2009 (DRY)     | NT                | NT                | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3/8/10 (DRY)         | NT                | NT                | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6/10/2010            | 0.21              | 0.17 R            | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/10/2010            | 1.13              | 0.8 J             | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3/8/2007             | 0.7               | 1.06              | 0.072             | -0.031            | 0.016             | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6/27/2007            | 0.8               | 0.4               | 0.039             | 0.046             | 0.008             | NT               | NT               | NT            |
| Ī                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9/10/2007            | 1.31              | 0.9               | 0.031             | 0.05              | 0.009             | NT               | NT               | NT            |
| Ť                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11/27/2007           | 1.27              | 1.2               | -0.02             | 0.074             | -0.003            | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2/27/2008            | 1.19              | 1.38              | 0.089             | 0.1               | 0.043             | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4/17/2008            | 0.39              | 0.71              | -0.015            | -0.053            | 0.043             | NT               | NT               | NT            |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9/25/2008            | 1.5               | 1.02              | NT                | -0.055<br>NT      | NT                | NT               | NT               | NT            |
| CSMRI-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12/5/2008            | 1.55              | 1.44              | NT                | NT                | NT                | NT               | NT NT            |               |
| 5.711 11 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3/18/2009            | 0.31              | 0.69              |                   |                   |                   |                  | 2000             | NT            |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6/23/2009            | 37.00.00          |                   | NT                | NT                | NT                | NT               | NT               | NT            |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | -0.28             | 0.73 J            | NT                | NT                | NT                | NT               | NT               | NT            |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9/24/2009            | 0.39              | 1.25              | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/16/2009           | 0.26              | 0.37              | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3/10/2010            | 0.89              | 1,12              | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6/8/2010             | 0.45              | 0.68              | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/8/2010             | 0.28              | 0.46              | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2/27/2007            | 0.12              | 0.53              | -0.017            | 0.04              | 0.027             | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6/26/2007            | 0.22              | 0.37              | 0.018             | 0.004             | -0.015            | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/10/2007            | 0.5               | 1.01              | 0.04              | -0.043            | 0.012             | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11/26/2007           | 0.25              | 0.27              | 0.023             | 0.003             | 0.003             | NT               | NT               | NT            |
| T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2/27/2008            | 0.11              | 0.24              | 0.047             | 0.037             | 0.041             | NT               | NT               | NT            |
| h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4/15/2008            | 0.27              | 0.65              | -0.004            | 0.015             | 0.022             | NT               | NT               | NT            |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9/24/2008            | 0.11              | 0.48              | NT                | NT                |                   |                  |                  |               |
| CSMRI-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                   |                   |                   |                   | NT                | NT               | NT               | NT            |
| SOME -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/5/2008            | 0.13              | 0.65              | NT                | NT NT             | NT                | NT               | NT               | NT            |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3/16/2009            | 0.17              | 0.45              | NT                | NT                | NT                | NT               | NT               | NT            |
| L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6/22/2009            | 0                 | 0.88 J            | NT                | NT                | NT                | . NT             | NT               | NT            |
| L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9/24/2009            | 0.24              | 0.59              | NT                | NT                | NT                | NT               | NT               | NT            |
| L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/16/2009           | 0.45              | 0.61              | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3/11/2010            | 0.2               | 0.36              | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6/9/2010             | 0.41              | 0.64              | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/8/2010             | 0.03              | 0.46              | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3/1/2007             | 0.19              | 0.63              | 0.014             | -0.004            | 0.018             | NT               | NT               | NT            |
| r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6/26/2007            | 0.26              | 0.43              | -0.008            | 0.03              | -0.005            | NT               | NT               | NT            |
| F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9/10/2007            | -0.04             | 0.48              | 0.103             | 0.05              | 0.005             | NT               | NT               | NT            |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11/26/2007           | -0.05             | 0.57              | 0.068             | 0.141             | 0.031             | NT               | NT               | NT            |
| H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2/26/2008            | 0.12              | 0.44              | 0.094             | 0.011             | 0.019             | NT               | NT               | NT            |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4/15/2008            | 0.12              | 0.56              | -0.006            | -0.05             | 0.019             | NT               | NT               | NT            |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9/24/2008            | 100.000           |                   |                   |                   |                   |                  |                  | _             |
| SMRI-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | 0.21              | 0.48              | NT                | NT                | NT                | NT               | NT               | NT            |
| OIVINI-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12/4/2008            | 0.11              | 0.92              | NT                | NT                | NT                | NT               | NT               | NT            |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3/16/2009            | 0.15              | 1.01              | NT                | NT                | NT                | NT               | NT               | NT            |
| L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6/22/2009            | 0.35              | 0.48 J            | NT                | NT                | NT                | NT               | NT               | NT            |
| L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9/25/2009            | 0.25              | 0.62              | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/16/2009           | 0.17              | 0.85              | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3/11/2010            | 0.41              | 0.47              | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6/9/2010             | 0.37              | 0.66              | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/8/2010             | 0.22              | 0.5               | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3/1/2007             | 0.16              | 0.46              | 0.051             | 0.085             | 0.007             | NT               | NT               | NT            |
| h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6/26/2007            | 0.37              | 0.43              | 0.084             | 0.000             | 0.008             | NT               | NT               | NT            |
| H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9/10/2007            | -0.26             | 0.43              | 0.004             | 0.006             | 0.006             | NT               | NT               | NT            |
| SMRI-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                   |                   |                   |                   |                   |                  |                  | _             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11/26/2007           | 0.16              | 0.87              | 0.089             | 0.099             | -0.012            | NT               | NT               | NT            |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2/26/2008            | 0.28              | -0.03             | 0.044             | 0.044             | 0.074             | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4/15/2008            | 0.35              | 0.75              | -0.032            | 0.004             | 0.016             | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/3/08 (DRY)        | NT                | NT                | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3/16/09 (DRY)        | NT                | NT                | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6/24/2009            | 0.52              | NT                | NT                | NT                | NT                | NT               | NT               | NT            |
| OMDI 445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9/25/2009            | 3.5               | 0.88              | NT                | NT                | NT                | NT               | NT               | NT            |
| SMRI-11B -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12/18/2009           | 0.89              | 0.51              | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3/8/2010             | NT                | NT                | NT                | NT                | NT                | NT               | NT               | NT            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 0.28              | 0.4               | NT                | NT                | NT                | NT               | NT               | NT            |
| - F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B/M//IIII            |                   |                   | 1961              | . 141             |                   | 196.1            | . IN I           | ı IVI         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6/8/2010<br>9/8/2010 | 0.28              | 0.79              | NT                | NT                | NT                | NT               | NT               | NT            |

pCi/I - picocuries per liter
J - Estimated
NE - Not Established

NT - not tested

μg/l – micrograms per liter

Table G-2 Historical Summary of Metals in Groundwater (Stoller) (Results in milligrams per liter - U in micrograms per liter)

| Sample<br>Station | Sample Date                                                                                                                                                                                                                             | Ag                                                                                                       | As                                                                                                 | Ba                                                                                                                                               | Ca                                                                                                      | Cd                                                      | Cr                                                                                          | u.                                                                                                                  |                                                                                                        |                                                                                      |                                                                                |                                                                                                      |                                                                     |                                              |                                                                                      |                                                                              |                                                                                              |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Gtation           | 2/25/2005                                                                                                                                                                                                                               | ND                                                                                                       | ND                                                                                                 | ND                                                                                                                                               | 28                                                                                                      | ND                                                      | ND                                                                                          | Hg<br>ND                                                                                                            | <b>K</b> 2.8                                                                                           | <b>Mg</b><br>9,4                                                                     | Mo<br>ND                                                                       | <b>Na</b> 29                                                                                         | Pb<br>ND                                                            | Se<br>ND                                     | 1.61                                                                                 | ND ND                                                                        | <b>Zn</b> 0.032                                                                              |
|                   | 6/14/2005<br>9/7/2005                                                                                                                                                                                                                   | ND<br>ND                                                                                                 | ND<br>ND                                                                                           | ND<br>0.055 (B)                                                                                                                                  | 17<br>21                                                                                                | ND<br>ND                                                | ND<br>ND                                                                                    | ND<br>ND                                                                                                            | 2.3<br>2.9                                                                                             | 5.1<br>6.3                                                                           | ND<br>0.0021 (B)                                                               | 16<br>25                                                                                             | ND<br>ND                                                            | ND<br>0.0041 (B)                             | 0.64<br>1.3                                                                          | ND<br>ND                                                                     | 0.032                                                                                        |
|                   | 12/20/2005<br>3/15/2006                                                                                                                                                                                                                 | ND<br>ND                                                                                                 | ND<br>ND                                                                                           | 0.067 (B)<br>0.064 (B)                                                                                                                           | 32<br>33                                                                                                | ND<br>ND                                                | ND<br>ND                                                                                    | 0.000034 (B)                                                                                                        | 2.9                                                                                                    | 10                                                                                   | ND                                                                             | 26                                                                                                   | ND                                                                  | ND                                           | 1.41                                                                                 | ND                                                                           | 0.052                                                                                        |
|                   | 6/14/2006                                                                                                                                                                                                                               | ND                                                                                                       | ND                                                                                                 | 0.031 (B)                                                                                                                                        | 10                                                                                                      | ND                                                      | ND                                                                                          | 0.00002 (B)<br>ND                                                                                                   | 2.6<br>1.9                                                                                             | 10<br>3                                                                              | 0.0013 (B)<br>0.0051 (B)                                                       | 24<br>9.2                                                                                            | ND<br>ND                                                            | ND<br>0.0035 (B)                             | 2.8<br>0.31                                                                          | ND<br>ND                                                                     | 0.049<br>0.015 (B)                                                                           |
|                   | 9/13/2006<br>3/1/2007                                                                                                                                                                                                                   | ND<br>ND                                                                                                 | ND<br>ND                                                                                           | 0.061 (B)<br>0.081 (B)                                                                                                                           | 20<br>39                                                                                                | ND<br>0.00045 (B)                                       | 0.041 (B)<br>0.00063 (B)                                                                    | ND<br>0.000017 (B)                                                                                                  | 2.7                                                                                                    | 6<br>12                                                                              | 0.0038 (B)<br>0.0059 (B)                                                       | 14<br>26                                                                                             | ND<br>ND                                                            | ND<br>0.0066                                 | 0.77<br>1.2                                                                          | ND<br>ND                                                                     | 0.03<br>0.048                                                                                |
|                   | 6/27/2007                                                                                                                                                                                                                               | ND                                                                                                       | ND                                                                                                 | 0.063 (B)                                                                                                                                        | 23                                                                                                      | ND                                                      | ND                                                                                          | 0.0000073 (B)                                                                                                       | 2.4                                                                                                    | 9                                                                                    | ND                                                                             | 21                                                                                                   | ND                                                                  | ND                                           | 0.88                                                                                 | ND                                                                           | 0.017 (B)                                                                                    |
| CSMRI-1           | 9/11/2007<br>11/27/2007                                                                                                                                                                                                                 | ND<br>ND                                                                                                 | ND<br>ND                                                                                           | 0.065 (B)<br>0.075 (B)                                                                                                                           | 23<br>31                                                                                                | ND<br>ND                                                | 0.00061 (B)<br>ND                                                                           | 0.000011 (B)<br>0.000029 (B)                                                                                        | 2.5                                                                                                    | 7.2<br>9.7                                                                           | 0.002 (B)<br>0.0014 (B)                                                        | 14<br>18                                                                                             | ND<br>ND                                                            | ND<br>ND                                     | 0.72<br>1.2                                                                          | ND<br>ND                                                                     | 0.038                                                                                        |
|                   | 2/27/2008<br>4/18/2008                                                                                                                                                                                                                  | ND<br>ND                                                                                                 | ND<br>ND                                                                                           | 0.08 (B)<br>0.081 (B)                                                                                                                            | 36<br>36                                                                                                | ND<br>ND                                                | ND<br>ND                                                                                    | ND<br>ND                                                                                                            | 2.5<br>2.7                                                                                             | 12<br>11                                                                             | 0.0013 (B)<br>0.0015 (B)                                                       | 22<br>22                                                                                             | ND<br>ND                                                            | ND<br>ND                                     | 1.5<br>1.9                                                                           | ND<br>ND                                                                     | 0.048                                                                                        |
|                   | 9/25/2008<br>12/3/2008                                                                                                                                                                                                                  | NT<br>NT                                                                                                 | NT<br>NT                                                                                           | NT<br>NT                                                                                                                                         | 30<br>39                                                                                                | NT<br>NT                                                | NT                                                                                          | NT                                                                                                                  | 3                                                                                                      | 9                                                                                    | NT `                                                                           | 18                                                                                                   | NT                                                                  | NT                                           | 0.96                                                                                 | NT                                                                           | 0.057<br>NT                                                                                  |
|                   | 3/17/2009                                                                                                                                                                                                                               | NT                                                                                                       | NT                                                                                                 | NT                                                                                                                                               | 46                                                                                                      | NT                                                      | NT<br>NT                                                                                    | NT<br>NT                                                                                                            | 3.5<br>3                                                                                               | 12<br>14                                                                             | NT<br>NT                                                                       | 25<br>27                                                                                             | NT<br>NT                                                            | NT<br>NT                                     | 1.5<br>2                                                                             | NT<br>NT                                                                     | NT<br>NT                                                                                     |
|                   | 6/24/2009<br>9/24/2009                                                                                                                                                                                                                  | 0.00078<br>NT                                                                                            | 0.0032<br>NT                                                                                       | 0.097<br>NT                                                                                                                                      | 36<br>48 (J)                                                                                            | 0.00016<br>NT                                           | 0.00041<br>NT                                                                               | 0.00002<br>NT                                                                                                       | 3.3<br>3.2                                                                                             | 13<br>18 (J)                                                                         | 32<br>NT                                                                       | 0.0019<br>45 (J)                                                                                     | 0.00035<br>NT                                                       | NT<br>NT                                     | 1.6<br>2.4                                                                           | NT<br>NT                                                                     | NT<br>NT                                                                                     |
|                   | 12/17/2009<br>3/9/2010                                                                                                                                                                                                                  | NT<br>NT                                                                                                 | NT<br>NT                                                                                           | NT<br>NT                                                                                                                                         | 49<br>52                                                                                                | NT<br>NT                                                | NT<br>NT                                                                                    | NT<br>NT                                                                                                            | 3.4                                                                                                    | 16<br>19                                                                             | NT<br>NT                                                                       | 42<br>42                                                                                             | NT<br>NT                                                            | NT<br>NT                                     | 2.4<br>2.9                                                                           | NT<br>NT                                                                     | NT<br>NT                                                                                     |
|                   | 6/10/2010<br>9/9/2010                                                                                                                                                                                                                   | ND<br>NT                                                                                                 | ND<br>NT                                                                                           | 0.11<br>NT                                                                                                                                       | 51<br>39                                                                                                | ND<br>NT                                                | ND<br>NT                                                                                    | 0.000023 (B)<br>NT                                                                                                  | 4.1<br>4.5                                                                                             | 15<br>14                                                                             | NT<br>NT                                                                       | 42<br>60                                                                                             | ND<br>NT                                                            | NT                                           | 2.4                                                                                  | ND                                                                           | NT                                                                                           |
|                   | 3/1/2007                                                                                                                                                                                                                                | ND                                                                                                       | ND                                                                                                 | 0.098 (B)                                                                                                                                        | 130                                                                                                     | ND                                                      | 0.00014 (B)                                                                                 | 0.000017 (B)                                                                                                        | 52                                                                                                     | 47                                                                                   | 0.17                                                                           | 91                                                                                                   | ND                                                                  | NT<br>0.0058                                 | 2.7                                                                                  | NT<br>0.0009 (B)                                                             | NT<br>ND                                                                                     |
|                   | 6/26/2007<br>9/11/2007                                                                                                                                                                                                                  | ND<br>ND                                                                                                 | ND<br>ND                                                                                           | 0.071 (B)<br>0.1                                                                                                                                 | 83<br>93                                                                                                | ND<br>ND                                                | ND<br>ND                                                                                    | 0.0000072 (B)<br>0.0000094 (B)                                                                                      | 10<br>8.4                                                                                              | 38<br>43                                                                             | 0.029<br>0.031                                                                 | 35<br>36                                                                                             | ND<br>ND                                                            | ND<br>ND                                     | 5<br>6.3                                                                             | ND<br>ND                                                                     | ND<br>0.0012 (B)                                                                             |
|                   | 11/27/2007<br>2/28/2008                                                                                                                                                                                                                 | ND<br>ND                                                                                                 | ND<br>ND                                                                                           | 0.11<br>0.11                                                                                                                                     | 100                                                                                                     | ND                                                      | ND                                                                                          | 0.000029 (B)                                                                                                        | 9.4                                                                                                    | 46                                                                                   | 0.024                                                                          | 42                                                                                                   | ND                                                                  | ND                                           | 6.9                                                                                  | 0.00073 (B)                                                                  | 0.0039 (B)                                                                                   |
|                   | 4/18/2008                                                                                                                                                                                                                               | ND                                                                                                       | ND                                                                                                 | 0.11                                                                                                                                             | 97<br>93                                                                                                | ND<br>ND                                                | 0.0015 (B)<br>ND                                                                            | ND<br>ND                                                                                                            | 9.3<br>9.1                                                                                             | 45<br>43                                                                             | 0.029<br>0.027                                                                 | 41<br>39                                                                                             | ND<br>ND                                                            | 0.0039 (B)<br>ND                             | 6.5<br>6                                                                             | ND<br>0.00065 (B)                                                            | 0.0033 (B)<br>ND                                                                             |
| CSMRI-1B          | 9/24/2008<br>12/5/2008                                                                                                                                                                                                                  | NT<br>NT                                                                                                 | NT<br>NT                                                                                           | NT<br>NT                                                                                                                                         | 92<br>95                                                                                                | NT<br>NT                                                | NT<br>NT                                                                                    | NT<br>NT                                                                                                            | 7.3<br>7.6                                                                                             | 39<br>39                                                                             | NT<br>NT                                                                       | 38<br>40                                                                                             | NT<br>NT                                                            | NT<br>NT                                     | 4.6                                                                                  | NT<br>NT                                                                     | NT<br>NT                                                                                     |
|                   | 3/18/2009<br>6/24/2009                                                                                                                                                                                                                  | NT<br>0.00078                                                                                            | NT<br>0.0032                                                                                       | NT<br>0.14                                                                                                                                       | NT<br>140                                                                                               | NT<br>0.00016                                           | NT<br>0.00041                                                                               | NT<br>0.000022                                                                                                      | NT<br>7.2                                                                                              | NT<br>61                                                                             | NT<br>59                                                                       | NT<br>0.0019                                                                                         | NT<br>0.00035                                                       | NT<br>NT                                     | 8.1                                                                                  | NT<br>NT                                                                     | NT                                                                                           |
|                   | 9/25/2009<br>12/17/2009                                                                                                                                                                                                                 | NT<br>NT                                                                                                 | NT<br>NT                                                                                           | NT<br>NT                                                                                                                                         | 120 (J)<br>120                                                                                          | NT<br>NT                                                | NT<br>NT                                                                                    | NT<br>NT                                                                                                            | 7 7.8                                                                                                  | 55 (J)                                                                               | NT                                                                             | 42 (J)                                                                                               | NT                                                                  | NT                                           | 15<br>34                                                                             | NT                                                                           | NT<br>NT                                                                                     |
|                   | 3/11/2010                                                                                                                                                                                                                               | NT                                                                                                       | NŤ                                                                                                 | NT                                                                                                                                               | 120                                                                                                     | NT                                                      | NT                                                                                          | NT                                                                                                                  | 6.4                                                                                                    | 51<br>51                                                                             | NT<br>NT                                                                       | 48<br>42                                                                                             | NT<br>NT                                                            | NT<br>NT                                     | 16<br>9.4                                                                            | NT<br>NT                                                                     | NT<br>NT                                                                                     |
|                   | 6/9/2010<br>9/8/2010                                                                                                                                                                                                                    | ND<br>NT                                                                                                 | ND<br>NT                                                                                           | 0.1<br>NT                                                                                                                                        | 170<br>140                                                                                              | ND<br>NT                                                | ND<br>NT                                                                                    | 0.000023 (B)<br>NT                                                                                                  | 4.8<br>5.5                                                                                             | 85<br>63                                                                             | NT<br>NT                                                                       | 61<br>53                                                                                             | ND<br>NT                                                            | NT<br>NT                                     | 18<br>18                                                                             | ND<br>NT                                                                     | NT<br>NT                                                                                     |
|                   | 2/25/2005<br>6/14/2005                                                                                                                                                                                                                  | ND<br>ND                                                                                                 | ND<br>ND                                                                                           | 0.11<br>0.1                                                                                                                                      | 72<br>76                                                                                                | ND<br>ND                                                | ND<br>ND                                                                                    | ND<br>ND                                                                                                            | 7.1<br>6.3                                                                                             | 32<br>32                                                                             | ND<br>ND                                                                       | 19<br>18                                                                                             | ND<br>ND                                                            | ND<br>ND                                     | 0.53<br>0.89                                                                         | ND<br>ND                                                                     | 0.02<br>ND                                                                                   |
|                   | 9/7/2005<br>12/20/2005                                                                                                                                                                                                                  | ND<br>ND                                                                                                 | ND<br>ND                                                                                           | 0.11<br>0.098 (B)                                                                                                                                | 81<br>76                                                                                                | ND<br>ND                                                | ND<br>ND                                                                                    | ND                                                                                                                  | 7.1                                                                                                    | 35                                                                                   | ND                                                                             | 19                                                                                                   | ND                                                                  | ND                                           | 0.94                                                                                 | ND                                                                           | 0.011 (B)                                                                                    |
|                   | 3/15/2006                                                                                                                                                                                                                               | ND                                                                                                       | ND                                                                                                 | 0.09 (B)                                                                                                                                         | 74                                                                                                      | ND                                                      | ND                                                                                          | 0.000031 (B)<br>0.000023 (B)                                                                                        | 6.7<br>6.1                                                                                             | 33<br>31                                                                             | ND<br>ND                                                                       | 18<br>17                                                                                             | ND<br>ND                                                            | ND<br>ND                                     | 1.06<br>1.36                                                                         | ND<br>ND                                                                     | 0.0043 (B)<br>0.0059 (B)                                                                     |
|                   | 6/14/2006<br>9/13/2006                                                                                                                                                                                                                  | ND<br>ND                                                                                                 | ND<br>ND                                                                                           | 0.093 (B)<br>0.11                                                                                                                                | 70<br>81                                                                                                | ND<br>ND                                                | ND<br>ND                                                                                    | ND<br>ND                                                                                                            | 6.3<br>6.7                                                                                             | 31<br>35                                                                             | 0.0048 (B)<br>0.0014 (B)                                                       | 17<br>19                                                                                             | ND<br>ND                                                            | 0.0031 (B)<br>ND                             | 0.76<br>0.85                                                                         | ND<br>ND                                                                     | 0.0092 (B)<br>0.0092 (B)                                                                     |
|                   | 3/8/2007<br>6/28/2007                                                                                                                                                                                                                   | ND<br>ND                                                                                                 | 0.0058 (B)<br>ND                                                                                   | 0.12<br>0.11                                                                                                                                     | 88<br>97                                                                                                | ND<br>ND                                                | ND<br>ND                                                                                    | ND                                                                                                                  | 8.3                                                                                                    | 39                                                                                   | ND                                                                             | 21                                                                                                   | ND                                                                  | 0.03                                         | 0.72                                                                                 | ND                                                                           | 0.0011 (B)                                                                                   |
|                   | 9/11/2007                                                                                                                                                                                                                               | ND                                                                                                       | ND                                                                                                 | 0.1                                                                                                                                              | 91                                                                                                      | ND<br>ND                                                | ND                                                                                          | 0.0000056 (B)<br>0.000016 (B)                                                                                       | 7.9<br>7.2                                                                                             | 49<br>43                                                                             | ND<br>ND                                                                       | 26<br>23                                                                                             | ND<br>ND                                                            | ND<br>ND                                     | 2<br>0.98                                                                            | 0.002 (B)<br>0.00086 (B)                                                     | 0.0041 (B)<br>0.0082 (B)                                                                     |
| CSMRI-2           | 11/27/2007<br>2/28/2008                                                                                                                                                                                                                 | ND<br>ND                                                                                                 | ND<br>ND                                                                                           | 0.093 (B)<br>0.094 (B)                                                                                                                           | 83<br>81                                                                                                | ND<br>ND                                                | ND<br>0.0018 (B)                                                                            | 0.000023 (B)<br>ND                                                                                                  | 7<br>6.6                                                                                               | 38<br>38                                                                             | ND<br>ND                                                                       | 22<br>21                                                                                             | ND<br>ND                                                            | ND<br>ND                                     | 1<br>0.68                                                                            | 0.001 (B)<br>0.0017 (B)                                                      | 0.0075 (B)<br>0.0073 (B)                                                                     |
|                   | 4/17/2008<br>9/24/2008                                                                                                                                                                                                                  | ND<br>NT                                                                                                 | ND<br>NT                                                                                           | 0.092 (B)<br>NT                                                                                                                                  | 78<br>74                                                                                                | ND<br>NT                                                | ND<br>NT                                                                                    | ND<br>NT                                                                                                            | 6.6                                                                                                    | 36<br>34                                                                             | ND<br>NT                                                                       | 20                                                                                                   | ND<br>NT                                                            | ND<br>NT                                     | 0.89                                                                                 | 0.0014 (B)                                                                   | 0.0055 (B)                                                                                   |
|                   | 12/5/2008<br>3/18/2009                                                                                                                                                                                                                  | NT<br>NT                                                                                                 | NT<br>NT                                                                                           | NT                                                                                                                                               | 75                                                                                                      | NT                                                      | NT                                                                                          | NT                                                                                                                  | 6.6                                                                                                    | 33                                                                                   | NT                                                                             | 20                                                                                                   | NT                                                                  | NT                                           | 0.69<br>0.83                                                                         | NT<br>NT                                                                     | NT<br>NT                                                                                     |
|                   | 6/23/2009                                                                                                                                                                                                                               | 0.00078                                                                                                  | 0.0032                                                                                             | NT<br>0.096                                                                                                                                      | 76<br>77                                                                                                | NT<br>0.00016                                           | NT<br>0.00041                                                                               | NT<br>0.000024                                                                                                      | 6.4<br>6.6                                                                                             | 34<br>35                                                                             | NT<br>20                                                                       | 19<br>0.0019                                                                                         | NT<br>0.00035                                                       | NT<br>NT                                     | 0.77<br>0.66                                                                         | NT<br>NT                                                                     | NT<br>NT                                                                                     |
|                   | 9/25/2009<br>12/18/2009                                                                                                                                                                                                                 | NT<br>NT                                                                                                 | NT<br>NT                                                                                           | NT<br>NT                                                                                                                                         | 76 (J)<br>79                                                                                            | NT<br>NT                                                | NT<br>NT                                                                                    | NT<br>NT                                                                                                            | 5.2<br>5.9                                                                                             | 34 (J)<br>35                                                                         | NT<br>NT                                                                       | 19 (J)<br>20                                                                                         | NT<br>NT                                                            | NT<br>NT                                     | 0.6<br>0.75                                                                          | NT<br>NT                                                                     | NT<br>NT                                                                                     |
|                   | 3/11/2010<br>6/10/2010                                                                                                                                                                                                                  | NT<br>ND                                                                                                 | NT<br>ND                                                                                           | NT<br>0.098 (B)                                                                                                                                  | 80<br>93                                                                                                | NT<br>ND                                                | NT<br>ND                                                                                    | NT<br>0.000024 (B)                                                                                                  | 5.6<br>6.9                                                                                             | 36<br>43                                                                             | NT<br>NT                                                                       | 19<br>25                                                                                             | NT<br>ND                                                            | NT<br>NT                                     | 0.59<br>1.6                                                                          | NT<br>0.00094 (B)                                                            | NT<br>NT                                                                                     |
|                   | 9/10/2010<br>2/25/2005                                                                                                                                                                                                                  | NT<br>ND                                                                                                 | NT<br>ND                                                                                           | NT ND                                                                                                                                            | 87<br>72                                                                                                | NT<br>ND                                                | NT<br>ND                                                                                    | NT ND                                                                                                               | 6.7<br>5.1                                                                                             | 39<br>31                                                                             | NT<br>0.017                                                                    | 23<br>29                                                                                             | NT<br>ND                                                            | NT<br>ND                                     | 0.98<br>24.7                                                                         | NT ND                                                                        | NT<br>0.12                                                                                   |
|                   | 6/14/2005<br>9/7/2005                                                                                                                                                                                                                   | ND<br>ND                                                                                                 | ND<br>0.0035 (B)                                                                                   | ND<br>0.055 (B)                                                                                                                                  | 86<br>82                                                                                                | ND<br>ND                                                | ND<br>ND                                                                                    | ND<br>ND                                                                                                            | 6.6<br>7.6                                                                                             | 34                                                                                   | 0.038                                                                          | 34<br>31                                                                                             | ND<br>ND                                                            | 0.0063<br>0.0049 (B)                         | 31.4                                                                                 | ND<br>ND                                                                     | 0.068                                                                                        |
|                   | 12/20/2005                                                                                                                                                                                                                              | ND                                                                                                       | ND                                                                                                 | 0.056 (B)                                                                                                                                        | 100                                                                                                     | ND                                                      | ND                                                                                          | 0.000045 (B)                                                                                                        | 6.8                                                                                                    | 43                                                                                   | 0.024                                                                          | 34                                                                                                   | ND                                                                  | ND                                           | 19.3<br>34.3                                                                         | ND                                                                           | 0.18                                                                                         |
|                   | 3/15/2006<br>6/15/2006                                                                                                                                                                                                                  | ND<br>ND                                                                                                 | ND<br>0.0031 (B)                                                                                   | 0.042 (B)<br>0.055 (B)                                                                                                                           | 81<br>89                                                                                                | ND<br>0.00085 (B)                                       | ND<br>ND                                                                                    | 0.000034 (B)<br>0.0000049 (B)                                                                                       | 5<br>8.3                                                                                               | 35<br>37                                                                             | 0.021                                                                          | 29<br>31                                                                                             | ND<br>ND                                                            | ND<br>ND                                     | 27.1<br>26.8                                                                         | 0.00056 (B)<br>0.0011 (B)                                                    | 0.21<br>0.11                                                                                 |
|                   | 9/13/2006<br>3/8/2007                                                                                                                                                                                                                   | ND<br>ND                                                                                                 | ND<br>0.0057 (B)                                                                                   | 0.043 (B)                                                                                                                                        | 66                                                                                                      | ND                                                      | ND                                                                                          | 0.000016 (B)                                                                                                        | 8.3                                                                                                    | 27                                                                                   | 0.038                                                                          | 30                                                                                                   | ND                                                                  | ND                                           | 17.9                                                                                 | ND                                                                           | 0.082                                                                                        |
|                   | 6/27/2007                                                                                                                                                                                                                               | ND                                                                                                       | 0.0057 (B)<br>ND                                                                                   | 0.072 (B)<br>0.067 (B)                                                                                                                           | 120<br>110                                                                                              | 0.00023 (B)<br>ND                                       | ND<br>ND                                                                                    | 0.000018 (B)<br>0.000022 (B)                                                                                        | 11<br>11                                                                                               | 49<br>46                                                                             | 0.015<br>0.04                                                                  | 47<br>47                                                                                             | ND<br>ND                                                            | 0.019<br>ND                                  | 48<br>66                                                                             | ND<br>0.00073 (B)                                                            | 0.088                                                                                        |
|                   | 9/11/2007<br>11/26/2007                                                                                                                                                                                                                 | ND<br>ND                                                                                                 | 0.0045 (B)<br>ND                                                                                   | 0.089 (B)<br>0.081 (B)                                                                                                                           | 120<br>110                                                                                              | 0.0011 (B)<br>0.00049 (B)                               | 0.0014 (B)<br>ND                                                                            | 0.000037 (B)<br>0.000035 (B)                                                                                        | 12<br>10                                                                                               | 49<br>50                                                                             | 0.05<br>0.024                                                                  | 41<br>43                                                                                             | ND<br>ND                                                            | ND<br>ND                                     | 49<br>48                                                                             | 0.0012 (B)                                                                   | 0.17                                                                                         |
| CSMRI-4           | 2/27/2008                                                                                                                                                                                                                               | ND                                                                                                       | ND                                                                                                 | 0.073 (B)                                                                                                                                        | 130                                                                                                     | ND                                                      | ND                                                                                          | 0.000016 (B)                                                                                                        | 8.2                                                                                                    | 58                                                                                   | 0.015                                                                          | 45                                                                                                   | ND                                                                  | 0.0034 (B)                                   | 58                                                                                   | 0.0011 (B)<br>ND                                                             | 0.1<br>0.069                                                                                 |
| ŀ                 | 4/17/2008<br>9/25/2008                                                                                                                                                                                                                  | ND<br>NT                                                                                                 | 0.0063 (B)<br>NT                                                                                   | 0.089 (B)<br>NT                                                                                                                                  | 150<br>130                                                                                              | 0.00047 (B)<br>NT                                       | ND<br>NT                                                                                    | 0.000016 (B)<br>NT                                                                                                  | 10<br>13                                                                                               | 66<br>55                                                                             | 0.014<br>NT                                                                    | 53<br>50                                                                                             | ND<br>NT                                                            | ND<br>NT                                     | 62<br>43                                                                             | 0.00078 (B)<br>NT                                                            | 0.087<br>NT                                                                                  |
| ŀ                 | 12/5/2008<br>3/17/2009                                                                                                                                                                                                                  | NT<br>NT                                                                                                 | NT<br>NT                                                                                           | NT<br>NT                                                                                                                                         | 130<br>100                                                                                              | NT<br>NT                                                | NT<br>NT                                                                                    | NT<br>NT                                                                                                            | 11<br>9.3                                                                                              | 54<br>45                                                                             | NT<br>NT                                                                       | 48<br>63                                                                                             | NT<br>NT                                                            | NT<br>NT                                     | 61<br>80                                                                             | NT<br>NT                                                                     | NT<br>NT                                                                                     |
|                   | 6/23/2009<br>9/24/2009                                                                                                                                                                                                                  | 0.00078<br>NT                                                                                            | 0.0032<br>NT                                                                                       | 0.084<br>NT                                                                                                                                      | 89<br>160 (J)                                                                                           | 0.00016<br>NT                                           | 0.00041<br>NT                                                                               | 0.00013<br>NT                                                                                                       | 12<br>14                                                                                               | 38<br>65 (J)                                                                         | 70<br>NT                                                                       | 0.0019<br>69 (J)                                                                                     | 0.00068<br>NT                                                       | NT<br>NT                                     | 110                                                                                  | NT<br>NT                                                                     | NT                                                                                           |
|                   | 12/16/2009<br>5/3/2010                                                                                                                                                                                                                  | NT<br>NT                                                                                                 | NT<br>NT                                                                                           | NT                                                                                                                                               | 110                                                                                                     | NT                                                      | NT                                                                                          | NT                                                                                                                  | 11                                                                                                     | 49                                                                                   | NT                                                                             | 62                                                                                                   | NT                                                                  | NT                                           | 160<br>79                                                                            | NT                                                                           | NT<br>NT                                                                                     |
|                   | 3/10/2010                                                                                                                                                                                                                               | NT                                                                                                       | NT                                                                                                 | NT<br>NT                                                                                                                                         | NT<br>120                                                                                               | NT<br>NT                                                | NT<br>NT                                                                                    | NT<br>NT                                                                                                            | NT<br>11                                                                                               | NT<br>51                                                                             | NT<br>NT                                                                       | NT<br>55                                                                                             | NT<br>NT                                                            | NT<br>NT                                     | 83<br>NT                                                                             | NT<br>NT                                                                     | NT<br>NT                                                                                     |
|                   | 6/8/2010<br>9/10/2010                                                                                                                                                                                                                   | ND<br>NT                                                                                                 | ND<br>NT                                                                                           | 0.1<br>NT                                                                                                                                        | 140<br>150                                                                                              | 0.00029 (B)<br>NT                                       | ND<br>NT                                                                                    | 0.00007 (B)<br>NT                                                                                                   | 16<br>19                                                                                               | 55<br>62                                                                             | NT<br>NT                                                                       | 59<br>59                                                                                             | ND<br>NT                                                            | NT<br>NT                                     | 56<br>62                                                                             | ND<br>NT                                                                     | NT<br>NT                                                                                     |
| CSMRI-5           | 2/25/2005<br>6/14/2005                                                                                                                                                                                                                  | ND<br>ND                                                                                                 | ND<br>ND                                                                                           | ND<br>ND                                                                                                                                         | 54<br>63                                                                                                | ND<br>ND                                                | ND<br>ND                                                                                    | ND<br>ND                                                                                                            | 3.4<br>3.3                                                                                             | 22<br>23                                                                             | ND<br>ND                                                                       | 27<br>28                                                                                             | ND<br>ND                                                            | ND<br>ND                                     | 2.8<br>3.57                                                                          | ND<br>ND                                                                     | 0.067<br>0.047                                                                               |
|                   | 9/7/2005<br>12/20/2005                                                                                                                                                                                                                  | ND<br>ND                                                                                                 | ND<br>ND                                                                                           | 0.085 (B)<br>0.072 (B)                                                                                                                           | 85<br>79                                                                                                | ND 0.00071 (B)                                          | ND<br>ND                                                                                    | ND                                                                                                                  | 4.2                                                                                                    | 31                                                                                   | 0.0042 (B)                                                                     | 35                                                                                                   | ND                                                                  | 0.0037 (B)                                   | 4.4                                                                                  | 0.0018 (B)                                                                   | 0.089                                                                                        |
|                   | 3/15/2006                                                                                                                                                                                                                               | ND                                                                                                       | ND                                                                                                 | 0.058 (B)                                                                                                                                        | 70                                                                                                      | 0.00037 (B)                                             | ND                                                                                          | 0.000048 (B)<br>0.000029 (B)                                                                                        | 4.1<br>3.5                                                                                             | 30<br>26                                                                             | 0.002 (B)<br>0.0031 (B)                                                        | 31<br>29                                                                                             | ND<br>ND                                                            | ND<br>0.0035 (B)                             | 3.63<br>4.1                                                                          | 0.0012 (B)<br>0.00067 (B)                                                    | 0.17<br>0.11                                                                                 |
|                   | 6/15/2006<br>9/13/2006                                                                                                                                                                                                                  | ND<br>ND                                                                                                 | ND<br>ND                                                                                           | 0.052 (B)<br>0.087 (B)                                                                                                                           | 51<br>110                                                                                               | ND<br>ND                                                | ND<br>0.0022 (B)                                                                            | 0.000012 (B)<br>ND                                                                                                  | 3.6<br>4.5                                                                                             | 19<br>41                                                                             | 0.0028 (B)<br>0.0027 (B)                                                       | 26<br>50                                                                                             | ND<br>ND                                                            | ND<br>ND                                     | 2.8<br>7                                                                             | ND<br>0.001 (B)                                                              | 0.055<br>0.11                                                                                |
|                   | 3/8/2007                                                                                                                                                                                                                                | ND                                                                                                       | 0.0037 (B)<br>ND                                                                                   | 0.063 (B)<br>0.066 (B)                                                                                                                           | 80<br>98                                                                                                | ND<br>ND                                                | ND<br>ND                                                                                    | ND<br>0.0000091 (B)                                                                                                 | 4.5<br>4.5                                                                                             | 31<br>40                                                                             | 0.0019 (B)<br>0.006 (B)                                                        | 34<br>40                                                                                             | ND<br>ND                                                            | 0.015<br>ND                                  | 5.8                                                                                  | ND 0.0017 (B)                                                                | 0.083<br>0.025                                                                               |
|                   |                                                                                                                                                                                                                                         | ND                                                                                                       | IND                                                                                                |                                                                                                                                                  |                                                                                                         |                                                         | 0.00082 (B)                                                                                 | 0.0000031 (B)                                                                                                       | 4.9                                                                                                    | 44                                                                                   | 0.0042 (B)                                                                     | 47                                                                                                   | ND                                                                  | ND                                           | 11                                                                                   | 0.0015 (B)                                                                   | 0.054                                                                                        |
|                   | 6/27/2007<br>9/11/2007                                                                                                                                                                                                                  | ND                                                                                                       | ND                                                                                                 | 0.13                                                                                                                                             | 110                                                                                                     | ND                                                      |                                                                                             | 0.000000                                                                                                            |                                                                                                        |                                                                                      | . NID                                                                          | 47                                                                                                   | ND                                                                  | ND                                           |                                                                                      |                                                                              | 0.12                                                                                         |
|                   | 6/27/2007<br>9/11/2007<br>11/26/2007<br>2/27/2008                                                                                                                                                                                       | ND<br>ND<br>ND                                                                                           | ND<br>ND<br>ND                                                                                     | 0.13<br>0.087 (B)<br>0.073 (B)                                                                                                                   | 110<br>100                                                                                              | ND<br>ND                                                | 0.00089 (B)<br>ND                                                                           | 0.000032 (B)<br>ND                                                                                                  | 4.5<br>4.3                                                                                             | 42<br>40                                                                             | ND<br>ND                                                                       | 42                                                                                                   | ND                                                                  | ND                                           | 6.6<br>6.6                                                                           | 0.0012 (B)<br>ND                                                             | 0.094                                                                                        |
|                   | 6/27/2007<br>9/11/2007<br>11/26/2007                                                                                                                                                                                                    | ND<br>ND                                                                                                 | ND<br>ND                                                                                           | 0.13<br>0.087 (B)                                                                                                                                | 110                                                                                                     | ND                                                      | 0.00089 (B)                                                                                 |                                                                                                                     |                                                                                                        |                                                                                      | ND<br>0.0011 (B)                                                               |                                                                                                      |                                                                     | ND<br>ND                                     | 6.6<br>6.7                                                                           | ND 0.0011 (B)                                                                | 0.094<br>0.093                                                                               |
|                   | 6/27/2007<br>9/11/2007<br>11/26/2007<br>2/27/2008<br>4/17/2008<br>9/25/2008<br>12/4/2008                                                                                                                                                | ND<br>ND<br>ND<br>ND<br>NT                                                                               | ND<br>ND<br>ND<br>ND<br>NT                                                                         | 0.13<br>0.087 (B)<br>0.073 (B)<br>0.078 (B)<br>NT<br>NT                                                                                          | 110<br>100<br>100<br>160<br>110                                                                         | ND<br>ND<br>ND<br>NT                                    | 0.00089 (B)<br>ND<br>ND<br>ND<br>NT<br>NT                                                   | ND<br>0.000018 (B)<br>NT<br>NT                                                                                      | 4.3<br>4.6<br>5.5<br>4.8                                                                               | 40<br>40<br>61<br>40                                                                 | ND<br>0.0011 (B)<br>NT<br>NT                                                   | 42<br>41<br>59<br>47                                                                                 | ND<br>ND<br>NT<br>NT                                                | ND<br>ND<br>NT<br>NT                         | 6.6<br>6.7<br>10<br>10                                                               | ND<br>0.0011 (B)<br>NT<br>NT                                                 | 0.094<br>0.093<br>NT<br>NT                                                                   |
|                   | 6/27/2007<br>9/11/2007<br>11/26/2007<br>2/27/2008<br>4/17/2008<br>9/25/2008<br>12/4/2008<br>3/17/2009<br>6/23/2009                                                                                                                      | ND ND ND ND NT NT NT 0.00078                                                                             | ND ND ND ND NT NT NT O.0032                                                                        | 0.13<br>0.087 (B)<br>0.073 (B)<br>0.078 (B)<br>NT<br>NT<br>NT<br>0.12                                                                            | 110<br>100<br>100<br>160<br>110<br>110<br>130                                                           | ND<br>ND<br>ND<br>NT<br>NT<br>NT<br>NT<br>0.00016       | 0.00089 (B)  ND  ND  NT  NT  NT  0.00041                                                    | ND<br>0.000018 (B)<br>NT<br>NT<br>NT<br>NT<br>0.000026                                                              | 4.3<br>4.6<br>5.5<br>4.8<br>4.4<br>5.8                                                                 | 40<br>40<br>61<br>40<br>40<br>50                                                     | ND<br>0.0011 (B)<br>NT<br>NT<br>NT<br>NT<br>51                                 | 42<br>41<br>59<br>47<br>44<br>0.0019                                                                 | ND<br>ND<br>NT<br>NT<br>NT<br>O.00049                               | ND<br>ND<br>NT<br>NT<br>NT                   | 6.6<br>6.7<br>10<br>10<br>11<br>12                                                   | ND<br>0.0011 (B)<br>NT<br>NT<br>NT<br>NT                                     | 0.094<br>0.093<br>NT<br>NT<br>NT<br>NT                                                       |
|                   | 6/27/2007<br>9/11/2007<br>11/26/2007<br>2/27/2008<br>4/17/2008<br>9/25/2008<br>12/4/2008<br>3/17/2009<br>6/23/2009<br>9/24/2009<br>12/16/2009                                                                                           | ND<br>ND<br>ND<br>NT<br>NT<br>NT<br>0.00078<br>NT                                                        | ND ND ND NT NT NT NT O.0032 NT NT                                                                  | 0.13<br>0.087 (B)<br>0.073 (B)<br>0.078 (B)<br>NT<br>NT<br>NT<br>0.12<br>NT<br>NT                                                                | 110<br>100<br>100<br>160<br>110<br>110<br>130<br>159 (J)                                                | ND<br>ND<br>ND<br>NT<br>NT<br>NT<br>NT<br>0.00016       | 0.00089 (B) ND ND NT NT NT NT NT O.00041 NT                                                 | ND<br>0.000018 (B)<br>NT<br>NT<br>NT<br>0.000026<br>NT                                                              | 4.3<br>4.6<br>5.5<br>4.8<br>4.4<br>5.8<br>4.2<br>4.4                                                   | 40<br>40<br>61<br>40<br>40<br>50<br>56 (J)                                           | ND<br>0.0011 (B)<br>NT<br>NT<br>NT<br>S1<br>NT                                 | 42<br>41<br>59<br>47<br>44<br>0.0019<br>57 (J)<br>55                                                 | ND<br>ND<br>NT<br>NT<br>NT<br>O.00049<br>NT<br>NT                   | ND ND NT NT NT NT NT NT NT NT                | 6.6<br>6.7<br>10<br>10<br>11<br>12<br>11<br>9.8                                      | ND 0.0011 (B) NT NT NT NT NT NT NT NT NT                                     | 0.094<br>0.093<br>NT<br>NT<br>NT<br>NT<br>NT                                                 |
|                   | 6/27/2007<br>9/11/2007<br>11/26/2007<br>2/27/2008<br>4/17/2008<br>9/25/2008<br>12/4/2008<br>3/17/2009<br>6/23/2009<br>9/24/2009<br>12/16/2009<br>3/10/2010<br>5/3/2010                                                                  | ND<br>ND<br>ND<br>NT<br>NT<br>NT<br>O.00078<br>NT<br>NT<br>NT                                            | ND ND ND NT NT NT NT O.0032 NT NT NT NT NT                                                         | 0.13<br>0.087 (B)<br>0.073 (B)<br>0.078 (B)<br>NT<br>NT<br>NT<br>0.12<br>NT<br>NT<br>NT<br>NT                                                    | 110<br>100<br>100<br>160<br>110<br>110<br>130<br>159 (J)<br>130<br>NT                                   | ND ND ND NT         | 0.00089 (B) ND ND NT NT NT NT NT O.00041 NT NT NT NT NT                                     | ND<br>0.000018 (B)<br>NT<br>NT<br>NT<br>0.000026<br>NT<br>NT<br>NT                                                  | 4.3<br>4.6<br>5.5<br>4.8<br>4.4<br>5.8<br>4.2<br>4.4<br>4.3<br>NT                                      | 40<br>40<br>61<br>40<br>40<br>50<br>56 (J)<br>50<br>49<br>NT                         | ND 0.0011 (B) NT                           | 42<br>41<br>59<br>47<br>44<br>0.0019<br>57 (J)<br>55<br>48<br>NT                                     | ND<br>ND<br>NT<br>NT<br>NT<br>0.00049<br>NT<br>NT<br>NT             | ND ND NT | 6.6<br>6.7<br>10<br>10<br>11<br>12                                                   | ND 0.0011 (B) NT NT NT NT NT                                                 | 0.094<br>0.093<br>NT<br>NT<br>NT<br>NT                                                       |
|                   | 6/27/2007<br>9/11/2007<br>11/26/2007<br>2/27/2008<br>4/17/2008<br>9/25/2008<br>12/4/2008<br>3/17/2009<br>6/23/2009<br>9/24/2009<br>12/16/2009<br>3/10/2010                                                                              | ND ND ND NT NT NT O.00078 NT NT NT                                                                       | ND ND ND ND NT NT NT NT O.0032 NT NT NT                                                            | 0.13<br>0.087 (B)<br>0.073 (B)<br>0.078 (B)<br>NT<br>NT<br>NT<br>0.12<br>NT<br>NT<br>NT                                                          | 110<br>100<br>100<br>160<br>110<br>110<br>130<br>159 (J)<br>130                                         | ND<br>ND<br>ND<br>NT<br>NT<br>NT<br>O.00016<br>NT<br>NT | 0.00089 (B)  ND  ND  NT  NT  NT  NT  0.00041  NT  NT  NT                                    | ND<br>0.000018 (B)<br>NT<br>NT<br>NT<br>0.000026<br>NT<br>NT                                                        | 4.3<br>4.6<br>5.5<br>4.8<br>4.4<br>5.8<br>4.2<br>4.4<br>4.3                                            | 40<br>40<br>61<br>40<br>40<br>50<br>56 (J)<br>50<br>49                               | ND 0.0011 (B) NT NT NT S1 NT NT NT NT NT NT NT NT NT                           | 42<br>41<br>59<br>47<br>44<br>0.0019<br>57 (J)<br>55<br>48                                           | ND<br>ND<br>NT<br>NT<br>NT<br>O.00049<br>NT<br>NT                   | ND ND NT          | 6.6<br>6.7<br>10<br>10<br>11<br>12<br>11<br>9.8<br>10<br>NT<br>8.7                   | ND 0.0011 (B) NT                         | 0.094<br>0.093<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT                                           |
|                   | 6/27/2007<br>9/11/2007<br>11/26/2007<br>2/27/2008<br>4/17/2008<br>9/25/2008<br>12/4/2008<br>3/17/2009<br>6/23/2009<br>9/24/2009<br>12/16/2009<br>3/10/2010<br>6/8/2010<br>9/10/2010<br>2/27/2006                                        | ND ND ND ND NT                                                       | ND ND ND NT NT NT O.0032 NT                                    | 0.13<br>0.087 (B)<br>0.073 (B)<br>0.078 (B)<br>NT<br>NT<br>NT<br>0.12<br>NT<br>NT<br>NT<br>NT<br>NT                                              | 110<br>100<br>100<br>160<br>110<br>110<br>130<br>159 (J)<br>130<br>NT<br>150<br>150<br>NT               | ND   ND   ND   NT   NT   NT   NT   NT                   | 0.00089 (B)  ND  ND  NT  NT  NT  O.00041  NT  NT  NT  NT  NT  NT  NT  NT  NT  N             | ND 0.000018 (B) NT NT NT 0.000026 NT                                            | 4.3<br>4.6<br>5.5<br>4.8<br>4.4<br>5.8<br>4.2<br>4.4<br>4.3<br>NT<br>5                                 | 40<br>40<br>61<br>40<br>40<br>50<br>56 (J)<br>50<br>49<br>NT<br>54<br>56<br>NT       | ND 0.0011 (B) NT NT NT 51 NT               | 42<br>41<br>59<br>47<br>44<br>0.0019<br>57 (J)<br>55<br>48<br>NT<br>53<br>64<br>NT                   | ND<br>ND<br>NT<br>NT<br>NT<br>0.00049<br>NT<br>NT<br>NT<br>NT<br>NT | ND ND NT | 6.6<br>6.7<br>10<br>10<br>11<br>12<br>11<br>9.8<br>10<br>NT<br>8.7<br>13<br>NT       | ND   0.0011 (B)   NT   NT   NT   NT   NT   NT   NT   N                       | 0.094<br>0.093<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT                   |
| CSMRLER           | 6/27/2007<br>9/11/2007<br>11/26/2007<br>2/27/2008<br>4/17/2008<br>9/25/2008<br>12/4/2008<br>3/17/2009<br>6/23/2009<br>9/24/2009<br>12/16/2009<br>3/10/2010<br>5/3/2010<br>6/8/2010<br>9/10/2010<br>2/27/2006<br>6/26/2007<br>9/10/2007  | ND ND ND NT NT NT O.00078 NT ND NT ND ND                                   | ND ND ND NT NT NT NT NT NT O.0032 NT                           | 0.13<br>0.087 (B)<br>0.073 (B)<br>0.078 (B)<br>NT<br>NT<br>O.12<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>O.111<br>NT<br>O.112<br>O.111 | 110<br>100<br>100<br>160<br>110<br>110<br>130<br>159 (J)<br>130<br>NT<br>150                            | ND   ND   ND   NT   NT   NT   NT   NT                   | 0.00089 (B)  ND  ND  NT  NT  NT  O.00041  NT  NT  NT  NT  NT  NT  NT  NT  NT  N             | ND 0.000018 (B) NT NT NT 0.000026 NT                                            | 4.3<br>4.6<br>5.5<br>4.8<br>4.4<br>5.8<br>4.2<br>4.4<br>4.3<br>NT<br>5                                 | 40<br>40<br>61<br>40<br>40<br>50<br>56 (J)<br>50<br>49<br>NT<br>54                   | ND 0.0011 (B) NT NT NT S1 NT               | 42<br>41<br>59<br>47<br>44<br>0.0019<br>57 (J)<br>55<br>48<br>NT<br>53<br>64                         | ND<br>ND<br>NT<br>NT<br>NT<br>0.00049<br>NT<br>NT<br>NT<br>NT<br>NT | ND ND NT | 6.6<br>6.7<br>10<br>10<br>11<br>12<br>11<br>9.8<br>10<br>NT<br>8.7                   | ND   0.0011 (B)   NT   NT   NT   NT   NT   NT   NT   N                       | 0.094<br>0.093<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT                         |
| CSMRI-6B          | 6/27/2007<br>9/11/2007<br>11/26/2007<br>2/27/2008<br>4/17/2008<br>9/25/2008<br>12/4/2008<br>3/17/2009<br>9/24/2009<br>12/16/2009<br>3/10/2010<br>6/8/2010<br>9/10/2010<br>2/27/2006<br>6/26/2007                                        | ND ND ND ND NT NT NT NT ND NT ND | ND ND ND NT NT NT O.0032 NT                                    | 0.13<br>0.087 (B)<br>0.073 (B)<br>0.078 (B)<br>NT<br>NT<br>NT<br>0.12<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT                                  | 110<br>100<br>100<br>160<br>110<br>110<br>130<br>159 (J)<br>130<br>NT<br>150<br>150<br>NT               | ND   ND   ND   NT   NT   NT   NT   NT                   | 0.00089 (B) ND ND NT NT NT 0.00041 NT ND ND ND ND 0.00088 (B) | ND 0.000018 (B) NT NT NT 0.000026 NT NT NT NT NT NT O.000028 (B) NT NT O.000028 (B) O.000013 (B) 0.000025 (B)       | 4.3<br>4.6<br>5.5<br>4.8<br>4.4<br>5.8<br>4.2<br>4.4<br>4.3<br>NT<br>5<br>5.1<br>NT<br>5.9<br>4.8<br>6 | 40<br>40<br>61<br>40<br>50<br>56 (J)<br>50<br>49<br>NT<br>56<br>NT<br>56<br>48       | ND 0.0011 (B) NT NT NT 51 NT NT NT NT NT NT NT O.004 (B) 0.0022 (B) 0.0028 (B) | 42<br>41<br>59<br>47<br>44<br>0.0019<br>57 (J)<br>55<br>48<br>NT<br>53<br>64<br>NT<br>41<br>46<br>57 | ND ND NT                        | ND                                           | 6.6<br>6.7<br>10<br>10<br>11<br>12<br>11<br>9.8<br>10<br>NT<br>8.7<br>13<br>NT<br>17 | ND<br>0.0011 (B)<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT | 0.094 0.093 NT                                           |
| CSMRI-6B          | 6/27/2007<br>9/11/2007<br>11/26/2007<br>2/27/2008<br>4/17/2008<br>9/25/2008<br>12/4/2008<br>12/4/2009<br>9/24/2009<br>12/16/2009<br>3/10/2010<br>5/3/2010<br>6/8/2010<br>9/10/2010<br>2/27/2006<br>6/26/2007<br>9/10/2007<br>11/27/2007 | ND                                                                                                       | ND<br>ND<br>ND<br>NT<br>NT<br>NT<br>O.0032<br>NT<br>NT<br>NT<br>NT<br>ND<br>NT<br>ND<br>O.0046 (B) | 0.13<br>0.087 (B)<br>0.073 (B)<br>0.078 (B)<br>NT<br>NT<br>NT<br>0.12<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>O.11<br>NT<br>O.11<br>NT      | 110<br>100<br>100<br>160<br>110<br>110<br>130<br>159 (J)<br>130<br>NT<br>150<br>150<br>NT<br>100<br>110 | ND   ND   ND   NT   NT   NT   NT   NT                   | 0.00089 (B) ND ND NT NT NT NT 0.00041 NT NT NT NT NT NT NT NT NT ND NT ND 0.00088 (B)       | ND 0.000018 (B) NT NT NT 0.000026 NT NT NT NT OT NT NT NT NT NT NT NT O.000028 (B) NT NT O.0000059 (B) 0.000013 (B) | 4.3<br>4.6<br>5.5<br>4.8<br>4.4<br>5.8<br>4.2<br>4.4<br>4.3<br>NT<br>5<br>5.1<br>NT<br>5.9<br>4.8      | 40<br>40<br>61<br>40<br>40<br>50<br>56 (J)<br>50<br>49<br>NT<br>54<br>56<br>NT<br>56 | ND 0.0011 (B) NT NT NT S1 NT O.004 (B) 0.0022 (B)   | 42<br>41<br>59<br>47<br>44<br>0.0019<br>57 (J)<br>55<br>48<br>NT<br>53<br>64<br>NT<br>41             | ND                                                                  | ND ND NT | 6.6<br>6.7<br>10<br>10<br>11<br>12<br>11<br>9.8<br>10<br>NT<br>8.7<br>13<br>NT<br>17 | ND<br>0.0011 (B)<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT | 0.094<br>0.093<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT<br>NT |

Table G-2 Historical Summary of Metals in Groundwater (Stoller) (Results in milligrams per liter - U in micrograms per liter)

| Sample<br>Station | Sample Date             | Ag            | As              | Ba                     | Ca             | Cd                |                          |                               | ,          |               |                  |                  |                  |                      |              |                   |                      |
|-------------------|-------------------------|---------------|-----------------|------------------------|----------------|-------------------|--------------------------|-------------------------------|------------|---------------|------------------|------------------|------------------|----------------------|--------------|-------------------|----------------------|
| Station           | 3/16/09 (DRY)           | NT            | NT<br>NT        | NT                     | NT NT          | NT NT             | Or<br>NT                 | Hg<br>NT                      | NT         | Mg NT         | Mo<br>NT         | Na<br>NT         | Pb<br>NT         | Se<br>NT             | NT NT        | NT.               | Zn                   |
|                   | 6/24/2009               | 0.00078       | 0.0032          | 0.24                   | 120            | 0.00016           | 0.00041                  | 0.000027                      | 18         | 63            | 46               | 0.0019           | 0.0006           | NT NT                | 19           | NT<br>NT          | NT<br>NT             |
|                   | 9/24/2009               | NT            | NT              | NT                     | 120 (J)        | NT                | NT                       | NT                            | 5.1        | 60 (J)        | NT               | 49 (J)           | NT               | NT                   | 17           | NT                | NT                   |
|                   | 12/18/2009              | NT            | NT              | NT                     | NT             | NT                | NT                       | NT                            | NT         | NT            | NT               | NT               | NT               | NT                   | 12           | NT                | NT                   |
|                   | 3/8/2010                | NT            | NT              | NS                     | NT             | NT                | NT                       | NT                            | NS         | NS            | NT               | NS               | NT               | NT                   | NT           | NT                | NT                   |
|                   | 6/8/2010                | ND            | ND              | 0.1 (B)                | 120            | ND                | ND                       | 0.000026 (B)                  | 5.2        | 56            | NT               | 49               | ND               | NT                   | 12           | ND                | NT                   |
|                   | 9/8/2010<br>2/27/2007   | NT            | NT              | NT                     | 130            | NT                | NT                       | NT                            | 5          | 63            | NT               | 50               | NT               | NT                   | 25           | NT                | NT                   |
|                   | 6/26/2007               | NT<br>ND      | NT<br>ND        | NT<br>0.056 (B)        | NT<br>70       | NT                | NT                       | NT                            | NT         | NT            | NT               | NT               | NT               | NT                   | NT           | NT                | NT                   |
|                   | 9/10/2007               | NT            | NT              | 0.056 (B)              | 70<br>NT       | ND<br>NT          | ND<br>NT                 | 0.000006 (B)<br>NT            | 5.5<br>NT  | 37<br>NT      | 0.024<br>NT      | 53<br>NT         | ND               | ND                   | 68           | 0.00061 (B)       | 0.0041 (B)           |
|                   | 11/26/07 (DRY)          | NT            | NT              | NT                     | NT             | NT                | NT                       | NT                            | NT         | NT            | NT               | NT<br>NT         | NT<br>NT         | NT<br>NT             | NT<br>NT     | NT                | NT                   |
|                   | 2/27/2008 (DRY)         | NT            | NT              | NT                     | NT             | NT                | NT                       | NT                            | NT         | NT            | NT               | NT               | NT               | NT                   | NT           | NT<br>NT          | NT<br>NT             |
|                   | 4/15/08 (DRY)           | NT            | NT              | NT                     | NT             | NT                | NT                       | NT                            | NT         | NT            | NT               | NT               | NT               | NT                   | NT           | NT                | NT                   |
|                   | 9/24/08 (DRY)           | NT            | NT              | NT                     | NT             | NT                | NT                       | NT                            | NT         | NT            | NT               | NT               | NT               | NT                   | NT           | NT                | NT                   |
| CSMRI-7B          | 12/3/08 (DRY)           | NT            | NT              | NT                     | NT             | NT                | NT                       | NT                            | NT         | NT            | NT               | NT               | NT               | NT                   | NT           | NT                | NT                   |
|                   | 3/16/09 (DRY)           | NT            | NT              | NT                     | NT             | NT                | NT                       | NT                            | NT         | NT            | NT               | NT               | NT               | NT                   | NT           | NT                | NT                   |
|                   | 6/22/09 (DRY            | NT            | NT              | NT                     | NT             | NT                | NT                       | NT                            | NT         | NT            | NT               | NT               | NT               | NT                   | NT           | NT                | NT                   |
|                   | 9/23/2009 (DRY)         | NT            | NT              | NT                     | NT             | NT                | NT                       | NT                            | NT         | NT            | NT               | NT               | NT               | NT                   | NT           | NT                | NT                   |
|                   | 12/15/2009              | NT            | NT              | NT                     | NT             | NT                | NT                       | NT                            | NT         | NT            | NT               | NT               | NT               | NT                   | NT           | NT                | NT                   |
|                   | 3/8/10 (DRY)            | NT            | NT              | NT                     | NS             | NT                | NT                       | NT                            | NS         | NS            | NT               | NS               | NT               | NT                   | NT           | NT                | NT                   |
|                   | 6/10/2010<br>9/10/2010  | NT<br>NT      | NT<br>NT        | NT<br>NT               | NT<br>NT       | NT                | NT                       | NT                            | NT         | NT            | NT               | NT               | NT               | NT                   | 84           | NT                | NT                   |
|                   | 3/8/2007                | ND            | 0.0053 (B)      | 0.068 (B)              | 230            | NT<br>ND          | NT                       | NT                            | NT         | NT<br>70      | NT               | NT               | NT               | NT                   | 75           | NT                | NT                   |
|                   | 6/27/2007               | ND<br>ND      | ND              | 0.066 (B)<br>0.053 (B) | 190            | ND<br>ND          | ND<br>ND                 | ND<br>0.0000099 (B)           | 23<br>19   | 72<br>55      | 0.094            | 74<br>52         | ND               | 0.034                | 1,100<br>810 | ND                | 0.0024 (B)           |
|                   | 9/10/2007               | ND            | 0.0069 (B)      | 0.033 (B)<br>0.076 (B) | 160            | ND                | 0.00074 (B)              | 0.0000099 (B)<br>0.000027 (B) | 15         | 49            | 0.043            | 52               | ND<br>0.0018 (B) | ND<br>ND             | 630          | ND<br>ND          | 0.069                |
|                   | 11/27/2007              | ND            | ND              | 0.070 (B)              | 230            | ND                | ND                       | 0.000027 (B)<br>0.000024 (B)  | 15         | 67            | 0.034            | 70               | 0.0018 (B)       | 0.0046 (B)           | 1,300        | ND<br>0.001 (B)   | 0.025                |
|                   | 2/27/2008               | ND            | 0.036 (B)       | 0.031 (B)              | 270            | ND                | ND ND                    | ND                            | 15         | 82            | 0.026            | 100              | ND ND            | 0.0046 (B)           | 1,300        | 0.001 (B)         | 0.011 (B)<br>0.038   |
| 4                 | 4/17/2008               | ND            | ND              | 0.046 (B)              | 210            | ND                | 0.0011 (B)               | ND                            | 13         | 63            | 0.016            | 73               | ND               | ND                   | 770          | ND                | 0.032                |
| CSMRI-8           | 9/25/2008               | NT            | NT              | NT                     | 230            | NT                | NT Y                     | NT                            | 17         | 68            | NT               | 70               | NT               | NT                   | 890          | NT                | NT                   |
| COMRI-8           | 12/5/2008               | NT            | NT              | NT                     | 400            | NT                | NT                       | NT                            | 18         | 95            | NT               | 84               | NT               | NT                   | 1,900        | NT                | NT                   |
|                   | 3/18/2009<br>6/23/2009  | NT<br>0.00078 | NT<br>0.0032    | NT<br>0.038            | 250<br>170     | NT<br>0.00095     | NT<br>0.00041            | NT<br>0.00003                 | 13<br>14   | 74<br>48      | NT               | 97               | NT               | NT                   | 980          | NT                | NT                   |
|                   | 9/24/2009               | NT            | NT              | NT                     | 250 (J)        | 0.00093<br>NT     | NT                       | 0.00003<br>NT                 | 13         | 63 (J)        | 60<br>NT         | 0.0019<br>78 (J) | 0.00035<br>NT    | NT<br>NT             | 700<br>880   | NT<br>NT          | NT<br>NT             |
|                   | 12/16/2009              | NT            | NT              | NT                     | 210            | NT                | NT                       | NT                            | 12         | 59            | NT               | 56               | NT               | NT                   | 580          | NT                | NT                   |
|                   | 3/10/2010               | NT            | NT              | NT                     | 250            | NT                | NT                       | NT                            | 12         | 77            | NT               | 79               | NT               | NT                   | 960          | NT                | NT                   |
| 1                 | 6/8/2010                | ND            | ND              | 0.052 (B)              | 170            | ND                | ND                       | 0.000024 (B)                  | 14         | 60            | NT               | 48               | ND               | NT                   | 540          | ND                | NT                   |
|                   | 9/8/2010                | NT            | NT              | NT                     | 240            | NT                | NT                       | NT                            | 19         | 75            | NT               | 64               | NT               | NT                   | 520          | NT                | NT                   |
|                   | 2/27/2007               | ND            | ND              | 0.08 (B)               | 69             | ND                | 0.0011 (B)               | 0.000024 (B)                  | 12         | 31            | 0.045            | 33               | ND               | 0.011                | 7.9          | 0.001 (B)         | ND                   |
|                   | 6/26/2007<br>9/10/2007  | ND<br>ND      | ND<br>0.004 (B) | 0.049 (B)<br>0.059 (B) | 160<br>100     | ND<br>ND          | ND<br>0.0000 (D)         | 0.000002 (B)                  | 8.5        | 77            | 0.0028           | 150              | ND               | 0.0049 (B)           | 32           | 0.00096 (B)       | 0.0096 (B)           |
| 1                 | 11/26/2007              | ND            | ND              | 0.059 (B)<br>0.078 (B) | 110            | ND<br>0.00051 (B) | 0.0009 (B)<br>0.0011 (B) | 0.000016 (B)<br>0.000031 (B)  | 6<br>5.9   | 51<br>56      | 0.0037 (B)       | 49               | ND               | ND<br>0.0054         | 35           | 0.00071 (B)       | 0.0097 (B)           |
|                   | 2/27/2008               | ND            | ND ND           | 0.078 (B)              | 110            | ND                | ND ND                    | ND                            | 5.4        | 56            | 0.0023 (B)<br>ND | 52<br>49         | ND<br>ND         | 0.0054<br>0.0033 (B) | 28<br>24     | 0.0012 (B)<br>ND  | 0.015 (B)<br>0.011   |
| 1                 | 4/15/2008               | ND            | ND              | 0.077 (B)              | 100            | ND                | ND                       | 0.000013 (B)                  | 5          | 52            | 0.0017 (B)       | 46               | ND               | ND                   | 22           | 0.00077 (B)       | 0.0079 (B)           |
| 0011010           | 9/24/2008               | NT            | NT              | NT                     | 110            | NT                | NT                       | NT                            | 5.8        | 54            | NT NT            | 50               | NT               | NT                   | 28           | NT NT             | NT                   |
| CSMRI-9           | 12/5/2008               | NT            | NT              | NT                     | 100            | NT                | NT                       | NT                            | 5.3        | 48            | NT               | 46               | NT               | NT                   | 26           | NT                | NT                   |
|                   | 3/16/2009               | NT            | NT              | NT                     | 100            | NT                | NT                       | NT                            | 4.7        | 49            | NT               | 45               | NT               | NT                   | 34           | NT                | NT                   |
| ŀ                 | 6/22/2009<br>9/24/2009  | 0.00078<br>NT | 0.0032<br>NT    | 0.054<br>NT            | 250<br>120 (J) | 0.00079<br>NT     | 0.00041<br>NT            | 0.000026<br>NT                | 12<br>5.6  | 100<br>58 (J) | 120              | 0.0019           | 0.00035          | NT                   | 99           | NT                | NT                   |
|                   | 12/16/2009              | NT            | NT              | NT                     | 140            | NT                | NT                       | NT                            | 6.2        | 67            | NT<br>NT         | 64 (J)<br>59     | NT<br>NT         | NT<br>NT             | 43<br>39     | NT<br>NT          | NT<br>NT             |
|                   | 3/11/2010               | NT            | NT              | NT                     | 140            | NT                | NT                       | NT                            | 5.1        | 67            | NT               | 49               | NT               | NT                   | 41           | NT                | NT                   |
|                   | 6/9/2010                | ND            | ND              | 0.07 (B)               | 150            | ND                | ND                       | 0.000019                      | 6.7        | 69            | NT               | 69               | ND               | NT                   | 48           | ND                | NT                   |
|                   | 9/8/2010                | NT            | NT              | NT                     | 130            | NT                | NT                       | NT                            | 6.8        | 62            | NT               | 51               | NT               | NT                   | 31           | NT                | NT                   |
|                   | 3/1/2007                | 0.00051 (B)   | ND              | 0.064 (B)              | 79             | ND                | 0.0013 (B)               | 0.000024 (B)                  | 7.3        | 33            | 0.01             | 36               | ND               | 0.01                 | 7.8          | 0.0011 (B)        | ND                   |
|                   | 6/26/2007               | ND            | ND              | 0.079 (B)              | 100            | ND                | ND                       | 0.0000063 (B)                 | 4.7        | 44            | ND               | 37               | ND               | 0.0044 (B)           | 8.8          | 0.00055 (B)       | ND                   |
|                   | 9/10/2007<br>11/26/2007 | ND            | 0.0039 (B)      | 0.071 (B)              | 89             | ND                | 0.0012 (B)               | 0.00002 (B)                   | 4.2        | 38            | 0.0014 (B)       | 36               | ND               | ND                   | 9.9          | 0.00099 (B)       | 0.0042 (B)           |
| -                 | 2/26/2008               | ND<br>ND      | ND<br>ND        | 0.085 (B)<br>0.09 (B)  | 110<br>110     | ND<br>ND          | ND<br>ND                 | 0.000026 (B)<br>ND            | 4.7<br>4.6 | 43<br>46      | ND<br>ND         | 41<br>41         | ND.              | ND                   | 10           | ND                | ND                   |
|                   | 4/15/2008               | ND            | ND              | 0.088 (B)              | 100            | ND                | 0.0044 (B)               | ND                            | 4.5        | 44            | ND ND            | 40               | ND<br>ND         | ND<br>ND             | 9.2<br>8.7   | ND<br>0.00059 (B) | 0.0052<br>0.0018 (B) |
| 001::             | 9/24/2008               | NT            | NT              | NT                     | 100            | NT                | NT                       | NT                            | 4.6        | 42            | NT               | 41               | NT               | NT                   | 11           | NT                | NT                   |
| CSMRI-10          | 12/4/2008               | NT            | NT              | NT                     | 100            | NT                | NT                       | NT                            | 4.8        | 41            | NT               | 43               | NT               | NT                   | 19           | NT                | NT                   |
| ļ                 | 3/16/2009               | NT            | NT              | NT<br>0.00             | 110            | NT                | NT                       | NT                            | 4.5        | 43            | NT               | 43               | NT               | NT                   | 16           | NT                | NT                   |
|                   | 6/22/2009<br>9/25/2009  | 0.00078<br>NT | 0.0032<br>NT    | 0.09<br>NT             | 100<br>120 (J) | 0.00016           | 0.00041                  | 0.00002                       | 4.5        | 41            | 40               | 0.0019           | 0.00035          | NT                   | 12           | NT                | NT                   |
|                   | 12/16/2009              | NT            | NT              | NT                     | 130            | NT<br>NT          | NT<br>NT                 | NT<br>NT                      | 3.8<br>4.9 | 47 (J)<br>51  | NT<br>NT         | 43 (J)<br>49     | NT<br>NT         | NT<br>NT             | 13           | NT<br>NT          | NT<br>NT             |
|                   | 3/11/2010               | NT            | NT              | NT                     | 130            | NT                | NT                       | NT                            | 4.4        | 52            | NT               | 45               | NT               | NT                   | 14<br>13     | NT                | NT NT                |
| ľ                 | 6/9/2010                | ND            | ND              | 0.098 (B)              | 130            | ND                | ND                       | 0.000025                      | 4.7        | 48            | NT               | 49               | ND               | NT                   | 9.8          | ND                | NT                   |
|                   | 9/8/2010                | NT            | NT              | NT                     | 120            | NT                | NT                       | NT                            | 5          | 46            | NT               | 51               | NT               | NT                   | 14           | NT                | NT                   |
|                   | 2/27/2007               | ND            | ND              | 0.073 (B)              | 75             | ND                | 0.00013 (B)              | 0.000023 (B)                  | 9.7        | 29            | 0.033            | 33               | ND               | 0.013                | 4.8          | 0.00073 (B)       | 0.0023 (B)           |
|                   | 6/26/2007               | ND            | ND              | 0.096 (B)              | 110            | ND                | 0.0012 (B)               | 0.0000071 (B)                 | 5.4        | 44            | 0.0014 (B)       | 39               | ND               | 0.0064               | 8.4          | 0.00059 (B)       | ND                   |
| CSMRI-11          | 9/10/2007               | ND            | 0.004 (B)       | 0.071 (B)              | 96             | ND                | 0.00083 (B)              | 0.000016 (B)                  | 4.5        | 39            | 0.0016 (B)       | 44               | ND               | ND                   | 10           | 0.00078(B)        | 0.0033 (B)           |
|                   | 11/26/2007              | ND            | ND              | 0.11                   | 110            | ND                | ND                       | 0.000028 (B)                  | 4.9        | 44            | 0.0012 (B)       | 40               | ND               | ND                   | 11           | 0.0013 (B)        | ND                   |
| -                 | 2/26/2008<br>4/15/2008  | ND<br>ND      | ND<br>ND        | 0.11<br>0.12           | 110<br>100     | ND<br>ND          | ND<br>ND                 | ND<br>ND                      | 4.6<br>4.7 | 42<br>41      | ND<br>ND         | 44               | ND               | ND                   | 8.7          | ND                | 0.0048               |
|                   | 12/3/08 (DRY)           | NT            | NT              | NT NT                  | NT             | NT                |                          |                               |            | 3057.         |                  | 44<br>NT         | ND               | ND                   | 7.6          | ND<br>NT          | ND                   |
| ŀ                 | 3/16/09 (DRY)           | NT NT         | NT NT           | NT<br>NT               | NT             | NT<br>NT          | NT<br>NT                 | NT<br>NT                      | NT<br>NT   | NT<br>NT      | NT<br>NT         | NT<br>NT         | NT<br>NT         | NT<br>NT             | NT           | NT<br>NT          | NT<br>NT             |
| ŀ                 | 6/24/2009               | 0.00078       | 0.0032          | 0.22                   | 89             | 0.00043           | 0.00041                  | 0.000027                      | N I        | 43            | NT<br>48         | NT<br>0.0019     | 0.00066          | NT<br>NT             | NT<br>12     | NT<br>NT          | NT<br>NT             |
| CSMRI-11B         | 9/25/2009               | NT            | NT              | NT NT                  | 130 (J)        | NT                | NT                       | 0.000027<br>NT                | 6.2        | 57 (J)        | NT NT            | 49 (J)           | NT               | NT                   | 17           | NT                | NT NT                |
| OOMILL-11R        | 12/15/2009              | NT            | NT              | NT                     | NT             | NT                | NT                       | NT                            | NT         | NT            | NT               | NT               | NT               | NT                   | 14           | NT                | NT                   |
| [                 | 3/8/2010                | NT            | NT              | NT                     | NT             | NT                | NT                       | NT                            | NT         | NT            | NT               | NT               | NT               | NT                   | NT           | NT                | NT                   |
|                   | 6/8/2010                | ND<br>NT      | ND<br>NT        | 0.091 (B)<br>NT        | 130            | ND<br>NT          | 0.0013 (B)               | 0.000026                      | 5.6        | 55            | NT               | 49               | ND               | NT                   | 10           | ND                | NT                   |
| Detection Lim     | 9/8/2010<br>nits        | 0.01          | 0.01            | 0.1                    | 140            | 0.005             | NT<br>0.01               | NT<br>0.0002                  | 6.6        | 64            | NT<br>0.01       | 76               | NT<br>0.003      | NT<br>0.005          | 18<br>0.01   | NT<br>0.01        | NT<br>0.02           |
| - Stocker Lill    |                         | NE            | 0.01            | 2                      | NE.            | 0.005             | 0.01                     | 0.0002                        | NE         | NE            | NE               | NE               | 0.003            | 0.005                | 30           | NE                | NE                   |
| MCL*              |                         | NE            | 0.01            |                        | I NL           | 0.000             | 0.1                      | 0.002                         | NE         | INC           | INE              | INC              | 0.010            | U.UD                 | au           | I IVE             | I NE                 |

ND – non detect
NE – not established
NT – not tested
(B) – Detected above Instrument Detection Level but below Reported Detection Level

Table G-3

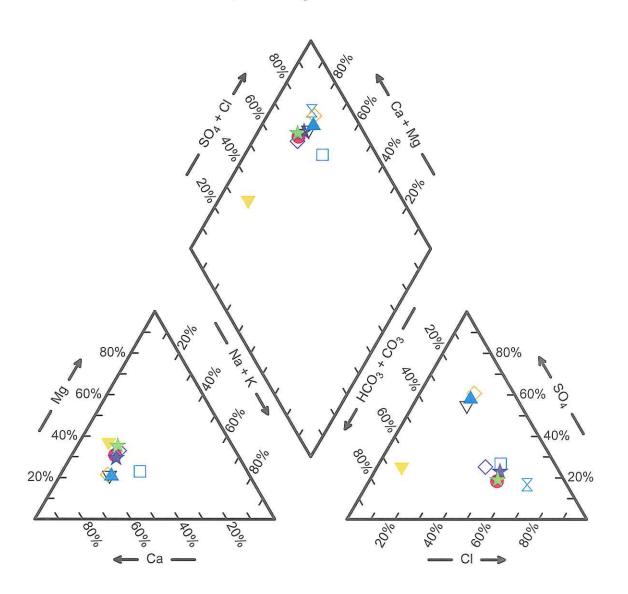
| 0.02   DETECTION         |            |             |          |                        |               | Surface Wa   |         |         | 9       |
|--------------------------|------------|-------------|----------|------------------------|---------------|--------------|---------|---------|---------|
| Sample                   | Sample     | Ra-226      | Ra-228   | Th-228                 | Th-230        | Th-232       | U-234   | U-235   | U-238   |
| Station                  | Date       | (pCi/l)     | (pCi/l)  | (pCi/l)                | (pCi/l)       | (pCi/l)      | (pCi/l) | (pCi/l) | (pCi/l) |
|                          | 2/25/2005  | 0           | 0.58     | 0.018                  | -0.026        | -0.001       | 0.89    | 0.083   | 0.65    |
|                          | 6/14/2005  | 0.14        | 0.05     | 0.05                   | -0.025        | 0.016        | 0.246   | 0.021   | 0.251   |
|                          | 9/7/2005   | 0.18        | 0.42     | 0.041                  | 0.25          | 0.102        | 0.35    | 0.031   | 0.35    |
|                          | 12/20/2005 | -0.31       | 0.47     | 0.028                  | 0.197         | -0.005       | 0.64    | 0.041   | 0.7     |
|                          | 3/15/2006  | -0.16       | 0.35     | 0.059                  | 0.125         | 0.005        | 0.6     | 0.029   | 0.53    |
|                          | 6/14/2006  | 0.13        | 0.45     | 0.16                   | 0.53          | 0.062        | 0.11    | 0.08    | 0.19    |
|                          | 9/13/2006  | -0.03       | 0.25     | -0.019                 | -0.035        | 0.01         | 0.37    | -0.005  | 0.34    |
|                          | 3/1/2007   | -0.1        | 0.25     | -0.038                 | 0.15          | 0.026        | NT      | NT      | NT      |
|                          | 6/27/2007  | 0.13        | 0.77     | 0.006                  | 0.016         | 0.014        | NT      | NT      | NT      |
|                          | 9/11/2007  | 0.15        | 0.74     | 0.063                  | 0.088         | 0.012        | NT      | NT      | NT      |
| 014.4                    | 11/27/2007 | 0.2         | 0.24     | 0.026                  | 0.049         | 0.025        | NT      | NT      | NT      |
| SW-1                     | 2/27/2008  | 0.1         | 0.48     | 0.014                  | 0.002         | 0.024        | NT      | NT      | NT      |
|                          | 4/18/2008  | 0.06        | -0.07    | -0.023                 | -0.026        | 0.012        | NT      | NT      | NT      |
|                          | 9/25/2008  | 0.18        | -0.01    | NT                     | NT            | NT           | NT      | NT      | NT      |
|                          | 12/3/2008  | -0.06       | 0.34     | NT                     | NT            | NT           | NT      | NT      | NT      |
|                          | 3/16/2009  | 0.14        | 0.73     | NT                     | NT            | NT           | NT      | NT      | NT      |
|                          | 6/24/2009  | 0.33        | 1.228 J  | NT                     | NT            | NT           | NT      | NT      | NT      |
|                          | 9/24/2009  | -0.08       | 0.37     | NT                     | NT            | NT           | NT      | NT      | NT      |
|                          | 12/17/2009 | 0.1         | 0.42     | NT                     | NT            | NT           | NT      | NT      | NT      |
|                          | 3/9/2010   | -0.04       | 0.2      | NT                     | NT            | NT           | NT      | NT      | NT      |
|                          | 6/9/2010   | 0.07        | 0.44 (J) | NT                     | NT            | NT           | NT      | NT      | NT      |
|                          | 9/9/2010   | 0.04        | 0.21     | NT                     | NT            | NT           | NT      | NT      | NT      |
|                          | 2/25/2005  | 0.45        | 0.06     | 0.011                  | -0.016        | 0.033        | 0.8     | 0.066   | 0.42    |
|                          | 6/14/2005  | 0.04        | 0.29     | 0.071                  | -0.018        | 0.007        | 0.259   | 0.032   | 0.42    |
|                          | 9/7/2005   | -0.08       | 0.24     | -0.013                 | 0.107         | 0.007        | 0.239   | 0.032   | 0.23    |
|                          | 12/20/2005 | 0.09        | 0.24     | -0.003                 | 0.107         | 0.031        | 0.54    | 0.014   |         |
|                          | 3/15/2006  | -0.04       | -0.15    | 0.009                  | 0.120         | 0.01         |         |         | 0.49    |
|                          | 6/14/2006  | 0.03        | 0.04     | 0.009                  | 0.164         |              | 0.79    | 0.004   | 0.51    |
|                          | 9/13/2006  | 0.03        | 0.04     | 0.172                  | CONTRACTOR II | 0.1          | 0.39    | 0       | 0.48    |
|                          | 3/8/2007   | 0.11        | 0.33     |                        | -0.03         | 0.01         | 0.43    | -0.006  | 0.3     |
|                          | 6/28/2007  | 0.12        |          | 0.047                  | -0.055        | 0            | NT      | NT      | NT      |
|                          |            |             | 0.78     | 0.028                  | 0.014         | 0            | NT      | NT      | NT      |
|                          | 9/11/2007  | 0.1<br>0.11 | 0.27     | 0.066                  | 0.068         | 0.002        | NT      | NT      | NT      |
| SW-2                     |            |             | 0.36     | 0.007                  | 0             | 0.012        | NT      | NT      | NT      |
|                          | 2/26/2008  | 0.1         | 0        | -0.01                  | 0.113         | 0.011        | NT      | NT      | NT      |
|                          | 4/18/2008  | 0.13        | 0.58     | 0.015                  | 0.24          | 0.024        | NT      | NT      | NT      |
|                          | 9/24/2008  | -0.16       | -0.02    | NT                     | NT            | NT           | NT      | NT      | NT      |
|                          | 12/3/2008  | 0.1         | 0.46     | NT                     | NT            | NT           | NT      | NT      | NT      |
|                          | 3/16/2009  | 0.2         | 0.29     | NT                     | NT            | NT           | NT      | NT      | NT      |
|                          | 6/24/2009  | 0.03        | 0.47 J   | NT                     | NT            | NT           | NT      | NT      | NT      |
|                          | 9/24/2009  | 0           | 0.28 (J) | NT                     | NT            | NT           | NT      | NT      | NT      |
|                          | 12/17/2009 | 0.03        | 0.44     | NT                     | NT            | NT           | NT      | NT      | NT      |
|                          | 3/9/2010   | -0.03       | 0.27     | NT                     | NT            | NT           | NT      | NT      | NT      |
|                          | 6/9/2010   | 0.07        | -0.06    | NT                     | NT            | NT           | NT      | NT      | NT      |
|                          | 9/9/2010   | 0.2         | 0.16     | NT                     | NT            | NT           | NT      | NT      | NT      |
| SW-3                     | 6/10/2010  | 0.39        | 0.01     | NT                     | NT            | NT           | NT      | NT      | NT      |
| 10.0007 (12.00), 10.000, | 9/9/2010   | 0.13        | 0.21     | NT                     | NT            | NT           | NT      | NT      | NT      |
| M                        | CL*        | Total F     |          | NE<br>Vater Regulation |               | n 232 = 60** | NE      | NE      | NE      |

<sup>\*</sup>Maximum Contaminant Level - National Primary Drinking Water Regulations

<sup>\*\*5</sup> CCR 1002-31 Reg 31 - Colorado Surface Water Standards

pCi/l - picoCuries per liter

Таь... G-4 Historical Summary of Metals in Surface Water (Stoller)


| C1-               |                        |            | 11               |                    | F 12.150.00.00 | (Results i    | n milligrai | ns per liter -     | U in mici  | ograms p | er liter)  |         |         | to the same of the |       |             |       |
|-------------------|------------------------|------------|------------------|--------------------|----------------|---------------|-------------|--------------------|------------|----------|------------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|-------|
| Sample<br>Station | Sample Date            | Ag         | As               | Ва                 | Ca             | Gd            | Gr          | Hg                 | К          | Mg       | Мо         | Na      | Pb      | Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U     | v           | Zn    |
|                   | 2/25/2005              | ND         | ND               | ND                 | ND             | ND            | ND          | ND                 | ND         | ND       | ND         | ND      | ND      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.97  | ND          | 0.2   |
|                   | 6/14/2005              | ND         | ND               | ND                 | 11             | ND            | ND          | ND                 | 1.1        | 2.8      | ND         | 5.2     | ND      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.75  | ND          | 0.09  |
|                   | 9/7/2005               | ND         | 0.0037 (B)       | 0.029 (B)          | 20             | ND            | ND          | ND                 | 2.2        | 4.4      | 0.0044 (B) | 8.5     | ND      | 0.0045 (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.04  | ND          | 0.063 |
|                   | 12/20/2005             | ND         | ND               | 0.042 (B)          | 35             | 0.00057 (B)   | ND          | 0.000034 (B)       | 3.7        | 7.6      | 0.004 (B)  | 19      | ND      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.11  | ND          | 0.22  |
|                   | 3/15/2006              | ND         | ND               | 0.04 (B)           | 37             | 0.00084 (B)   |             | 0.000024 (B)       | 3.7        | 8.5      | 0.0048 (B) | 23      | ND      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.59  | 0.00067 (B) | 0.19  |
|                   | 6/14/2006              | 0.0012 (B) | 0.0032 (B)       | 0.011 (B)          | 8.2            | ND            | ND          | ND                 | 1          | 1.9      | 0.0042 (B) | 3.1     | ND      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.61  | ND          | 0.029 |
|                   | 9/13/2006              | ND         | ND               | 0.03 (B)           | 21             | ND            | ND          | ND                 | 2.1        | 4.4      | 0.0049 (B) | 8.6     | ND      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1     | ND          | 0.053 |
|                   | 3/1/2007               | ND         | ND               | 0.049 (B)          | 44             | 0.0011 (B)    | 0.00092 (B) | 0.000023 (B)       | 4.3        | 11       | 0.0046 (B) | 26      | ND      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.7   | ND          | 0.22  |
|                   | 6/27/2007              | ND         | ND               | 0.018 (B)          | 10             | ND            | ND          | 0.0000068 (B)      | 0.93 (B)   | 2.5      | 0.0017 (B) | 3.2     | ND      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.6   | ND          | 0.067 |
|                   | 9/11/2007              | ND         | ND               | 0.032 (B)          | 21             | ND            | ND          | 0.000019           | 1.7        | 5        | 0.0029 (B) | 7.4     | ND      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.94  | ND          | 0.078 |
| SW-1              | 11/27/2007             | ND         | ND               | 0.042 (B)          | 33             | 0.00076 (B)   | ND          | 0.00027 (B)        | 2.8        | 8.2      | 0.0032 (B) | 15      | ND      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.8   | ND          | 0.18  |
|                   | 2/27/2008<br>4/18/2008 | ND         | ND               | 0.042 (B)          | 36             | ND            | ND          | ND                 | 3.3        | 9.6      | 0.0022 (B) | 19      | ND      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2     | ND          | 0.15  |
|                   |                        | ND         | ND               | 0.044 (B)          | 35             | 0.00044 (B)   | ND          | ND                 | 3.4        | 9        | 0.0034 (B) | 23      | ND      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.9   | ND          | 0.13  |
|                   | 9/25/2008              | NT         | NT               | NT                 | 23             | NT            | NT          | NT                 | 1.9        | 5.1      | NT         | 9       | NT      | NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.1   | NT          | NT    |
|                   | 12/3/2008              | NT         | NT               | NT                 | 32             | NT            | NT          | NT                 | 3          | 7.1      | NT         | 15      | NT      | NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.6   | NT          | NT    |
|                   | 3/16/2009              | NT         | NT               | NT                 | 35             | NT            | NT          | NT                 | 3.1        | 8.9      | NT         | 17      | NT      | NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.9   | NT          | NT    |
|                   | 6/24/2009              | 0.00078    | 0.0032           | 0.017              | 8.7            | 0.00016       | 0.00041     | 0.000024           | 0.92       | 2.1      | 3.3        | 0.0019  | 0.00035 | NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.55  | NT          | NT    |
|                   | 9/24/2009              | NT         | NT               | NT                 | 25 (J)         | NT            | NT          | NT                 | 1.4        | 5.5 (J)  | NT         | 9.7 (J) | NT      | NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.1   | NT          | NT    |
|                   | 12/17/2009<br>3/9/2010 | NT         | NT               | NT                 | 39             | NT            | NT          | NT                 | 2.8        | 8.5      | NT         | 18      | NT      | NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.7   | NT          | NT    |
|                   |                        | NT         | NT               | NT O O O O O O     | 40             | NT            | NT          | NT                 | 2.8        | 11       | NT         | 21      | NT      | NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2     | NT          | NT    |
|                   | 6/9/2010<br>9/9/2010   | ND         | ND               | 0.012 (B)          | 8.4            | ND            | 0.001 (B)   | 0.000027 (B)       | 0.47 (B)   | 1.9      | NT         | 2.8     | ND      | NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.46  | ND          | NT    |
|                   |                        | NT         | NT               | NT                 | 23             | NT            | NT          | NT                 | 1.7        | 5.1      | NT         | 9       | NT      | NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1     | NT          | NT    |
| 1                 | 2/25/2005<br>6/14/2005 | ND         | ND<br>ND         | ND                 | ND             | ND            | ND          | ND                 | ND         | ND       | ND         | ND      | ND      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.29  | ND          | 0.17  |
| 1                 | 9/7/2005               | ND<br>ND   | ND               | ND                 | 11             | ,ND           | ND          | ND                 | 1.1        | 2.8      | ND         | 4.8     | ND      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.69  | ND          | 0.085 |
|                   | 12/20/2005             |            | ND               | 0.028 (B)          | 20             | ND            | ND          | ND                 | 2.1        | 4.4      | 0.0037 (B) | 8.7     | ND      | 0.0037 (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.62  | ND          | 0.051 |
| 3                 | 3/15/2006              | ND<br>ND   | ND               | 0.042 (B)          | 35             | 0.00043 (B)   | ND          | 0.000034 (B)       | 3.8        | 8        | 0.0038 (B) | 19      | ND      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5   | ND          | 0.21  |
|                   | 6/14/2006              |            | ND<br>0.0000 (D) | 0.042 (B)          | 39             | 0.00053 (B)   | 0.00055 (B) | 0.000022 (B)       | 3.8        | 8.9      | 0.0046 (B) | 25      | ND      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.52  | 0.00053 (B) | 0.2   |
|                   | 9/13/2006              | ND<br>ND   | 0.0022 (B)       | 0.011 (B)          | 8.4            | ND            | ND          | ND                 | 1          | 1.9      | 0.0045 (B) | 3       | ND      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,44  | ND          | 0.031 |
|                   | 3/8/2007               | ND ND      | ND<br>0.0053 (B) | 0.03 (B)           | 21             | ND            | ND          | ND                 | 2,1        | 4.4      | 0.0048 (B) | 8.5     | ND      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.89  | ND          | 0.04  |
|                   | 6/28/2007              | ND ND      |                  | 0.049 (B)          | 39             | 0.00064 (B)   | ND          | ND                 | 4.2        | 9.8      | 0.0014 (B) | 22      | ND      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.7   | ND          | 0.17  |
|                   | 9/11/2007              | ND ND      | ND<br>ND         | 0.019 (B)          | 10             | ND            | ND          | 0.0000056 (B)      | 0.93 (B)   | 2.6      | ND         | 3.3     | ND      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.57  | ND          | 0.075 |
|                   | 11/26/2007             | ND ND      | ND<br>ND         | 0.033 (B)          | 21             | ND            | ND          | 0.00001            | 1.7        | 5.1      | 0.0035 (B) | 7.5     | ND      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.97  | ND          | 0.084 |
| SW-2              | 2/26/2008              | ND         | ND<br>ND         | 0.044 (B)<br>0.051 | 35             | 0.0005 (B)    | ND          | 0.00027 (B)        | 2.9        | 8.6      | 0.0027 (B) | 15      | ND      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.7   | ND          | 0.19  |
|                   | 4/18/2008              | ND         | ND<br>ND         |                    | 35             | 0.0005 (B)    | ND          | ND                 | 3.1        | 9.2      | 0.0023 (B) | 21      | ND      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2     | ND          | 0.15  |
|                   | 9/24/2008              | NT         | NT               | 0.045 (B)          | 35             | 0.0005 (B)    | ND          | ND                 | 3.4        | 9.1      | 0.0031 (B) | 23      | ND      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.8   | ND          | 0.14  |
|                   | 12/3/2008              | NT         | NT               | NT<br>NT           | 23             | NT            | NT          | NT                 | 1.9        | 5.1      | NT         | 9       | NT      | NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.99  | NT          | NT    |
|                   | 3/16/2009              | NT         | NT               |                    | 31             | NT            | NT          | NT                 | 3          | 7.5      | NT         | 15      | NT      | NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5   | NT          | NT    |
| 1                 | 6/24/2009              | 0.00078    | 0.0032           | NT<br>0.016        | 37<br>8.7      | NT<br>0.00046 | NT          | NT                 | 3.5        | 9.7      | NT         | 19      | NT      | NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.9   | NT          | NT    |
|                   | 9/24/2009              | NT         | 0.0032<br>NT     | 0.016<br>NT        |                | 0.00016       | 0.00041     | 0.000027           | 0.9        | 2.2      | 3.3        | 0.0019  | 0.00035 | NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.059 | NT          | NT    |
|                   | 12/17/2009             | NT NT      | NT               | NT NT              | 25 (J)         | NT            | NT          | NT                 | 1.4        | 5.5 (J)  | NT         | 9.4 (J) | NT      | NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.1   | NT          | NT    |
|                   | 3/9/2010               | 0.01       | 0.01             | 0.1                | 42             | NT<br>0.005   | NT<br>0.04  | NT                 | 3          | 9.8      | NT         | 19      | NT      | NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.9   | NT          | NT    |
| 3                 | 6/9/2010               | ND         | ND               | 0.012 (B)          | 8              |               | 0.01        | 0.0002             | 1 0.40 (D) | 1        | NT         | 1       | 0.003   | NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2     | 0.01        | NT    |
|                   | 9/9/2010               | NT         | NT               | NT NT              | 23             | ND            | ND<br>NT    | 0.000024 (B)       | 0.49 (B)   | 1.9      | NT         | 2.7     | ND      | NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.52  | ND          | NT    |
| 57593740******    | 6/10/2010              | ND<br>ND   | ND ND            | 0.012 (B)          |                | NT            | NT          | NT<br>0.000004 (D) | 1.7        | 5.3      | NT         | 9.2     | NT      | NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11    | NT          | NT    |
| SW-3              | 9/9/2010               | NT         | NT               | 0.012 (B)<br>NT    | 8.4<br>23      | ND<br>NT      | ND          | 0.000024 (B)       | 0.5 (B)    | 1.9      | NT         | 2.7     | ND      | NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.49  | ND          | NT    |
| Detec             | tion Limits            | 0.01       | 0.01             | 0.1                | 1              | 0.005         | NT<br>0.01  | NT<br>0.0000       | 1.7        | 5.2      | NT<br>0.04 | 9.3     | NT      | NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.98  | NT          | NT    |
|                   | MCL*                   | 0.01       | 0.01             | 2                  | NE             |               |             | 0.0002             | 1          | 1        | 0.01       | 1       | 0.003   | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01  | 0.01        | 0.02  |
|                   | NOL                    | 0.01       | 0.01             | 4                  | INE            | 0.005         | 0.1         | 0.002              | NE         | NE       | NE         | NE      | 0.015   | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30    | NE          | NE    |

\*Maximum Contaminant Level – National Primary Drinking Water Regulations
ND – Non Detect
NE – Not Established

(B) – Detected above Instrument Detection Level but below Reported Detection Level

# Appendix H Anion and Cation Balances and Piper Diagram

### Piper Diagram CSMRI 2010 Quarter 4





| Water Type Dissolved Solids Density Conductivity Hardness (as CaCO <sub>3</sub> Total Carbonate Non-Carbonate | Ca-Cl<br>320.88 mg/kg<br>0.99727 g/cm<br>482 μmho/cm<br>182.12 mg/kg<br>136.52<br>45.602 | 3                | 320 mg/L<br>181.63 mg/L<br>136.15<br>45.477 |                             | Measured Calculated Measured Calculated |  |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------|---------------------------------------------|-----------------------------|-----------------------------------------|--|
| Primary Tests                                                                                                 |                                                                                          |                  |                                             |                             |                                         |  |
| Anion-Cation Balan                                                                                            | ice                                                                                      |                  |                                             |                             |                                         |  |
| Anions                                                                                                        |                                                                                          | 4.85             |                                             |                             |                                         |  |
| Cations                                                                                                       |                                                                                          | 5.37             |                                             |                             |                                         |  |
| % Difference                                                                                                  | 5.143                                                                                    |                  |                                             | Not within $\pm 2\%$        |                                         |  |
| Measured TDS = Calculated TDS                                                                                 |                                                                                          |                  |                                             |                             |                                         |  |
| Measured                                                                                                      |                                                                                          | 320.87<br>338.42 |                                             |                             |                                         |  |
|                                                                                                               |                                                                                          |                  |                                             |                             | 22 / 10 / 10                            |  |
| Ratio                                                                                                         | 0.948                                                                                    |                  |                                             | Not within range 1.0 to 1.2 |                                         |  |
| Measured EC = Cal                                                                                             | culated EC                                                                               | 400.0            | 20                                          |                             |                                         |  |
| Measured                                                                                                      |                                                                                          | 482.00           |                                             |                             |                                         |  |
| Calculated                                                                                                    |                                                                                          | 531.226          |                                             |                             | OF                                      |  |
| Ratio                                                                                                         |                                                                                          | 0.907            |                                             |                             | OK                                      |  |
| Secondary Tests Measured EC and I                                                                             | C                                                                                        |                  |                                             |                             |                                         |  |
| Anions                                                                                                        | on Sums:                                                                                 | 1.005            | 522                                         |                             | Within preferred range (0.9-            |  |
|                                                                                                               |                                                                                          | 1.005.           | 023                                         |                             | Within preferred range (0.9-            |  |
| 1.1)<br>Cations                                                                                               |                                                                                          | 1.114:           | 563                                         |                             | Not within preferred range              |  |
| (0.9-1.1)                                                                                                     |                                                                                          | 1.114.           | 303                                         |                             | Not within preferred range              |  |
| Calculated TDS to I                                                                                           | EC ratio                                                                                 | 0.702            |                                             |                             | Not within preferred range              |  |
| (0.55-0.7)                                                                                                    | EC Tatio                                                                                 | 0.702            |                                             |                             | 110t within preferred range             |  |
| Measured TDS to E                                                                                             | C ratio                                                                                  | 0.666            |                                             |                             | OK                                      |  |
| Organic Mass Balan                                                                                            |                                                                                          | 5.000            |                                             |                             |                                         |  |
| DOC ≥ Sum of Orga                                                                                             |                                                                                          |                  |                                             |                             |                                         |  |
| DOC unavailable                                                                                               |                                                                                          |                  |                                             |                             |                                         |  |
|                                                                                                               |                                                                                          |                  |                                             |                             |                                         |  |

| Water Type Dissolved Solids Density Conductivity Hardness (as CaCO | Ca-Cl<br>761.82 mg/kg<br>0.99761 g/cm<br>1011 µmho/cn<br>3)<br>560.94 mg/kg | n              | 760 mg/L<br>559.6 mg/L |  | Measured Calculated Measured Calculated |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------|------------------------|--|-----------------------------------------|
| Carbonate                                                          | 411.07                                                                      |                | 410.09                 |  |                                         |
| Non-Carbonate                                                      | 149.87                                                                      |                | 149.51                 |  |                                         |
|                                                                    |                                                                             |                |                        |  |                                         |
| Primary Tests<br>Anion-Cation Balar                                | ıce                                                                         |                |                        |  |                                         |
| Anions                                                             |                                                                             | 11.2           |                        |  |                                         |
| Cations                                                            |                                                                             | 13.7           |                        |  | NT                                      |
| % Difference                                                       | 1 1 / 1 mm c                                                                | 9.882          |                        |  | Not within $\pm$ 5%                     |
| Measured $TDS = C$                                                 | alculated TDS                                                               | 7/1 0          | 2.4                    |  |                                         |
| Measured                                                           |                                                                             | 761.8          |                        |  |                                         |
| Calculated                                                         |                                                                             | 817.2<br>0.932 |                        |  | Nat within names 1.0 to 1.2             |
| Ratio Measured EC = Calculated EC                                  |                                                                             |                |                        |  | Not within range 1.0 to 1.2             |
| Measured EC = Ca.                                                  | iculated EC                                                                 | 1011.          | 000                    |  |                                         |
|                                                                    |                                                                             |                |                        |  |                                         |
| Calculated<br>Ratio                                                |                                                                             | 1162.747       |                        |  | Not within pance 0.0 to 1.1             |
|                                                                    |                                                                             | 0.809          | 0.869                  |  | Not within range 0.9 to 1.1             |
| Secondary Tests Measured EC and 1                                  | fon Cumes                                                                   |                |                        |  |                                         |
| Anions                                                             | ion Sums.                                                                   | 1.107          | 010                    |  | Not within preferred range              |
| (0.9-1.1)                                                          |                                                                             | 1.107          | <i>)</i> 10            |  | 140t within preferred range             |
| Cations                                                            |                                                                             | 1.350          | 881                    |  | Not within preferred range              |
| (0.9-1.1)                                                          |                                                                             | 1.550          | 001                    |  | Tiot within professed range             |
| Calculated TDS to                                                  | EC ratio                                                                    | 0.808          |                        |  | Not within preferred range              |
| (0.55-0.7)                                                         | LO Tullo                                                                    | 0.000          |                        |  | Tion within processed things            |
| Measured TDS to E                                                  | C ratio                                                                     | 0.754          |                        |  | Not within preferred range              |
| (0.55-0.7)                                                         |                                                                             |                |                        |  | F                                       |
| Organic Mass Bala                                                  | nce                                                                         |                |                        |  |                                         |
| DOC ≥ Sum of Org                                                   |                                                                             |                |                        |  |                                         |
| Dissolved Organi                                                   |                                                                             | 1.500          | mg/L                   |  |                                         |
| Sum of Organics                                                    |                                                                             | 0.000          | mg/L                   |  | OK                                      |
|                                                                    |                                                                             |                |                        |  |                                         |

### **CSMRI-1B**

| Water Type Dissolved Solids Density Conductivity Hardness (as CaCO | Ca-Cl<br>701.71 mg/kg<br>0.99756 g/cm<br>1470 μmho/cn<br>3) | 3      | 700 mg/L    | Measured<br>Calculated<br>Measured |   |  |  |
|--------------------------------------------------------------------|-------------------------------------------------------------|--------|-------------|------------------------------------|---|--|--|
| Total                                                              | 585.73 mg/kg                                                | ,      | 584.31 mg/L | Calculated                         |   |  |  |
| Carbonate                                                          | 345.32                                                      |        | 344.47      |                                    |   |  |  |
| Non-Carbonate                                                      | 240.42                                                      |        | 239.83      |                                    |   |  |  |
|                                                                    |                                                             |        |             |                                    |   |  |  |
| Primary Tests                                                      |                                                             |        |             |                                    |   |  |  |
| Anion-Cation Balan                                                 | ice                                                         | 2/2/12 |             |                                    |   |  |  |
| Anions                                                             |                                                             | 11.4   |             |                                    |   |  |  |
| Cations                                                            |                                                             | 14.1   |             |                                    |   |  |  |
| % Difference                                                       |                                                             | 10.55  | 0           | Not within $\pm$ 5%                |   |  |  |
| Measured TDS = Calculated TDS                                      |                                                             |        |             |                                    |   |  |  |
| Measured                                                           | 701.7                                                       |        |             |                                    |   |  |  |
| Calculated                                                         | 833.7<br>0.842                                              |        |             |                                    |   |  |  |
| Ratio                                                              |                                                             |        |             | Not within range 1.0 to 1.2        |   |  |  |
| Measured $EC = Ca$                                                 | lculated EC                                                 |        |             |                                    |   |  |  |
| Measured                                                           |                                                             | 1470.  |             |                                    |   |  |  |
| Calculated                                                         |                                                             | 1223.  |             |                                    |   |  |  |
| Ratio                                                              |                                                             | 1.201  |             | Not within range 0.9 to 1.1        |   |  |  |
| Secondary Tests                                                    |                                                             |        |             |                                    |   |  |  |
| Measured EC and l                                                  | lon Sums:                                                   |        |             |                                    |   |  |  |
| Anions                                                             |                                                             | 0.778  | 797         | Not within preferred range         |   |  |  |
| (0.9-1.1)                                                          |                                                             |        |             |                                    |   |  |  |
| Cations                                                            |                                                             | 0.962  | 506         | Within preferred range (0.9        | - |  |  |
| 1.1)                                                               |                                                             |        |             |                                    |   |  |  |
| Calculated TDS to                                                  | EC ratio                                                    | 0.567  | 8           | OK                                 |   |  |  |
| Measured TDS to I                                                  | EC ratio                                                    | 0.477  | 6.          | Not within preferred range         |   |  |  |
| (0.55-0.7)                                                         |                                                             |        |             |                                    |   |  |  |
| Organic Mass Bala                                                  | nce                                                         |        |             |                                    |   |  |  |
| DOC ≥ Sum of Org                                                   | anics                                                       |        |             |                                    |   |  |  |
| Dissolved Organi                                                   | c Carbon                                                    | 1.500  | mg/L        |                                    |   |  |  |
| Sum of Organics                                                    |                                                             | 0.000  | mg/L        | OK                                 |   |  |  |
|                                                                    |                                                             |        |             |                                    |   |  |  |

.

| Water Type Dissolved Solids Density Conductivity Hardness (as CaCO Total Carbonate Non-Carbonate | Ca-HCO <sub>3</sub> 421.12 mg/kg 0.99735 g/cm 567 μmho/cm 3) 381.35 mg/kg 381.35 0.0 | 3              | 420 mg/L<br>380.34 mg/L<br>380.34<br>0.0 | Measured Calculated Measured Calculated |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------|------------------------------------------|-----------------------------------------|
| Primary Tests Anion-Cation Balan Anions                                                          | nce                                                                                  | 6.49           |                                          |                                         |
| Cations % Difference                                                                             |                                                                                      | 8.68<br>14.47  | 1                                        | Not within ± 2%                         |
| Measured TDS = C                                                                                 | Calculated TDS                                                                       |                | -                                        |                                         |
| Measured                                                                                         |                                                                                      | 421.1<br>557.9 |                                          |                                         |
| Calculated                                                                                       |                                                                                      |                |                                          | Not within range 1.0 to 1.2             |
| Measured EC = Ca                                                                                 | loulated FC                                                                          | 0.755          |                                          | Not within range 1.0 to 1.2             |
| Measured  Measured                                                                               | iculated EC                                                                          | 567.0          | 00                                       |                                         |
| Calculated                                                                                       |                                                                                      | 684.4          |                                          |                                         |
| Ratio                                                                                            |                                                                                      | 0.828          |                                          | Not within range 0.9 to 1.1             |
| Secondary Tests                                                                                  |                                                                                      |                |                                          | e e                                     |
| Measured EC and                                                                                  | Ion Sums:                                                                            |                |                                          |                                         |
| Anions                                                                                           |                                                                                      | 1.143          | 864                                      | Not within preferred range              |
| (0.9-1.1)                                                                                        |                                                                                      |                |                                          |                                         |
| Cations                                                                                          |                                                                                      | 1.530          | 942                                      | Not within preferred range              |
| (0.9-1.1)                                                                                        |                                                                                      |                |                                          |                                         |
| Calculated TDS to                                                                                | EC ratio                                                                             | 0.984          |                                          | Not within preferred range              |
| (0.55-0.7)                                                                                       | n.c:                                                                                 | 0.742          |                                          | Not within and formed against           |
| Measured TDS to I                                                                                | EC ratio                                                                             | 0.743          |                                          | Not within preferred range              |
| (0.55-0.7)                                                                                       | noo                                                                                  |                |                                          |                                         |
| Organic Mass Bala<br>DOC≥Sum of Org                                                              |                                                                                      |                |                                          |                                         |
| DOC unavailable                                                                                  |                                                                                      |                |                                          |                                         |
|                                                                                                  |                                                                                      |                |                                          |                                         |

| Water Type Dissolved Solids Density Conductivity Hardness (as CaCO | Ca-Cl<br>862 mg/kg<br>0.99768 g/cm<br>1071 μmho/cr |       | 860 mg/L    | Measured<br>Calculated<br>Measured |
|--------------------------------------------------------------------|----------------------------------------------------|-------|-------------|------------------------------------|
| Total                                                              | 631.33 mg/kg                                       |       | 629.87 mg/L | Calculated                         |
| Carbonate                                                          | 493.25                                             | ,     | 492.1       | Calculated                         |
| Non-Carbonate                                                      | 138.08                                             |       | 137.76      |                                    |
| Non-Caroonate                                                      | 130.00                                             |       | 137.70      |                                    |
|                                                                    |                                                    |       |             |                                    |
| Primary Tests                                                      |                                                    |       |             |                                    |
| Anion-Cation Balan                                                 | nce                                                |       |             |                                    |
| Anions                                                             |                                                    | 12.5  |             |                                    |
| Cations                                                            |                                                    | 15.5  |             | W. 64                              |
| % Difference                                                       |                                                    | 10.78 | 8           | Not within $\pm$ 5%                |
| Measured TDS = C                                                   | alculated TDS                                      |       |             |                                    |
| Measured                                                           |                                                    | 861.9 |             |                                    |
| Calculated                                                         |                                                    | 937.9 | 5.7         |                                    |
| Ratio                                                              |                                                    |       |             | Not within range 1.0 to 1.2        |
| Measured EC = Ca                                                   | lculated EC                                        |       |             |                                    |
| Measured                                                           |                                                    | 1071. |             |                                    |
| Calculated                                                         |                                                    | 1285. | 051         |                                    |
| Ratio                                                              |                                                    | 0.833 |             | Not within range 0.9 to 1.1        |
| Secondary Tests                                                    |                                                    |       |             |                                    |
| Measured EC and 1                                                  | Ion Sums:                                          |       |             |                                    |
| Anions                                                             |                                                    | 1.165 | 714         | Not within preferred range         |
| (0.9-1.1)                                                          |                                                    |       |             |                                    |
| Cations                                                            |                                                    | 1.447 | 636         | Not within preferred range         |
| (0.9-1.1)                                                          |                                                    |       |             |                                    |
| Calculated TDS to                                                  | EC ratio                                           | 0.876 |             | Not within preferred range         |
| (0.55-0.7)                                                         |                                                    |       |             |                                    |
| Measured TDS to H                                                  | EC ratio                                           | 0.805 | 5.          | Not within preferred range         |
| (0.55-0.7)                                                         |                                                    |       |             |                                    |
| Organic Mass Bala                                                  |                                                    |       |             |                                    |
| DOC ≥ Sum of Org                                                   |                                                    |       |             |                                    |
| Dissolved Organi                                                   | c Carbon                                           |       | mg/L        |                                    |
| Sum of Organics                                                    |                                                    | 0.000 | mg/L        | OK                                 |
|                                                                    |                                                    |       |             |                                    |

| Water Type                       | Ca-Cl                     |       |                 |                                 |
|----------------------------------|---------------------------|-------|-----------------|---------------------------------|
| <b>Dissolved Solids</b>          | 811.91 mg/kg              | ĺ     | 810 mg/L        | Measured                        |
| Density                          | 0.99764 g/cm <sup>3</sup> |       |                 | Calculated                      |
| Conductivity                     | 964 µmho/cm               | Ĭ     |                 | Measured                        |
| Hardness (as CaCO-               | 3)                        |       |                 |                                 |
| Total                            | 590.08 mg/kg              |       | 588.69 mg/L     | Calculated                      |
| Carbonate                        | 378.17                    |       | 377.28          |                                 |
| Non-Carbonate                    | 211.91                    |       | 211.41          |                                 |
|                                  |                           |       |                 |                                 |
| Duimanu Taata                    |                           |       |                 |                                 |
| Primary Tests Anion-Cation Balar |                           |       |                 |                                 |
| Anions Anions                    | ice                       | 11.9  |                 |                                 |
| Cations                          |                           | 14.6  |                 |                                 |
| % Difference                     | 9.989                     |       | Not within ± 5% |                                 |
| Measured TDS = Calculated TDS    |                           |       |                 | Not within ± 3/6                |
| Measured  Measured               | alculated 1DS             | 811.9 | 13              |                                 |
| Calculated                       | 857.3                     |       |                 |                                 |
| Ratio                            |                           |       | 20.             | Not within range 1.0 to 1.2     |
| Measured EC = Calculated EC      |                           |       |                 | Not within range 1.0 to 1.2     |
| Measured                         | iculated EC               | 964.0 | 00              |                                 |
| Calculated                       |                           | 1240. |                 |                                 |
| Ratio                            |                           | 0.777 |                 | Not within range 0.9 to 1.1     |
| Secondary Tests                  |                           | 0.777 |                 | . (62 (1,011) 190/84 013 10 111 |
| Measured EC and I                | on Sums:                  |       |                 |                                 |
| Anions                           |                           | 1.238 | 313             | Not within preferred range      |
| (0.9-1.1)                        |                           |       |                 | 1                               |
| Cations                          |                           | 1.513 | 142             | Not within preferred range      |
| (0.9-1.1)                        |                           |       |                 |                                 |
| Calculated TDS to                | EC ratio                  | 0.889 |                 | Not within preferred range      |
| (0.55-0.7)                       |                           |       |                 | , <u> </u>                      |
| Measured TDS to E                | C ratio                   | 0.842 |                 | Not within preferred range      |
| (0.55-0.7)                       |                           |       |                 |                                 |
| Organic Mass Bala                | nce                       |       |                 |                                 |
| DOC ≥ Sum of Org                 |                           |       |                 |                                 |
| Dissolved Organi                 | c Carbon                  | 1.600 |                 |                                 |
| Sum of Organics                  |                           | 0.000 | mg/L            | OK                              |
|                                  |                           |       |                 |                                 |

| Water Type Dissolved Solids Density Conductivity Hardness (as CaCO <sub>3</sub> Total Carbonate Non-Carbonate | Ca-Cl<br>811.91 mg/kg<br>0.99764 g/cm<br>1087 µmho/cr<br>3)<br>610.45 mg/kg<br>460.38<br>150.07 | n     | 810 mg/L<br>609.01 mg/L<br>459.3<br>149.72 | Measured Calculated Measured Calculated |
|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------|--------------------------------------------|-----------------------------------------|
| Primary Tests                                                                                                 |                                                                                                 |       |                                            |                                         |
| Anion-Cation Balar                                                                                            | ice                                                                                             |       |                                            |                                         |
| Anions                                                                                                        |                                                                                                 | 12.2  |                                            |                                         |
| Cations                                                                                                       |                                                                                                 | 14.7  |                                            |                                         |
| % Difference                                                                                                  |                                                                                                 | 9.108 |                                            | Not within $\pm$ 5%                     |
| Measured TDS = C                                                                                              | alculated TDS                                                                                   |       |                                            |                                         |
| Measured                                                                                                      |                                                                                                 | 811.9 |                                            |                                         |
| Calculated                                                                                                    | 889.3                                                                                           |       | 96                                         |                                         |
| Ratio                                                                                                         |                                                                                                 | 0.913 |                                            | Not within range 1.0 to 1.2             |
| Measured EC = Cal                                                                                             | culated EC                                                                                      | 1005  | 0.00                                       |                                         |
| Measured                                                                                                      |                                                                                                 | 1087. |                                            |                                         |
| Calculated                                                                                                    |                                                                                                 | 1245. | 614                                        | 21.4.2412                               |
| Ratio                                                                                                         |                                                                                                 | 0.873 |                                            | Not within range 0.9 to 1.1             |
| Secondary Tests Measured EC and I                                                                             | on Sume                                                                                         |       |                                            |                                         |
| Anions                                                                                                        | on Sums.                                                                                        | 1.123 | 720                                        | Not within preferred range              |
| (0.9-1.1)                                                                                                     |                                                                                                 | 1.125 | 120                                        | Not within preferred range              |
| Cations                                                                                                       |                                                                                                 | 1.348 | 922                                        | Not within preferred range              |
| (0.9-1.1)                                                                                                     |                                                                                                 |       |                                            |                                         |
| Calculated TDS to 3                                                                                           | EC ratio                                                                                        | 0.818 |                                            | Not within preferred range              |
| (0.55-0.7)                                                                                                    |                                                                                                 |       |                                            |                                         |
| Measured TDS to E                                                                                             | C ratio                                                                                         | 0.747 |                                            | Not within preferred range              |
| (0.55-0.7)                                                                                                    |                                                                                                 |       |                                            |                                         |
| Organic Mass Balar                                                                                            |                                                                                                 |       |                                            |                                         |
| $DOC \ge Sum of Org$                                                                                          |                                                                                                 |       |                                            |                                         |
| Dissolved Organic                                                                                             | c Carbon                                                                                        |       | mg/L                                       | OV                                      |
| Sum of Organics                                                                                               |                                                                                                 | 0.000 | mg/L                                       | OK                                      |
|                                                                                                               |                                                                                                 |       |                                            |                                         |

### SW-1

| Ca-SO <sub>4</sub>            |                                                                                                         | *:                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                               |  |  |  |
|-------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 200.57 mg/kg                  |                                                                                                         | 200 mg/L                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                 | Measured                                                                                                                                                                                                                                                                                                      |  |  |  |
|                               |                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 | Calculated                                                                                                                                                                                                                                                                                                    |  |  |  |
|                               |                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 | Measured                                                                                                                                                                                                                                                                                                      |  |  |  |
|                               |                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                               |  |  |  |
|                               |                                                                                                         | 129.07 mg/L                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                 | Calculated                                                                                                                                                                                                                                                                                                    |  |  |  |
|                               |                                                                                                         | 70.535                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                               |  |  |  |
| 58.696                        |                                                                                                         | 58.531                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                               |  |  |  |
|                               |                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                               |  |  |  |
|                               |                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                               |  |  |  |
| Ce                            |                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                               |  |  |  |
|                               | 3                                                                                                       |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                               |  |  |  |
|                               |                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                               |  |  |  |
|                               |                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 | Not within ± 0.2meq/L                                                                                                                                                                                                                                                                                         |  |  |  |
| Measured TDS = Calculated TDS |                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                               |  |  |  |
|                               | 200.56                                                                                                  | 65                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                               |  |  |  |
| Calculated                    |                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                               |  |  |  |
| Ratio                         |                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 | Not within range 1.0 to 1.2                                                                                                                                                                                                                                                                                   |  |  |  |
| culated EC                    |                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                               |  |  |  |
|                               |                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                               |  |  |  |
|                               |                                                                                                         | 26                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                               |  |  |  |
|                               | 0.540                                                                                                   |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 | Not within range 0.9 to 1.1                                                                                                                                                                                                                                                                                   |  |  |  |
|                               |                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                               |  |  |  |
| on Sums:                      | 1 (00)                                                                                                  | 0.15                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                 | N                                                                                                                                                                                                                                                                                                             |  |  |  |
|                               | 1.6289                                                                                                  | 945                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                 | Not within preferred range                                                                                                                                                                                                                                                                                    |  |  |  |
|                               | 1 7/7                                                                                                   | 510                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                 | Not within mafamad non so                                                                                                                                                                                                                                                                                     |  |  |  |
|                               | 1./6/.                                                                                                  | 510                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                 | Not within preferred range                                                                                                                                                                                                                                                                                    |  |  |  |
| TC watio                      | 1 120                                                                                                   |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 | Not within preferred range                                                                                                                                                                                                                                                                                    |  |  |  |
| SC ratio                      | 1.136                                                                                                   |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 | Not within preferred range                                                                                                                                                                                                                                                                                    |  |  |  |
| Cratio                        |                                                                                                         |                                                                                                                                                                                                                                                 | Not within preferred range                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                               |  |  |  |
| Clauo                         | 1.000                                                                                                   |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 | 110t within preferred range                                                                                                                                                                                                                                                                                   |  |  |  |
| ice                           |                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                               |  |  |  |
|                               |                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                               |  |  |  |
|                               | 1.000                                                                                                   | mg/L                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                               |  |  |  |
|                               |                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                 | OK                                                                                                                                                                                                                                                                                                            |  |  |  |
|                               |                                                                                                         | =                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                               |  |  |  |
|                               | 200.57 mg/kg<br>0.99718 g/cm <sup>-</sup><br>184 µmho/cm<br>)<br>129.43 mg/kg<br>70.734<br>58.696<br>ce | 200.57 mg/kg 0.99718 g/cm <sup>3</sup> 184 μmho/cm ) 129.43 mg/kg 70.734 58.696  ce 3 3.25 4.080 alculated TDS 200.56 209.39 0.958 culated EC 184.00 340.80 0.540  on Sums: 1.6289 1.7679 EC ratio 1.138 C ratio 1.090 nce anics C Carbon 1.000 | 200.57 mg/kg 200 mg/L 0.99718 g/cm <sup>3</sup> 184 μmho/cm ) 129.43 mg/kg 129.07 mg/L 70.734 70.535 58.696 58.531  ce 3 3.25 4.080 alculated TDS 200.565 209.390 0.958 culated EC 184.000 340.826 0.540  on Sums: 1.628945 1.767510  EC ratio 1.090  nce anics | 200.57 mg/kg 0.99718 g/cm <sup>3</sup> 184 μmho/cm ) 129.43 mg/kg 70.734 70.535 58.696  129.07 mg/L 70.535 58.696  58.531  ce  3 3.25 4.080 alculated TDS  200.565 209.390 0.958 culated EC  184.000 340.826 0.540  on Sums:  1.628945 1.767510  EC ratio 1.138  C ratio 1.090  nce anics c Carbon 1.000 mg/L |  |  |  |

### SW-2

| 2                  |                          |         |             |                             |                             |
|--------------------|--------------------------|---------|-------------|-----------------------------|-----------------------------|
| Water Type         | Ca-SO <sub>4</sub>       |         |             |                             |                             |
| Dissolved Solids   | 210.59 mg/kg             |         | 210 mg/L    |                             | Measured                    |
| Density            | $0.99719 \text{ g/cm}^3$ |         |             |                             | Calculated                  |
| Conductivity       | 195 µmho/cm              | k       |             |                             | Measured                    |
| Hardness (as CaCO  | 3)                       |         |             |                             |                             |
| Total              | 136.5 mg/kg              |         | 136.12 mg/L |                             | Calculated                  |
| Carbonate          | 75.669                   |         | 75.456      |                             |                             |
| Non-Carbonate      | 60.833                   |         | 60.662      |                             |                             |
|                    |                          |         |             |                             |                             |
| Primary Tests      |                          |         |             |                             |                             |
| Anion-Cation Balar | ice                      |         |             |                             |                             |
| Anions             | 100                      | 2.96    |             |                             |                             |
| Cations            |                          | 3.39    |             |                             |                             |
| % Difference       | 6.852                    |         |             | Not within ± 0.2meq/L       |                             |
| Measured TDS = C   | alculated TDS            |         |             |                             | ,                           |
| Measured           |                          | 210.5   | 92          |                             |                             |
| Calculated         |                          | 221.9   | 24          |                             |                             |
| Ratio              | 0.949                    |         |             | Not within range 1.0 to 1.2 |                             |
| Measured EC = Ca   | lculated EC              |         |             |                             |                             |
| Measured           |                          | 195.0   | 00          |                             |                             |
| Calculated         |                          | 349.757 |             |                             |                             |
| Ratio              |                          | 0.558   |             |                             | Not within range 0.9 to 1.1 |
| Secondary Tests    |                          |         |             |                             |                             |
| Measured EC and I  | ion Sums:                |         |             |                             |                             |
| Anions             |                          | 1.517   | 019         |                             | Not within preferred range  |
| (0.9-1.1)          |                          |         |             |                             |                             |
| Cations            |                          | 1.740   | 206         |                             | Not within preferred range  |
| (0.9-1.1)          |                          |         |             |                             |                             |
| Calculated TDS to  | EC ratio                 | 1.138   |             |                             | Not within preferred range  |
| (0.55-0.7)         |                          |         |             |                             |                             |
| Measured TDS to E  | to EC ratio 1.080        |         |             |                             | Not within preferred range  |
| (0.55-0.7)         |                          |         |             |                             |                             |
| Organic Mass Bala  |                          |         |             |                             |                             |
| DOC ≥ Sum of Org   |                          | 1 000   | /Т          |                             |                             |
| Dissolved Organi   | c Carbon                 | 1.000   |             |                             | OK                          |
| Sum of Organics    |                          | 0.000   | mg/L        |                             | UK                          |
|                    |                          |         |             |                             |                             |

### SW-3

| Water Type             | Ca-SO <sub>4</sub>                      |                 |             |                               |
|------------------------|-----------------------------------------|-----------------|-------------|-------------------------------|
| Dissolved Solids       | 210.59 mg/kg                            |                 | 210 mg/L    | Measured                      |
| Density                | $0.99719 \text{ g/cm}^3$                |                 | J           | Calculated                    |
| Conductivity           | 194 μmho/cm                             |                 |             | Measured                      |
| Hardness (as CaCO      | A 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |                 |             |                               |
| Total                  | 129.43 mg/kg                            |                 | 129.07 mg/L | Calculated                    |
| Carbonate              | 74.024                                  |                 | 73.816      |                               |
| Non-Carbonate          | 55.406                                  |                 | 55.25       |                               |
|                        |                                         |                 |             |                               |
| Primary Tests          |                                         |                 |             |                               |
| Anion-Cation Balar     | ıce                                     |                 |             |                               |
| Anions                 |                                         | 2.98            |             |                               |
| Cations                |                                         | 3.3             |             | 31 ( 21 : 402 )               |
| % Difference           | 1 1 / 1mpc                              | 4.973           |             | Not within $\pm 0.2$ meq/L    |
| Measured $TDS = C$     | alculated TDS                           | 210 5           | 00          |                               |
| Measured               |                                         | 210.59          |             |                               |
| Calculated             |                                         | 216.40<br>0.973 | 08          | Not within range 1.0 to 1.2   |
| Ratio Measured EC = Ca | loulated EC                             | 0.973           |             | Not within range 1.0 to 1.2   |
| Measured EC – Ca       | iculated EC                             | 194.0           | 00          |                               |
| Calculated             |                                         | 344.3           |             |                               |
| Ratio                  |                                         | 0.563           | 55          | Not within range 0.9 to 1.1   |
| Secondary Tests        |                                         | 0.505           |             | Titot within range 0.7 to 1.1 |
| Measured EC and I      | on Sums:                                |                 |             |                               |
| Anions                 |                                         | 1.537           | 916         | Not within preferred range    |
| (0.9-1.1)              |                                         |                 |             |                               |
| Cations                |                                         | 1.698           | 879         | Not within preferred range    |
| (0.9-1.1)              |                                         |                 |             |                               |
| Calculated TDS to      | EC ratio                                | 1.116           |             | Not within preferred range    |
| (0.55-0.7)             |                                         |                 |             |                               |
| Measured TDS to E      | C ratio                                 | 1.086           |             | Not within preferred range    |
| (0.55-0.7)             |                                         |                 |             |                               |
| Organic Mass Bala      |                                         |                 |             |                               |
| DOC≥Sum of Org         | anics                                   |                 |             |                               |
| DOC unavailable        |                                         |                 |             |                               |