Monitoring Report for CSMRI Site Third Quarter 2010

Prepared for:

Colorado School of Mines Golden, Colorado

Prepared by:

The S.M. Stoller Corporation Broomfield, Colorado

November 2010

TABLE OF CONTENTS

1. INT	RODUCTION	1
2. SAN	APLING AND ANALYSIS	1
2.1 G	GROUNDWATER SAMPLING	2
	URFACE WATER SAMPLING	
	NALYSES	
2.3.1		
2.3.2	~ · ·	
2.4 H	IEALTH AND SAFETY PROGRAM	4
3. RES	SULTS	4
3.1 G	FROUNDWATER CONDITIONS	5
3.2 G	FROUNDWATER QUALITY	5
3.2.1		
3.2.2		
3.2.3	\sim \sim \sim	
3.2.4	1	
3.3 S	URFACE WATER QUALITY	8
4. FUT	TURE ACTIVITIES	8
5. REF	FERENCES	9
	LIST OF TABLES	
TARIE 2-1	SUMMARY OF RADIOISOTOPES IN GROUNDWATER	10
	SUMMARY OF METALS IN GROUNDWATER	
	SUMMARY OF ANIONS AND CATIONS IN GROUNDWATER	
	SUMMARY OF RADIOISOTOPES IN SURFACE WATER	
	SUMMARY OF METALS IN SURFACE WATER	
	SUMMARY OF ANIONS AND CATIONS IN SURFACE WATER	
	CSMRI HISTORICAL GROUNDWATER DATA (PREVIOUS CONSULTANTS)	
	LIST OF FIGURES	
Figure 1	GROUNDWATER POTENTIOMETRIC ELEVATION MAP – SEPTEMBER 2010	
Figure 2	CSMRI ALL MONITOR WELLS HYDROGRAPH	
Figure 3	CSMRI-2 Hydrograph	
Figure 4	CLEAR CREEK GAUGING GRAPH (APRIL - JUNE 2010)	
FIGURE 5	CSMRI-4 HISTORICAL TOTAL URANIUM CONCENTRATION (1991 – 2010)	
FIGURE 6	CSMRI-4 TOTAL URANIUM CONCENTRATION AND POTENTIOMETRIC ELEVATION	
Figure 7	CSMRI-8 TOTAL URANIUM CONCENTRATION AND POTENTIOMETRIC ELEVATION	
	LIST OF APPENDICES	
APPENDIX		
APPENDIX APPENDIX		
APPENDIX		
APPENDIX		
APPENDIX		
	-	

1. Introduction

This report presents the third quarter (July, August, September) 2010 results for groundwater and surface water monitoring conducted at the Colorado School of Mines Research Institute (CSMRI) site in Golden, Colorado. The monitoring was conducted by the S.M. Stoller Corporation (Stoller).

2. Sampling and Analysis

Stoller obtained quarterly samples of groundwater and surface water on September 8, 9, and 10, 2010, from 11 groundwater monitor wells and three Clear Creek surface water sample locations. Groundwater quality samples were obtained on September 8 (CSMRI-1B, CSMRI-6C, CSMRI-8, CSMRI-10, and CSMRI-11B); September 9 (CSMRI-1); and September 10 (CSMRI-2, CSMRI-4, CSMRI-5, and CSMRI-7B). Monitor wells CSMRI-2 and CSMRI-7B required purging on one day and sample collection on subsequent visits over the following days to obtain sufficient sample volume.

Clear Creek surface water samples were collected on September 9, 2010, from sampling locations SW-1, SW-2, and SW-3.

All aqueous samples were placed on ice in coolers and couriered to ALS Laboratory Group in Fort Collins, Colorado or to TestAmerica, Inc. in Arvada, Colorado for analyses.

Figure 1 presents the monitor well and Clear Creek surface water sample locations at the CSMRI site. The figure also shows the groundwater potentiometric surface elevations posted adjacent to each monitor well location. Potentiometric surface elevations are based on depth to groundwater relative to the surveyed top-of-casing and represent groundwater elevations as measured before purging. Groundwater levels are measured at each well to the nearest 1/100th of a foot (0.01) prior to purging and sample collection. The potentiometric surface from surveyed piezometers installed in test pits within the flood plain have been integrated into Figure 1 to further define the direction of groundwater flow. The figure shows a northeasterly component of flow on the bench terrace area and then a northerly component of flow as groundwater flows over the bench terrace slope and into the flood plain area. The figure suggests uniform flow occurring along the interface of surficial deposits and bedrock down the terrace slope; however, preferential pathways resulting from an uneven bedrock/alluvial interface are thought to exist explaining the occasionally dry well CSMRI-7B.

Figure 2 presents hydrographs of groundwater potentiometric elevations for monitor wells CSMRI-1, CSMRI-1B, CSMRI-4, CSMRI-5, CSMRI-6B (abandoned July 2008), CSMRI-6C, CSMRI-7B, CSMRI-8, CSMRI-9, CSMRI-10, CSMRI-11 (abandoned July 2008), and CSMRI-11B. Gaps in the graph denote the intermittent presence of groundwater in the monitor wells because occasionally groundwater is below the bottom depth of a monitor well, even though the bottom of the screened interval is within the underlying bedrock. Monitor wells included on Figure 2 are located within the CSMRI site proper and illustrate historical trends in the water table fluctuations throughout the site.

Figure 3 is a hydrograph of monitor well CSMRI-2. Monitor well CSMRI-2 is located near the southeast corner of the freshman parking lot on West Campus Drive and the former Welch Ditch. CSMRI-2 is upgradient of the CSMRI site and historically has been used to provide background groundwater quality conditions. Early potentiometric data reflect the use of and leakage from the nearby irrigation ditch. For example, this hydrograph shows a marked seasonal rise in the potentiometric surface during the summer months in 2005 and 2006. In 2007, the Welch Ditch was diverted upstream of CSMRI and piped to Washington Avenue in Golden and then to downditch users. From late 2006 through late 2007, the water level remained elevated. From early 2008 through mid-2010, water levels reflect a more typical seasonal pattern of fluctuation.

2.1 Groundwater Sampling

Water quality samples were collected following the procedure outlined in Appendix A, Groundwater Sampling Procedures.

Sample collection forms provide a record of water quality parameters as measured in the field as groundwater was purged from monitor wells. These forms also indicate the volume of water removed from each well. Sample collection forms are provided as Appendix B. After three casing volumes of groundwater were purged, water samples were filtered through a 0.45 micron (μ) filter, collected in laboratory-provided containers, and preserved in the field as appropriate for the analyte and analytical method. Monitor wells CSMRI-1B, CSMRI-2, and CSMRI-7B were purged dry before three casing volumes of groundwater were removed. Monitor wells CSMRI-1B and CSMRI-7B required multiple visits to collect sufficient sample volume because they recharge so slowly.

2.2 Surface Water Sampling

Surface water samples from Clear Creek were collected on September 9, 2010, from two locations: one upstream of the site (SW-1) and one downstream of the site (SW-2) (Figure 1). Clear Creek surface water sample SW-3 was collected at a location between the upstream and downstream sample locations and due north of monitor well CSMRI-8. Surface water at this location was sampled on September 9, 2010. All surface water samples were collected following the procedure outlined in Appendix C, Surface Water Sampling Procedures. Surface water samples are filtered through a 0.45μ filter, collected in laboratory-provided containers, and preserved in the field as appropriate for the analyte and analytical method.

Discharge data of stream flow for Clear Creek, as measured by the U.S. Geological Survey (USGS), at Clear Creek gauging station #06719505 (USGS Surface Water Online Database) for the quarter from July 1, 2010 through September 30, 2010 are presented as Figure 4. Tabulated stream flow data for the time period of September 7, 8, 9, and 10, 2010 indicate the mean stream flow was recorded at 91, 90, 88, and 89 cubic feet per second, respectively.

2.3 Analyses

All samples collected were analyzed using a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA)-certified analytical laboratory. The results received from the laboratory were evaluated based on the following parameters:

• Data completeness

- Holding times and preservation
- Instrument initial calibrations
- Instrument performance checks
- Preparation blanks
- Duplicate sample results
- Laboratory control sample results
- Compound quantization and reporting limits (full validation only)

As a quality control/quality assurance (QA/QC) check, an equipment blank sample was collected in the field by pouring distilled water through a sample bailer. The equipment blank sample was submitted for the identical analytical parameters as the groundwater and surface water samples. The results of the equipment blank analyses did not identify interferences or anomalies in the laboratory data.

Results of the QA/QC review did not identify any significant issues regarding analytical laboratory results. The Ra-228 analytical results from monitor well CSMRI-7B is estimated (J) due to the minimum detectable activity (MDA) being greater than the required detection limit (RDL).

Data validation results are presented in Appendix D.

2.3.1 Groundwater Quality Analyses

Summaries of groundwater results for radioisotopes, metals, and inorganic anions and cations are presented in Table 2-1, Table 2-2, and Table 2-3, respectively. Groundwater parameters are reported as picoCuries per liter (pCi/L) for radioisotopes, micrograms per liter (μ g/L) for uranium and iron, and milligrams per liter (μ g/L) for all other metals and ions.

ALS Laboratory Group in Fort Collins, Colorado and TestAmerica Laboratories, Inc. in Arvada, Colorado conducted laboratory analyses of the aqueous samples. Analytical samples submitted to ALS were analyzed for radium isotopes (Ra-226 and Ra-228), uranium (U), calcium (Ca), potassium (K), magnesium (Mg), sodium (Na), phosphorus (P), chloride (Cl), sulfate (SO₄), carbonate as calcium carbonate (CO₃), bicarbonate as calcium carbonate (HCO₃), alkalinity, and dissolved organic carbon (DOC). Pursuant to an agreement with the Colorado Department of Public Health and Environment (CDPHE), a broader analyte list of metals is sampled only during the second quarter (June) sampling event. Specifically these metals include: silver (Ag), arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), mercury (Hg), and vanadium (V).

Analytical samples submitted to TestAmerica were tested for the presence of nitrate (NO₃), nitrite (NO₂), ferrous (Fe²) iron, ferric (Fe³) iron, sulfide and total dissolved solids (TDS). TestAmerica conducts the short holding time analyses because of their close proximity to the CSMRI site.

Groundwater samples were measured onsite for temperature, pH, specific conductance, dissolved oxygen (DO), oxidation-reduction potential (ORP), and turbidity as nephlometer turbidity units (NTU) during the purging and sampling process using a Horiba U-22 multi-probe. Onsite

parameters measurements of groundwater and purge volumes are presented on the sample collection forms in Appendix B.

From the first quarter of monitoring in February 2005 until the last quarter of 2006, the concentration of total uranium in µg/L was analyzed using ALS (formerly Paragon) method 714R9. With this method, the concentration of uranium is calculated based on the activity of the uranium isotopes U-234, U-235, and U-238. Effective since the first quarter 2007 sampling event, the concentration of uranium has been analyzed using mass spectrometry method EPA 6020, which analyzes for total uranium and not for the activity of the individual isotopes.

Analytical data from ALS and TestAmerica were transmitted as an electronic data deliverable (EDD) and are included in Appendix E on a compact disk. Data are formatted as series of Excel spreadsheets. Appendix F presents copies of the chain-of-custody for the CSMRI samples.

2.3.2 Surface Water Analyses

Clear Creek surface water results for radioisotopes, metals, and inorganic anions and cations are presented in Table 2-4, Table 2-5, and Table 2-6, respectively. Surface water parameters are reported as pCi/L for radioisotopes, µg/L for uranium and iron, and mg/L for all other metals and ions. Surface water samples were measured onsite for temperature, pH, specific conductance, DO, ORP, and NTU as the sampling was conducted. Onsite parameter measurements are presented on the sample collection forms in Appendix B.

2.4 Health and Safety Program

Stoller implements a program to protect the health and safety of field personnel during the environmental monitoring at the CSMRI site. This program has been developed in accordance with requirements of 29 Code of Federal Regulations (CFR) 1910.120.

3. Results

Groundwater analytical results for samples collected from the CSMRI site during the third quarter 2010 for radioisotopes, metals, and anions and cations are summarized on Table 2-1, Table 2-2, and Table 2-3, respectively. Surface water analytical results for samples collected from the CSMRI site during the third quarter 2010 for radioisotopes, metals, and anions and cations are summarized on Table 2-4, Table 2-5, and Table 2-6, respectively. Table 2-7 presents historical data collected by previous consultants for select contaminants of potential concern in groundwater at the site. The historical uranium data presented in Table 2-7 are presented in pCi/L as "activity," more recent (2005 through 2010) analytical data are presented in µg/L as "mass concentration." The December 7, 2000, *Federal Register* discusses the final uranium maximum contaminant level (MCL) and presents a conversion factor of a geometric average mass: activity ratio of 0.9 pCi/g for values near the National Primary Drinking Water Standards MCL, based on data from the National Inorganics and Radionuclides Survey.

Tables G-1 and G-2 in Appendix G present the quarterly historical groundwater radioisotopic and metals sample results, respectively, collected by Stoller since February 2005. Tables G-3 and G-4 in Appendix G present the quarterly historical Clear Creek surface water radioisotopic and metals sample results, respectively, collected by Stoller since February 2005.

3.1 Groundwater Conditions

Groundwater monitor wells are located in areas likely to detect impacts, if any, to groundwater emanating from the site and at locations that represent background water quality. Monitor wells CSMRI-4 and CSMRI-5 are downgradient of the site in the Clear Creek flood plain. Well CSMRI-1 is located along Clear Creek upstream of the site, and well CSMRI-2 is located offsite in the southeast corner of the freshman parking lot on West Campus Drive. Both monitor wells CSMRI-1 and CSMRI-2 are upgradient of the site.

In February 2007, seven new groundwater monitor wells were installed to assess the effectiveness of the source removal excavation that was conducted in 2006. Monitor well CSMRI-8 is located along Clear Creek within the flood plain area; and monitor wells CSMRI-1B, CSMRI-6B, CSMRI-7B, CSMRI-9, CSMRI-10, and CSMRI-11 are located on the bench terrace and essentially encircle the CSMRI site.

In July 2008, two monitor wells (CSMRI-6B and CSMRI-11) were abandoned due to construction activities at the CSMRI site. These two wells were replaced in December 2008 with CSMRI-6C and CSMRI-11B, respectively.

3.2 Groundwater Quality

Groundwater samples were collected from 11 monitor wells and tested for the presence of metals and radioisotopes as identified in Section 2.3.1. The sample volumes collected from monitor well CSMRI-7B was limited due to insufficient water. Because of the limited water volume at this well, analytical testing was conducted only for radioisotopes and uranium.

Uranium was detected in monitor wells CSMRI-4 at 62 μ g/L, CSMRI-7B at 75 μ g/L, CSMRI-8 at 520 μ g/L, and CSMRI-9 at 31 μ g/L at concentrations exceeding the State of Colorado groundwater standard of 30 μ g/L. Uranium was also detected in the remaining seven groundwater monitor wells but at concentrations below the groundwater standard.

In the flood plain area, uranium was detected in monitor wells CSMRI-4 at 62 µg/L, CSMRI-5 at 13 μg/L, and CSMRI-8 at 520 μg/L. Monitor well CSMRI-4 historically has had elevated concentrations of uranium. Values had been declining since 1991 until the last several quarterly sampling events as depicted on Figure 5. Historically, the concentration of uranium in this monitor well spiked once in 1999 and again in 2003. The spike in the uranium concentration in 2003 was attributed to precipitation effects and removal of asphalt and concrete as discussed in New Horizons RI/FS, Section 4.2.2 of the (New Horizons 2004). The recent (2009) rise in the uranium concentration in this monitor well appears to be attributed to stormwater discharge from the new Colorado School of Mines (CSM) artificial turf soccer field subdrains. Precipitation collected in the subdrains, discharged near the northern edge of the bench terrace, and flowed down a riprap-embedded concrete rundown onto the flood plain. During the process, the discharge water became oxygenated and was introduced into the poorly oxygenized environment of the flood plain area. Uranium present in the saturated sediments of the flood plain was mobilized by the oxygenated discharge water and flowed toward monitor well CSMRI-4. In early 2010, the soccer field discharge pipe was relocated to the east. Analytical data suggest the soccer field discharge pipe is no longer affecting this monitor well.

Figure 6 presents the potentiometric surface elevation of groundwater in CSMRI-4 (left Y axis) and the uranium concentration (right Y axis) from 2005 through the third quarter 2010. The figure indicates the uranium concentration had previously been fluctuating seasonally from slightly above to slightly below the groundwater standard of 30 μg/L for seven quarterly sampling events in 2005 and 2006. An ice chest from the fourth quarter 2006 (December) sampling event was lost by the courier service resulting in a gap in the analytical data for CSMRI-4. The concentration of uranium in this well has increased since the 2006 surface soil remediation activities and also spiked during the third quarter 2009 sampling event. The uranium concentration in this monitor well has decreased significantly since the third quarter 2009 sampling event and reflects the relocation of the soccer field discharge pipe.

The uranium concentration detected in CSMRI-8 decreased slightly to $520~\mu g/L$ from the previous quarterly value of $540~\mu g/L$. Monitor well CSMRI-8 was installed in February 2007. Figure 7 presents the potentiometric surface elevation of groundwater at this well (left Y axis) and the uranium concentration (right Y axis) from 2007 through the third quarter 2010. Quarterly monitoring will continue at this location to document seasonal variability and trends in the uranium concentration in groundwater.

The uranium concentration in CSMRI-9 of 31 μ g/L has decreased to below the concentrations from the past five sampling events and is within the range of the 2007 and 2008 analytical data. This monitor well is located at the top of the bench terrace that rises above the flood plain and is downgradient of the CSMRI site.

3.2.1 Ionic Balance Evaluation

The ionic testing and balancing is conducted to determine the different groundwater hydrochemical facies within the CSMRI site and to assess the analytical laboratory quality control procedures since the sum of the major anions should equal the sum of the major cations when the ionic concentrations are converted to millequivalents per liter. Significant differences in the ionic balance of a groundwater sample suggest either an ionic species is present and not tested for or laboratory analytical procedures are not consistent.

Groundwater and surface water samples were collected and tested for major anions and cations, DOC, and at select locations (CSMRI-1, CSMRI-4, CSMRI-5, and CSMRI-8) ferric/ferrous iron. The presence of sulfide was also analyzed for in samples from the three flood plain monitor wells (CSMRI-4, CSMRI-5, and CSMRI-8). Analytical results for these parameters are presented in Table 2-3 for groundwater and Table 2-6 for surface water. AqQA® geochemical software is used to calculate ionic balances of water samples and to present the graphical representation of anions and cations. Ionic balance calculations for the anions and cations for the water samples generally range from 1 to 7.9 percent. Only monitor well CSMRI-2 at 13.5 percent is greater than a 10 percent balance difference.

Summary sheets from the AqQA® geochemical software for each of the water samples are presented in Appendix H. Dominant water types identified at the CSMRI site include Na-Cl (CSMRI-1); Ca-Cl (CSMRI-1B, CSMRI-4, CSMRI-5, CSMRI-6C, CSMRI-8, CSMRI-9, CSMRI-10, and CSMRI-11B); Ca-HCO₃ (CSMRI-2); and Ca-SO₄ (SW-1, SW-2, and SW-3 [all Clear Creek surface water samples]).

Historically, groundwater from CSMRI-1 has always been a Ca-Cl type water (since third quarter 2008). However, with the third quarter 2010 sampling event, CSMRI-1 now appears as a Na-Cl type water.

A Piper quadrilateral diagram is included in Appendix H and illustrates the overall ionic properties for each water sample. The cation triangle in the lower left of the figure indicates the cation composition of the water samples are generally similar as exhibited by the tight grouping of the plotted results. The anion triangle in the lower right of the figure indicates the anion composition of the water samples is more diverse as exhibited by the dispersed nature of the plotted results.

3.2.2 Comparison of Upgradient and Downgradient Groundwater Quality

Monitor wells CSMRI-4, CSMRI-5, and CSMRI-8 are downgradient from the upper terrace portion of the site and are located on the Clear Creek flood plain. Monitor wells CSMRI-7B and CSMRI-9 are located downgradient of the CSMRI site at the top of the bench terrace above the flood plain. Monitor wells CSMRI-10 and CSMRI-11B are located at the eastern edge of the site, and monitor wells CSMRI-1B and CSMRI-6C are located upgradient of the site.

Uranium was detected in monitor wells CSMRI-4 at concentrations of 62 μ g /L, CSMRI-8 at 520 μ g/L, and CSMRI-9 at 31 μ g/L, exceeding the groundwater standard of 30 μ g/L. Monitor well CSMRI-8 is located at the western edge of the flood plain area and is upgradient of monitor wells CSMRI-4 and CSMRI-5. Monitor well CSMRI-9 is located at the downgradient position on the bench terrace at the CSMRI site.

3.2.3 Comparison with Previous Groundwater Quality Analyses

Table 2-7 presents historical groundwater analytical results from past sampling events dating back to 1991 for radioisotopes of concern. The data indicate fluctuating concentrations of tested analytes, particularly for monitor well CSMRI-4.

As additional data are collected for each sampling quarter and trends become more defined, graphs of concentration versus time are produced and presented. These analytical data are incorporated to show long-term trends and correlation between the detected concentration of uranium in groundwater, the fluctuating water table, and seasonal variability if present.

3.2.4 Comparison with Colorado Groundwater Standards

As discussed previously, the groundwater standard of 30 μ g/L for uranium in groundwater was exceeded in monitor wells CSMRI-4 (62 μ g/L), CSMRI-7B (75 μ g/L), CSMRI-8 (520 μ g/L), and CSMRI-9 (31 μ g/L). In January 2008, the CDPHE Water Quality Control Commission adopted the surface water quality standard of 30 μ g/L as the groundwater quality standard in an effort to keep both uranium standards consistent.

The historic spikes in the concentration of uranium in CSMRI-4, as shown on Figure 5, have been attributed to increased precipitation from December 2006 through February 2007 and surface soil remediation activities in the flood plain. Recent analytical results indicate a decreasing trend back to 2007 and 2008 levels prior to impacts from the soccer field storm drain.

No exceedances of the MCL for Ra-226 and Ra-228 were detected in any of the groundwater samples for this sampling quarter.

Monitoring wells CSMRI-7B and CSMRI-8 were abandoned in late-2010 to accommodate soil characterization activities in the flood plain. Abandonment forms were completed and submitted to the State Engineer's Office, Colorado Division of Water Resources to document the abandonment process. After soil characterization is complete, these monitor wells will be replaced and integrated into the quarterly sampling schedule. Sampling of these new wells and other site wells will continue and the reason(s) for observed elevated levels of uranium will be evaluated.

3.3 Surface Water Quality

Surface water samples are collected from three locations at the site. Location SW-1 is located over 400 feet upstream from the CSMRI site, SW-2 is downstream from the site, and SW-3 is located adjacent to the Clear Creek bank in the vicinity of monitor well CSMRI-8. All surfacewater concentrations of tested parameters detected at the CSMRI site from stations SW-1, SW-2, and SW-3 are similar. Established water quality standards were not exceeded at any location.

4. Future Activities

Construction activities associated with the flood plain soil characterization effort began in mid-October 2010. The characterization activities are being conducted predominately in the vicinity of monitor well CSMRI-8 and to the west along the hillside where previous characterization studies indicate elevated concentrations of metals and radioactivity above background.

During characterization activities, monitor wells CSMRI-7B and CSMRI-8 were abandoned. These wells will be replaced following completion of the characterization effort and will be sampled, along with three new monitor wells that will be installed in the flood plain area, in either the fourth quarter 2010 or first quarter 2011 sampling events.

5. References

Colorado Department of Public Health and Environment, Water Quality Control Commission, Regulation No. 41, *The Basic Standards for Ground Water*. Amended: January 14, 2008, Effective: May 31, 2008.

ERO Resources, Inc. 2010. Biological Assessment, CSMRI Flood Plain Site in Golden, Jefferson County, Colorado. ERO Project #4633. February 9, 2010.

New Horizons Environmental Consultants, Inc. Remedial Investigation/Feasibility Study and Proposed Plan, Colorado School of Mines Research Institute Site, Golden, CO, January 21, 2004.

Stoller 2010. Final Work Plan, Environmental Assessment and Characterization, Colorado School of Mines Research Institute Site, Flood Plain Area, Golden, Colorado, Prepared by The S.M. Stoller Corporation For Colorado School of Mines, August 2010.

USGS Surface Water website: http://nwis.waterdata.usgs.gov

Table 2-1 Summary of Radioisotopes in Groundwater

Summary of Radioisotopes in Groundwater											
			·226 Ci/L)		-228 Ci/L)	Total U (μg/L)					
Sample Station	Sample Date	Result	Uncertainty	Result	Uncertainty	Result					
CSMRI-1	9/9/10	0.13	±0.33	0.85	±0.41	2					
CSMRI-1B	9/8/10	0.35	±0.24	0.61	±0.34	18					
CSMRI-2	9/10/10	0.29	±0.28	1.52	±0.58	0.98					
CSMRI-4	9/10/10	0.12	±0.32	1.64	±0.61	62					
CSMRI-5	9/10/10	0.41	±0.26	0.39	±0.35	13					
CSMRI-6C	9/8/10	0.11	±0.25	0.97	±0.42	25					
CSMRI-7B	9/10/10	1.13	±0.81	0.8 J	±1.1	75					
CSMRI-8	9/8/10	0.28	±0.34	0.46	±0.32	520					
CSMRI-9	9/8/10	0.03	±0.15	0.46	±0.33	31					
CSMRI-10	9/8/10	0.22	±0.2	0.5	±0.34	14					
CSMRI-11B	9/8/10	0.04	±0.18	0.79	±0.39	18					
MC	CL*		Total F	Ra = 5		30					

^{*}Maximum Contaminant Level – National Primary Drinking Water Regulations

Table 2-2 **Summary of Metals in Groundwater** (All results in mg/I)

Sample Station	Sample Date	Ag	As	Ва	Ca	Cd	Cr	Hg	К	Mg	Na	Pb	V
CSMRI-1	9/9/10	NT	NT	NT	39	NT	NT	NT	4.5	14	60	NT	NT
CSMRI-1B	9/8/10	NT	NT	NT	140	NT	NT	NT	5.5	63	53	NT	NT
CSMRI-2	9/10/10	NT	NT	NT	87	NT	NT	NT	6.7	39	23	NT	NT
CSMRI-4	9/10/10	NT	NT	NT	150	NT	NT	NT	19	62	59	NT	NT
CSMRI-5	9/10/10	NT	NT	NT	150	NT	NT	NT	5.1	56	64	NT	NT
CSMRI-6C	9/8/10	NT	NT	NT	130	NT	NT	NT	5	63	50	NT	NT
CSMRI-7B	9/10/10	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
CSMRI-8	9/8/10	NT	NT	NT	240	NT	NT	NT	19	75	64	NT	NT
CSMRI-9	9/8/10	NT	NT	NT	130	NT	NT	NT	6.8	62	51	NT	NT
CSMRI-10	9/8/10	NT	NT	NT	120	NT	NT	NT	5	46	51	NT	NT
CSMRI-11B	9/8/10	NT	NT	NT	140	NT	NT	NT	6.6	64	76	NT	NT
Detection	Limits	0.01	0.01	0.1	1	0.005	0.01	0.0002	1	1	1	0.003	0.01
MC	*	NE	0.010	2	NE	0.005	0.1	0.002	NE	NE	NE	0.015	NE

^{*}Maximum Contaminant Level – National Primary Drinking Water Regulations

The S.M. Stoller Corporation 10 November 2010

pCi/L = picoCuries per Liter

μg/L = micrograms per Liter NT – Not Tested

J = Estimated MDA > RDL

NE - Not Established

ND – Tested but not detected above the Detection Limits

NT - Not Tested

B - Reported value was less than the contract lab required detection limit but equal to or greater than the lab MDL.

Table 2-3 Summary of Anions and Cations in Groundwater

							1 minons and		0 000000						
Sample Station	Sample Date	Bicarbonate as CaCO₃ (mg/L)	Carbonate as CaCO ₃ (mg/L)	Total Alkalinity as CaCO₃ (mg/L)	Chloride (mg/L)	Total Dissolved Solids (mg/L)	Dissolved Organic Carbon (mg/L)	Ferric Iron (mg/L)	Ferrous Iron (mg/L)	Total Iron (ug/L)	Nitrate (mg/L)	Nitrite (mg/L)	Dissolved Phosphorous (mg/L)	Sulfate (mg/L)	Sulfide (mg/L)
CSMRI-1	9/9/10	95	ND	95	120	380	1	ND	ND	ND	1.3	ND	NT	61	NT
CSMRI-1B	9/8/10	260	ND	260	290	810	1.8	NT	NT	NT	5.9	ND	NT	150	NT
CSMRI-2	9/10/10	290	ND	290	30	450	1	NT	NT	NT	ND	ND	NT	90	NT
CSMRI-4	9/10/10	300	ND	300	230	900	2.1	ND	ND	ND	0.98	ND	NT	170	ND
CSMRI-5	9/10/10	220	ND	220	260	850	1.5	ND	ND	ND	4.2	ND	NT	180	ND
CSMRI-6C	9/8/10	310	ND	310	170	800	2	NT	NT	NT	9.5	ND	NT	120	NT
CSMRI-7B	9/10/10	NT	ND	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
CSMRI-8	9/8/10	440	ND	440	300	1,100	3.4	ND	ND	ND	ND	ND	NT	160	ND
CSMRI-9	9/8/10	260	ND	260	220	750	1.3	NT	NT	NT	5.0	ND	NT	130	NT
CSMRI-10	9/8/10	230	ND	230	190	670	1.3	NT	NT	NT	6.0	ND	NT	110	NT
CSMRI-11B	9/8/10	270	ND	270	240	920	1.5	NT	NT	NT	6.6	ND	NT	180	NT
Reporti	ng Limits	5, 10 or 20	5, 10 or 20	5, 10 or 20	1, 2 or 4	10	1	0.20	0.20	100	0.50	0.50	0.05	5 or 20	0.050

ND – Non Detect NT - Not Tested

> Table 2-4 **Summary of Radioisotopes in Surface Water**

Sample	Sample	Ra-226	(pCi/L)	Ra-228	(pCi/L)	Total U (µg/L)					
Station	Date	Result	Uncertainty	Result	Uncertainty	Result					
SW-1	9/9/10	0.04	±0.21	0.21	±0.3	1					
SW-2	9/9/10	0.2	±0.18	0.16	±0.29	1					
SW-3	9/9/10	0.13	±0.23	0.21	±0.29	0.98					
Mo	CL*		Total I	Ra = 5		30					

*Maximum Contaminant Level – National Primary Drinking Water Regulations

pCi/L = picoCuries per Liter μ g/L = micrograms per Liter

J = Estimated value

Table 2-5 Summary of Metals in Surface Water (All results in milligrams per liter)

Sample Station	Sample Date	Ag	As	Ва	Ca	Cd	Cr	Hg	K	Mg	Na	Pb	V
SW-1	9/9/10	NT	NT	NT	23	NT	NT	NT	1.7	5.1	9	NT	NT
SW-2	9/9/10	NT	NT	NT	23	NT	NT	NT	1.7	5.3	9.2	NT	NT
SW-3	9/9/10	NT	NT	NT	23	NT	NT	NT	1.7	5.2	9.3	NT	NT
Detecti	on Limits	0.01	0.01	0.1	1	0.005	0.01	0.0002	1	1			
M	CLs*	0.01	0.010	2	NE	0.005	0.1	0.002	NE	NE	NE	0.015	NE

*Maximum Contaminant Level – National Primary Drinking Water Regulations

NE - Not Established

ND = Not Detected at or above the detection limit

B = Reported value was less than the contract lab required detection limit but equal to or greater than the lab MDL.

The S.M. Stoller Corporation 11 November 2010

Table 2-6 Summary of Anions and Cations in Surface Water

Sample Station	Sample Date	Bicarbonate as CaCO ₃ (mg/L)	Carbonate as CaCO₃ (mg/L)	Total Alkalinity as CaCO₃ (mg/L)	Chloride (mg/L)	Total Dissolved Solids (mg/L)	Dissolved Organic Carbon (mg/L)	Ferric Iron (mg/L)	Ferrous Iron (mg/L)	Total Iron (μg/L)	Nitrate (mg/L)	Nitrite (mg/L)	Total Phosphorous (mg/L)	Sulfate (mg/L)
SW-1	9/9/10	35	ND	35	13	130	1.4	NT	NT	NT	ND	ND	NT	48
SW-2	9/9/10	35	ND	35	13	130	1.3	NT	NT	NT	ND	ND	NT	48
SW-3	9/9/10	34	ND	34	13	140	1.3	NT	NT	NT	ND	ND	NT	48
Reportir	ng Limits	5	5	5	0.2	10	1	NT	NT	NT	0.50	0.50	0.05	1

ND = Not Detected at or above the Reporting Limits

NT = Not Tested

Table 2-7 CSMRI Historical Groundwater Data (Previous Consultants)

(All results in picoCuries per liter)

Well ID (d)	Analyte	1/1991 (a)	6/1991 (a)	3/1999 (b)	6/1999 (b)	10/1999 (b)	2/2003 (c)	4/2003 (c)	7/2003 (c)	10/2003 (c)
	Ra-226			0.1	0.3	0.2	<0.55	< 0.45	ND (<0.38)	ND (<0.31)
CSMRI-1	U Total			2.09	2.59	1.44	2.4	2.9	0.87	1.4
	Th-230			0.4	0.2	0.2	<0.19	0.21	ND (<0.13)	<0.15
	Ra-226		1.9	1.9	1.4	1.4	1.4	2.8	2.1	1.7
CSMRI-2	U Total	11	5.7	0.55	1.46	0.71	1.5	1.3	1.9	1.3
	Th-230		0	0.1	0.1	0.9	<0.17	0.43	0.20	0.31
	Ra-226		0.6	1.5	1.2	1.6	<0.75	<0.81	ND (<0.49)	<0.98
CSMRI-3	U Total	17	10.4	8.41	12.4	10	12	12	9	10
	Th-230		0	0.3	0.3	1.1	<0.12	ND (<0.15)	ND (<0.17)	ND (<0.14)
	Ra-226		1	<0.4	0.6	0.4	<0.85	< 0.42	< 0.32	ND (<0.64)
CSMRI-4	U Total	86	57.3	23.4	58.6	33.7	16	34.2	53	19
	Th-230		0	0.7	0.3	0.4	< 0.099	ND (<0.15)	ND (<0.17)	ND (<0.12)
	Ra-226		0.6	2.4	3.3	2.7	ND (<0.49)	1.1	2.6	1.59
CSMRI-5	U Total	14	16.8	3.6	3.6	4	2.8	2.3	2.7	3.3
N. C. N. D. C. C. L.	Th-230		0	0.2	0.2	1.4	0.062	ND (<0.14)	ND (<0.19)	ND (<0.13)

Notes: ND = Not Detected

a - Samples collected by Grant and Associates and analyzed by Barringer Labs
b - Samples collected by URS Greiner Woodward Clyde and analyzed by CORE Labs
c - Samples collected by New Horizons Environmental Consultants and analyzed by Paragon Analytics; Total U activity (pCi/L) calculated from concentration (μg/L) reported by Paragon.
d - Well Identification numbers changed from the 1991 data to the 1999 data. Data presented account for this change

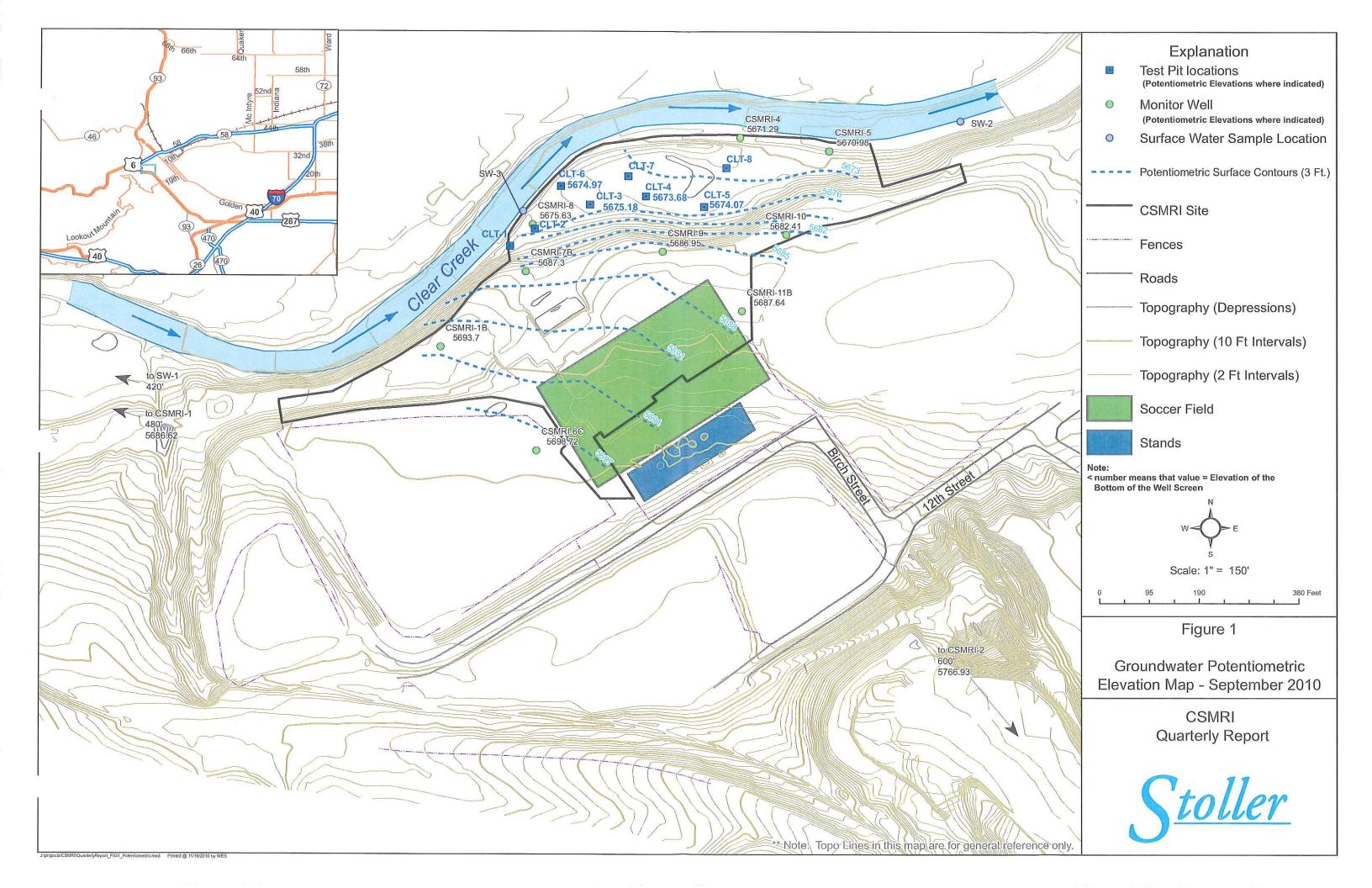
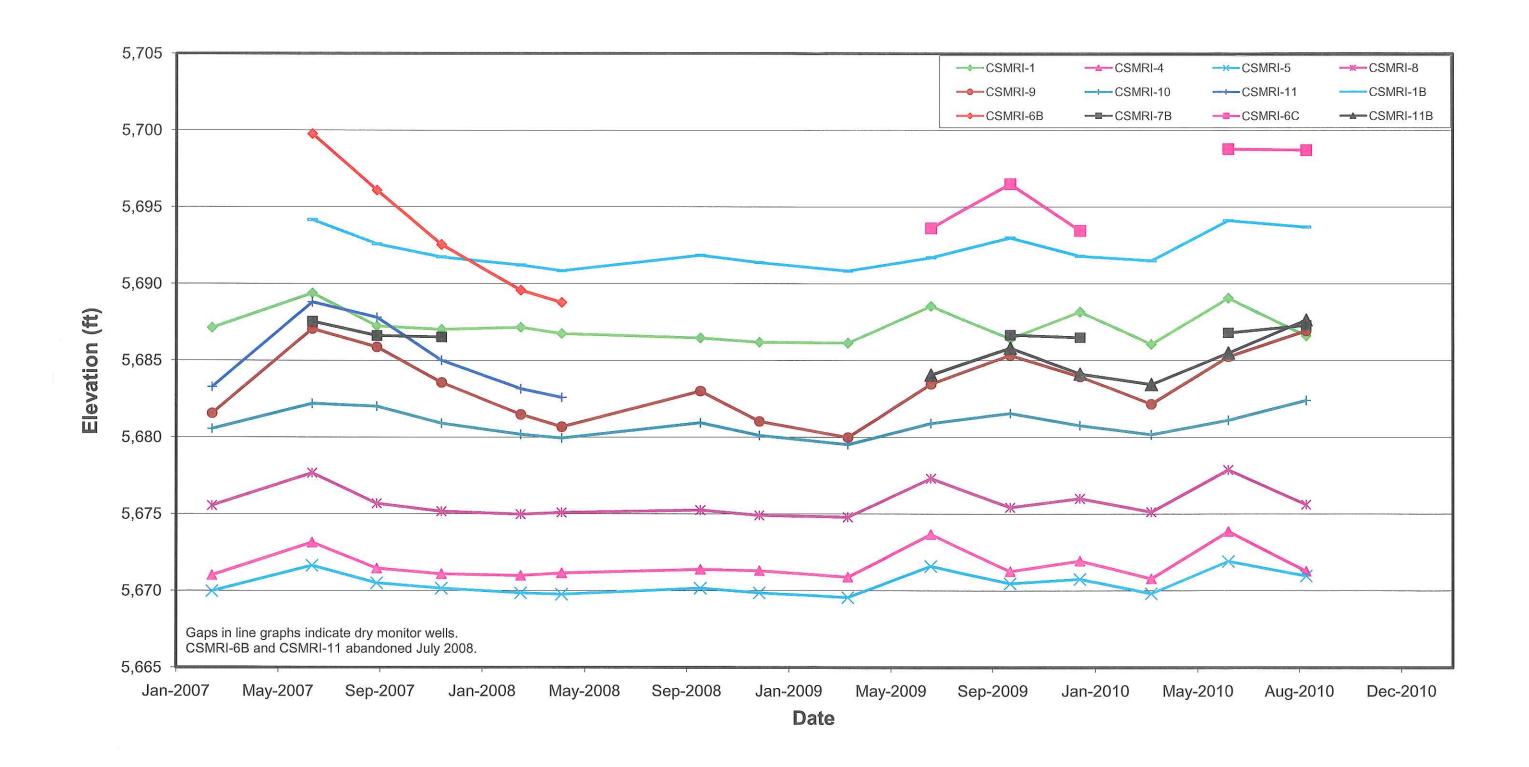
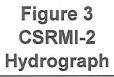




Figure 2
CSMRI
All Monitor Wells Hydrograph

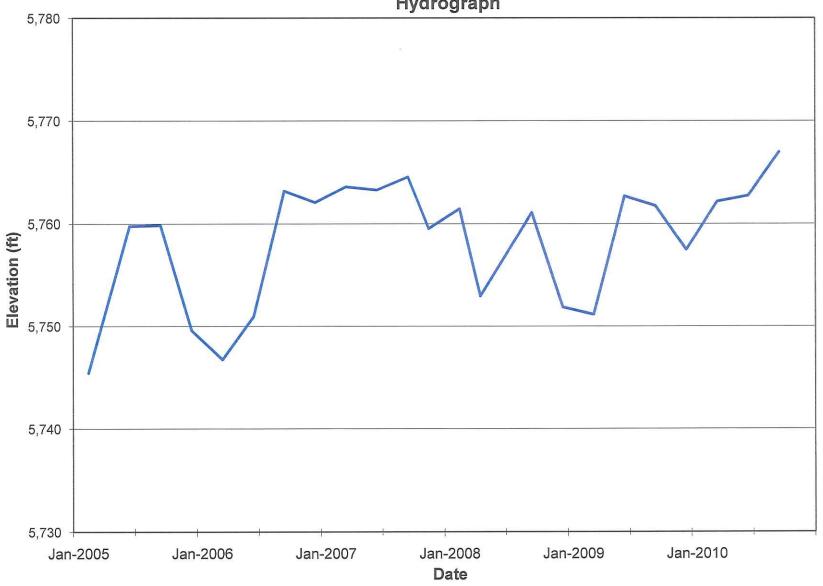


Figure 4 Clear Creek Gauging Graph July - September 2010

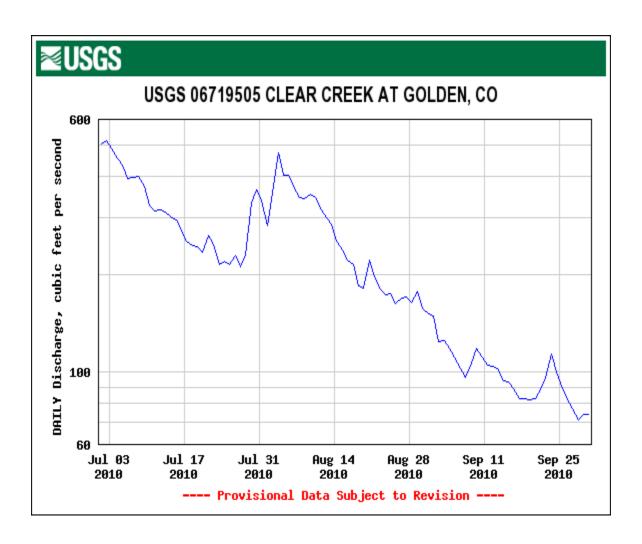


Figure 5 CSMRI-4 Historical Total Uranium Concentration (1991 - 2010)

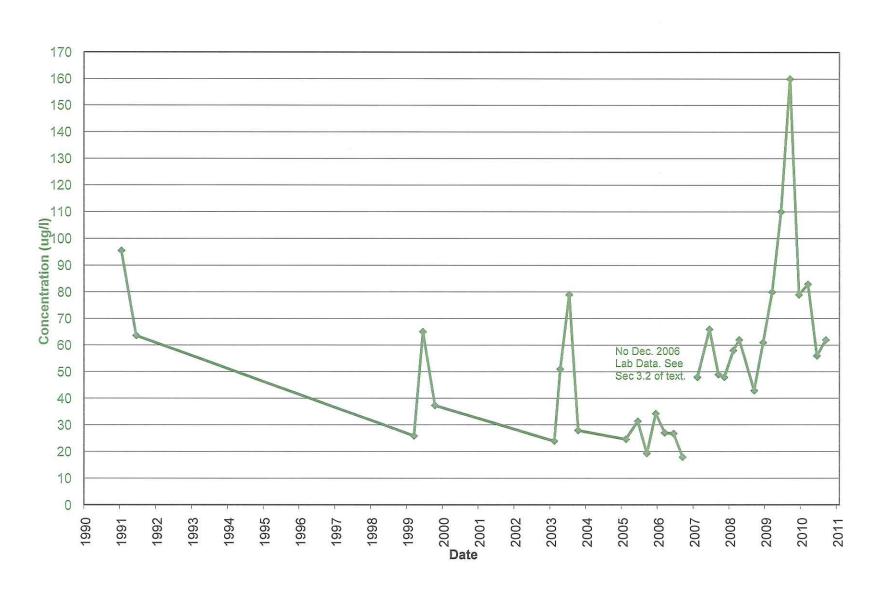


Figure 6
CSMRI-4
Total Uranium Concentration and Potentiometric Elevation

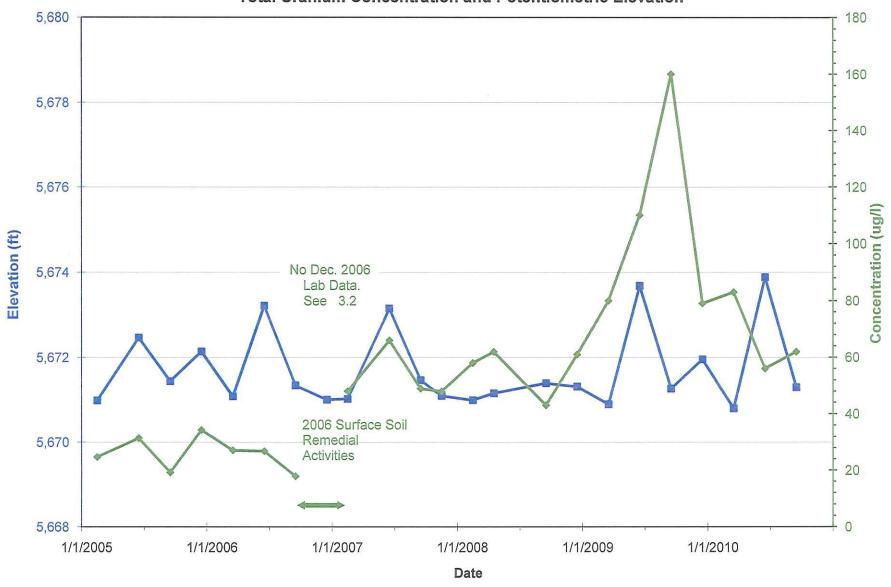
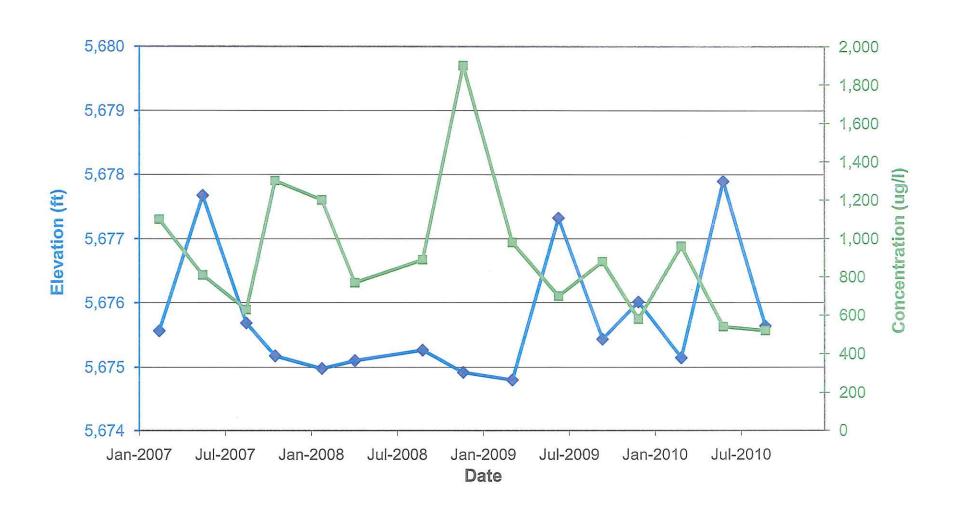



Figure 7
CSMRI-8
Total Uranium Concentration and Potentiometric Elevation

Appendix A Groundwater Sampling Procedures

Groundwater Sampling

1.0 Purpose

This procedure describes actions to be used to sample groundwater from monitoring wells and piezometers. Monitoring wells are generally sampled on a semiannual, quarterly, or monthly basis, or by special request in support for specific projects. All wells are to be sampled using this procedure unless superseded by specific site, facility, or client procedures.

This procedure describes equipment decontamination and transport, site preparation, detection and sampling of immiscible layers, water level measurements, well purging, sample collection, field and analytical parameters, quality assurance/quality control (QA/QC) requirements, and documentation that shall be used for field data collection.

2.0 Scope

This document describes acceptable methods for the sampling of wells and piezometers.

3.0 Responsibilities and Qualifications

Personnel performing groundwater sampling procedures are required to have completed the initial 40-hour OSHA classroom training that meets the Department of Labor requirements at 29 CFR 1910.120(e)(3)(i), and must maintain a current training status by completing the appropriate annual 8-hour OSHA refresher courses. Personnel must also have read the appropriate project, site, or facility Health and Safety Plan(s). Prior to engaging in groundwater sampling activities, personnel must have a complete understanding of the procedures described within this procedure and, if necessary, will be given specific training regarding these procedures by other personnel experienced in the methods described within this procedure.

4.0 Groundwater Sampling Procedures

4.1 Introduction

Many monitoring wells are constructed of either 2-inch stainless steel, or 2- or 4-inch flush threaded PVC casing. Some piezometers are completed as monitoring wells, and they are usually constructed of ¾-inch inside diameter, flush threaded PVC casing. Some wells have been constructed to incorporate a sump below the well screen. Because these vary in length, the well construction diagrams should be consulted to determine the sump lengths for specific wells. Most piezometers are constructed with a flush threaded cap at the bottom of the well screen. However, the well construction diagrams should also be consulted for information about specific piezometers.

Procedures for groundwater sampling are designed to obtain a sample that is representative of the formation water beneath the site in question. Since an analysis of the quality of formation water is desired, standing water within the well must be purged before sampling. Also, a measure of the static water elevations is important to determine the effect of seasonal horizontal and vertical flow gradient changes during site characterization activities.

Groundwater sampling procedures can be initiated after sampling personnel take the required water level measurements and purge the well in accordance with this procedure. Methods for accomplishing each of these activities are included in this procedure in the following sequence:

- Collection of immiscible layers samples, if present
- Well purging
- Groundwater sampling using a bailer

Page 1 of 20 ST_Rad_24

- Groundwater sampling using a peristaltic pump
- Groundwater sampling with a bladder pump

4.2 General Equipment Requirements

Down-hole sampling equipment shall be constructed of inert material such as polytetrafluoroethylene (Teflon®) or stainless steel. This equipment shall be assessed on an individual basis prior to use in the field.

The following is a primary list of well sampling and associated equipment:

- Bailers Teflon[®], stainless steel, or other appropriate inert materials
- Teflon[®] coated stainless steel cable with reels
- Peristaltic pumps and tubing
- Water level measuring devices sufficiently accurate to measure water levels to the nearest 0.01 foot
- Graduated purge water containers
- Plastic sheeting
- Distilled or deionized water
- Decontamination equipment and supplies
- Organic vapor detector (OVD)
- Gloves (nitrile)
- Calculator and watch
- Sample containers precleaned to EPA specifications
- pH paper
- Custody tape
- Coolers with sufficient blue ice to cool samples to 4°C
- Preservatives (trace metals grade)
- Disposable in-line 0.45-micron membrane filters
- Logbooks and field forms
- Black waterproof pens
- Portable laboratory equipment for measuring field parameters for pH, temperature, specific conductance, and turbidity
- Total alkalinity reagent
- Beakers and graduated cylinders

Additional equipment may be required to meet project or client health and safety standards, to perform specialized sampling, or to meet personnel and equipment decontamination requirements.

4.3 Equipment Decontamination and Transport

Equipment associated with the tasks involved in groundwater sampling shall be decontaminated upon arrival at the sampling location. All sampling equipment shall be decontaminated between

Page 2 of 20 ST_Rad_24

sample locations. Decontamination frequency shall be increased appropriately as field conditions dictate.

Transportation of all equipment shall be performed in a manner that eliminates any possibility of cross-contamination. Calibration solutions, fuel, decontamination solutions and wastewater, and all other sources of contamination shall be segregated from sampling equipment during transport. Purge water being transported to holding areas shall be kept in closed containers.

If the decontamination of downhole equipment is not performed at the well, used downhole equipment shall be wrapped in plastic sheeting and/or segregated from clean equipment to eliminate the possibility of cross contamination. The equipment shall then be decontaminated as soon as possible.

4.3.1 Routine Field Decontamination

Decontamination of delicate equipment and the routine decontamination of sampling equipment prior to use at each well shall consist of the following steps:

- Vigorously scrub the equipment with a brush and solution of phosphate-free laboratory grade detergent (e.g., Liquinox) and distilled water.
- Rinse the equipment thoroughly with approved distilled water.
- If the decontaminated equipment is not immediately packaged to eliminate any adhesion of airborne impurities, perform an additional final rinse, or decontamination and rinse, immediately prior to actual sampling operations.

4.3.2 Routine Decontamination of Sampling Pumps

The external surfaces of all non-dedicated pumping equipment shall be decontaminated as described in Subsection 4.3.1. Internal surfaces shall be decontaminated according to the following procedures, except under special situations where the pump(s) must be disassembled and the internal parts cleaned separately (see Subsection 4.3.3). For routine decontamination, the following procedures shall be followed.

- Pump several pump volumes of a solution of a phosphate-free laboratory grade detergent (e.g., Liquinox) and water through the equipment.
- Displace the soap solution immediately by pumping approved distilled water, equivalent to three or more volumes of the pump storage capacity, through the equipment.
- If any detergent solution remains in the pump, continue pumping distilled water through the system until the detergent is no longer visibly present. Sudsing is the common indicator used to determine incomplete rinsing.

4.3.3 Unusual Decontamination Requirements

When equipment becomes grossly contaminated, such as from the collection of immiscible layer samples (see Subsection 4.5), routine decontamination of sampling equipment is not considered sufficient and thus is not allowed. This situation and other unusual equipment decontamination problems shall be reported to the field site supervisor. Under certain circumstances, a pump can be disassembled and the parts cleaned separately using approved solvents (i.e., hexane, alcohol, etc.). If specific instructions are required, the field site supervisor shall consult with a management representative for proper decontamination procedures.

4.3.4 Disposition of Decontamination Water

Page 3 of 20 ST_Rad_24

All water generated during the decontamination of equipment used for the sampling of wells shall be containerized in either a satellite container or in the purge water container in the groundwater sampling vehicle. It will then be disposed of according to the procedure designated in Subsection 4.6.3 of this procedure.

4.4 Site Preparation

Sheet plastic may be used to protect clean equipment from contacting contaminated surfaces. Plastic bags and sheeting, along with the segregation of clean and dirty equipment, can be used to reduce the chances of cross contamination. If a mechanical bailer retrieval system is used, the amount of plastic appropriate for protection of sampling equipment may be lessened. The sampling crew members are responsible for determining the amount of plastic sheeting required.

Disposable nitrile gloves, or gloves made of other approved materials, shall be used at all times when handling sampling equipment. Gloves shall be changed between each site and as often as necessary to ensure the integrity of clean sampling equipment.

4.5 Collection of Immiscible Layer Samples

When specified in the project sampling plan, or when the well to be sampled contains immiscible layers, immiscible phases must be collected before purging activities begin. The method of choice for collecting light non-aqueous phase liquids (LNAPLS) is a bottom valve bailer or peristaltic pump. Dense non-aqueous phase liquids (DNAPL) or "sinkers" shall be collected with a bottom double check valve bailer or peristaltic pump.

In all cases, the bailer shall be carefully lowered into the well so that agitation of the immiscible layer is minimal. Any bailer used to collect immiscible layers shall be dedicated to the well that is sampled. Peristaltic pumps shall be equipped entirely with silicon, or other chemical compatible tubing, when sampling immiscible layers. The project manager shall be responsible for determining the type materials to be used for specific projects. Dedicated equipment used for collecting immiscible layers shall be decontaminated prior to and after use as described in Subsection 4.3 of this procedure, if removed from the well.

Immiscible layer sampling shall be performed as follows.

- Remove dedicated bailers from the well and decontaminate as specified in Subsection 4.3 of this procedure. Decontaminate dedicated pump tubing, if used, prior to use.
- For LNAPLs, carefully lower the bailer intake or sampling port to the midpoint of the
 immiscible layer and allow it to fill while it is held at this level. The bailer must be
 lowered into the immiscible layer slowly so that minimal agitation of the immiscible
 layer occurs. Peristaltic pump intakes must also be lowered to the midpoint of the
 immiscible layer.
- If a DNAPL layer is being sampled, use either the double check valve bailer or peristaltic pump. Lower the bailer into the well until bottom is encountered. Lower peristaltic pump intakes also to the well bottom. Care must be taken not to immerse the pump intake into accumulated sediments.
- Do not allow the bailer or line to touch the ground at any time or allow the ground to come in contact with other physical objects that might introduce contaminants into the well.
- Decontaminate all equipment immediately after sampling is completed. Suspend dedicated bailers in the well from the well cap above the high water level. Discard silicon tubing used with peristaltic pumps.

Page 4 of 20 ST_Rad_24

4.6 Well Purging

Purging stagnant water from a well is required so that the collected sample is representative of the formation groundwater. The device used (bailer or pump) depends upon aquifer properties, individual well construction, and data quality objectives. Wells that contain immiscible layers will not be purged unless specified in the site-specific work plan. Any well scheduled for purging and sampling that subsequently is found to contain immiscible layers must be reported to the site supervisor or project manager. The project manager shall be notified immediately prior to continued activities.

Before obtaining water level elevations or initiating purge activities, obtain the following information in reference to the well to be sampled, and enter the applicable information on the sample collection log.

- Location code (well number)
- Previous purge volume (information only)
- Depth to top of screen (bailed wells only)
- Well sample number
- Report Identification Number (RIN)
- Sample event number

Record the location code (well number), date, sampling team members, visitors, well condition, and any other pertinent information on the sample collection log. Enter the well number, time well is opened, and other information regarding the field activities on the Field Activity Daily Log.

The field instruments shall be standardized (to check calibration) and the results recorded on the sample collection form.

Measure the depth to the top of the water column and the total depth of the well in order to determine the height of the water column in the well. Calculate the well casing volume using the well casing inner diameter and the height of the water column in the well. The formula for calculating the volume in gallons of water in the well casing is as follows:

```
(\pi r^2 h) 7.481 = gallons; where \pi = 3.142 r = inside radius of the well pipe in feet <math>h = linear feet of water in well 7.481 = gallons per cubic foot of water 1 gallon = 3785 ml
```

Calculations of the volume of water in typical well casings may be done as follows:

```
a. 2" diameter well:
0.16 gal./ft x (linear ft of water) = gallons of water
b. 4" diameter well:
0.65 gal./ft x (linear ft of water) = gallons of water
c. 3/4" diameter well:
```


Page 5 of 20 ST_Rad_24

87 ml./ft x (linear ft of water) = milliliters of water

4.6.1 Purging Duration

Purging shall be considered complete if any of the following conditions are met.

- 1. Purging is complete if at least three casing volumes of water are removed from the well, and the last three consecutive pH, specific conductance, and temperature measurements do not deviate by more than the following: 1) pH = ±0.1 pH units; 2) Specific Conductance = ±10% and; 3) temperature ±0.5°C. A turbidity measurement will be taken for every other purge sample for wells that are purged using a bailer. For wells that are equipped with a dedicated bladder pump, the turbidity will be measured each time the parameters are taken. The purge rate should be such that the turbidity is maintained at 5 NTU units or less (if possible). If the readings are not stabilized after three volumes, continue purging until stabilization or until five volumes have been removed. Field parameter measurements shall be collected after every half-casing volume (approximate) is removed from the well. When casing volumes are less than 1-liter, parameter measurements will be collected after each whole casing volume is removed. If readings do not stabilize after five well volumes have been recovered, obtain additional guidance from the project manager concerning the proper course of action.
- 2. A well is considered dewatered when only a few milliliters of water (or none) can be recovered each time the bailer is lowered into the well. When this occurs, a 10-minute recharge rate will be calculated (linearly). If, at the end of the 10-minute period, the well has not recovered sufficiently to continue the purge in thirty minutes, the purge is considered completed. If, at the end of the 10-minute period, there is sufficient water to collect the VOA samples, the samples may be collected at that time. If the well has not recovered sufficient water during the 10 minutes, and depending upon the well history, the samplers may elect to return to the well the same day (preferably within two hours), check the water level, and collect the VOA samples (first), and other samples as feasible. If the sample team cannot return the same day, the well will be checked in 24 hours to determine if sample collection is feasible. If an extended period of time is required to collect samples, the procedures in Subsection 4.8.1 shall be followed. The well will not require an additional purge before sampling.

Wells that dewater (have a slow recharge rate as specified in 2 above) will not be restricted by parameter stabilization requirements. Sampling of these wells will follow the protocol established in Subsection 4.8.

4.6.2 Purging Methods

Wells will be purged by either bailing or pumping. When purging a well, the rate of water withdrawal during purging should not exceed the rate of withdrawal at which the well was developed (if known). All purge times (initiation and completion) and the rate of purging will be recorded on the field log sheets.

4.6.2.1 Bailing

Generalized procedures for purging a well with a bailer are as follows.

Prepare the sampling site as discussed in Subsection 4.4. Use properly
decontaminated equipment to determine the static water level of the well.
Measure the total depth of the well. Use this information to determine the
volume of water in the well casing.

Page 6 of 20 ST_Rad_24

- Decontaminate all dedicated bailers prior to initiating purging as described in Subsection 4.3 of this procedure.
- Use a mechanical reel equipped with Teflon® coated stainless steel cable attached to a bailer for bailing and sampling operations. Lower the bailer slowly into the well until water is encountered. Minimize agitation of the well water. Avoid lowering the bailer to the bottom of the well so sediments accumulated in the bottom do not become suspended. For wells that dewater, do not allow the bailer to strike the well bottom with force. Raise and lower the bailer carefully to limit surge energy and ensure that cable does not come in contact with any potentially contaminated surfaces. Do not allow the cable to drag along the well casing or against other objects that will cause fraying. Monitor the amount of water purged.

Wells with significant levels of contamination may have dedicated bailers installed. Dedicated bailer systems shall consist of a Teflon[®] bailer with check valve or double check valve for DNAPLS and a 5-foot leader of Teflon[®] coated stainless steel cable. Bailer sampling attachments and the stainless steel reel cable will not be dedicated to individual wells.

Dedicated bailers will be decontaminated at the conclusion of sampling activities and suspended from the well cap above the high water table. If the well interval above the high water table is not adequate to allow for storage in the casing, the dedicated bailers will be stored in labeled and sealed plastic bags at the equipment trailer.

4.6.2.2 **Pumping**

Pump designs that meet the following criteria are allowed for purging.

- The pump is constructed of a material that does not introduce a source of contamination to the well.
- The pump drive system does not introduce a source of contamination into the well.
- All downhole parts to the pump can be easily decontaminated.
- A return check system that does not allow pumped water to return to the well is integral in the pump design.
- The pump is easily used and does not require excessive amounts of time to install, use, remove, and decontaminate.

The pumps currently in use to purge groundwater include peristaltic pumps and dedicated submersible bladder pumps. A procedure for the use of each style of pump is specific to its applications. User manuals, which accompany each pump, shall be referenced for operating procedures.

Basic operating procedures common to all pumps are as follows.

- Prepare the sampling site as described in Subsection 4.4 regardless of the type of pump being used.
- Use properly decontaminated equipment to determine the static water level and the total depth of the well. This information is utilized to determine the volume of water in the well casing.

Page 7 of 20 ST_Rad_24

- For wells with dedicated pumps, calculate the minimum purge volume using the pump storage volume and the volume of the discharge tubing. A total depth of a 2-inch well cannot be taken without the removal of the pump.
- Position a dedicated pump near the bottom of the well or according to the
 information on the well construction form. Monitor the discharge rates and
 the amount of water purged during purging. The pumping rate for purging
 can be higher than the pumping rate for sampling, however, the water level
 in the well should be monitored during purging to avoid excessive water
 level drawdown.
- Ensure that any tubing that enters the well casing is composed of inert
 material. Disposable silicon tubing will be used in the drive mechanism of
 peristaltic pumps and discarded after each well is purged. The air supply
 for all air-driven pumps (dedicated bladder pumps) will be free of oil (i.e.,
 no hydrocarbon containing substances will be added to the compressor).

4.6.3 Disposition of Purge Water

All water removed from a well during sampling operations shall be collected either in a satellite container or the purge water collection container in the groundwater sampling vehicle. The water from these containers will then be transferred to another approved collection container on the sampling or project site. When the collection container is filled, or is near capacity, it will be transported for disposition or treatment in accordance with approved project plans.

4.7 Measurement of Field Parameters

The following field parameters will be measured during groundwater purging operations unless otherwise specified by the project manager or the approved project work plans.

Parameter	Relative Precision	Minimum Calibration
pH	0.01 pH units	Daily
Conductivity	$10 \mu\text{S/cm}$	Daily
Temperature	0.1 °C	Weekly
Total Alkalinity (unfiltered)	1 mg/l	None
Turbidity (photometric)	2 FTU (or NTU)	Specified purge samples (bailed wells) Daily (dedicated bladder pump wells)

The measuring equipment shall be stored and handled in a manner that will maintain the integrity of the equipment. Appropriate field manuals will accompany each instrument in the field. Each instrument will also be given an identification number. All logbook and field form references to individual instruments will refer to this number for ease of identification.

Field parameters will be measured at the following intervals.

• Conductivity, pH, temperature, and turbidity shall be measured from the first water removed from the well when initiating well purging procedures. For bailed wells, the initial bail of water will be carefully removed from the well and the water transferred to a sample beaker by decanting the bailer through a bottom control valve. For wells

Page 8 of 20 ST_Rad_24

- purged with a peristaltic pump, similarly collect the first water removed in a sample beaker and then measure parameters. For wells with dedicated pumps, measure the parameters of the first recovered water that is collected in the continuous sampler.
- During purging operations, conductivity, pH, and temperature shall be measured for every half-casing volume (one half of the initial casing volume as calculated on the sample collection log form) of water removed from the well (because of the accuracy of the graduated containers for the purge water, the purge volume will be estimated as close as feasible). For wells that have half volumes less than the volume of a sample bailer (approximately 1 liter), only measure parameters after each full casing volume of water is removed from the well. Turbidity will be measured on every other sample recovered for parameters for bailed wells, or wells purged with a peristaltic pump. All parameters, including turbidity, will be measured at predetermined intervals while purging wells with dedicated pumps.
- During purging, if a well is dewatered prior to the measurement of the final required set of parameters, then conductivity, pH, temperature, and turbidity shall be measured immediately before the start of sample collection. These parameters may be delayed until sampling is completed if, at the discretion of the sampling crew, the well recharge has provided insufficient water volume to collect all the samples and also measure parameters. If there is insufficient water for samples and field parameters, the parameters will not be measured.
- Total alkalinity measurements shall be collected only once upon completion of purging. For wells that do not dewater and sample collection proceeds to completion immediately after purging, alkalinity will be measured after the completion of all other final purge field parameters. Wells that dewater and require repeated visits for the collection of samples will have alkalinity measured subsequent to the collection of the sample for inorganic water chemistry. Alkalinity will not be measured if sufficient water is not available.
- For micro purged wells, a purge is considered completed when the parameters have stabilized.
- Whenever a method used to remove well water is changed, a set of field parameters shall be recorded from water removed with the new method.

4.8 Groundwater Sampling

Techniques used to withdraw groundwater samples from a well shall be based on consideration of the parameters of interest. The order of collection, collection techniques, choice of sample containers, preservatives, and equipment are all critical to ensuring that samples are not altered or contaminated. The preferred methods for collection of groundwater samples are either bailing and/or the use of bladder pumps.

Sites shall be prepared prior to sampling as described in Subsection 4.4. All necessary and appropriate information will be recorded on the sample collection log and on the Field Activity Daily Log.

4.8.1 Sample Collection

The following discussion involves collection of groundwater samples using bailers and peristaltic or bladder pumps. Regardless of the collection method, care shall be taken not to alter the chemical nature of the sample during the collection activity by agitating the sample or allowing prolonged contact with the atmosphere. To minimize the potential for

Page 9 of 20 ST_Rad_24

altering the sample and to maximize the available water, the following sample collection sequence is preferred.

- Radiation Screening
- VOC
- Nitrate/Nitrite, as N
- Dissolved Metals TAL, with Cs, Li, Sr, Sn, Mo, Si
- ^{239/240} Plutonium, ²⁴¹ Americium
- ^{233/234}U, ²³⁵U, ²³⁸U
- Gross alpha and beta
- ^{89/}Strontium
- ¹³⁷Cesium
- ^{226,228}Radium
- Tritium
- Total Metals TAL, with Cs, Li, Sr, Sn, Mo, Si
- TDS, CL, F, SO⁴, CO3, HCO³
- TSS
- BNA
- Pesticides/PCB
- Cyanide
- Orthophosphate

VOC samples shall be collected first and as soon as possible after the well has been purged. If a well is purged using a peristaltic pump, then all other samples shall be collected prior to removing the pump from the well. The VOC sample will then be collected using a bailer.

For wells that dewater, if a sufficient volume of water for VOC sample collection has still not accumulated within 48 hours after the completion of purging, VOCs will not be collected for that well. Other samples may be collected using a maximum of five attempts to recover sufficient sample water for analysis. This procedure is discussed in the following paragraph.

The containers used for sample collection from poor producing wells may differ from those used for high yield wells in some instances due to constraints on obtaining enough sample to fill sample containers. In some instances smaller containers may be utilized, or analyte samples normally collected in separate containers may be combined into a single container. Well histories can be used to identify which wells may require a modified sample suite and an extended sampling period. These wells will initially be sampled for a period of 48 hours after the completion of purging, with the exception of VOC sample collection, which is discussed in the previous paragraphs. The completion of purging will be considered 0 hour. At the end of 48 hours, any partial sample will be measured. The accumulated sample will be compared to the minimum volume requirement identified in Table 1 and the allowed sample holding time. If the minimum volume requirement for the target analyte has not been achieved, then sampling may continue as determined from the well recharge

Page 10 of 20 ST_Rad_24

history. All analyte samples that have only minimum sample volumes collected, and all uncollected samples will be documented on the sample collection log.

Table 1
Sample Containers and Preservatives for Groundwater Samples

Parameter	Minimum Container ¹	Preservative	Holding Time
Radiation Screen	120 ml poly	None	NA
VOC - CLP	3 – 40 ml amber glass	Cool to 4° C	4 Days
BNA	1 L amber glass	Cool to 4° C	7 Days
Pesticides/PCB	1 L amber glass	Cool to 4° C	7 Days
TSS	125 ml poly	Cool to 4° C	7 Days
TDS, CI, F, SO ₄ , CO ₃ , HCO ₃	1 L poly	Cool to 4° C	7 Days
Dissolved Metals - CLP, with Cs, Li, Sr, Sn, Mo, Si	1 L poly	*Filtered, HNO ₃ to pH <2, Cool to 4° C	6 Months
TOC	125 ml poly	H ₂ SO ₄ < pH ₂ , Cool to 4° C	28 Days
COD	125 ml poly	H ₂ SO ₄ < pH ₂ , Cool to 4° C	28 Days
Total Metals - CLP with Cs, Li, Sr, Sn, Mo, Si	1 L poly	Unfiltered, HNO ₃ to pH <2, Cool to 4° C	6 Months
Orthophosphate	250 ml poly	Filtered, Cool to 4° C	2 Days
Nitrate / Nitrite as N	250 ml poly	H ₂ SO ₄ to pH <2, Cool to 4° C	28 Days
Cyanide	1 L poly	NaOH to pH >12, Cool to 4° C	14 Days
Gross Alpha / Beta	550 ml poly	HNO ₃ to pH <2	6 Months
233/234 📗 235 📗 238 📗	100 ml poly	Filtered, HNO ₃ to pH <2	6 Months
^{239/240} Pu	1 L poly	HNO ₃ to pH <2	6 Months
²⁴¹ Am	1 L poly	HNO ₃ to pH <2	6 Months
^{89/90} Sr	700 ml poly	Filtered, HNO ₃ to pH <2	6 Months
^{226/228} Ra	750 ml poly	Filtered, HNO₃ to pH <2	6 Months
¹³⁷ Cs	2.5 L poly	Filtered, HNO ₃ to pH <2	6 Months

¹ The volume listed is the minimum amount required for analysis. Actual sample volumes may be slightly higher and some parameters may be combined in a single container.

The order of sample collection may be changed at the discretion of the sampling team. Changes in the order shall be based on the predicted volume of water that will be recovered and the priority stated in the controlling document. The sampling team shall document their sample selections on the sample collection log.

Sample containers shall be stored away from sunlight and cooled to 4°C prior to filling. Immediately after collection, samples requiring cooling shall be cooled to 4°C. A chilled cooler shall be used as the storage container. Whenever a sample bottle that requires chilling is not being physically handled, it will be placed in the cooler to prevent heating or freezing, exposure to sunlight, and possible breakage.

VOC samples shall be collected using a bailer equipped with a bottom-decanting control valve or directly from the pump discharge line on wells equipped with bladder pumps. The procedures for collecting VOC samples are discussed in Subsections 4.8.1.1 and 4.8.1.2 of this procedure.

Page 11 of 20 ST_Rad_24

^{*} Some samples may not require filtering if taken from a well with a dedicated pump and turbidity of 5 NTU or less.

VOC vials shall never be filled and stored below capacity because of insufficient quantities of water in the well. Except for the VOC vials, adequate air space should be left in the sample bottles to allow for expansion.

Samples shall be placed in the appropriate containers and packed with ice in coolers as soon as practical. VOC samples will be stored in the cooler in an inverted position immediately after collection. When sampling is complete, the well cap shall be replaced and locked.

Sampling tools, instruments, and equipment shall be protected from sources of contamination before use and decontaminated after use as specified in Subsection 4.3. *Liquids from decontamination operations will be handled in accordance with the procedures in Subsection 4.6.3 of this procedure.* Sample containers shall also be protected from sources of contamination. Sampling personnel shall wear chemical-resistant gloves (e.g., nitrile) when handling samples, and the gloves will be disposed of between well sites.

4.8.1.1 Groundwater Sampling Using a Bailer

This subsection describes the use of a bailer for collecting groundwater samples that may be used to obtain physical, chemical, or radiological data.

A bailer attached to a Teflon[®] coated stainless steel cable is carefully lowered into the well. After filling within the well, the bailer is withdrawn by rewinding the bailer line, and the bailer contents are drained into the appropriate containers. Certain recommendations and/or constraints should be observed when using bailers for sampling groundwater monitoring wells, as follows.

- Use only bottom-filling Teflon® bailers or bailers made of other inert materials
- Ensure that bailers are attached to a Teflon® coated stainless steel line that is pre-wound on a reel.
- Do not use bailers constructed with adhesive joints.
- Lower the bailer slowly to the interval from which the sample is to be collected.

VOC samples shall be collected using a bailer equipped with a bottom-decanting control valve. The first water through the valve assembly will be discarded into the purge water container. Vials will be filled by dispensing water through the control valve along the inside edge of the slightly tilted sample vial. Care shall be taken to eliminate aeration of the sample water. The vials will be filled beyond capacity so the resulting meniscus will produce an airtight seal when capped. The capped vial will be checked for trapped air by lightly tapping the vial in an inverted position. If air becomes trapped in the vial, the sample water shall be discarded, and the vial refilled. If two consecutive attempts to fill a VOC vial result in trapped air bubbles, the vial shall be discarded.

The remainder of the sampling water shall be collected in a stainless steel container from which the remaining sample bottles will be filled. Samples requiring filtration shall be filtered and then containerized.

4.8.1.2 Groundwater Sampling Using a Peristaltic Pump

Use of peristaltic pumps shall generally be limited to collecting sample aliquots for radionuclides, metals, and other species that are not subject to volatilization and degassing. Peristaltic pumps shall never be used to collect VOCs or other

Page 12 of 20 ST_Rad_24

volatile species in routine wells, although such samples may be collected for special screening applications. All downhole tubing shall be Teflon® except in areas of special concern (e.g., where immiscible layers exist) where special tubing, such as stainless steel or Viton®, may be required. If so, the project manager will make this determination. Only the portion of tubing that is inserted into the mechanical drive shall be made of silicon. This drive portion of the tubing shall be discarded after each use.

4.8.1.3 Groundwater Sampling Using a Downhole Bladder Pump

Some wells are equipped with dedicated downhole bladder pumps for purging and sampling. These are wells that will normally produce an adequate amount of water during a single visit to complete the required sampling suite. The equipment required to purge and sample a well consists of a pump control unit, a portable air compressor, a continuous sampler for measuring the field parameters, and the necessary sample containers, graduated cylinders, and container(s) to collect the purge and excess water. The following precautions should be observed during the sampling operation.

- Locate the compressor used to power the pump downwind from the well to eliminate the contamination of equipment and samples with exhaust.
- If the flow-through cell will not maintain a full sample chamber (tends to drain back), then clean the check valve on the pump if it is fouled, or replace the pump.
- Calculate the minimum purge volume using the procedure in Section 4.6.
 Note that a purge is considered completed only when the groundwater parameters have stabilized.
- Upon completion of purging, initiate sampling with the collection of the VOC sample(s). The pump should operate with minimum interruptions while the full sample suite is collected. Allowing the pump to stop for an extended period of time will cause the water trapped in the discharge lines to equilibrate to ambient temperatures, which is not acceptable. During sampling, the pump can be slowed to any rate that allows efficient sampling while also maintaining stable field parameters.
- Measure groundwater parameters periodically during sample collection and record them on the sample collection log to document conditions during sampling.
- Because micropurging is the method used for sampling, adjust the flow rate
 to limit the drawdown in the well. Also adjust the rate such that the
 turbidity is below 5 NTU for sampling. If this criterion is met, the samples
 need not be filtered.
- Operate the pump, pump control unit, and the flow-through cell according to the manufacturer's recommendations.

4.8.1.4 Groundwater Sampling Using a Push Type Sampler

This portion of this procedure describes the use of a Geoprobe[®] Screen Point 15 Groundwater Sampler, or similar type equipment, for collecting groundwater samples at predetermined depths. These samples may be used to obtain physical, chemical, or radiological analyses.

Page 13 of 20 ST_Rad_24

A Geoprobe[®] Screen Point 15 Groundwater Sampler, or equivalent tool, is driven to a predetermined depth by a push type-sampling rig. The Screen Point 15 Groundwater Sampler is equipped with a 41-inch retractable screen and expendable drive point. It can then be partially or fully withdrawn (up to 41 inches) to expose a portion or the entire deployed well screen. After groundwater enters the exposed screen, a sample is collected using either the procedures in Subsection 4.8.1.1, Groundwater Sampling Using a Bailer, or in Section 4.8.1.2, Groundwater Sampling Using a Peristaltic Pump. Note that these samples are collected only for screening purposes because the sampling tool hole has not been completed as a well.

The method for obtaining QC samples using the push type-sampling tool is provided in Subsection 4.8.4.1 for groundwater sampling. Duplicate groundwater samples shall be collected only if there is enough water to collect two full suites of analytes without dewatering the annulus. If insufficient water is available for the collection of a planned QC sample, it shall be explained and documented in the field log book, and the project manager informed. If insufficient water is available for two full suites of analytes, it may be come necessary to prioritize the analyte list. The prioritization sequence should be described in the project-specific work plan.

4.8.2 Sample Filtering and Preservation

Samples for dissolved metals, Gross Alpha/Beta, ^{233/234}Uranium, ²³⁵Uranium, ²³⁸Uranium, ^{89/90}Strontium, ¹³⁷Cesium, ²²⁶Radium, ²²⁸Radium, and orthophosphate shall be filtered in the field at the well location during the sampling event through a disposable 0.45-micrometer membrane filter. If a peristaltic or bladder pump is used, a disposable filter may be attached directly to the sample delivery line so that the sample is filtered directly into the sample container as it exits the delivery line. Discharge pressure shall be gauged so it does not exceed 50 psi. Alternatively, sample water may be collected in a stainless steel container and filtered with a peristaltic pump. Before sample collection, 100 to 200 milliliters of sample water shall be passed through the filter in order to rinse the filter and filtration apparatus of possible contaminating substances.

Preservatives shall be added to the sample bottles prior to the introduction of the filtered sample water. The preservative shall be added in aliquots appropriate to the size of the bottle.

After sample collection has been completed, the pH of preserved samples shall be checked as follows.

- Pour a small amount of sample from the sample bottle directly onto approved pH paper. Use care so that the threaded neck of the bottle does not contact the pH paper. Do not, under any circumstances, insert the pH paper into the sample bottle.
- Check the pH paper against the supplied color chart. If the appropriate pH has not been achieved, add additional preservative to the sample in 5 ml aliquots and repeat the pH test after each addition.

4.8.3 QA/QC Samples

The frequency and types of field QA/QC samples collected during groundwater sampling are described in project-specific work plans or quality assurance plan documents. These documents detail the applicable criteria for collecting QA/QC samples.

4.8.3.1 Duplicates

Page 14 of 20 ST_Rad_24

Duplicate samples shall be collected only from wells that produce enough water to collect two full suites of analytes without dewatering. Wells that produce sufficient water shall be incorporated into the sampling program such that the required duplicate frequency can be maintained.

Wells scheduled for duplicate sample collection shall be sampled as described in Subsection 4.8 of this procedure, and in relevant sections of project-specific work plans and/or quality assurance documents. Field duplicates are collected following the same sampling procedures used to obtain the real samples. With the exception of VOCs, the typical procedure for a location is to collect the real and duplicate of each sample at the same time, in two equal portions, with each portion going to the laboratory in separate containers. This is accomplished by alternately filling two sample bottles one half at a time to minimize heterogeneity. Note that real and duplicate VOC samples shall be collected independently to reduce the possibility of volatilization of the sample.

When a well with a dedicated pump is being used for sample collection, all samples shall be collected in the normal order, with duplicate VOC samples being collected first. The remaining samples will be sampled as described above.

If a well is being used for matrix spike (MS) and matrix spike duplicate (MSD) samples, the duplicate shall be collected after collection of the MS and MSD.

All duplicate samples shall be given a sample number different from the original sample and the information recorded on the sample collection log and/or the field QC sample collection log.

4.8.3.2 Matrix Spike and Matrix Spike Duplicate

MS and MSD samples shall be collected only from wells that produce enough water to collect the required suites of analytes without dewatering. MS and MSD samples are not collected on a routine basis, but will be collected if so designated in a site-specific sampling plans, or if requested by the project manager.

MS and MSD samples shall be collected as follows.

- Purge the well as described in Subsection 4.6 of this procedure..
- After completion of purging, collect VOC samples. Collect the real sample followed by the MS and MSD. Collect these samples in immediate succession.
- Collect the remaining samples not requiring filtering. For each sample parameter, collect the original sample, MS, and MSD concurrently. Fill the original sample bottle one-third full followed by the MS and MSD sample bottles, which are also filled one-third full. Rotate each bottle in the sequence, filling in one-third full until all three bottles are full. For analytes not requiring an MSD, collect only the original sample and the MS.
- After the real sample, MS, and MSD (where appropriate) are collected for one parameter, repeat the process for the next parameter.
- Similarly, collect samples requiring filtering. When a bailer is used, fill a stainless steel bucket with sample water. As samples are collected and the reservoir of water in the bucket is depleted, add more water with discretion. When a pump is used, attach the filter directly to the discharge line. Fill

Page 15 of 20 ST_Rad_24

sample bottles as described above, partially filling the original sample, MS, and MSD in rotating sequence until each parameter bottle is full.

- Radiochemistry samples may have more than one bottle for each parameter group. In this case, include all required bottles in the rotating sequence.
- Field parameter measurements are not be required for MS and MSD samples.
- Retain the original sample number for MS and MSD samples. However, add a suffix of MS or MSD to the sample number to correspond with each QA/QC sample. Record all information on the field QC groundwater sample collection log.

4.8.3.3 Replicates and Splits

Replicate and split samples shall be collected in the same manner as described for the MS and MSD. Seek instruction from the project manager for replicates and splits exceeding three samples. Record all information will be recorded on the groundwater sample collection logs.

4.8.3.4 Field Equipment Rinses

Wells scheduled for equipment rinsate samples shall be sampled as described in Subsection 4.8 of this procedure, and field equipment rinses shall be collected as described in this Subsection and in relevant portions of project-specific QC documents and work plans. Field equipment rinses shall be collected in a manner designed to reflect sampling techniques. All equipment used during sampling will be fully decontaminated as described in Subsection 4.3, then rinsed with distilled or deionized water. The rinse water will then be collected in bottles identical to those used for the original sample, and assigned a separate sample number. Analytes requiring filtration will be filtered using a new filter and tubing as required for the real sample. All information will be recorded on groundwater sample collection logs.

4.8.3.4.1 Bailed Wells

After completion of sampling, all equipment shall be decontaminated. Prior to leaving the well location, the equipment rinse will then be collected as follows.

- Fill the bailer with distilled or deionized water by pouring the water into the top opening.
- Decant the rinse water to the VOC vials through the bottom valve just as was done during sample collection.
- For the remaining unfiltered samples, fill the bailer with distilled or deionized water each time additional rinsate is needed.
 Transfer the rinsate to sample bottles or to a stainless steel bucket and then to sample containers in the same manner used during collection.
- Collect filtered samples in an identical manner as the real samples. Fill the bailer with distilled or deionized water. Then transfer the rinse water to a stainless steel bucket. Filter the rinse water in the bucket through a new disposable filter.

Page 16 of 20 ST_Rad_24

• Preserve rinse samples in the same manner as the real samples.

4.8.3.4.2 Pumped Wells

Rinsate samples are not routinely collected from wells that are equipped with dedicated bladder pumps because the samples from these wells are collected directly from the pump discharge line. However, wells sampled using peristaltic pumps for sampling may be selected for rinsate sampling, with equipment used in sample collection (down hole tubing, filter tubing and the stainless steel bucket used for sample water collection, etc.) being decontaminated prior to rinsate sampling. The tubing at the pump head will be replaced, and a new filter used for filtered analytes. To collect the samples, distilled or deionized water will be poured into the decontaminated stainless steel bucket and pumped, using the decontaminated tubing, into the sample containers. The equipment used to collect the real VOC samples will also be decontaminated, rinsed, and used to collect the VOC rinse samples. All samples will be preserved at the same pH levels as the real samples.

4.8.3.5 Distilled Water Blanks

Distilled water sample blanks are not submitted on a routine basis, but will be made up if so designated in a site-specific sampling plan. Samples of the distilled or deionized water used for the final decontamination of equipment will be transferred directly to sample bottles to determine any baseline contamination the water may have introduced into the samples. Five-gallon bottles of the distilled or deionized water will be opened in a controlled area, such as the bottle storage room, and then poured directly into the appropriate sample bottle. A Teflon[®], glass, or stainless steel funnel may be used to help control flows into small mouth bottles. Blank samples will be preserved to the appropriate pH required for each analyte. All information will be recorded on groundwater sample collection logs.

4.9 Sample Handling and Control

Pre-cleaned sample containers will be obtained from a contract analytical sample container source. Preserving solution will be added to the bottles by a laboratory, the sample manager or qualified sampling personnel. The bottles will be labeled to indicate the preservative added.

The sampling containers, preservation requirements, and holding times for the various types of analyses are shown in Table 1. Groundwater samples will be properly labeled so that they can be easily identified. The sample numbering system will be assigned by project-specific sampling plan documents. A sample identification (ID) number will be assigned to each sample suite. The sample ID number will contain the following information as part of a nine to twelve character, alpha-numeric code:

Page 17 of 20 ST_Rad_24

Character(s)	Description	Code
1 and 2	Project ID	GW
3 through 7	Sample Number	00001 to 99999
8 and 9	Subcontractor ID	Alpha (e.g. TE = Tierra Environmental Consultants)
10, 11, and 12	QA/QC	MS for matrix spike, MSD for matrix spike duplicate

In addition to a sample number, each well sampled will be assigned a current Record Identification Number (RIN), an event number (specific to the RIN), and bottle numbers that are specific to the RIN and event number.

5.0 Records

All field activities shall be recorded on a Field Activity Daily Log or Groundwater Sample Collection Log. Additional logs may be required to record QC samples and for recording well status. Refer to specific project, site, or facility work plans for further information. Summary information of the day's activities or other pertinent information should always be recorded on the field forms. Under some circumstances, the project manager may assign a bound field logbook to the field personnel that will remain in their custody during all sampling activities. The cover of each logbook shall contain the following information at a minimum:

- Name of the organization to which the book is assigned
- Book number
- Project name
- Start and end dates

Logbook pages shall be sequentially numbered and marked with the book number before any data are recorded. All data and information pertinent to field sampling shall be recorded in the logbook or on the field forms that identify all required data entries. Enough detail must be included in the documentation to reconstruct the sampling event. Field form entries shall include the following minimum information:

- Date and time
- Names of field personnel
- Names of all visitors
- Location of field activities
- Description of sampling sites including weather conditions
- All field observations and comments
- Field parameters
- Sample identification information
- References to all prepared field activity forms and chain-of-custody records

Field logbooks, when required on specific projects, shall normally be kept only by the field sampling team leaders and the site supervisor and shall typically be used only to summarize field activities and to document project information not required by the procedure field forms.

Page 18 of 20 ST_Rad_24

Permanent ink shall be used for all entries in the logbooks and on the field forms. Mistakes shall be crossed out with a single line, initialed, and dated. Unused pages or partial pages shall be voided by drawing a line through the blank sections and initialing and dating the mark. Any deviation from this procedure shall require documentation in the site supervisor's logbook.

The field activity daily log narrative should create a chronological record of the sampling team's activities, including the time and location of each activity. Descriptions of problems encountered, personnel contacted, deviations from the procedure, and visitors on site shall also be included. The weather conditions, date, signature of the person responsible for entries, and the number of field activity daily log sheets used to record media team activities for a given day shall also be included.

The Groundwater Levels Measurement/Calculations Form and the Chain of Custody Record (see *Containing, Preserving, Handling, and Shipping Soil and Water Samples*) shall also be completed for each site. All blank fields on the forms must be completed or voided.

6.0 References

- Environmental Protection Agency, 1982, Test Methods for Evaluating Solid Waste, SW-846, Volume II. Field Methods, 2nd edition.
- Environmental Protection Agency, 1986a, Engineering Support Branch Standard Operating Procedures and Quality Assurance Manual, EPA Region IV Environmental Service Division.
- Environmental Protection Agency, September 1986b, RCRA Ground Water Monitoring Technical Enforcement Guidance Document, OSWER-9950.1.
- Environmental Protection Agency, 1987a, A Compendium of Superfund Field Operations Methods, EPA/540/P-87/001. 1987.
- Environmental Protection Agency, 1987b, Data Quality Objectives for Remedial Activities, Development Process, EPA/540/G-87/003.
- Environmental Protection Agency, December 1988, User's Guide to the Contract Laboratory Program.

Page 19 of 20 ST_Rad_24

APPENDIX A

STANDARD GROUNDWATER FORMS

Appendix B Sample Collection Forms

Project Name:	rado Scho	0/01/	Mines	Sample Location: CSMRT-1	
	49-250			Date: 9/9/10	
Sample Type:	Duplicate	SW Other:	EB	Sampler: N Melezyk	

Purge Volume Calcular	tions	Sample Collection					
Measured TD =	25.05 (ft)	Analysis	Container	Preservative	Date	Time	
	(+.28)	922-28	1941		, ,		
Total Depth =	25:33 (ft)	Diss. a	conse	14NO_	9/9/1	1200	
Depth to Water =	7.80 (ft)		500ml	''3	1 1	7-50	
		Catims	Plastie	HNO.	9/9/10	1200	
Initial Water Column =	17.53 (ft)		500ml	3	4 1 1		
	(Antons	Plastic	_	9/9/10	1200	
nitial Water Volume =	2 - 80 (gal)		125mL		///		
		DOC	Amber	4250y	9/9/10	1200	
3 X Water Volume	8.40 (gal)	Lab: ALS -	Fl Collan	Test A.	1errea - K	1 /	

Time	Volume	Temperature	рН	Conductivity	DO	ORP	Turbidity	Appearance
	(gal)	(°C) °F)	(SU)	(uS/cm)	(mg/L)	(m∨)	(NTU)	ppsaland
1141	1.40	14.18	7.44	900	12.48	136	364	Grown
1144	2.50	13.62	7.35	900	8.39	125	1000+	1
1147	4.20	13.79	7.15	999	11.05	150	10001	
1150	5.60	13.73	7.16	999	10.69	158	10001	
1153	7.00	14.01	7.02	995	7.37	165	icrot	
1157	8.40	13,83	7.95	900	6.28	165	10001	~
_								
olume purge	d: conduc	firity me	the a	logan't se	em to	st was	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Nen

Comme	ents: Analysis	Confairer	Preservative	Date	Time
TA	NO21NO3	16 Plastiz	nene	9/9/10	1200
TA	<u> 705</u>	16 Placks	nene	9/9/10	1200
TA	terros re	H Placks	none	9/ /10 WEN	
74	SIG /	250ml Plestor	HNO	9/ 100 No	- My
11111111	Sport Hand	25 Onal Picerre	2n /2	9/ /10 NZ	41

Project Name:	prado Scho	o/ of /	Mines	Sample Location:	
Project Number:	349-250			Date: 9/7/10. 9/9/10	
Sample Type:	Duplicate	SW Other:	EB	Sampler: N Malczyk	

Purge Volume Calcula	tions	Sample Collection					
Measured TD =	23.40 (ft)	Analysis	Container	Preservative	Date	Time	
	(+.28)	855-28	1941		, ,		
Total Depth =	23.65 (ft)	DIES. UL	conse	14NO2	9/8/10	0900	
Depth to Water =	(ft)		soonl	3	1,		
	18.44	Catoms	Plastie	4NO	9/8/10	0900	
Initial Water Column =	5.24 (ft)		500ml	3	, ,		
	7.09	Antons	Plagtie	_	9/8/10	0907	
Initial Water Volume =	, 84 (gal)		125mL		11	- / - 0	
	~ .	DOC	Amber	H2 SOU	9/8/10	0900	
3 X Water Volume	2.52 (gal)	Lab: ALS -	Ft. Collins	Test An	nerrea - K	Lymba	

Time	Volume	Temperature	рН	Conductivity	DO	ORP	Turbidity	Appearance
	(gal)	(C,)°F)	(SU)	(uS/cm)	(mg/L)	(mV)	(NTU)	
1327	0.84	14.09	6.87	1090	4.96	97	61.8	elec-
1330	1.68	13.08	6.90	960	5.56	68	502	black
1333	2.52	13.12	6.85	940	9.62	98	1000+	+
_		44.00			199			
								1/2 m
lume purge	ed:	 						and and

Comme	ents: Analysis	Confeiner	Preservative	De	L	Time
IA	NOZINOZ	14 Plastre	nene	9/	8/10	0900
TA	TOS	16 Placks	nene	9/3	5/10	0900
TA	Ferros Fc	16 Plastre	rions.	9/	40 NZ	м
TA	Farme Fe	500ml Plestre	HNO	-9/	110 m	1 9
7-74	Soffre	250 ml Play by	In the	9/	100 NE	7

Project Name:	arado Scho	ol of)	Vines	Sample Location:	
Project Number:	149-250			Date: 9/7/10, 9/10/10	
Sample Type:	Duplicate	SW Other:	EB	Sampler: N Melozyk	

Purge Volume Calculat	tions	Sample Collection					
Measured TD =	45.12 (ft (+.28)	Bc-226	Container	Preservative	Date	Time	
Total Depth =	95.40 (ft	Diss. U	conse	14NO.	9/10/10	0850	
Depth to Water =	52.62 ^{(ft}		Fluster	HNO.	9/10/10	0457	
Initial Water Column =	42.78 (ft)	Antens	500ml Playtre	-	9/10/10	0550	
Initial Water Volume =	6.34 (gal)	DOC	125ml Amber	H2 504	9/10/10	0850	
3 X Water Volume	20.5 Z (gal)	Lab: ALS -	Ft Collins	Test An	seria -k	Lunda	

Time	Volume	Temperature	рН	Conductivity	DO	ORP	Turbidity	Appearance
	(gal)	(C,)F)	(SU)	(uS/cm)	(mg/L)	(mV)	(NTU)	
1412	3.42	14.84	7.02	809	2.09	117	414	bown
1420	6.84	14.65	7,37	730	9.30	731	1000+	1
1430	10.26	15.32	7.08	726	3,04	130	1000+	
1440	13.68	14.66	7.01	809	3,28	135	1000L	7
	17.10							
	20.52							
								win

Comme	ents: Analysis	Confeiner	preservative	Date	Time
TA	NOZINOZ	16 Plastiz	nene	9/10/10	0850
TA	TOS	16 Placks	nene	9/10/10	0800
TA	Ferross Fe	12 Plestie	neme	9/ /10 M	en
TA	Ferra Fa	500ml Plestre	#200-	9/ 110 N	z.M
TA	- Solfrede	200ml Dleske	In he	all to	un

	orado Scho	o/ of/	Mines	Sample Location:		
Project Number:	349-250		Date: 4/10/10			
Sample Type:	Duplicate	SW Other:	EB	Sampler: N Melczyk		

Purge Volume Calculat	tions	Sample Collection					
Measured TD =	17134 (ft)	Analysis	Container	Preservative	Date	Time	
	(+.28)	922-28	1901		, ,		
Total Depth =	17.62 (ft)		conse	14NO	9/10/10	0930	
Depth to Water =	RE-17-62 (H)		500ml	3	1 ,	- C 100	
	G.96	Cations	Plastie	HNO.	9/10/10	0930	
Initial Water Column =	10.60 (ft)		500ml	3	41.		
	10.00	Antons	Plastic	_	9/10/10	6530	
Initial Water Volume =	1.71 (gal)		125mL		11	0	
	c 15	DOC	Amber	4250y	9/10/10	0930	
3 X Water Volume	5.13 _(gal)	Lab: ALS -	Fl Coller	Test A.	servea - K		

Time	Volume	Temperature	рН	Conductivity	DO	ORP	Turbidity	Appearance
	(gal)	(C, 9F)	(SU)	(uS/cm)	(mg/L)	(mV)	(NTU)	T. Production
0920	1.71	15.59	6.66	1570	3.59	135	3.26	Slack
0924	3,42	15.38	6.63	1520	353	164	314	1
0928	5,13	15.29	6.63	1510	4.5-1	180	354	4
1								
								NEM

Comme	ents: Analysis	Container	Preservative	Date	Time
TA	NOZINOZ	16 Plastre	nene	9/10/10	0930
TA	TOS	16 Plactiz	none	9/10/10	0930
TA	Ferrors Fe	16 Plastra	none	9/10/10	0930
TA	Ferriz Fu	500ml Plestor	HNO-	9/10/10	0930
TA	Sulfrole	250ml Plastic	2n Az	1/10/10	0430

Project Name:	orado Scho	ol of	Mines	Sample Location:		
Project Number:	149-250		Date: vin 9/10/10	A353		
Sample Type:	Duplicate	SW Other:	EB	Sampler: N Melezyk		

Purge Volume Calculat	ions	Sample Collection					
Measured TD =	10.98 (ft)	Analysis	Container	Preservative	Date	Time	
	(+.28)	922-28	1901				
Total Depth =	11.26 (ft)		conse	14NO_	9/10/10	1045	
Depth to Water =	5.63 (ft)		500ml	" 3	110		
		Catoms	Plastie	HNO	9/10/10	1045	
Initial Water Column =	5.63 (ft)		500ml	3	17 1 07.0		
		Anions	Plastie	_	9/10/10	1045	
Initial Water Volume =	0.90 (gal)		125mL		1 1		
	1650 E	DOC	Am ber	H2504	9/10/10	1045	
3 X Water Volume	2,70 (gal)	Lab: ALS -	Fl Coller	Test An	44. ~ W	1 /	

Time	Volume	Temperature	рН	Conductivity	DO	ORP	Turbidity	Appearance
	(gal)	(C)F)	(SU)	(uS/cm)	(mg/L)	(mV)	(NTU)	
1035	0.00	13.27	7.28	1550	11.75	-157	114	black
1037	080	12.72	7.12	1530	11.19	-91	15-2	1
1040	2,70	12.64	7.04	1490	5.96	-37	147	4
_								
					79.7			
								win
lume purge	g: 3 2	,		L	L		=	

Comme	ents: Analysis	Confairer	Preservative	Date	Time
TA	NOZINOZ	16 Plastre	nene	9/10/10	1045
TA	TOS	16 Placks	nene	9/10/10	1045
TA	Ferrors Fe	16 Placting	none	9/10/10	1045
TA	Ferriz Fu	500ml Plestor	HNO-	9/10/10	1045
TA	Sulfrele	250ml Plastic	Zn Az	1/10/10	1045

Project Name:	lorado Scho	ol of)	Sample Location: CSMRI-6C Date:		
Project Number:	349-250				
Sample Type:	Duplicate	SW Other:	EB	Sampler: N Melozyk	

Purge Volume Calculati	ons	Sample C	ollection			
Measured TD =	29.94 (ft)	Analysis	Container	Preservative	Date	Time
Total Depth =	30,22 _(ft)	135. U	conse	HNO.	9/3/10	1340
Depth to Water =	24,31 (ft)	Cations	500ml Plustice	3	9/8/10	1340
Initial Water Column =	5,91 (ft)	Antons	500ml Plastre	-	9/0/10	1340
Initial Water Volume =	0,45 (gal)		125mL		1 -1	130
3 X Water Volume	2.85 _(gal)	DOC Lab: ALS -	Amber El Coller	Ha Soy	9/8/10 urrea - k	1340

Time	Volume	Temperature	рН	Conductivity	DO	ORP	Turbidity	Appearance
2G-5	(gal)	(°C) °F)	(SU)	(uS/cm)	(mg/L)	(mV)	(NTU)	100000000000000000000000000000000000000
0 1329	0.95	T2.86	7.58	1530	11.07	146	1000+	brown
1332	0.19	11.96	7.43	1480	10.65	152	1000+	brann
1335	5.85	11.77	7.25	1450	10.71	161	1000+	bour
			e de la companya de l					
			1.00					Sam
olume purgeo	1: 2.85 g	4						NC.M

Comme	ents: Analysis	Confeirer	Preservative	Dete	Time
TA	NOZINOZ	16 Plastiz	nene	9/8/10	1340
TA	TOS	16 Plache	none	9/8/10	1340
TA	Ferros Fe	16 Plestre	none	9//10	ran
TA	Farm Fe	500ml Plestiz	HNO	9/ 100 ~	rm.
174	Solline	250ml Playbo	In he	1/10	vin

Project Name:	prado Scho	ol of 1	Vines	Sample Location:	
	349-250			Date: 9/8/10, 9/10/10	
Sample Type:	Duplicate	SW Other:	EB	Sampler: N Malezzk	

Purge Volume Calculat	ions	Sample Collection					
Measured TD =	16.80 (ft)	Analysis	Container	Preservative	Date	Time	
Total Depth =	(+.28) 17.08 (ft)	135. U	cuse	14NO_	9/10/10	0.00	
Depth to Water =	15,78 (ft)	12188. 00	soonl	3	1 1	///5	
nitial Water Column =	1,30 (ft)	Cotons	Plane	HNOZ	9/ /10	NZ Ju	
nitial Water Volume =	ee 0.208 (gal)	Anions	Plastiz 125ml		9/ 10	Num	
X Water Volume	0.21	DOC		H2504	9/ 10	NRN	

Time	Volume (gal)	Temperature (°C)°F)	pH (SU)	Conductivity (uS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Appearance
0929 0935	0,21	17.35	6.91	920	4.65	116	10.5	ilear
0122	0,63	17.28	6.81	606	6.06	120	9.5	clear
				-				
lume purge	d: 0 175 g	al	-					win

Comments: Anolysis	Confeiner	Preservative	Date Time
TA NOTNO	16 Pleator	nene	of to gan
TA TOS	16 Mechi	nene	of to un
TA Ferra Fe	500mt Plastre	none	91 110 nm
TA Stade	250me Hake	In the	9/ 110 nen

Project Name:	rado Scho	ol of /	Mines	Sample Location: CSMR1-8		
Project Number:	49-250			Date: 9/8/10		
Sample Type:	Duplicate	SW Other:	EB	Sampler: N Melczyk		

Purge Volume Calculations		Sample Collection					
Measured TD =	17.04 (ft)	Analysis	Container	Preservative	Date	Time	
Total Depth =	(+.28) 17:32 (ft)	DI31. U	conse	14NO_	9/8/10	1105	
Depth to Water =	7.97 (ft)		500ml Plube	400	9/8/10	1100	
Initial Water Column =	9,35 (ft)	Antens	500ml Plagtie	-	9/8/10	1/05	
Initial Water Volume =	1,50 (gal)		125mL		1.1		
3 X Water Volume	4.SD (gal)	DOC Lab: ALS-	Amber El Collins	Ha SOY Test An	9/8/10	1103	

Time	Volume (gal)	Temperature	pH (SU)	Conductivity (uS/cm)	DO (mg/L)	ORP (m)/)	Turbidity (NTU)	Appearance
(054	(,50	15.87	7.25	2170	8.12	(mV)	1000+	brown
1058	3.0D	15.76	7.25	2140	5.00	172	1000+	brown
1101	4,50	16.15	7.25	2160	7.55	177	1000+	brown
				1				
ume purge				11				even

Comme	ents: Analysis	Container	Preservative	Date	Time
TA	NOZINOZ	16 Plastre	nene	9/8/10	1105
TA	TOS	16 Plachz	nene	9/8/10	1105
TA	Ferrors Fe	11 Plastre	none	9/3/10	1105
TA	Ferniz Fe	500ml Plastre	HND-	9/8/10	1105
TA	Sulfrede	250ml Placke	2n 12	9/8/10	1105

Project Name:	rado Schon	,1 of)	Unes	Sample Location: (SM R I - 9		
Project Number:	49-250			Date: 9/8/10		
Sample Type:	©W) Duplicate	SW Other:	EB	Sampler: N Malezzk		

Purge Volume Calculation	s	Sample Collection					
Measured TD =	33.11 (ft)	Analysis	Container	Preservative	Date	Time	
1	(+.28)	825-02	1901		, ,		
Total Depth =	33.39 (ft)	Diss. a	conse	14NO2	9/8/10	1010	
Depth to Water =	20.76 (ft)		soonl	3	1,	y, 1987 3-13-100-0300-03	
	277. 44	Cations	Plastie	HNOS	9/2/10	1010	
Initial Water Column =	12.63 (ft)		500ml	3	, ,		
		Aniens	Plastie	_	9/8/10	1010	
Initial Water Volume =	2.02 (gal)		125mL		11		
1	882 20	DOC	Amber	H2504	9/8/10	1010	
3 X Water Volume	(0.06 (gal)	Lab: ALS -	Ft. Collins	Test An	nerrea - K	Lunda	

Time	Volume (gal)	Temperature (°C.)°F)	pH (SU)	Conductivity (uS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Appearance
1000	5.05	12.94	6.94	1510	9.15	180	1000 +	Brown
1003	4.04	13.06	6.88	1470	8,37	184	1000 t	Brown
1006	6.06	12.53	6.81	1410	8.60	189	1000+	+
<u>\</u>								
								1
							<u> </u>	
								sen

Comme	ents: Analysis	Confeiner	Preservative	Date	Time
TA	NOZINOZ	16 Plastre	nene	9/8/10	1010
TA	TOS	16 Plactiz	nene	9/8/10	100
TA	Ferros Fe	14 Plastre	PLOY-E	9/ 10 N	enter
TA	Ferriz Fe	500ml Plestor	11/1/2	9/ /10 1	rn
TA	Sulfrede	- 200 pol Placke	2,15	- 1/ 110 n	ren.

Project Name:	prado Schor	o/ of -	Mines	Sample Location: (SM & T - (O		
Project Number:	349-250			Date: 9/8/10		
Sample Type:	GW Duplicate	SW Other:	EB	Sampler: N Melozyk		

Purge Volume Calculation	าร	Sample Collection						
Measured TD =	27,86 (ft)	Analysis	Container	Preservative	Date	Time		
	(+.28)	855-28	1901	,	, ,			
Total Depth =	28,14 (ft)	Diss. a	conse	14NO.	9/2/10	1040		
Depth to Water =	21,89 (ft)		500ml	3	1 1	7 - 10		
		Catoms	Plestie	HNO.	9/8/10	1040		
Initial Water Column =	6,25 (ft)		500ml	-3	, , ,			
		Aniens	Plastie	_	9/8/10	1040		
Initial Water Volume =	1.00 (gal)		125ml		1 1			
	~ ~ ~	DOC	Amber	H2504	9/3/10	1040		
3 X Water Volume	3,00 _(gal)	Lab: ALS -	Ft. Collins	Test An	ALLEN - K	Lucia Sa		

Time	Volume	Temperature	рН	Conductivity	DO	ORP	Turbidity	Appearance
	(gal)	(°C)°F)	(SU)	(uS/cm)	(mg/L)	(mV)	(NTU)	10.2
1028	1.00	13.47	7.18	0251	6.41	164	514	Grey
1031	200	12.92	7.15	1340	6,33	166	577	Grey
1034	3.00	12,73	7,10	1340	8.04	168	573	bren
								/
					24(-)			
lume purge								NZON

Comme	nts: Analysis	Confeiner	Preservative	De	L	Time
TA	NOZINOZ	16 Plastre	nene	9/	6/10	(040
TA	TOS	16 Plactiz	nene	9/5	3/10	1040
TA	Ferros Fe	IL Placks	neme	9/	110 "	ien
TA	Ferrie Fe	500ml Plestie	11700-	-4/	110-	ven
TA	Solfrate	250ml Alexbe	2n A2	9/	110 1	rn.

Project Name:	rado Schor	o/of/	Mines	Sample Location:		
Project Number:	149-250			Date: 9/8/10		
Sample Type:	Duplicate	SW Other:	EB	Sampler: N Melozyk		

Purge Volume Calculations		Sample Collection						
Measured TD =	28,55 (ft)	Analysis	Container	Preservative	Date	Time		
	(+.28)	922-08	1901		, ,			
Total Depth =	28,87 (ft)	Diss. a	conse	14NO	9/8/10	1435		
Depth to Water =	24.27 (ft)		soonl	3	1 1			
		Cations	Plastre	HNOS	9/8/10	1435		
Initial Water Column =	4,60 (ft)		500ml	3	, ,			
		Anions	Plastie	_	9/8/10	1435		
Initial Water Volume =	0,74 (gal)		125ml		11			
	- 2	DOC	Amber	H2 504	9/8/10	1435		
3 X Water Volume	2,22 (gal)	Lab: ALS -	Ft. Collins		1errea - K	triala		

Time	Volume	Temperature	Hq	Conductivity	DO	ORP	Turbidity	Appearance
	(gal)	(°C)'F)	(SU)	(uS/cm)	(mg/L)	(mV)	(NTU)	T I I I I I I I I I I I I I I I I I I I
1423	0.74	13.70	7.11	1630	10.10	165	10001	arey
1426	1.48	12.89	0.97	1680	8.97	169	1000+	2 104
1429	2.22	12.86	10.86	1690	8.46	174	1000+	going
_					OT Agriculture			100
15.0								
lume nurge	d: 2.22	- 1		J			-	NEM

Comme	nts: Analysis	Container	Preservative	Date	Time
TA	NOZINOZ	16 Plastiz	nene	9/9/10	1435
TA	TOS	16 Plactiz	nene	9/8/10	1435
TA	Ferros Fe	IL Placks	neme	9//10	oun
TA	Ferre Fe	500mt Plestor	11700-	9/ 10	nen
TA	Solfiste	250ml Hecks	In the	9/ 10	NZIT

					2-2-2-2-1011012			
Project Nar		, ,	, ^		Sample Loca	ation:		
<u> </u>	Colora	do Schoo	of M	ines		SW-	1	
Project Nur					Date:			
	4349	-250			9/9/10			
Sample Typ	oe:	GW	8W)	EB	Sampler:			
		Duplicate	Other:		N	Maler	k	
Duras Va	aluma Cala	1.0		1				
	olume Calci	ulations		Sample C	ollection			7,41
Measured T	D =		(ft	Analysis	Container	Preservative	Date	Time
			(+.28)	Rc 226	1 gal		/ /	
Total Depth			/ (ft	Diss. a	conse	14NO2	9/9/10	1125
Depth to Wa	ater =		/ (ft		500ml	3	,,,	
				Catoms	Plastie	HNOS	9/9/10	1125
Initial Water	Column =		(ft		500ml	- 3	, ,	
				Antons	Plastie	_	9/9/10	1125
Initial Water	Volume =	1/1-	(gal)		125mL		/ /	
		1 / 100	(DOC	Am ber	4.50,	9/9/10	1125
3 X Water Ve	olume		(gal)	DOC Lab: ALS -	Ft. Colline	Test An	nerra -1	turala
				2				7.7.
Purge Vo.	lumes and	Field Water	Quality Me	easuremen	ts			
Time	Volume	Temperature	pН	Conductivity	DO	ORP	Turbidity	Appearance
	(gal)	(°C)°F)	(SU)	(uS/cm)	(mg/L)	(m∨)	(NTU)	1.40
1123	WA	13.54	7.33	340	11.93	142	7.3	dees
								LIXON
								-
				T				
								-
								ART
olume purge	ed:	•						
	N/4	9						
Comments	Analysis		nteiner	b	. /	n 1		_
-4	NO2/NO.		Plastiz		servetive	Vale	-	Time
-A	TOS		Plastre	nen	Parallel March	9/1	10	1125
4	Ferros	- 16		ner		77	10	1125
A	500 <u>—</u> 1		Plestiz	no		9/, /	10 non	
A	SIGI.		mt Plests			9/, /	10 rm	
	- SALLINGE	23 0	unt ricky	- Ln	1/2	91 10	10 NIN	7

					51.2			
Project Nar		, .	. ^		Sample Loca	ation:		
	Colora	do Schoo	1 of M	ines	50	2-6		
Project Nur	mber:				Date;			
	4349	-250			9/9/10			
Sample Typ	oe:	GW	(SA)	EB	Sampler:			
		Duplicate	Other:		N	Melez	-6	
Purge Vo	olume Calci	ulations	A	Sample C	ollection			
Measured T	D =		(ft)	Analysis	Container	Preservative	Date	Time
			(+.28)	825-08	1901			
Total Depth	=		/ (ft)	Diss. U	conse	11.NO	9/9/10	1345
Depth to Wa	ater =		(ft)		500ml	-,- 3	7,7,0	
				Cations	Plustie	HND.	9/9/10	1345
Initial Water	Column =		(ft)		500ml	3	4 1 1	
				Antons	Plastie 125ml	_	9/9/10	1345
Initial Water	Volume =	/	(gal)				/ /	
		/ Nr.	/*\	DOC	Amber	4,50,,	9/9/10	1345
3 X Water V	olume		(gal)	Lab: ALS -	Amber Ft. Collins	Test An	nerrea -1	
Purge Vo	lumes and	Field Water	Quality Me	easuremen	ts			
Time	Volume	Temperature	рН	Conductivity	DO	ORP	Turbidity	Appearance
	(gal)	(C)F)	(SU)	(uS/cm)	(mg/L)	(mV)	(NTU)	
1341	NA	15.60	7.94	340	1244	145	348	clear
	ļ		_				1	
	ļ							
	ļ							
								over
olume purge	ed: N/F	+						
	- 7							
					. 24			
comments	Analysis	Co	ntainer	Pre	servetive	Date	_	Time
-4	NO2, NO.	16	Plastre	nen	۷		10	1345
-A	TOS	16	Plache	ner	e	9/9/		1345
<u>A</u>	Ferros	FC TL	Plastre	nos	75		to-sin	
A	Ferrit F	- 500,	no Plasta	NH.	10		10 Na	<i>M</i>
A	Solfrede	250	ne Plack	2,	مح ٨			M

Project Number: #3 49 - 250 Sample Type: Sample Collection Measured TD = (+28) Total Depth = (II) Reserved 19 (III) Reserved 19 (IV) Reserved 19 (IV) Reserved 19 (IV) Reserved 19 (IV) Reserved 19 Reser	Project Nar	ne: Colora	Lo Schoo	1 of M	, ma	Sample Loca		7	
Sample Type: GW Duplicate Duplicate Other: Sample Collection Measured TD = (t.28) Container (t) Analysis Container Collection Measured TD = (t.28) (t) Analysis Container (t) Collection Analysis Container Preservative Date Time Analysis Container Preservative Date Time Odume (gal) Lab: Als-Filed Analysis Conductivity DO ORP Turbidity Appearance (gal) Collection Analysis Conductivity DO ORP Turbidity Appearance (gal) (gal) Appearance (gal) Appearance (gal) Appearance (gal) Analysis Container Preservative Do ORP Turbidity Appearance (my) (inv)	Project Nun	nber:		. 0. /	,,,,	Date:		ــــــ کـــــــ	
Sample Type: GW Duplicate Other: Sample Collection Measured TD = (+28) Total Depth = Depth to Water = (1) Initial Water Volume (gal) Analysis (h) Analysis Container Preservative Date Time (h) Total Depth = (1) Dots (h) Total Depth = (1) Other: (h) Analysis Container Preservative Date Time (h) Total Havoz Floating Havoz Hav		4349	-250						
Duplicate Other: Note Care Container Preservative Date Time	Sample Typ	e:		SWY	EB		7		
Measured TD = (1) Analysis Container Preservative Date Time (1) Analysis Container Preservative Date Time (1) Analysis Container Preservative Date Time (1) Care 16			Duplicate	Other:		N	Meleze	k	
Measured TD = (1) Analysis Container Preservative Date Time (1) Analysis Container Preservative Date Time (1) Analysis Container Preservative Date Time (1) Care 16	Purae Vo	lume Calc	ulations		Sample C	allantinu			
Total Depth = (+28) (+28) (10 - 228			diations						
Depth to Water = (ft) Drie, a case HNO3 9/9/10 1315 Depth to Water = (ft) Drie, a case HNO3 9/9/10 1315 Depth to Water = (ft) Drie, a case HNO3 9/9/10 1315 Depth to Water Column = (ft) Soont Plastre HNO3 9/9/10 1315 Depth to Water Volume = (ft) Soont Plastre HNO3 9/9/10 1315 Depth to Water Column = (ft) Soont Plastre HNO3 9/9/10 1315 Depth to Water Column = (ft) Drie, a case HNO3 9/9/10 1315 Depth to Water Column =	Measured 1	<i>-</i>		/			Preservative	Date	Time
nitial Water Column = (II) Soom! HNO. 9/9/10 1315 initial Water Volume = (II) Soom! HNO. 9/9/10 1315 initial Water Volume = (III) Soom! Plastre = 9/9/10 1315 initial Water Volume = (III) Hn tens Plastre 9/9/10 1315 initial Water Volume = (III) Hn tens Plastre Hn tens Hn t	Total Donth	_			822-	1921		101	10
nitial Water Column = (II) Soom! HNO. 9/9/10 1315 initial Water Volume = (II) Soom! HNO. 9/9/10 1315 initial Water Volume = (III) Soom! Plastre = 9/9/10 1315 initial Water Volume = (III) Hn tens Plastre 9/9/10 1315 initial Water Volume = (III) Hn tens Plastre Hn tens Hn t			+			conse	14NO2	9/9/10	1315
milial Water Column = (ft) Anions Plastre 7/9/10 1315 Note Anions Plastre 7/9/9/10 1315 Note Anions Plastre 140 mm	рериг ю ууа	ner =	1	/ (ft)				11	
milial Water Column = (ft) Anions Plastre 7/9/10 1315 Note Anions Plastre 7/9/9/10 1315 Note Anions Plastre 140 mm	- 1 P. A. 1 P. A. 1	<u> </u>			Cations		HNO	9/9/10	1315
milial Water Volume Name	nitial Water	Column =		(ft)	1	500ml		, ,	
Omments: Analysis Container Preservative Dela Time A Now Now 11 Plastra name 4 9 10 1315 A Ferrors Fe Soont Plastra Have 9 10 1315 A Ferrors Fe Soont Plastra Have 9 10 1315 (gal) DOC Amber H2 SO, 9 9 10 1315 A Ferrors Fe Soont Plastra Have 9 10 1315 (gal) Lab: ALS - Fl. Colline, Test America - Hrwyla (gal) Lab: Als So, 9 9 10 1315 A Ferrors Fe Soont Plastra Have 9 10 10 1315					Antons	Plastre	-	9/9/10	1315
Ourge Volumes and Field Water Quality Measurements Time Volume (gal) (SU) (us/cm) (mg/L) (mV) (NTU) 1309 at A 15.05 7.97 340 12.31 149 0.0 Cheer Omments: Analysis (ontainer Preservative A 29 /10 1315 A Ferrors Fe It Plestre Incre 1 10 10 12 15 16 16 16 16 16 16 16 16 16 16 16 16 16	nitial Water	Volume =	/ NEM	(gal)				/ /	
Ourge Volumes and Field Water Quality Measurements Time Volume (gal) Temperature pH Conductivity DO (mg/L) (mV) (NTU) (J309 A/A 15.05 7.97 340 12.31 149 0.0 Cheer John purged: N/A Omments: Analysis Confeiner Preservine Date Time A NO2,NO2 16 Plestre name of 1/10 1315 A Ferrors Fe 14 Plestre name of 1/10 1315 A Ferrors Fe 14 Plestre name of 1/10 1315 A Ferrors Fe 14 Plestre name of 1/10 1315 A Ferrors Fe 14 Plestre name of 1/10 1315 A Ferrors Fe 14 Plestre name of 1/10 1315					DOC	Amber	4,50,,	9/9/10	1315
Durge Volumes and Field Water Quality Measurements Time Volume Temperature pH Conductivity DO ORP Turbidity Appearance (gal) (C)F) (SU) (uS/cm) (mg/L) (mV) (NTU) 1309 Afth 15.05 7.97 340 12.31 149 C. D. Cheer Dolume purged: N/A Omments: Analysis Confeiner Preservative Date Time A NO2/NO2 14 Plastra name 9/9/10 1315 A TOS 14 Plastra name 9/9/10 1315 A Ferrors Fe 14 Plastra name 9/9/10 1315 A Ferrors Fe 14 Plastra name 9/9/10 1315 A Ferrors Fe 14 Plastra name 9/9/10 1315	3 X Water Vo	olume		(gal)	Lab: ALS -	Ft. Colline	Test An	nerra -	triale
Time Volume (gal) (C)F) (SU) (uS/cm) (mg/L) (mV) (NTU) Appearance (mg/L) (my/L) (mV) (NTU) (NTU) 1309 Aft 15.05 7.97 340 12.31 149 0.0 Cheer Delume purged: N/A Omments: Analysi's Confeiner Preservative Delume Time A NO2,NO2 14 Plestra nane a/9/10 1315 A Ferrors Fig. 14 Plestra nane a/9/10 1315 A Ferrors Fig. 14 Plestra nane a/9/10 1315 A Ferrors Fig. 14 Plestra nane a/9/10 van A Ferrors Fig. 14 Plestra nane a/9/10 van A Ferrors Fig. 14 Plestra nane a/9/10 van				1		-		177.77	
Time Volume (gal) (C)F) (SU) (uS/cm) (mg/L) (mV) (NTU) Appearance (mg/L) (my/L) (mV) (NTU) (NTU) 1309 Aft 15.05 7.97 340 12.31 149 0.0 Cheer Delume purged: N/A Omments: Analysi's Confeiner Preservative Delume Time A NO2,NO2 14 Plestra nane a/9/10 1315 A Ferrors Fig. 14 Plestra nane a/9/10 1315 A Ferrors Fig. 14 Plestra nane a/9/10 1315 A Ferrors Fig. 14 Plestra nane a/9/10 van A Ferrors Fig. 14 Plestra nane a/9/10 van A Ferrors Fig. 14 Plestra nane a/9/10 van	^D urge Vol	lumes and	Field Water	Quality Me	easuremen	ts			
omments: Analysis Confeiner Preservative Data Time A NO2, NO3 16 Plestre none of two A Ferrors Fe IL Plestre HND of two	Time						ORP	Turbidity	Annearance
omments: Analysis Confeiner Preservative Date Time A NO2, NO2 16 Plastra nane 9/9/10 1315 A Ferrors Fe IL Plastra nane 9/9/10 1315		(gal)	(C))°F)	(SU)		(ma/L)	55.50		rippedianee
omments: Analysis Container Preservative Date Time A NO2, NO2 16 Plastra nane 9/9/10 1315 A Ferrors to 16 Plastra nane 9/9/10 nan	1309	1.1A							-/:
comments: Analysis Confeiner Preservative Date Time A NO2, NO2 14 Plastre nane 9/9/10 1315 A TOS 14 Plastre nane 9/9/10 1315 A Ferrors He 14 Plastre nane 9/10 mm A Ferror Fe soont Plastre HND2 9/10 mm		1				161.00		0,0	char
comments: Analysis Confeiner Preservative Date Time A NO2, NO2 14 Plastre nane 9/9/10 1315 A TOS 14 Plastre nane 9/9/10 1315 A Ferrors He 14 Plastre nane 9/10 mm A Ferror Fe soont Plastre HND2 9/10 mm									
comments: Analysis Confeiner Preservative Date Time A NO2, NO2 14 Plastre nane 9/9/10 1315 A TOS 14 Plastre nane 9/9/10 1315 A Ferrors He 14 Plastre nane 9/10 mm A Ferror Fe soont Plastre HND2 9/10 mm									
comments: Analysis Confeiner Preservative Date Time A NO2, NO2 14 Plastre nane 9/9/10 1315 A TOS 14 Plastre nane 9/9/10 1315 A Ferrors He 14 Plastre nane 9/10 mm A Ferror Fe soont Plastre HND2 9/10 mm									
comments: Analysis Confeiner Preservative Date Time A NO2, NO2 14 Plastre nane 9/9/10 1315 A TOS 14 Plastre nane 9/9/10 1315 A Ferrors He 14 Plastre nane 9/10 mm A Ferror Fe soont Plastre HND2 9/10 mm									
comments: Analysis Confeiner Preservative Date Time A NO2, NO2 14 Plastre nane 9/9/10 1315 A TOS 14 Plastre nane 9/9/10 1315 A Ferrors He 14 Plastre nane 9/10 mm A Ferror Fe soont Plastre HND2 9/10 mm									
comments: Analysis Confeiner Preservative Date Time A NO2, NO2 14 Plastre nane 9/9/10 1315 A TOS 14 Plastre nane 9/9/10 1315 A Ferrors He 14 Plastre nane 9/10 mm A Ferror Fe soont Plastre HND2 9/10 mm						_	\leftarrow		
comments: Analysis Confeiner Preservative Date Time A NO2, NO2 14 Plastre nane 9/9/10 1315 A TOS 14 Plastre nane 9/9/10 1315 A Ferrors He 14 Plastre nane 9/10 mm A Ferror Fe soont Plastre HND2 9/10 mm									
comments: Analysis Confeiner Preservative Date Time A NO2, NO2 14 Plastre nane 9/9/10 1315 A TOS 14 Plastre nane 9/9/10 1315 A Ferrors He 14 Plastre nane 9/10 mm A Ferror Fe soont Plastre HND2 9/10 mm									
omments: Analysis Confeiner Preservative Date Time A NO2/NO3 14 Plastre name 9/9/10 1315 A TOS 14 Plastre name 9/9/10 1315 A Ferrors to 14 Plastre name 9/10 mm A Ferror to soont Plastre HND 9/10 ven		1							Nin
omments: Analysis Confeiner Preservative Date Time A NO2, NO3 14 Plastre nane 9/9/10 1315 A TOS 14 Plastre nane 9/9/10 1315 A Ferrors He 14 Plastre nane 9/10 mm A Ferror Fe 500ml Plastre HND2 9/10 ven	olume purge	" N/A	-					-	
A TOS 16 Plestre none 9/9/10 1315 A Ferrors Fe 16 Plestre none 9/10 mm A Ferror Fe 500ml Plestre HND 9/10 mm					-				
A TOS 16 Plestre none 9/9/10 1315 A Ferrors Fe 16 Plestre none 9/10 mm A Ferror Fe 500ml Plestre HND 9/10 mm						525			
A TOS 16 Plestre none 9/9/10 1315 A Ferrors Fe 16 Plestre none 9/10 mm A Ferror Fe 500ml Plestre HND 9/10 mm	omments:	Analysis	Con	ntainer	Pres	servetive	Date	_	Time
A TOS IL Plactiz none 9/9/10 1315 A Ferrors Fe IL Plactiz none 9/10 mm A Ferror Fe 500ml Plastic HND 9/10 mm	4	NO2, NO.	16	Plastiz				110	
A Ferrors Fe IL Pleatize none of two ren	4	TOS	16				70		
A Ferris Fe soonl Plestor HND of to ven	4		Fe 1L	Plache					Market State
1 10	4	Ferriz F							
	A	Selfale		ne Placke		13			

Project Nan		, .	. ^		Sample Location:			
	Colora	do Schoo	1 of M	ines	Equipment Block			
Project Nun	nber:				Date:	· prises	153.17.	
	4349	1-250			9/10/10			
Sample Type:		GW SW (EB)			Sampler:			
		Duplicate	Other:			Malez	6	
						(RICEC	<u> </u>	
Purge Vo	lume Calc	ulations		Sample C	ollection			
Measured T			(A)	1	Container	Preservative	Date	T Ti
ALI 4900 SUPERIOR SO 1711			(+.28)	825-28	1 44	Freservative	Date	Time
Total Depth	=			-558	cuse	11 110	-1.1	
Depth to Wa		1	(ft)	Diss. a	500nl	142003	9/10/10	0700
- oparto rra			/ (11)	1 .			-1. 1	
Initial Water	Column =		(51)	Cations		HNOZ	9/10/10	0700
iriidai vyatei	Coldiiii -		(ft)		500ml		11	
Initial Water	Volume =	+/-		Antons	Plastiz 125mL		9/10/10	0700
miliai vvalei	voidine –	1/vc	ハ (gal)				1. 1	
2 V Motor M	ali i anno	/		DOC	Amber	H2 SOY	9/10/10	6700
3 X Water Vo	nume		(gal)	Lab: ALS -	Ft. Collins	Test A	nerrea -/	Franka
D 1/		El . 7.11.						
		Field Water	Quality Me	easuremen	ts			
Time	Volume	Temperature	pН	Conductivity	DO	ORP	Turbidity	Appearance
	(gal)	(°C, °F)	(SU)	(uS/cm)	(mg/L)	(mV)	(NTU)	
				_				
								9
	- 120-2-11							4,0.792 14
1977 A 1985 St. Tr.								West
olume purge	d:	1			L			*A C2-17
	NA	f						
								- Control of the Cont
comments:	Analysis	. /	ntainer	ħ	servetive	n 1		
4			Plastiz			Ugh		Time
A	TOS		2010 1200	nen		',	10	0700
A	Ferrors		Plack	nep		9/10/	,	0700
A	Ferrors		RIT -	nes			Horan	
A	Sollide		nt Plesto			= 4/	to ven	
P-1	Soul A Lance	23 Or	DOT LICEL	74	1100	AI	m IVIM	

Appendix C Surface Water Sampling Procedures

Surface Water Sampling

1.0 Scope and Objective

1.1 Scope

This procedure provides instructions and establishes requirements for the collection and documentation of surface water samples by Stoller personnel. This procedure applies to the collection of surface water samples from streams, rivers, ponds, lakes, seeps, impoundments, and other surface sources.

1.2 Objective

The objective of this procedure is to establish a uniform method for the collection of surface water samples that provides representative samples in a safe and responsible manner.

2.0 Definitions

Composite Sample – A sample that is comprised of roughly equal amounts of water collected from a set of sample locations known as a sample group.

Grab Sample – A single sample collected at one sampling point over a short period of time. Grab sample results are representative of the sample location at the time of sample collection. Also called a catch sample.

Peristaltic Pump – A self-priming, low volume pump consisting of a rotor and ball bearing rollers. Tubing placed around the rotors is squeezed by the rotors as they revolve. The squeezing produces a wavelike contractual movement which causes water to be drawn through the tubing. The peristaltic pump is limited to sampling at depths of less than 25 feet.

3.0 Responsibilities and Qualifications

3.1 Project Manager

The Project Manager is responsible for ensuring that surface water samples are properly and safely collected. This will be accomplished through staff training and by maintaining quality control (QC). At a minimum, project management shall:

- 3.1.1 Verify that personnel have reviewed, and are familiar with, site-specific work plans which address surface water sampling, this procedure, and any associated procedures.
- 3.1.2 Ensure that hazards are identified and analyzed with respect to collecting surface water samples, and develop and implement controls to minimize hazards.
- 3.1.3 Provide personnel with training in the operation of surface water sampling equipment and the requirements of this procedure.
- 3.1.4 Periodically review field generated documentation associated with surface water sampling to ensure compliance with project requirements and implement corrective action if necessary.
- 3.1.5 Receive feedback from field sampling personnel in order to continually improve surface water sampling process.

3.2 Site Supervisor

The Site Supervisor is responsible for directing and overseeing all field activities, including sampling, to ensure that site-specific plan requirements are met in a safe and efficient manner within the established safety envelope.

Page 1 of 4 ST_Rad_19

3.3 Field Sampling Personnel

Field sampling personnel are responsible for the proper sample collection and documentation of the sampling event in accordance with this procedure. At a minimum, field sampling personnel have the responsibility to:

- 3.3.1 Familiarize themselves with site-specific work plans, surface water sampling procedures, potential hazards, and health and safety plan.
- 3.3.2 Implement the controls to minimize hazards.
- 3.3.3 Be familiar with sampling equipment and its proper use.
- 3.3.4 Properly complete field documentation.
- 3.3.5 Provide feedback to project manager in order to improve sampling process.

4.0 Equipment/Materials and Calibration

4.1 Equipment/Materials

A number of devices are available for the collection of surface water samples. These devices are constructed of a number of materials including, but not limited to: stainless steel, glass, Teflon®, Tygon®. The sampling and analytical requirements, as well as site characteristics, must be taken into account when determining the proper surface water sampling equipment to use. The site-specific work plans should identify the specific equipment to be used, and methods for safely using equipment.

4.2 Calibration

Equipment shall be calibrated in accordance with manufacturer's recommendations and calibration documentation shall be maintained in project files.

5.0 Method

5.1 Field Preparation

Field preparation requires the organization of sample containers, sample labels, and documentation in an orderly, systematic manner to promote consistency and traceability of all data.

- 5.1.1 General sampling areas will be predetermined to ensure coverage of the various impact scenarios and should be described in project-specific work plans. The location of each sampling point shall be surveyed or mapped and staked as described in Section 5.1.6 prior to sampling.
- 5.1.2 In flowing water, surface water sampling shall be conducted from downstream locations first, then proceed to upstream locations to avoid potential cross contamination from disturbing the substrate.
- 5.1.3 Prior to sampling and between sampling locations, sampling equipment shall be decontaminated.
- 5.1.4 Appropriate personal protective equipment shall be used, as specified in the project-specific health and safety plan.
- 5.1.5 All pertinent information (date, site name, identification number, and location) shall be recorded on a Field Activity Daily Log (FADL) and a Sample Collection Log, as appropriate. Field conditions, unusual circumstances, and weather conditions shall be noted.

Page 2 of 4 ST_Rad_19

- 5.1.6 Due to the nature of sampling an aqueous environment, additional steps are required to verify and mark sample locations. Depending on the project needs, it may be useful to use a Global Positioning System (GPS) to verify and mark the sample locations. Refer to *Field Mapping with a Global Positioning System* for details. The following steps shall be followed by the sampler in addition to the field preparation requirements described in Section 5.1.1.
 - 5.1.6.1 Place a marker (stake) on the shore approximately perpendicular to the sampling location and mark the sample number on the stake.
 - 5.1.6.2 If the sample location is accessible by foot, use a measuring tape to measure the distance between the marked point and the sample location station. Record the compass bearing from the sample location to the shore marker.
 - 5.1.6.3 If the sample location is accessible only by boat, use a rangefinder to estimate the distance to the shore marker to obtain the most accurate measurement. Record the compass bearing from the sample location to the shore marker. It is recommended that the boat's position on the water be stabilized to prevent drifting.
 - 5.1.6.4 Determine and record the distance and direction of each shore marker from a reference point shown on the topographic map and mark all points on a map or use a GPS, if available.
- 5.1.7 Quality Control samples, including field and source blanks, shall be collected in accordance with the project-specific work plan.

5.2 Surface Water Sample Collection Using a Transfer Container

The device most commonly used to collect grab surface water samples is a transfer container (beaker, flask, etc.) made of inert material such as glass, stainless steel or Teflon[®]. When sampling with a transfer container, the procedure is as follows:

- 5.2.1 Survey and clearly map sampling points as described in Section 5.1.6 prior to sampling. The sample should be collected as close to the mapped location as possible. If the collection point must be moved, the new location must be approved and documented.
- 5.2.2 Dip the transfer container into the surface water. Always use a clean, properly decontaminated transfer container at each sample location.
- 5.2.3 Filter the sample if required.
- 5.2.4 Fill the sample bottle, allowing the sample stream to flow gently down the inside of the bottle with minimal turbulence.
- 5.2.5 Cap the bottle and handle the sample according to the procedures outlined in Project *Sample Shipping*.
- 5.2.6 Label the sample and document the sampling event.

5.3 Surface Water Sample Collection Using a Peristaltic Pump

A device used to collect composite surface water samples is a peristaltic pump. Samples to be analyzed for volatile organic analysis cannot be composited. When sampling with a peristaltic pump, the procedure is as follows:

5.3.1 Survey and clearly map sampling points as described in Section 5.1.6 prior to sampling. The sample should be collected as close to the mapped location as possible. If a collection point must be moved, the new location must be approved and documented.

Page 3 of 4 ST_Rad_19

- 5.3.2 Attach the appropriate tubing to the peristaltic pump. Always use new tubing at each sample location. Do not try to decontaminate and reuse tubing.
- 5.3.3 If filtering is required, attach the filtering device to the discharge end of the tubing.
- 5.3.4 Lower the intake end of the tubing into the water and begin pumping. If the pump is computerized, program the pump to collect the sample at the desired intervals and flow rate. If the pump is not programmable, record the discharge rate (compute discharge rate by dividing an amount of water collected by the time it took to collect it). Collect the sample at the desired interval.
- 5.3.5 Fill the sample bottle, allowing the sample stream to flow gently down the inside of the bottle with minimal turbulence. The programmable pump will perform this automatically.
- 5.3.6 Cap the bottle and handle the sample according to the procedures outlined in Project *Sample and Shipping*.
- 5.3.7 Label the sample and document the sampling event.

6.0 Required Inspection/Acceptance Criteria

None.

7.0 Records

The following records generated as a result of implementation of this procedure shall be maintained in a safe manner and submitted to project central files for storage and disposition.

Field Activity Daily Log

Sample Collection Log

Chain of Custody

8.0 References

8.1 Others

- U.S. Environmental Protection Agency. 1987. *EPA Compendium of Superfund Field Operations Methods*, EPA 540/P-87/001a, OSWER 9355.0-14. Washington, DC.
- U.S. Environmental Protection Agency. 1988. *EPA Guidance for Conducting Remedial Investigation and Feasibility Studies under CERCLA*, Interim Final OSWER Directive 9355.3-01. Washington, DC.
- American Public Health Association, American Water Works Association, Water Pollution Control Federation. 1985. *Standard Methods for the Examination of Water and Wastewater*, 16th Edition, American Public Health Association, Washington, DC.

Page 4 of 4 ST_Rad_19

Appendix D Data Validation Reports

DATA VALIDATION REPORT

To:

Robert Hill

From:

John Garrett

Date:

November 07, 2010

Project/Site:

Colorado School of Mines

Project No.:

4349-250

SDG No.:

1009201

This report presents the inorganic anions data validation for the data obtained for fourteen CSMRI water sample collected on September 08, 2010, September 09, 2010, and September 10, 2010 and submitted to ALS Laboratory Group on September 13, 2010 for the above referenced work assignment. The purpose of this review is to provide a technical evaluation of the inorganic anions results that were obtained by preparation method MCAWW, May 1994, and EMSL Rev 2.1 Alkalinity, Bicarbonate, and Carbonate by Method 310.1 ALS SOP 1106R8, Sulfate, and Chloride by Method 300.0 Rev 2.1 ALS SOP 1113R11 from ALS Laboratory Group. (Fort Collins, CO). The water samples were analyzed for Bicarbonate, Carbonate, and Total Alkalinity, on September 22, 2010, Sulfate and Chloride on September 20, 2010. All analyses were conducted by ALS Laboratory Group. The field sample numbers and corresponding laboratory numbers are presented below:

Client Sample Number	Laboratory Sample Number	Matrix	Collection Date
CSMRI-1B	1009201-1	Water	September 08, 2010
CSMRI-9	1009201-2	Water	September 08, 2010
CSMRI-10	1009201-3	Water	September 08, 2010
CSMRI-8	1009201-4	Water	September 08, 2010
CSMRI-6C	1009201-5	Water	September 08, 2010
CSMRI-11B	1009201-6	Water	September 08, 2010
SW-1	1009201-7	Water	September 09, 2010
CSMRI-1	1009201-8	Water	September 09, 2010
SW-2	1009201-9	Water	September 09, 2010
SW-3	1009201-10	Water	September 09, 2010
EQUIPMENT BLANK	1009201-11	Water	September 10, 2010
CSMRI-2	1009201-12	Water	September 10, 2010
CSMRI-4	1009201-13	Water	September 10, 2010
CSMRI-5	1009201-14	Water	September 10, 2010

Data validation was conducted in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review.

The Inorganic data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Preservation
- * Initial and Continuing Calibration Verification
- * Contract Required Detection Limit (CRDL)
- * Preparation/Initial (ICB)/ and Continuing (CCB) Calibration Blanks
- * Interference Check Sample (ICSA) Results
- * Matrix Spike Results
- * Duplicate Sample Results
- * Laboratory Control Samples (LCS) Results
- * Serial Dilution Sample Results
- * Compound Quantitation and Reporting Limits (full validation only)
- * All criteria were met for this parameter

Data Completeness

The data package was complete. No results were qualified as a result of the missing data.

Holding Times and Preservation

Analytical holding times were evaluated and all criteria were.

The water samples were all found to be field filtered and had a pH less than 2. Cooler #1 was received at a temperature of 1.2°C and cooler #2 at 1.6 °C.

Initial and Continuing Calibration Verification

Initial and Continuing Calibration Verification standards were analyzed at the required frequency and all were within the required 90-110%. No action was necessary.

Contract Required Detection Limit (CRDL)

All CRDL %Rs CRI %Rs were within 80-120% limits. No action was necessary.

Preparation and Initial/Continuing Calibration Blanks

Preparation and Initial/Continuing Calibration Blank analyses were performed at the required frequency. Preparation and Initial/ Continuing Calibration Blanks are evaluated to assess the level of contamination in the preparation and analytical processes.

Preparation and Initial/ Continuing Calibration Blanks were prepared and analyzed at the required frequencies.

All of the blanks that were analyzed had concentrations that were below their respective Reporting Limits (RLs).

However, if blank results were above the Instrument Detection Limits (IDLs) and below the RLs, it caused the associated sample results to be qualified for contamination as estimated and non-detected [UJ 107]. If blank results were below the negate IDL and above the negate RL, it caused the associated sample results to be qualified for negative contamination as estimated [J 107]. No sample results were qualified due to blank contamination.

Matrix Spike/Matrix Spike Duplicate Results

MS/MSD analyses were performed at the required frequency. All MS/MSD percent recoveries were within 75-125% limits with the following exception:

The chloride concentration was above the analytical range in the native sample CSMRI-1B and MS/MSD recoveries could not be evaluated. The associated LCS, ICV, and CCV results were within control limits and no action was necessary.

Duplicate Sample Analysis

Duplicate analyses were performed at the required frequency. All original sample/duplicate sample and MS/MSD differences were less than 20% RPD or less than the RDL for results less than (5)(RDL). No actions were necessary.

Laboratory Control Samples

LCS analyses were performed at the required frequency. The laboratory analyzed laboratory control samples for all analytes. All recoveries were within 80-120% limits. No action was necessary.

Serial Dilution Results

All %Ds were less than 10% for all analytes.

Analyte Quantitation and Reporting Limits

Analyte quantitation was evaluated for all samples. No calculation or transcription errors were found. The results and reporting limits were correctly reported.

Overall Comments

The chloride concentration was above the analytical range in the native sample CSMRI-1 and MS/MSD recoveries could not be evaluated. The associated LCS, ICV, and CCV results were within control limits and no action was necessary.

Samples CSMRI-1B, CSMRI-9, CSMRI-10, CSMRI-8, CSMRI-6C, CSMRI-11B, CSMRI-1, CSMRI-2, CSMRI-4, and CSMRI-5 were analyzed at a dilution in order to bring chloride and sulfate concentrations into range.

Reduced aliquots were analyzed for samples CSMRI-1B, CSMRI-9, CSMRI-10, CSMRI-8, CSMRI-6C, CSMRI-11B, CSMRI-1, CSMRI-2, CSMRI-4, and CSMRI-5 for chloride, sulfate, alkalinity, bicarbonate, and carbonate. The laboratory elevated the reporting limits accordingly.

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- Result was not used from a particular sample analysis. This typically occurs
 when more than one result for an element is reported due to dilutions and
 reanalyses.

DATA VALIDATION REPORT

To:

Robert Hill

From:

John Garrett

Date:

September 08, 2010

Project/Site:

Colorado School of Mines

Project No.:

4349-250

SDG No.:

1009201 Radium-228

This report presents the radiological data validation for the data obtained during the field activities for the above referenced work assignment. The purpose of this review is to provide a technical evaluation of the radiological results that were obtained by ALS Laboratory Group PA SOP 724R10 for Radium-228 by gas proportional counting for SDG 1009201 from ALS Laboratory Group (Fort Collins, CO). This report consists of fifteen water samples for the Colorado School of Mines/4349-250 project collected on September 08, 2010, September 09, 2010, and September 10, 2010 and submitted to ALS Laboratory Group on September 13, 2010. The samples were analyzed for Radium-228 by Radon gas proportional counting on October 08, 2010, and October 18, 2010. All analyses were conducted by ALS Laboratory Group. The field sample numbers and corresponding laboratory numbers are presented below:

Client Sample Number	Laboratory Sample Number	Matrix	Collection Date
CSMRI-1B	1009201-1	Water	September 08, 2010
CSMRI-9	1009201-2	Water	September 08, 2010
CSMRI-10	1009201-3	Water	September 08, 2010
CSMRI-8	1009201-4	Water	September 08, 2010
CSMRI-6C	1009201-5	Water	September 08, 2010
CSMRI-11B	1009201-6	Water	September 08, 2010
SW-1	1009201-7	Water	September 09, 2010
CSMRI-1	1009201-8	Water	September 09, 2010
SW-2	1009201-9	Water	September 09, 2010
SW-3	1009201-10	Water	September 09, 2010
EQUIPMENT BLANK	1009201-11	Water	September 10, 2010
CSMRI-2	1009201-12	Water	September 10, 2010
CSMRI-4	1009201-13	Water	September 10, 2010
CSMRI-5	1009201-14	Water	September 10, 2010
CSMRI-7B	1009201-15	Water	September 10, 2010

Data validation was conducted in accordance with the Analytical Services Statement of Work for the following modules: Gas Proportional Counting Module RC04-v2, October 1, 2002, and U.S. DOE Quality Systems for Analytical Services Revision 2.5 (QSAS).

The radiological data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Preservation
- * Instrument Initial Calibrations
- * Instrument Performance Checks
- * Preparation Blanks
- * Duplicate Sample Results
- * Laboratory Control Samples (LCS) Results
- * Laboratory Control Samples Duplicate (LCSD) Results
- * Compound Quantitation and Reporting Limits (full validation only)

Data Completeness

The data package was complete as per ALS Laboratory Group Procedure SOP 724R10 for Radium-228 by gas flow proportional counting for SDG 1009201.

Holding Times and Preservation

Analytical holding times were evaluated and all criteria were met. However, holding time requirements are not applicable to radiochemistry analyses unless the isotopes of interest have short half-lives.

Calibrations

The instruments were calibrated at the required frequency.

Initial Calibration

All instruments were calibrated properly using NIST traceable SRM.

Instrument Performance Checks

All isotopes were within criteria.

Preparation Blanks

Preparation/Method Blanks were performed at the required frequency. All isotopes that were analyzed had activities that were below their respective MDC's in their QC batch preparation blanks.

<u>Duplicate Sample Analysis</u>

Duplicate analyses were performed at the required frequency. Due to insufficient sample volume the laboratory prepared and analyzed a Laboratory Control Sample Duplicate (LCSD) in lieu of a client sample duplicate.

All isotopic activities for Radium-228 duplicate (LCS) and original (LCSD) analysis were within the limits of the statistical test for equivalency. No action was required.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicates were not performed for the samples in this SDG, nor were any required.

Laboratory Control Samples

LCS analyses were performed at the required frequency. All recoveries were within 75-125% limits. No calculation errors or transcription errors were found.

Analyte Quantitation and Reporting Limits

Analyte quantitation was evaluated for all samples. No calculation or transcription errors were found. The results and reporting limits were correctly reported.

Overall Comments

Due to analyst error samples in batch RA100929-1 were counted for 60 minutes instead of 250 minutes. The samples were re-prepared and counted for the required 250 minutes. Sample CSMRI-7B MDA exceeded the RDL and is qualified as Estimated (J).

The laboratory reported that the ICP-AES measurement of the added barium carrier prior to chemical separation had a concentration of less than the concentration added. The laboratory manually adjusted the values to the known concentration to calculate the chemical yield in order to avoid a low bias in all samples including the QC. All samples reported barium concentrations less than that known to be added.

Radium-228 was detected above the RDL in sample CSMRI-4 at 1.64 pCi/L and is considered detected.

The following sample is qualified:

• CSMRI-7B is Qualified as Estimated (J) due to MDA > RDL.

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- NR Result was not used from a particular sample analysis. This typically occurs
 when more than one result for an element is reported due to dilutions and
 reanalyses.

DATA VALIDATION REPORT

To:

Robert Hill

From:

John Garrett

Date:

November 06, 2010

Project/Site:

Colorado School of Mines

Project No.:

4349-250

SDG No.:

1009201

This report presents the inorganic metals data validation for the data obtained for fifteen dissolved metals and dissolved Uranium for the CSMRI water samples collected on September 08, 2010, September 09, 2010, and September 10, 2010 and submitted to ALS Laboratory Group on September 13, 2010 for the above referenced work assignment. The purpose of this review is to provide a technical evaluation of the inorganic metals results that were obtained by SW-846, 3rd edition, Method 6010B and ALS Laboratory Group SOP 834R7 for trace metals by Inductively Coupled Plasma (ICP) atomic emission spectrometry analysis, Method 6020A ALS Laboratory Group Procedure SOP 827R7 for dissolved metals by Inductively Coupled Plasma mass spectrometry (ICP-MS) (Uranium only) analysis for SDG 1009201 by ALS Laboratory Group (Fort Collins, CO). The water samples were extracted on September 30, 2010 and analyzed for dissolved ICP trace metals on October 02, 2010, dissolved uranium by ICP-MS on September 30, 2010. All analyses were conducted by ALS Laboratory Group. The field sample numbers and corresponding laboratory numbers are presented below:

Client Sample Number	Laboratory Sample Number	Matrix	Collection Date
CSMRI-1B	1009201-1	Water	September 08, 2010
CSMRI-9	1009201-2	Water	September 08, 2010
CSMRI-10	1009201-3	Water	September 08, 2010
CSMRI-8	1009201-4	Water	September 08, 2010
CSMRI-6C	1009201-5	Water	September 08, 2010
CSMRI-11B	1009201-6	Water	September 08, 2010
SW-1	1009201-7	Water	September 09, 2010
CSMRI-1	1009201-8	Water	September 09, 2010
SW-2	1009201-9	Water	September 09, 2010
SW-3	1009201-10	Water	September 09, 2010
EQUIPMENT BLANK	1009201-11	Water	September 10, 2010
CSMRI-2	1009201-12	Water	September 10, 2010
CSMRI-4	1009201-13	Water	September 10, 2010
CSMRI-5	1009201-14	Water	September 10, 2010
CSMRI-7B	1009201-15	Water	September 10, 2010

Data validation was conducted in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review.

The metals data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Preservation
- * Initial and Continuing Calibration Verification
- * Contract Required Detection Limit (CRDL)
 Preparation/ Initial (ICB)/ and Continuing (CCB) Calibration Blanks
- * Interference Check Sample (ICSA) Results
- * Matrix Spike Results
- * Duplicate Sample Results
- * Laboratory Control Samples (LCS) Results Serial Dilution Sample Results
- * Compound Quantitation and Reporting Limits (full validation only)
- * All criteria were met for this parameter

Data Completeness

The data package was complete except for the missing CRDL (2B) and IDL (10) QC Summary Forms. No results were qualified as a result of the missing data.

Holding Times and Preservation

Analytical holding times were evaluated and all criteria were met.

The water samples were all found to be field filtered and had a pH less than 2. Cooler #1 was received at a temperature of 1.2°C and cooler #2 at 1.6 °C.

Initial and Continuing Calibration Verification

Initial and Continuing Calibration Verification standards were analyzed at the required frequency and all were within the required 90-110% limits for ICP trace. No action was necessary.

Contract Required Detection Limit (CRDL)

No CRDL or CRI standard recovery summary forms (EPA Form 2b) were included in the data package. The reviewer obtained the %Rs from the instrument raw data. All CRDL %Rs for ICP were within 80-120% limits. No action was necessary.

Preparation and Initial/Continuing Calibration Blanks

Preparation and Initial/Continuing Calibration Blank analyses were performed at the required frequency. Preparation and Initial/ Continuing Calibration Blanks are evaluated to assess the level of contamination in the preparation and analytical processes.

Preparation and Initial/ Continuing Calibration Blanks were prepared and analyzed at the required frequencies.

All of the blanks that were analyzed had concentrations that were below their respective Reporting Limits (RLs).

However, if blank results were above the Instrument Detection Limits (IDLs) and below the RLs, it caused the associated sample results to be qualified for contamination as estimated and non-detected [UJ 107]. If blank results were below the negate IDL and above the negate RL, it caused the associated sample results to be qualified for negative contamination as estimated [J 107]. No sample results were qualified due to blank contamination.

Interference Check Sample (ICSA) Results

Interference Check Samples were prepared and analyzed at the required frequencies.

No aqueous concentrations of aluminum, calcium, iron, or magnesium exceeded the ICSA values in any of the samples. No action was necessary.

Matrix Spike/Matrix Spike Duplicate Results

MS/MSD analyses were performed at the required frequency. All ICP and ICP-MS percent recoveries were within 75-125% limits. No action was necessary.

Duplicate Sample Analysis

Duplicate analyses were performed at the required frequency. All ICP, and ICP-MS original sample/duplicate sample and MS/MSD differences were less than 20% RPD or

less than the RDL for results less than (5)(RDL). No actions were necessary.

Laboratory Control Samples

LCS analyses were performed at the required frequency. The laboratory analyzed laboratory control samples for all metals. All recoveries were within 80-120% limits. No action was necessary.

Serial Dilution Results

All %Ds were less than 10% for Uranium by ICP-MS and trace metals by ICP.

Analyte Quantitation and Reporting Limits

Analyte quantitation was evaluated for all samples. No calculation or transcription errors were found. The results and reporting limits were correctly reported.

Overall Comments

The data are acceptable as reported with the following exception:

ICP-MS samples were analyzed at a dilution in order to bring uranium into analytical range.

No CRDL or CRI standard recovery summary forms (EPA Form 2b) were included in the data package. The reviewer obtained the results from the raw data. No action was necessary.

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- NR Result was not used from a particular sample analysis. This typically occurs
 when more than one result for an element is reported due to dilutions and
 reanalyses.

DATA VALIDATION REPORT

To:

Robert Hill

From:

John Garrett

Date:

November 08, 2010

Project/Site:

Colorado School of Mines

Project No.:

4349-250

SDG No.:

109201 DOC

This report presents the Dissolved Organic Carbon data validation for the data obtained for fourteen CSMRI water sample collected on September 08, 2010, September 09, 2010, and September 10, 2010 and submitted to ALS Laboratory Group on September 13, 2010 for the above referenced work assignment. The purpose of this review is to provide a technical evaluation of eleven Dissolved Organic Carbon results that were obtained by MCAWW, May 1994, Method 415.1, SOP 670R13 Dissolved Organic Carbon by Method 415.1 from ALS Laboratory Group (Fort Collins, CO). The water samples were analyzed September 21, 2010. All analyses were conducted by ALS Laboratory Group. The field sample numbers and corresponding laboratory numbers are presented below:

Client Sample Number	Laboratory Sample Number	Matrix	Collection Date
CSMRI-1B	1009201-1	Water	September 08, 2010
CSMRI-9	1009201-2	Water	September 08, 2010
CSMRI-10	1009201-3	Water	September 08, 2010
CSMRI-8	1009201-4	Water	September 08, 2010
CSMRI-6C	1009201-5	Water	September 08, 2010
CSMRI-11B	1009201-6	Water	September 08, 2010
SW-1	1009201-7	Water	September 09, 2010
CSMRI-1	1009201-8	Water	September 09, 2010
SW-2	1009201-9	Water	September 09, 2010
SW-3	1009201-10	Water	September 09, 2010
EQUIPMENT BLANK	1009201-11	Water	September 10, 2010
CSMRI-2	1009201-12	Water	September 10, 2010
CSMRI-4	1009201-13	Water	September 10, 2010
CSMRI-5	1009201-14	Water	September 10, 2010

Data validation was conducted in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (CLP).

The Dissolved Organic Carbon data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Preservation
- * Initial and Continuing Calibration Verification
- * Contract Required Detection Limit (CRDL)
- * Preparation/ Initial (ICB)/ and Continuing (CCB) Calibration Blanks
- * Interference Check Sample (ICSA) Results
- * Matrix Spike Results
- * Duplicate Sample Results
- * Laboratory Control Samples (LCS) Results
- * Serial Dilution Sample Results
- * Compound Quantitation and Reporting Limits (full validation only)
- * All criteria were met for this parameter

Data Completeness

The data package was complete. No results were qualified as a result of the missing data.

Holding Times and Preservation

Analytical holding times were evaluated and all criteria were met.

The water samples were all found to be field filtered and had a pH less than 2. Samples were received at a temperature of 1.2 °C and 1.6 °C.

Initial and Continuing Calibration Verification

Initial and Continuing Calibration Verification standards were analyzed at the required frequency and all were within the required 90-110%. No action was necessary.

Contract Required Detection Limit (CRDL)

All CRDL %Rs CRI %Rs were within 80-120% limits. No action was necessary.

Preparation and Initial/Continuing Calibration Blanks

Preparation and Initial/Continuing Calibration Blank analyses were performed at the required frequency. Preparation and Initial/ Continuing Calibration Blanks are evaluated to assess the level of contamination in the preparation and analytical processes.

Preparation and Initial/ Continuing Calibration Blanks were prepared and analyzed at the required frequencies.

All of the blanks that were analyzed had concentrations that were below their respective Reporting Limits (RLs).

However, if blank results were above the Instrument Detection Limits (IDLs) and below the RLs, it caused the associated sample results to be qualified for contamination as estimated and non-detected [UJ 107]. If blank results were below the negate IDL and above the negate RL, it caused the associated sample results to be qualified for negative contamination as estimated [J 107]. No sample results were qualified due to blank contamination.

Matrix Spike/Matrix Spike Duplicate Results

MS/MSD analyses were performed at the required frequency. All MS/MSD percent recoveries were within 75-125% limits. No action was necessary.

Duplicate Sample Analysis

Duplicate analyses were performed at the required frequency. All original sample/duplicate sample and MS/MSD differences were less than 20% RPD or less than the RDL for results less than (5)(RDL). No actions were necessary.

Laboratory Control Samples

LCS analyses were performed at the required frequency. The laboratory analyzed laboratory control samples for all analytes. All recoveries were within 80-120% limits. No action was necessary.

Serial Dilution Results

No dilutions were required.

Analyte Quantitation and Reporting Limits

Analyte quantitation was evaluated for all samples. No calculation or transcription errors were found. The results and reporting limits were correctly reported.

Overall Comments

The overall data are acceptable as reported with the following exception:

The water samples were all found to be field filtered and had a pH less than 2. Cooler #1 was received at a temperature of 5°C. However there is no documentation as to which samples were in the cooler. This should be taken into account when determining the usability of the data for all analyses except for radiochemistry analyses.

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- Result was not used from a particular sample analysis. This typically occurs
 when more than one result for an element is reported due to dilutions and
 reanalyses.

DATA VALIDATION REPORT

To:

Robert Hill

From:

John Garrett

Date:

November 09, 2010

Project/Site:

Colorado School of Mines

Project No.:

4349-250

SDG No.:

1009201 Radium-226

This report presents the radiological data validation for the data obtained during the field activities for the above referenced work assignment. The purpose of this review is to provide a technical evaluation of the radiological results that were obtained by ALS Laboratory Group Procedure SOP 783R8 for Radium-226 by Radon Emanation Counting for SDG 1009201 from ALS Laboratory Group (Fort Collins, CO). This report consists of fifteen water samples for the Colorado School of Mines/4349-250 project collected on September 08, 2010, September 09, 2010, and September 10, 2010 and submitted to ALS Laboratory Group on September 13, 2010. The samples were analyzed for Radium-226 by Radon Emanation Counting on October 08, 2010. All analyses were conducted by ALS Laboratory Group. The field sample numbers and corresponding laboratory numbers are presented below:

Client Sample Number	Laboratory Sample Number	Matrix	Collection Date
CSMRI-1B	1009201-1	Water	September 08, 2010
CSMRI-9	1009201-2	Water	September 08, 2010
CSMRI-10	1009201-3	Water	September 08, 2010
CSMRI-8	1009201-4	Water	September 08, 2010
CSMRI-6C	1009201-5	Water	September 08, 2010
CSMRI-11B	1009201-6	Water	September 08, 2010
SW-1	1009201-7	Water	September 09, 2010
CSMRI-1	1009201-8	Water	September 09, 2010
SW-2	1009201-9	Water	September 09, 2010
SW-3	1009201-10	Water	September 09, 2010
EQUIPMENT BLANK	1009201-11	Water	September 10, 2010
CSMRI-2	1009201-12	Water	September 10, 2010
CSMRI-4	1009201-13	Water	September 10, 2010
CSMRI-5	1009201-14	Water	September 10, 2010
CSMRI-7B	1009201-15	Water	September 10, 2010

Data validation was conducted in accordance with the Analytical Services Statement of Work for the following modules: Gas Proportional Counting Module RC04-v2, October 1, 2002, and U.S. DOE Quality Systems for Analytical Services Revision 2.5 (QSAS).

The radiological data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Preservation
- * Instrument Initial Calibrations
- * Instrument Performance Checks
- * Preparation Blanks
- * Duplicate Sample Results
- * Laboratory Control Samples (LCS) Results
- * Laboratory Control Samples Duplicate (LCSD) Results
- * Compound Quantitation and Reporting Limits (full validation only)

Data Completeness

The data package was complete as per ALS Laboratory Group Procedure SOP 783R8 for Radium-226 by Radon Emanation counting.

Holding Times and Preservation

Analytical holding times were evaluated and all criteria were met. However, holding time requirements are not applicable to radiochemistry analyses unless the isotopes of interest have short half-lives.

Calibrations

The instruments were calibrated at the required frequency.

Initial Calibration

All instruments were calibrated properly using NIST traceable SRM.

Instrument Performance Checks

All isotopes were within criteria.

Preparation Blanks

Preparation/Method Blanks were performed at the required frequency. All isotopes that were analyzed had activities that were below their respective MDCs in their QC batch preparation blanks.

Duplicate Sample Analysis

Duplicate analyses were performed at the required frequency. Due to limited sample volume the laboratory prepared a LCSD in lieu of a client sample Duplicate. All isotopic activities for Radium-226 LCS Duplicate and LCS original analysis were within the limits of the statistical test for equivalency. No action was required.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicates were not performed for the samples in this SDG, nor were any required.

Laboratory Control Samples

LCS analyses were performed at the required frequency. All recoveries were within 75-125% limits. No calculation errors or transcription errors were found.

Analyte Quantitation and Reporting Limits

Analyte quantitation was evaluated for all samples. No calculation or transcription errors were found. The results and reporting limits were correctly reported.

Overall Comments

Overall, the data are of good quality and are usable as reported by the laboratory without qualification.

Radium-226 was detected above the RDL in sample CSMRI-7B at 1.13 pCi/L and is considered detected.

The laboratory reported that the ICP-AES measurement of the added barium carrier prior to chemical separation. Several samples showed barium concentrations less than zero. The laboratory manually adjusted the values to 0.0 in order to avoid a low bias. All QC criteria were within control limits and no action was necessary. The data are not affected.

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- Result was not used from a particular sample analysis. This typically occurs
 when more than one result for an element is reported due to dilutions and
 reanalysis.

Appendix E Results of Analyses CD

Appendix F Chains of Custody

Preservative Key:

S Laboratory Group

1-HCl 2-HNO3 3-H2SO4 4-NaOH 5-NaHSO4 7-Other 8-4 degrees C 9-5035

Cr	1-of-Custody
----	--------------

WORKO	RDER

	TF: (800) 443-1511 PH: (970) 490-1511 FX: (970) 490-15			·										Form 202r	в	#					
(ALS)	· ·	SA	MPLER 1/	Malery	L				Trans	DA	TE	91	1/3/	, 0		F	AGE		, ,	of .	7
PROJECT NAME	CO School of Mines		SITE ID	1011-107				1.1	TURN	AROU	ND	-	ando	-1164		DISPO	SAL (By Lab	or or	Returi	n to Client
PROJECT No.	4349-250	EDD F	ORMAT										-17(2	1	T		\Box			\top	
	# .	PURCHASE	ORDER				-	1													
COMPANY NAME	Stoller	BILL TO CO	MPANY		19)			1		ž											
SEND REPORT TO	Robert Hill	INVOICE A	тти то					0	1	2.											
ADDRESS	105 Technology Dr #190	AC	DDRESS					22	N	7	- 1										
CITY/STATE/ZIP	Broomfield, CO 80021	CITY/STA	TE/ZIP					1	i	Z											
PHONE	(303) 546-4440		PHONE					Z	2	3	V V	M									
FAX	(303) 443-1408		FAX					- z	1,	550/14	10	Anien	0		1 1						
E-MAIL	-hill Ostoller.com		E-MAIL					120.	200	SiC	ÿ	K	0								
Lab ID	Field ID	Matrix	Sample Date	Sample Time	# Bottles	Pres.	QC	T.										=			
	CSURI-1B	W	9/8/10	0900	1	HNO		X	X	X											
	1		1,07,-		1	_					X										
		1			1	4-203	, , , , , , , , , , , , , , , , , , ,	\vdash		*		X						+		-	
					/						+	-			-	_				-	
	7			*	1	4,50	,				_		X								
	(SURI-9			1010	/	HNO		X	X	χ										£:	
	I			1	1	11.00					X										
					1							X									
	1				1					-	+	7	X					-		-	1-1-
				T	1	14,54			1/	1	+	- 1					\vdash			-	
	CSN12J-10			1040	1	HNO		X	X	X		_								_	
	4-	*	4	4-		HNO				/	X										
	ST CST MST PST Matrix: O = oil S = soil ns, please detail analytes below.	NS = non-soil s	solid W = water	L=liquid E=e	extract F =	filter —		10.00	6	SIGN	ATUD			100 at 160	DDINT	ED NAME		V 33	DATE		1
Comments:	ns, piedse detail allalytes below.	OC PAC	KAGE (check below	Y	DE	LINQUIS	UED BY					-		34 200					- 1		TIME
the state of the s	s were filtered		LEVEL II (Standard	N. A. C. C.	TAL.	Later and the con-	VED BY	-						Ni	rK-	Male.	yk	9/1	3/10		130
Animis - H	(02 (03 Alkalinity / 1 cm.		LEVEL III (Std QC -		P	LINQUIS		_								-		-		+	
Cations - Ca	(03, (03, Alkalinity, C1, SOY), Ng, K, Na	$\overline{}$	LEVEL IV (Std QC		The state of the s	RECE		-										_		+	
	× × × × × × × × × × × × × × × × × × ×	/~	raw data)			LINQUIS	tara a de					-						-		+	
		1	T.	- 1	Charlet	FINAGOI2	HED DA	1						1				- 1		1	

RECEIVED BY

	A .
A	LS

LS Laboratory Group

C'	a of Custodia
	1-of-Custody

WORKORDER

ALS	225 Commerce Drive, Fort Collins, Colorado 8052 TF: (800) 443-1511 PH: (970) 490-1511 FX: (970) 490-	1522			- 77								Form 202r8	WORKORDER			
(ALS)	T	SA	AMPLER ~	Melizy	4			1	0 _{0' 10}	DAT	E	9/1-	3/10	PAGE	2	of -	7
PROJECT NAME	co school of Mines		SITE ID					1	URN	AROUN	D	chena	land	DISPOSAL	(By Lab) or	Return	to Client
PROJECT No.	see page 1	EDD F	ORMAT														
		PURCHASE	ORDER														
COMPANY NAME		BILL TO CO	MPANY					1		Z						1	
SEND REPORT TO		INVOICE A	тти то														
ADDRESS		A	DDRESS	10-				26	2	Š						1	
CITY/STATE/ZIP		CITY/STA	TE/ZIP					2	7	2							
PHONE			PHONE	· · · · · · · · · · · · · · · · · · ·				1 100	¥.	70	N	4					1 1
FAX			FAX					7	÷	100		71.cm					
E-MAIL	+		E-MAIL					12%	Rein	Dissolue	7 2	Ž A					
Total Complete	And Conference on the Conference	The South		Kali sa													
Lab ID	Field ID	NA - Laboratoria	Sample	Sample	#		\$		1								
Eab ID	Field ID	Matrix	Date	Time	Bottles	Pres.	QC	.									
$(-1,-2) = \beta(F) \circ \alpha(F)$		The Bridge Street															
	CSMPI-10	W	9/8/10	1040	1						>						
	4	,		4	1	14,50						X					
	CSMRI-8			1105	1	HV		X	X	X							
					1	-	3			λ	/					-	
*					1	11.00	Ì			- 1	X	<i>c</i> .					
		 		1	1	~			•							_	
	45			1	/	14_SO,						X					
	CSMRI-6C			1340	1	HNO		X	X,	X							
	1			. ,	1	Mro)							
					1	1.7.3					X	1					
		1	\	1	1 .	11.0					+	X					
*Time Zone (Circle): E	EST CST (ST) PST Matrix: O = oil S = si	1			extract F =	H _z So	,					/					
	ons, please detail analytes below.					,			7	SIGNA	TURE		PR	RINTED NAME	DATE		TIME
Comments:	see page	QC PAC	KAGE (check belov	w)	RE	LINQUIS	HED BY			1	7:	2	01.1	L Maker	L 9/13/1	,	130
The state of the s	1 3		LEVEL II (Standar	d QC)	2011	RECEI	VED BY		1/1/25	1			10,00	- / land	1/1.3/1	0 (7	30
			LEVEL III (Std QC	+ forms)	RE	LINQUIS	HED BY										
		X	LEVEL IV (Std QC raw data)	+ forms +		RECEI	VED BY										
* *			, 311 4014/		RE	LINQUISI	HED BY										
Preservative Key:	1-HCI 2-HNO3 3-H2SO4 4-NaOH 5-NaHSO	04 7-Other 8-4	degrees C 9-50	035		RECEI	VED BY	- 27									

		A	
1	***		
1	L	_ }	>)

Preservative Key:

LS Laboratory Group

1-HCI 2-HNO3 3-H2SO4 4-NaOH 5-NaHSO4 7-Other 8-4 degrees C 9-5035

CI	1-of-Custody

WORKORDER
WORKORDER
Walter Land Control of the Control o

	225 Commerce Drive, Fort Collins, Colorado 8052 TF: (800) 443-1511 PH: (970) 490-1511 FX: (970) 490-	4 .	8	а									Fo	orm 202r	r8	WOF	#	R					
(ALS)		SA	MPLER V	Malery	K		1	â = ,	DA	ATE	91	/13/	10			1/45	PAGE	E	_3		of	7	
PROJECT NAME	CO School of Money	T state	SITE ID	,				TURN	IAROU	IND		tar	1	-	•	D	ISPOSAL	r É	y Lab) or	Retur	n to Clien	nt
PROJECT No.	sec page 1	EDD F	ORMAT								ĺ											7 1	
	1	PURCHASE	ORDER																				
COMPANY NAME		BILL TO COI	MPANY				1		£														
SEND REPORT TO	i i	INVOICE A	TTN TO					\	414		- 1												
ADDRESS		AD	DRESS				7	20	2												-1		
CITY/STATE/ZIP	*	CITY/STA	ŢE/ZIP				2 -	2	1														
PHONE			PHONE	ā.			7	Z	3	4	J												
FAX			FAX				1	i.i.	100	tion	in	2											
E-MAIL	7		E-MAIL				72	Rac	0	9	Phria	200											
Lab ID	Field ID	Matrix	Sample Date	Sample Time	# Bottles	Pres. QC	да 11 13																
0/	CSURI-1113	W	9/8/10	1435	1	1100	X	X	X														
	j.	,		1	1	INO				X													
	1										X										+		
	—				/					\dashv	1	X		+	-			+	+		+		-
	r	1 1	1 /	4>	/	11,504	١,		- /	+		$\stackrel{\wedge}{+}$	-	_	+	-		+	+	_	-		
	5W-1		9/9/10	1175	/	1/10	$\perp X$	X										\perp	\perp				
	1		j		1	HNR				X													
					1	1 _ 4					X												
	1			+	1	11.00						X									+		
·				,	-	14-50y			1	+	-	/	-	-	+			+			+	++	_
	CSMRI-1			1200		11-10	X	X	_		-		+	_	+	-		+		_	+		_
	+	1	→	4	/	Hva				X								\perp					
	ST CST (MST) PST Matrix: O = oil S = s ns, please detail analytes below.	oil NS = non-soil s	solid W = water	L=liquid E=e	xtract F =	= filter	1	-	CICI	IATUF) F				DOM	TED N	410E	H, L	1		d 20		_
Comments:		OC BACI	KAGE (check below	A Story	DE	LINQUISHED B			Sidi	ATUR	15		+	4 To 1925		NTED N	-	- 100	-	DATE		TIME	_
comments.	see page 1	QO I AOI	LEVEL II (Standard		+ 4	RECEIVED B	1				2	<u></u>		11.	TH	N	lalez	t	9//	13/10	-	1130	_
	g - g-		LEVEL III (Std QC -		7 RE	LINQUISHED B							+						+		+		
		~	LEVEL IV (Std QC			RECEIVED B	+						+	-					+-		+		_
			raw data)		RE	I INCLUSHED B							-						-		+		_

RECEIVED BY

LS Laboratory Group 225 Commerce Drive, Fort Collins, CO 80524

Ch	ain.	Custody
	ann	1-Custouy

ALS) TF: 800-443-1511	PH : 970-49	0-1511 I	FX : 97	70-490	-1522												Da	te	9	1/2	10	,	Pag	je:	4	of	7	L	ab	ID			50			
Project/Name/No.	Selen	15	/	no.	e.cv		San	nple	r(s)	1	ı A	10	lex	C.K	 .	W.	Turr	naroi	ınd				or	-	e			Disj	posa	al	βŷ	Lab	or F	₹etur	n to (Client
REPORT TO:	ce jo		/											SW8321 by LC/MS/MS	SW8151A		E245.1	E245.1			z `		Total: E160.3					T					T			
FAX.										Ŷ				by LC/							on? Y		Total:		0	1	n /									
E-MAIL: COMPANY:							Other							N8321	SW8081A		A E200.7	A E200.7			Alkaline Digestion?		160.2	E150.1	E314.0		Pu / Th	ı.								
ADDRESS:		1					DRO (SW8270D	SW7470A	7470A7471A	7470A/7471A	.8	8.	aline D		TSS: E160.2	SW9045C F	AS/MS		_							ľ	la l	
	-						SW8015B GRO	SW8260C	SW8260C	SW8270D	SW8081A	SW8082	SW8151A	SW8330 SW8330B	SW8260C SW8	SW6010B SW7	SW6010B 7470	SW6010B 7470	SW6020A E200.8	SW6020A E200.8	SW7196A AIK	SW9056 E300.0	TDS: E160.1	SW9040B SW9	SW6850 by LC/MS/MS		Circle: Am / Cm	E901.1		SW9315 E903.0	E903.1	SW9320 E904.0	D5811	E906.0	SM7500Rn	
Provide additional information	as needed	l in Comr	nents	belov	v.			0,	0,	0,	0)	0)						nod Ab		0)	(0)	0)		CO	0)		0 1							d Abo		,(
					(Type HCl, etc.)	ontainers			(4						s SW1311	SW1311	(ICP) or Hg	(ICP) or Hg	(ICP-MS)	(ICP-MS)	romium	suc						sec	Beta	ng Radium			al RadioSr)			(1, , , , ,
Sample ID	Date Time.* Matrix								BTEX + MtBE	SVOCs	OC Pesticides	PCBs	Herbicides	Explosives	TCLP Organics	TCLP Metals	Total Metals (I	Dissolved Metals (ICP) or Hg	Total Metals (I	Dissolved Metals (ICP-MS)	Hexavalent Chromium	Inorganic Anions	Solids	Hd	Perchlorate	270	Actinides	Gamma Isotopes	Gross Alpha /	Total Alpha-Emitting Radium	Radium 226	Radium 228	Strontium 90 (Total RadioSr)	Tritium	Radon 222	1 July 2
CSAIRT - 1	1/3/	1		N	Preservative	No. of	ТРН	VOCs							Ė	Ė			•			X					\dashv		Ť	Ħ			0)		-	
4	17.47	4			4:4	,1																/-				X	1	1		\top	\neg		\forall	\exists	\top	
さい・ さ		1315			428	1									8.			8										\Box		1	X	X			7	X
1		. }			Hre	1				3									*														П			X
			11.1%			1				20	8	22		:								X								9	1					
munty.		1-1-			.1 ₋ <u>S</u>	1			27	æ	r.		18				E .							3		X					10					
こしい と	100	17.45	er Cons	47	IN	5/	72		e ^F			ii	3.5									£								S	X	X				X
*Zone (Circle): EST CST MST PS For metals or anions, please detail ar		x: O = oil	S = s	soil _. N	S = no	n-soil	solid	W =	water	L = 1	iquid	E = 6	xtract	F=	filter	13 12		Reli	nquis	hed	Ву:	· · · ·		<i>b</i> 1	10	. (27 177577		nquis		Ву:				7	(2)
Comments:	, ,	elow.		1		v ^e		A.,			4	- 1-1-1	1.5	23		Sign Print				100	ck		101	1	7657		nature ted N									
set pe	50 1		9					N.		8	î		Ŷ.				<u> 1</u>	Ī	Do			ne _		,		Date		Tarric			. Ti	me _				
	. 8			10											5 5							c. [1	11	•			_		npan	-						
						2				·								Rec								. (eived							(2)
	3	æ				20				2	8	- 7		50				Sign Print										-	nature ted N		 3					
10 700 N 10	* * * * * * * * * * * * * * * * * * *	*		3	*	8			ě,	•		37 MI	19			T/ /4		Date					Tin	ne _			- 1		9		100		Ti	me _		
Originato	r: Retai	in pink	pag	e or	a ph	copy	/!	- 0 s				Fo	rm 20	02r7 (5/19/0	9)	Com	pany	/	All .	28						Com	npany	у							

LS Laboratory Group

Originator: Retain pink page or a photocopy!

Chain -Custody ∠25 Commerce Drive, Fort Collins, CO 80524 Lab ID TF: 800-443-1511 PH: 970-490-1511 FX: 970-490-1522 Date Project Name/No. Sampler(s) Standard or Due Turnaround Disposal By Lab or Return to Client A Atolor REPORTITO Total: E160.3 E245.1 PHONE Alkaline Digestion? SW6850 by LC/MS/MS E314.0 EMAN COMPANY ADDRESS SW9056 E300.0 Provide additional information as needed in Comments below. Circle Analytical Method Above Circle Analytical Method Above Total Metals (ICP) or Hg Dissolved Metals (ICP-MS) Hexavalent Chromium Strontium 90 (Total RadioSr) Total Metals (ICP-MS) No. of Containers Inorganic Anions Gamma Isotopes TCLP Organics OC Pesticides BTEX + MtBE TCLP Metals Perchlorate Radium 228 Herbicides Explosives Ηd Date Time * Sample ID Zone (Circle): EST CST (MST) PST Matrix: O = oil S = soil NS = non-soil solid W = water L = liquid E = extract F = filter Relinquished By: (1) Relinquished By: For metals or anions, please detail analyte list below. Signature Printed Name printed laker, to Comments: Printed Name _____ Company Steller Company Received By: (1) Received By: Signature _____ Printed Name ____ Signature _____ Printed Name Date _____ Time ____ Date Time

Company

Company

	(25)
ALS	

LS Laboratory Group

Chain	-Custody
Gilaili	-custouy

	∠5 Comme TF: 800-443-1	maranii - ur						2					•				.		100	9 25:3:					.	14		£:55	792		ab	ID)			ý	90		
製作権	Project Name/No.			,	,				Ca.	ania	r(s)				1				Da	te naro		1/3		_	Pa _t		_	of				j t-	100	Top		Datu		Clia	
198	REPORTION			0/0	i of .	Mi	1 2 m	-	Jai	i ipic	1(3)		11	(Les 1	7.	1 00		_	rui	laio	l I	ې ر		ary.		Du	e_			ופוע	pos	aı	₍ ey	Lab	yor	tetui	rn to	Cile	int
	PHONE	588	y 1.45.44	<u> </u>	/											LC/MS/MS	SW8151A		E245.1	E245.1			Z _	21	Total: E160.3														ı
	FAX:		fi.			-																	7 Y		otal:			ı	ח										ı
	E-MAIL:		\dashv				7,000		Other							121 by	SW8081A		E200.7	E200.7			Alkaline Digestion?			0.1	E314.0		Th /										l
4	COMPANY:		-		-											SW8321			1				Dige		E160.2	E150.1			/ Pu /										ı
	ADDRESS:		+					-	DRO							40000	SW8270D	SW7470A	7470A/7471A	7470A/7471A	8.0	8.	aline		TSS:	SW9045C	MS/M		Cm /		0			_					
			Char						GRO							SW8330B		SW7		7470	E200.8	E200.8		E300.0		SW9	SW6850 by LC/MS/MS		Am / 0		E900.0	E903.0		E904.0					
	than Give the same and the								SW8015B	SW8260C	SW8260C	SW8270D	SW8081A	082	SW8151A	330 8	SW8260C	SW6010B	SW6010B	SW6010B	SW6020A	SW6020A	SW7196A	056 E	TDS: E160.1	SW9040B	850 b			Ψ.	310 E	315 E	τ.		-	0.	SM7500Rn		
									SW8	SW8	SW8	SW8	SW8	SW8082	SW8	SW8330	SW8	SW6	SW6	SW6	SW6	SW6	SW7	SW9056	TDS:	SW9	SW6		Circle:	E901.1	SW9310	SW9315	E903.1	SW9320	D5811	E906.0	SM78		
93.35563	Provide additional inform	nation as n	ion as needed in Comments below.											T		Circle	e Ana	lytica	al Meth	nod Al							_									od Abo	ove		_
							efc.)	in in the									311	_	Ę	or Hg		AS)	E									트			Sr.)			-	l
							Ä,	S									SW1311	SW1311	o (SM-	CP-N	min	S						,,	Beta	Radi			Radio			1 40	Vo
	A CONTRACTOR OF THE PARTY OF TH		4, 75 (6)				Туре	Container			ш		SS				ics		99	Is (IC	(3)	als (I	Shro	ion						obe	_	tting			Fotal			11	1
			e (Tvr								MtBE		cid		es	es	Organics	stals	tals	Meta	tals	Met	ant (c Ar			ate		S	sot	pha	-Émi	226	228	06		22	1	
					Ω	×	rvati	of C		S	+	ဗ္ဗ	est	L _O	icid	osiv	ŏ	Me	Me	lved	Me	lved	vale	jani	S		hlor	U	ide	ma	s Al	Alpha	E I		Ei Ei	트	n 2	٠.,	T)
	Sample ID	T -	Date	Time *	Lab ID	Matrix	Preservative	No. o	표	VOCs	BTEX	SVOCs	OC Pesticides	PCBs	Herbicides	Explosives	TCLP	TCLP Metals	Total Metals (ICP) or Hg	Dissolved Metals (ICP)	Total Metals (ICP-MS)	Dissolved Metals (ICP-MS)	Hexavalent Chromium	Inorganic Anions	Solids	Hd	Perchlorate	25.1	Actinides	Gamma Isotopes	Gross Alpha	Total Alpha-Emitting Radium	Radium	Radium	Strontium 90 (Total RadioSr)	Triţium	Radon 222	-	1
C. 16.803		to, and in Projection Assessed Basical	1 1	\$2500.55300ae	344	7	132.00	16 S	F	_		0,	-	-	_	1	F	F	_				-	_	0,	<u>u</u>	片	-		\exists		H	-	<u></u>	S	_	1	No.	V
\vdash	CEURI Z	17	11/11/1	>CE t	0	ty	110	2/	-					-	-			ļ	-	-				V			<u> </u>					Н		\vdash				\vdash	X
-			· ·	1		+		-					-	-			-	-	-				-	/^			-	1/				\vdash			\vdash		\vdash		_
\vdash			+	sun-	100y -1	+	1-1 2	41				-	-			-			-					- 0			-	Λ		-		\vdash	1	. 1			$\vdash\vdash$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_
	CEACHI-4		1	23730	1	+	110	1						Į.	_	-	-		1	_												\vdash	X	X	\vdash			X	. /
_			\perp	1	915 (A.S.)	H	lla	5/				_							-	_				_								\square			\sqcup				X
				$\vdash \vdash$		\coprod		1				_	_					_	<u></u>					X								Ш			Ш				
			-	-4-		1	11	cul																		·		X											
1	e (Circle): EST CST (5) metals or anions, please de	-		: O = oi	il S=	soil	NS = n	oń-soi	l solid	W =	water	L=	liquid	E = 6	extrac	t F=	filter	38			inquis			<u>.</u>	2				(1)					À					(2)
1	mments:																nature ited N							. 1			natur								-				
	500	216 12030 1																		100000000000000000000000000000000000000	e 19		-		Tir			1					-			ime			
																II .	npan	7	7	1, 1		im					npan												
					3%											l .	eive								(1)			d By		20					(2)				
		Anggrings .					(141)														natur									15.4 25.12									
							1/1/1												100		ited N				т:	me _	-		-			Nam	e _		т	imo			
	Origin	hoto	сор	γ!				10	Fo	orm 2	02г7 (5/19/	09)		e npan				LII	ile -					npan				_ 1	ine									

LS Laboratory Group _z5 Commerce Drive, Fort Collins, CO 80524

Chain -	-Custody
---------	----------

ALS TF: 800-443-	1511 PH:	970-490	0-1511	FX : 9	70-490	0-152	2											Da	te	erg ,	100	1,		Paç	je	7	of.	7	L	ab) IE)						
Project Name/No.	10	Selec	cle	1	. 7	125		Sai	nple	r(s)		(r , . i	61	1	1-			Turi	naro	und	Sta	nda	_	or	Paral, 415	4		_	Dis	pos	al	вý	Lab	or F	Retur	n to (Clier	nt
REPORT TO	500	م کارس	1	8										Ĭ .	S)	₹	*		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			z	1	.3							П			ĺ		\neg	\top	-
PHONE															by LC/MS/MS	SW8151A		E245.1	E245.1			<u></u> ≻		Total: E160.3														
FAX:		5	ı					1							y LC			.7 E2	32.1					otal:			Š	n /						100				
E-MAIL:								Other				l			321 b	SW8081A		E200.7	E200.7			Alkaline Digestion?			0.1	E314.0		卢			ıl						-	
COMPANY.															SW8321				- CO			Dige		E160.2	E150.1			Pu /										
#ADDRESS:		1						O DRO	9						30B	SW8270D	SW7470A	7470A/7471A	7470A7471A	9.8	9.8	taline	0	TSS:	SW9045C	MS/M		Cm /		0			0					
		Ÿ						GRO			_				SW8330B					E200.8	ш	Ā	E300.0	- 1		SW6850 by LC/MS/MS		Am / (E900.0	E903.0		E904.0					
								SW8015B	SW8260C	SW8260C	SW8270D	SW8081A	3082	SW8151A	SW8330	SW8260C	SW6010B	SW6010B	SW6010B	SW6020A	SW6020A	SW7196A	056	TDS: E160.1	SW9040B	850 b		- 1	-	310 E	315 E	-		_	0.	SM7500Rn		
								SWS	SW8	SW8	SW8	SWE	SW8082	SW8	SW8	SW8	SW6	SW6	SW6	SW6	SW6	SW7	SW9056	TDS	SW9	SW6		Circle:	E901.1	SW9310	SW9315	E903.1	SW9320	D5811	E906.0	SM75		
Provide additional inform	nation as	needed	in Com	ments	s belo	1981 Jacobs	金额税款	_		_	-	_			Circle		lytical	Meth	od Ab	ove				T	_		_					Analy			d Abo	ve	27	
						HOt, etc.)										SW1311	=	Hg	or Hg	<u>@</u>	MS)	E									퇴			Sr)				
programme and the second secon						Type HC	SIS									1000000	SW1311	P) or	CP) o	P-M	ICP.	omi	SI						S	Beta	Rad			Radio			(,'	V
										끮	Ö	les				nics	S	2) s	als (I	2) 8	tals	Chr	nior			5000			tope	-	itting			Total			-	4 4
				4. T.	(1) (2) (2)	tive	Containers			MtBE		OC Pesticides		des	ves	TCLP Organics	TCLP Metals	Total Metals (ICP) or Hg	Dissolved Metals(ICP)	Total Metals (ICP-MS)	Dissolved Metals (ICP-MS)	Hexavalent Chromium	Inorganic Anions			Perchlorate		SS	Gamma Isotopes	Alpha	Total Alpha-Emitting Radium	226	228) 90 L		22	2	
				9	Matrix	Preservative	Jo.	I_	SS	÷ X	SVOCS	Pes	38	Herbicides	Explosives	<u>a</u> ,	₽.	al M	olvec	al M	olve	ava	gan	gp		chlo	Y	Actinides	ıma	ss A	Alph	i i	Radium	ıtiun	m	Radon 222	Ĭ	1
Sample ID		Date	Time*	Lab	Ma	Pres	No. of	TPH	VOCs	BTEX	SVC	00	PCBs	Her	Exp	12	TCL	Tot	Diss	Tot	Diss	Hex	Inor	Solids	Hd	Per	Š	Acti	Gan	Gross	Total	Radium	Rad	Strontium 90 (Total RadioSr)	Tritium	Rad	100	1
CSNIKI-5		alwho	104	5	2	Hor	8) /																										X				X	
Š.		1	1		,	1100	1															T	1				1					,			\neg			X
					\sqcap		1																X	\exists			7				1				\dashv	+	1	
			1			11 (. 1														_		-	7			X	7			\dashv			1	\dashv	\dashv	-	
(SMRJ.7B		1	1115		30-00-	Him	1														1							1	\dashv		\dashv	X	X	\dashv	\dashv	+	X	-
The state of the s		*	777.3		-		5							2							-	\top	1	1		1	7		-		\dashv		/\		\dashv	7		-
																					7	-	-	+	7	1		7			\dashv			\dashv	\dashv	+	+	-
	PST		: O = oil	S = 5	soil N	1S = n	on-soil	solid	W=	water	L = 1	iquid	E = e	xtract	F=	filter	į.		Relin	nquisi	hed E	3 <i>y:</i>						(1)	Reli	nqui	shed	By:					(2	2)
For metals or anions, please del	tail analyt												ê		Sign	ature		"			امن				Sigr	natur	e _											
Comments:	pose 1																		Print	ed N	ame	1	1. 1	rt	e the	de	1-1. A				Vame							-
-															Com	9/ pany	131	ch	11/1	Tim	ie _	113	0			e npan				Ti	me _			-				
														" P	Rece									_	_		d By:			-			(2	2)				
3 ²⁶															- 1	Sign		-55							8 6			e _							_			
	ar a													2				- 1	Print									- 1				e						_
Origin	iginator: Retain pink page or a ph								/1					Fo	rm 20	12r7 (f	5/19/0	100 00	Date					Tim	e _					e				Ti	me _			-
0.1911		JUP.	y *		09				20			~/	COIL	pally	-							_	Con	npan	У													

Chain Custody Record

Sampler ID	
¥ 100	
Temperature on Receip	

Drinking Water? Yes □ No □ THE LEADER IN ENVIRONMENTAL TESTING TAL-4124-280 (0508) Project Manager Chain of Custody Number Robert Hill
Telephone Number (Area Code)/Fax Number 108 Technology D- #190
City State Zip Code

Broom Field CO 80021

Project Name and Location (State)

CO School of Mines Golden, CO

Contract/Purchase Order/Quote No. (303) 546-11440 Lab Contact Analysis (Attach list if Lisa Uriell more space is needed) Carrier/Waybill Number M L. Special Instructions/ Containers & Conditions of Receipt Matrix Preservatives Sample I.D. No. and Description Time (Containers for each sample may be combined on one line) Sed. Soil HCI X X Possible Hazard Identification 1881 Sample Disposal (A fee may be assessed if samples are retained Disposal By Lab Archive For _____ Months longer than 1 month) Turn Around Time Required QC Requirements (Specify) 24 Hours 48 Hours 7 Days 14 Days 21 Days Other 10 days 1. Relinquished By 1. Received By-2. Relinquished By 2. Received By 3. Relinquished By Time 3. Received By Date Time Comments

Chain (**Custody Record**

Sampler ID Temperature on Receipt

		Drinkir	na V	Vate	r?	Yes	П	No			0	THE	LEAD	FR	IN F	NV	BOI	ME	NTA	LTF	STI	VG				
TAL-4124-280 (0508)		Dianur	9 .	· ato	· 65.*	, 0,0		,,,									1101	*1011			.0111	• •				
Client		Project																ate	,	1			Cha	ain of Custo	dy Numb	er _
Stoller Address		Telepho	06	ert	4	111		M										91	91	? ? }				ain of Custo	342	36
Address		Telepho	ne N	lumb	er (Ar	ea Co	ode)/F	ax N	umbe	er							_	-	mber							
Address 105 Technology 1) - #190 City State Zip Co Broom field CO 80 Project Name and Location (State) (0 School of Minys Golder. Contract/Purchase Order(Quote No.		30 Site Co	3)	51	16 -	4/2	446)															Pa	ge	<u></u> o	f
City State Zip Co	ode	Site Co.	nfact				Lá	b Co	ntaci	t	21-22					An	alysi	s (At	tach	list i	f					
Broomfield CO 80	021						1	150	6	10-10	11				, ,	mo	re sp	ace	is ne	ede	d)	_				
Project Name and Location (State)		Carrier/	Wayt	oill Nu	ımbe	r			1 10000																	
Contract/Purchase Order/Quote No.	000													h	T	Ų								Spec	ial Instr	uctions/
Contract/Purchase Order/Quote No.	,				3 8		Т		Cor	ntain	ers i	e R		sh sh	4	Y	1							Cond	itions of	f Receipt
*				M	atrix					serva				1 v	rt N	7.1	6.0									
Sample I.D. No. and Description				snc			0	2	9		I	7.1	7%	1001	Lerrers	7	S. 10.6									
(Containers for each sample may be combined on one line)	Date	Time	Air	Aqueous	Sed.	Soil	I former	H2S(HNO3	5	NaO	ZnAc/ NaOH	7	1	Li	F	1						1			
	olsho	W1.00009-V0. 00		X)	44	T					X												· · · · · · · · · · · · · · · · · · ·
	1/3/10	17111		-		-	-	_	+-	-		-		-			\dashv		-	+	-	+	+			
100000 - 21 3	3	11/35		X)	<'					X													
	4			3,1			4	4						X												
		12.	\vdash	+	-	-	+		+	+-	-	1	-	10.0	+			-	-	-	+-	+	-			
· · · · · · · · · · · · · · · · · · ·						13																				
				-	-	-				+	-							-	-	-		-	+			
																			_	_		_				
									+				_						+			+				
						_	-	_	_	-			_						_	_		_	\perp			
														- 0												
																			\neg							
				-	-		+	-	+	+				-				-	+	+	-	+				
	26																									
		23																								
Possible Hazard Identification		51	Is	ample	e Disp	nosal														SECTION .						
No. of the second secon	Poison B	Unknown		105		o Clie	nt	N'	Dien	osal i	Bule	ab [☐ Arc	hiva l	For		,	Aonti	()	A fee ongel	may b	oe as 1 mc	sessec inth)	l if samples	are retair	ned
Turn Around Time Required								. 00				s (Spec		111061	01 _			vioriti	10 '	ongo.	C / CC /	, ,,,,	110.7			
24 Hours 48 Hours 7 Days 14 Days	21 Dave	TV Oth	or	110	d	م الرياد	<	-																		
1. Relinquished By	□ Z1 Days	Date .	er		Tim	e		1.	Rece	eived.	By.			Toral .									rx t	ate	, Tim	e Circ
24 Hours 48 Hours 7 Days 14 Days 1. Relinquished By 2. Relinquished By		3/0	1	7	14	11/	ų	()		كميه		7	بالمستنز		/	•							1//8	110	17	11911
2. Relinquished By		Date	713	NC .	Tim	e		2.	Rece	eived	By /	1.0			ig.	_							17	ate	Tim	ne
s											- 14	0.01		No.		= 0	- 1									
3. Relinquished By	1211	Date	W		Tim	е		3.	Rece	eived	Ву						50				-		E	ate	Tim	е
					10000000																					
Comments													-1													H (10 11 11 11 11 11 11 11 11 11 11 11 11 1

Chain Custody Record

Sampler ID ______
Temperature on Receipt ____

and a second control of the second		Drinki	ing I	Vate	r?	Yes [No [3			THEL	EAD	ER	IN E	NV	IRON	IME	NTA	L TI	ESTIN	١G					
AL-4124-280 (0508)			•									200000000000000000000000000000000000000	T01486 - 618700	====1	1.1.1.1	NTC-REEL	1.0 (- 1.1		0.7500.00			,					
Client		Projec	t Mar	nager							100						Da	te					Chai	n of Cu	stody N	umber	
S-lolly Address		R	-6	1	14	111							*					71	1/2 1	A				9	13	umber 452	53
		. /2. Teleph	one l	Vumb	er (A	rea Co	de)/F	ax Nu	ımbe	r							La	b Ńui	mbei	P 2 .					afters "byd"	N WHI LAND	, dealy
City State Zip Broomfield CO & Project Name and Location (State)	Code																1						Pag	10	1	_ of _	1
City State Zip	Code	Site Co	ontac	t	U		La	b Coi	ntact			4	T	-	:4	An	alvsis	(At	tach	list	if		1, 49			- 01 _	-
Brown Geld 10 8	2021						1	Se	11	. ,	11				25-	mo	alysis re sp	ace i	is ne	ede	d)						
Project Name and Location (State)	crose 1	Carrier	/Way	bill Nu	ımbe	ər	-	.>6		- / -(,				1	81	-										
co clad C Mass	16 00		•										-50	7	1	L'EL	1,				í			0-	!-!!		
Project Name and Location (State) CO Shool of Minus (50) Contract/Purchase Order/Quote No.	1014,00						Т		Cor	itaine	250	0	100		-	1	1							Cor	eciai il aditior	nstruct is of Re	ions/ eceint
£				M	atrix	(serva				× , :	Lerver for	1	-14							001	idition	0 01 110	corpi
Sample I.D. No. and Description	*			Sn	T		s,	4	Ι		12		1/6,	1 0	Ž	A	7.16			- 1							
(Containers for each sample may be combined on one line)	Date	Time	Air	Aqueous	Sed.	Soil	Unpres.	250	NOS	O	aOh	ZnAc/ NaOH	5	1	Ly	1	1/2										
	3 1		A		S	S			I	I	2	NZ			-	-	-	-	+	+		-	-				
<i>570 1</i>	1/1/10	1/7: *		X			X						\perp X					ĵ.									
4		4		X			X							X													
				X	\forall		X	/		-							-		+	+		\Box				an and an analysis of the same	
C5.418.7 - 1	3	2000		-	-		-	-	-	-			×				_		-			1					
» f.a-		~ { <i>v</i>		X			×							X													
		1815		X			'é'						X														
	A. C. Campier	-1		X			X							X					T								
200		1345	7	X			X						X							9							
4.	-	1		X			×						13	X													
		b'		1000	+		+	-	-				-	6//6/	_			+	+			\vdash					
																										12.	
9		9																		3							
																				2							
					_		1		-	+		++			-			+	+	7		1					
							_												10	100	d						
Possible Hazard Identification		_	505	ample –								1900	_						6					f samp	les are i	etained	
☑ Non-Hazard ☐ Flammable ☐ Skin Irritant	☐ Poison B	Unknowi	7	Ret	urn '	To Clier	nt	1		osal E			Arch	ive F	or _		N	1onth	s l	onge	r than	1 mon	th)				
Turn Around Time Required				٠,		1		QC	Req	uiren	nent	s (Specit	<i>(y)</i>														
☐ 24 Hours ☐ 48 Hours ☐ 7 Days ☐ 14 Da 1. Relinquished By	ys 🗌 21 Day	∕s ဩ Otl	her_	4	0,	Ceys	_	-	- 14 =			· promp		N'ST		10.1				1							
1. Relinquished By		Date	,	,				1. F	Rece.	ived l	Зу, :												l Da	te / /	111	Time.	p
2. Relinquished By		17/	71	10	1	s sy	· ``\			,		Ser.	<u>.</u>	الته مشا											10		10
2. Relinquished By		Date [']	1		Tim	ie		2. 1	Rece	ived l	Зу	8											Da			Time	
3. Relinquished By		Date			Tim.	ne		3. 1	Rece	ived l	Ву												Da	te		Time	
			0																								
Comments																					65						

Chain Custody Record

Sampler ID ______
Temperature on Receip _____

Drinking Water? Yes □ No □ THE LEADER IN ENVIRONMENTAL TESTING

TAL-4124-280 (0508)			_															:5
Client			t Maņager			1175-1170-1170				8.		Date	. 1		С	Chain of Cu	ıstody N	umber
Stoller		12.	06-17	F 14:11 er (Area Co	,							G/, Lab Num	lall	D			133	2652
Address		Teleph	one Numb	er (Area Co	de)/Fax	Numbe	r			0.6		Lab Num	nber					
105 Technology Dr #190)	130	03)5	46-6	12/4	0									F	Page	1	_ of _ <u> </u>
City State Zip	Code	Site Co	ontact								Ana	lysis (Atta	ach list	t if		Ť		
Broomfield (0)	80021				16	isa i	In.	01/		т т	more	space is	need	ed)		4		
Stoller Address 105 Technology Dr #1970 City State Zip Broomfield CO S Project Name and Location (State) CO School of Mines (Sold Contract/Purchase Order/Quote No.		Carrier	/Waybill N	umber				32 100 22					- 1					
CO School of Mines Gold	En. Co									1 12	1 1		1 9			Sr	necial l	nstructions/
Contract/Purchase Order/Quote No.						Cor	itaine	ers &	- 10	7 /		V		1		Co	ndition	is of Receipt
			N	latrix				tives			Cour	5	1 1			ŀ		
Sample I.D. No. and Description			sno		es.	90		I 7I	7110.	NY	1. 5	-						
(Containers for each sample may be combined on one line)	Date	Time	Air Aqueou	Soil Soil	Unpres.	H2SO4 HN03	HCI	NaOH ZnAc/ NaOH	1	1 1	刘 [1]	VÃ						
E + p/ L	1.1.				X			100	X									8
Equipment Blank	9/10/10	0700			+													
	i	+	X		X					X								
			X		X				X									
		08.50	/			-	-		^	ا مر			-					
CSMRI-2		4-			X					X								ats.
CSMRJ-4			X		X				X									
US/VILLS /		0930			-						-		\perp					
		3	X		X	Take				X						i d		
* 2			X		X						<							
		 - - - - - - - - -			- 1	-	\vdash		-	/	4		-					
			X			X					X							
		V	X					X	1			X						
			X		1			- /				+		_				
CSMRZ-5		1045		***	X			7*										
1		1	X		X					X								
		<								1	1.		+		+			
	Α.		ЦХЦ		Λ						1							
Possible Hazard Identification	_	_ :	1.0	e Disposal	7	_ <					W	· Conf	(A fe	e may be	assesse	ed if samp	oles are r	etained
Mon-Hazard	☐ Poison B	Unknown	ı 🔲 Re	turn To Clie		Disp	_			ive For		_ Months	long	er than 1 i	month)			
Turn Around Time Required			111	. /		QC Red	uirem	nents (Sp	ecify)			8						
24 Hours 48 Hours 7 Days 14 Days	ays 🗌 21 Day		ner	olcys				9		.50								
1. Relinquished By		Date	11	Time 143		1. Rece	ivéd E	By	1 /2	of the state of					1	Date	. 1	Time
2. Relinquished By		9/	lopo		5	Armon of	-	20%	11/2		21					Now!	-1	i de la j
2. Relinquished By		Date		Time		2. Rece	ived E	By /	W 100						- 1	Date	1	Time
								1									,	
3. Relinquished By		Date		Time		3. Rece	ived E	Ву						-	Ī	Date	1	Time
Mg**	****							G.										
Comments																		7.9

Chain Custody Record

Sampler ID ______
Temperature on Receip _____

Drinking Water? Yes □ No □ THE LEADER IN ENVIRONMENTAL TESTING TAL-4124-280 (0508) Project Manager

| Color | H | | |
| Telephone Number (Area Code) | Fax Number |
| (303) 546 - 4440 |
| Lab Contact Client Chain of Custody Number Lab Number 105 Technology Dr 4/90

City State Zip Code

Brezn Field CO 8002/

Project Name and Location (State)

CO School of Mins Folding CO

Contract/Purchase Order/Quote No. Analysis (Attach list if more space is needed) Lisa Uriell Carrier/Waybill Number 1,3 · Special Instructions/ Conditions of Receipt Containers & • Matrix Preservatives Sample I.D. No. and Description HNO3 NaOH ZnAc/ NaOH Time HCI Soil (Containers for each sample may be combined on one line) (SMRI.5. Moure Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained ☐ Unknown ☐ Return To Client Disposal By Lab Archive For _____ Months longer than 1 month) Turn Around Time Required QC Requirements (Specify) 24 Hours 48 Hours 7 Days 14 Days 21 Days Other 10 days 1. Relinquished By 1. Received By 2. Received By 3. Relinquished By Date Time 3. Received By Date Time Comments

Appendix G Historical Summary Tables

Table G-1 Historical Summary of Radioisotopes in Groundwater (Stoller)

Sample Station	Sample Date	Ra-226 (pCi/l)	Ra-228 (pCi/l)	Th-228 (pCi/l)	Th-230 (pCi/l)	Th-232 (pCi/l)	U-234 (pCi/l)	U-235 (pCi/I)	U-238 (pCi/l)	Total U (µg/l)
Otation	2/25/2005	-0.11	0.81	0.007	0.07	0.01	0.77	0.043	0.53	1.61
	6/14/2005	0.16	0.44	0.018	-0.021	0.012	0.43	0.011	0.217	0.64
	9/7/2005 12/20/2005	0.1 -0.19	0.63 0.59	0.068 -0.045	0.167	0.114 0.014	0.85 0.94	0.053 0.073	0.43 0.46	1.3 1.41
	3/15/2006	-0.15	0.58	0.025	0.032	-0.004	1.76	0.11	0.92	2.8
	6/14/2006	0.42	0.05	0.15	-0.06	0.062	0.18	0.18	0.08	0.31
	9/13/2006 3/1/2007	0.25 0.32	0.34 0.78	0.11 0.052	-0.079 -0.031	0.027 0.012	0.45 NT	0.051 NT	0.25 NT	0.77 1.2
	6/27/2007	0.51	0.78	0.032	0.064	-0.005	NT	NT	NT	0.88
0011514	9/11/2007	-0.3	0.53	-0.031	0.019	0.001	NT	NT	NT	0.72
CSMRI-1	11/27/2007 2/27/2008	-0.2 0.2	0.72 0.85	0.71 0.035	0.101 0.032	0.02	NT NT	NT	NT	1.2
	4/18/2008	-0.02	0.66	-0.03	-0.004	0.011	NT	NT NT	NT NT	1.5 1.9
	9/25/2008	0.26	0.88	NT	NT	NT	NT	NT	NT	0.96
	12/3/2008 3/17/2009	0.32	1.39 0.96	NT NT	NT NT	NT NT	NT NT	NT NT	NT	1.5
	6/24/2009	0.09	0.96 0.16 J	NT	NT	NT	NT	NT	NT NT	1.6
	9/24/2009	2.64	1.01	NT	NT	NT	NT	NT	NT	2.4
	12/17/2009 3/9/2010	0.39 0.11	0.96 0.38	NT NT	NT	NT	NT	NT	NT	2.4
	6/10/2010	0.11	0.93	NT	NT NT	NT NT	NT NT	NT NT	NT NT	2.9
	3/8/2007	0.13	1.19	-0.03	-0.09	0.02	NT	NT	NT	2.7
	6/26/2007	0.09	0.3	0.001	0.002	0.012	NT	NT	NT	5
	9/11/2007 11/27/2007	-0.13 0.11	0.65 1.16	0.019 0.004	0.012 0.06	0.001 0.016	NT NT	NT NT	NT NT	6.3 6.9
İ	2/28/2008	0.32	0.61	0.01	0.058	0.033	NT	NT	NT	6.5
	4/18/2008	0.03	0.72	-0.004	-0.046	0	NT	NT	NT	6
CSMRI-1B	9/24/2008 12/5/2008	0.05	0.3	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	4 4.6
	3/18/2009	0.02	1.15	NT	NT	NT	NT NT	NT	NT	8.1
	6/24/2009	0.05	0.69 J	NT	NT	NT	NT	NT	NT	15
	9/25/2009 12/17/2009	-0.03	0.89 0.98	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	34
	3/11/2010	0.09	0.98	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	16 9.4
	6/9/2010	0.23	-0.03 R	NT	NT	NT	NT	NT	NT	18
	2/25/2005 6/14/2005	0.8 1.47	1.85 3	0.07 0.14	-0.02 0.003	0.01	0.6	0.05	0.16	0.53
	9/7/2005	1.78	2.71	0.14	0.003	0.026	0.68	0.025	0.299 0.31	0.89
	12/20/2005	1.35	1.62	0.108	0.285	0.024	0.83	0.002	0.35	1.06
	3/15/2006 6/14/2006	1.25	2.53	0.03	0.204	0.012	0.83	0.066	0.45	1.36
	9/13/2006	0.99 1.01	1.79 2.35	0.25 0.088	-0.039	-0.008	0.69 0.46	0.04	0.25 0.28	0.76 0.85
į	3/8/2007	0.76	2.15	0.022	-0.01	0.011	NT	NT	NT	0.72
	6/28/2007	1.4	3.2	-0.075	-0.01	-0.007	NT	NT	NT	2
CSMRI-2	9/11/2007 11/27/2007	0.78 0.45	3.2 2.05	0.016 0.037	0.101 0.035	0.014	NT NT	NT NT	NT NT	0.98
0011111112	2/28/2008	1.37	2.26	0.043	0.085	0.044	NT	NT	NT	0.68
ĺ	4/17/2008	1.08	1.89	0.041	-0.021	0.008	NT	NT	NT	0.89
	9/24/2008 12/5/2008	0.97	1.41 1.88	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	0.69
	3/18/2009	2.37	2.68	NT	NT	NT	NT	NT	NT	0.63
ĺ	6/24/2009	0.78	2.64 J	NT	NT	NT	NT	NT	NT	0.66
	9/25/2009 12/18/2009	0.63 1.02	2.12 1.6	NT NT	NT NT	NT NT	NT	NT	NT	0.6
	3/11/2010	2.4	1.16	NT	NT	NT	NT NT	NT NT	NT NT	0.75
	6/10/2010	0.27	2.25	NT	NT	NT	NT	NT	NT	1.6
	2/25/2005 6/14/2005	-0.03 0.26	0.16 0.34	0.019 0.013	-0.009 0.014	0.013	9.7 11.4	0.53	8.2	24.7
	9/7/2005	0.20	0.78	-0.013	0.014	0.005	6.4	0.49	10.6 6.4	31.4 19.3
ĺ	12/20/2005	0.13	0.1	0.033	0.311	0.012	11.5	0.61	11.4	34.3
	3/15/2006 6/15/2006	0.41	0.38	0.004	0.174	0.007	9	0.43	9	27.1
	9/13/2006	-0.05	0.39 0.79	0.11 0.056	0.17 -0.015	0.061	9.2 6.5	0.4	8.9 6	26.8 17.9
ļ	3/8/2007	0.09	0.37	-0.034	-0.037	0.013	NT	NT	NT	48
	6/27/2007 9/11/2007	0.07	0.87	0.011	0.035	0.004	NT NT	NT	NT	66
CSMRI-4	9/11/2007	0.99	1.12 0.73	0.024 0.029	0.112 0.149	0.021 0.016	NT NT	NT NT	NT NT	49 48
CSIVIRI-4	2/27/2008	0.24	0.78	0.011	0.038	0.014	NT	NT	NT	58
	4/17/2008	0.11	0.71	0.017	-0.019	0.002	NT	NT	NT	62
	9/25/2008 12/5/2008	0.32	0.8 0.97	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	43 61
	3/17/2009	0.54	0.56	NT	NT	NT	NT	NT	NT	80
	6/23/2009	0.21	0.89 J	NT	NT	NT	NT	NT	NT	110
	9/24/2009 12/16/2009	0.11 0.21	0.73 0.68	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	160 79
	3/10/2010	8.6	0.57	NT	NT	NT	NT	NT	NT	83
	5/3/2010	0.38	NT	NT	NT	NT	NT	NT	NT	NT
	6/8/2010 2/25/2005	0.6 1.06	1.42 0.53	NT 0.009	NT 0.007	NT 0.034	NT 1,22	NT 0.056	NT 0.93	56 2.8
	6/14/2005	2.51	0.44	-0.018	0.039	0.011	1.51	0.086	1.2	3.57
	9/7/2005	2.5	0.76	0.06	1.25	0.051	1.85	0.051	1.47	4.4
	12/20/2005 3/15/2006	1.97 0.57	0.52 0.45	0.032 0.038	0.126 0.144	0.01 0.019	1.45 1.81	0.066 0.058	1.21 1.38	3.63 4.1
	6/15/2006	2.13	0.87	0.145	0.08	0.043	1.03	0.13	0.92	2.8
	9/13/2006	2.29	0.56	0.053	-0.053	0.005	3.18	0.17	2.32	7
	3/8/2007 6/27/2007	1.78 2.22	0.39 0.86	-0.012 0.008	-0.061 -0.023	0.013	NT NT	NT NT	NT NT	5.8
	9/11/2007	1.91	1.2	0.008	0.003	0.013	NT	NT	NT NT	11
CSMRI-5	11/26/2007	1.52	0.49	0.004	-0.008	0.01	NT	NT	NT	6.6
	2/27/2008	1.05	0.17	-0.011	0.02	0.051	NT NT	NT	NT	6.6
	4/17/2008 9/25/2008	1.37 2.87	0.64	0.068 NT	0.029 NT	0.017 NT	NT NT	NT NT	NT NT	6.7
	12/4/2008	0.78	0.68	NT	NT	NT	NT	NT	NT	10
	3/17/2009	0.29	1.24	NT	NT	NT	NT	NT	NT	11
	6/23/2009	1.96	1.15 J	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	12 11
		II A E			i IVI	I IVI	I IVI	INI	I NI	11
	9/24/2009 12/16/2009	-0.15 1.28	0.85 0.44	NT	NT	NT	NT	NT	NT	9.8
	9/24/2009									

Table G-1 Historical Summary of Radioisotopes in Groundwater (Stoller)

Sample Station	Sample Date	Ra-226 (pCi/l)	Ra-228 (pCi/l)	Th-228 (pCi/l)	Th-230 (pCi/l)	Th-232 (pCi/l)	U-234 (pCi/l)	U-235 (pCi/l)	U-238 (pCi/I)	Total
Judoll	2/27/2007	NT	NT NT	NT	NT NT	NT	(pci/i) NT	(pCi/i) NT	(pGIII) NT	(µg/l) NT
Ì	6/26/2007	0.46	0.63	-0.009	-0.006	0.024	NT	NT	NT	17
CSMRI-6B	9/10/2007	0.15	0.91	0.046	0.025	0.023	NT	NT	NT	11
JOIVIN OD	11/27/2007	-0.02	0.77	-0.002	0.069	0.004	NT	NT	NT	8.2
[2/28/2008	0.26	1	-0.009	0.022	0.022	NT	NT	NT	4.7
	4/18/2008	0.36	0.88	-0.005	-0.022	0.021	NT	NT	NT	5
	7/11/08 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT
	12/3/08 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT
	3/16/09 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT
CSMRI-6C	6/24/2009	-0.11	1.81 J	NT	NT	NT	NT	NT	NT	19
001111111100	9/24/2009	0.09	1.39	NT	NT	NT	NT	NT	NT	17
	12/18/2009	NT	NT	NT	NT	NT	NT	NT	NT	12
	3/8/10 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT
	6/8/2010	0.34	1.48	NT	NT	NT	NT	NT	NT	12
	2/27/2007	NT	NT	NT	NT	NT	NT	NT	NT	NT
	6/26/2007	0.65	0.22	0.036	0.054	0.027	NT	NT	NT	68
	9/10/2007	NT	NT	NT	NT	NT	NT	NT	NT	NT
	11/26/2007	NT	NT	NT	NT	NT	NT	NT	NT	NT
	2/26/2008	NT	NT	NT	NT	NT	NT	NT	NT	NT
	4/15/08 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT
CSMRI-7B	9/24/08 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT
	12/3/08 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT
	3/16/09 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT
[6/24/09 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT
[9/25/09 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT
[12/18/2009 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT
[3/8/10 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT
[6/10/2010	0.21	0.17 R	NT	NT	NT	NT	NT	NT	84
	3/8/2007	0.7	1.06	0.072	-0.031	0.016	NT	NT	NT	1,100
[6/27/2007	0.8	0.4	0.039	0.046	0.008	NT	NT	NT	810
	9/10/2007	1.31	0.9	0.031	0.05	0.009	NT	NT	NT	630
	11/27/2007	1.27	1.2	-0.02	0.074	-0.003	NT	NT	NT	1,300
[2/27/2008	1.19	1.38	0.089	0.1	0.043	NT	NT	NT	1,200
	4/17/2008	0.39	0.71	-0.015	-0.053	0.009	NT	NT	NT	770
CSMRI-8	9/25/2008	1.5	1.02	NT	NT	NT	NT	NT	NT	890
JOINILLI-0	12/5/2008	1.55	1.44	NT	NT	NT	NT	NT	NT	1,900
	3/18/2009	0.31	0.69	NT	NT	NT	NT	NT	NT	980
Ī	6/23/2009	-0.28	0.73 J	NT	NT	NT	NT	NT	NT	700
Ī	9/24/2009	0.39	1.25	NT	NT	NT	NT	NT	NT	880
ĺ	12/16/2009	0.26	0.37	NT	NT	NT	NT	NT	NT	580
i	3/10/2010	0.89	1.12	NT	NT	NT	NT	NT	NT	960
	6/8/2010	0.45	0.68	NT	NT	NT	NT	NT	NT	540
	2/27/2007	0.12	0.53	-0.017	0.04	0.027	NT	NT	NT	7.9
Ì	6/26/2007	0.22	0.37	0.018	0.004	-0.015	NT	NT	NT	32
Ì	9/10/2007	0.5	1.01	0.04	-0.043	0.012	NT	NT	NT	35
Ì	11/26/2007	0.25	0.27	0.023	0.003	0.003	NT	NT	NT	28
İ	2/27/2008	0.11	0.24	0.047	0.037	0.041	NT	NT	NT	24
Ì	4/15/2008	0.27	0.65	-0.004	0.015	0.022	NT	NT	NT	22
0011010	9/24/2008	0.11	0.48	NT	NT	NT	NT	NT	NT	28
CSMRI-9	12/5/2008	0.13	0.65	NT	NT	NT	NT	NT	NT	26
İ	3/16/2009	0.17	0.45	NT	NT	NT	NT	NT	NT	34
Ì	6/22/2009	0	0.88 J	NT	NT	NT	NT	NT	NT	99
1	9/24/2009	0.24	0.59	NT	NT	NT	NT	NT	NT	43
İ	12/16/2009	0.45	0.61	NT	NT	NT	NT	NT	NT	39
İ	3/11/2010	0.2	0.36	NT	NT	NT	NT	NT	NT	41
	6/9/2010	0.41	0.64	NT	NT	NT	NT	NT	NT	48
	3/1/2007	0.19	0.63	0.014	-0.004	0.018	NT	NT	NT	7.8
İ	6/26/2007	0.26	0.43	-0.008	0.03	-0.005	NT	NT	NT	8.8
İ	9/10/2007	-0.04	0.48	0.103	0.05	0.005	NT	NT	NT	9.9
/	11/26/2007	-0.05	0.57	0.068	0.141	0.031	NT	NT	NT	10
Ì	2/26/2008	0.12	0.44	0.094	0.011	0.019	NT	NT	NT	9.2
	4/15/2008	0.03	0.56	-0.006	-0.05	0.005	NT	NT	NT	8.7
OMDI 40	9/24/2008	0.21	0.48	NT	NT	NT	NT	NT	NT	11
SMRI-10	12/4/2008	0.11	0.92	NT	NT	NT	NT	NT	NT	19
İ	3/16/2009	0.15	1.01	NT	NT	NT	NT	NT	NT	16
İ	6/22/2009	0.35	0.48 J	NT	NT	NT	NT	NT	NT	12
Ī	9/25/2009	0.25	0.62	NT	NT	NT	NT	NT	NT	13
İ	12/16/2009	0.17	0.85	NT	NT	NT	NT	NT	NT	14
İ	3/11/2010	0.41	0.47	NT	NT	NT	NT	NT	NT	13
	6/9/2010	0.37	0.66	NT	NT	NT	NT	NT	NT	9.8
	3/1/2007	0.16	0.46	0.051	0.085	0.007	NT	NT	NT	4.8
ł	6/26/2007	0.37	0.43	0.084	0.000	0.008	NT	NT	NT	8.4
01151	9/10/2007	-0.26	0.52	0.012	0.006	0.016	NT	NT	NT	10
SMRI-11	11/26/2007	0.16	0.87	0.089	0.099	-0.012	NT	NT	NT	11
ŀ	2/26/2008	0.18	-0.03	0.044	0.044	0.074	NT	NT	NT	8.7
ŀ	4/15/2008	0.25	0.75	-0.032	0.004	0.074	NT	NT	NT	7.6
	12/3/08 (DRY)	NT	NT	-0.032 NT	NT	NT	NT	NT	NT	NT
ŀ	3/16/09 (DRY)	NT	NT	NT				V-10-10-1		
ŀ	6/24/2009		NT		NT	NT NT	NT	NT	NT	NT 12
SMRI-11B		0.52	200000	NT	NT NT	NT NT	NT	NT	NT	12
OMICE LIB	9/25/2009	3.5	0.88	NT	NT	NT	NT	NT	NT	17
,	12/18/2009	0.89	0.51	NT	NT	NT	NT	NT	NT	14
	3/8/2010	NT	NT	NT	NT	NT	NT	NT	NT	NT
ŀ	6/8/2010	0.28	0.4	NT	NT	NT	NT	NT	NT	10

^{**5} CCR 1002-41 Reg 41 - Colorado Groundwater Standards

pCi/I - picocuries per liter

J - Estimated
NE - Not Established

NT-not tested $\mu g/I-micrograms\ per\ liter$

Table G-2 Historical Summary of Metals in Groundwater (Stoller) (All results in milligrams per liter)

Station	Sample Date	Ag	As	Ва	Ça	Cd	Cr	Hg	к	Mg	Мо	Na Na	Pb	Se	l v	Zn
	2/25/2005 6/14/2005	ND ND	ND ND	ND ND	28 17	ND ND	ND ND	ND ND	2.8	9.4 5.1	ND ND	29 16	ND ND	ND ND	ND ND	0.032 0.032
-	9/7/2005 12/20/2005	ND ND	ND ND	0.055 (B) 0.067 (B)	21 32	ND ND	ND ND	ND 0.000034 (B)	2.9	6.3	0.0021 (B) ND	25 26	ND ND	0.0041 (B) ND	ND ND	0.034 0.052
-	3/15/2006 6/14/2006	ND ND	ND ND	0.064 (B) 0.031 (B)	33 10	ND ND	ND ND	0.00002 (B) ND	2.6 1.9	10	0.0013 (B) 0.0051 (B)	24 9.2	ND ND	ND 0.0035 (B)	ND ND	0.049 0.015 (B)
	9/13/2006	ND	ND	0.061 (B)	20	ND	0.041 (B)	ND	2.7	6	0.0038 (B)	14	ND	ND	ND	0.03
	3/1/2007 6/27/2007	ND ND	ND ND	0.081 (B) 0.063 (B)	39 23	0.00045 (B) ND	0.00063 (B) ND	0.000017 (B) 0.0000073 (B)	3 2.4	12 9	0.0059 (B) ND	26 21	ND ND	0.0066 ND	ND ND	0.048 0.017 (B)
CSMRI-1	9/11/2007 11/27/2007	ND ND	ND	0.065 (B)	23	ND	0.00061 (B)	0.000011 (B)	2.5	7.2	0.002 (B)	14	ND	ND	ND	0.038
	2/27/2008	ND ND	ND ND	0.075 (B) 0.08 (B)	31 36	ND ND	ND ND	0.000029 (B) ND	2.5 2.5	9.7 12	0.0014 (B) 0.0013 (B)	18 22	ND ND	ND ND	ND ND	0.049 0.048
-	4/18/2008 9/25/2008	ND NT	ND NT	0.081 (B) NT	36 30	ND NT	ND NT	ND NT	2.7	11 9	0.0015 (B) NT	22 18	ND NT	ND NT	ND NT	0.057 NT
F	12/3/2008 3/17/2009	NT NT	NT NT	NT NT	39 46	NT NT	NT NT	NT NT	3.5	12 14	NT NT	25 27	NT NT	NT NT	NT NT	NT NT
	6/24/2009 9/24/2009	0.00078	0.0032	0.097	36	0.00016	0.00041	0.00002	3.3	13	32	0.0019	0.00035	NT	NT	NT
	12/17/2009	NT NT	NT NT	NT NT	48 (J) 49	NT NT	NT NT	NT NT	3.2 3.4	18 (J) 16	NT NT	45 (J) 42	NT NT	NT NT	NT NT	NT NT
-	3/9/2010 6/10/2010	NT ND	NT ND	NT 0.11	52 51	NT ND	NT ND	NT 0.000023 (B)	3 4.1	19 15	NT NT	42 42	NT ND	NT NT	NT ND	NT NT
-	3/1/2007 6/26/2007	ND ND	ND ND	0.098 (B) 0.071 (B)	130 83	ND ND	0.00014 (B)	0.000017 (B)	52	47	0.17	91	ND	0.0058	0.0009 (B)	ND
	9/11/2007	ND	ND ND	0.071 (B)	93	ND ND	ND ND	0.0000072 (B) 0.0000094 (B)	10 8.4	38 43	0.029	35 36	ND ND	ND ND	ND ND	ND 0.0012 (B)
-	11/27/2007 2/28/2008	ND ND	ND ND	0.11 0.11	100 97	ND ND	ND 0.0015 (B)	0.000029 (B) ND	9.4 9.3	46 45	0.024 0.029	42 41	ND ND	ND 0.0039 (B)	0.00073 (B) ND	0.0039 (B) 0.0033 (B)
CCMDIAD	4/18/2008 9/24/2008	ND NT	ND NT	0.11 NT	93 92	ND NT	ND NT	ND NT	9.1	43	0.027 NT	39 38	ND	ND	0.00065 (B)	ND `
CSMRI-1B	12/5/2008	NT	NT	NT	95	NT	NT	NT	7.6	39	NT	40	NT NT	NT NT	NT NT	NT NT
	3/18/2009 6/24/2009	NT 0.00078	NT 0.0032	NT 0.14	NT 140	NT 0.00016	NT 0.00041	NT 0.000022	NT 7.2	NT 61	NT 59	NT 0.0019	NT 0.00035	NT NT	NT NT	NT NT
ŀ	9/25/2009 12/17/2009	NT NT	NT NT	NT NT	120 (J) 120	NT NT	NT NT	NT NT	7 7.8	55 (J) 51	NT NT	42 (J) 48	NT NT	NT NT	NT NT	NT NT
-	3/11/2010 6/9/2010	NT ND	NT ND	NT 0.1	120 170	NT ND	NT ND	NT 0.000023 (B)	6.4	51 85	NT NT	42	NT ND	NT NT	NT ND	NT
	2/25/2005	ND	ND	0.11	72	ND	ND	ND	7.1	32	ND	19	ND	ND	ND	NT 0.02
ŀ	6/14/2005 9/7/2005	ND ND	ND ND	0.1 0.11	76 81	ND ND	ND ND	ND ND	6.3 7.1	32 35	ND ND	18 19	ND ND	ND ND	ND ND	ND 0.011 (B)
-	12/20/2005 3/15/2006	ND ND	ND ND	0.098 (B) 0.09 (B)	76 74	ND ND	ND ND	0.000031 (B) 0.000023 (B)	6.7 6.1	33 31	ND ND	18 17	ND ND	ND ND	ND ND	0.0043 (B)
ļ	6/14/2006	ND	ND	0.093 (B)	70	ND	ND	ND	6.3	31	0.0048 (B)	17	ND	0.0031 (B)	ND	0.0059 (B) 0.0092 (B)
ŀ	9/13/2006 3/8/2007	ND ND	ND 0.0058 (B)	0.11 0.12	81 88	ND ND	ND ND	ND ND	6.7 8.3	35 39	0.0014 (B) ND	19 21	ND ND	ND 0.03	ND ND	0.0092 (B) 0.0011 (B)
-	6/28/2007 9/11/2007	ND ND	ND ND	0.11 0.1	97 91	ND ND	ND ND	0.0000056 (B) 0.000016 (B)	7.9 7.2	49 43	ND ND	26 23	ND ND	ND ND	0.002 (B)	0.0041 (B)
CSMRI-2	11/27/2007	ND	ND	0.093 (B)	83	ND	ND	0.000023 (B)	7	38	ND	22	ND	ND	0.00086 (B) 0.001 (B)	0.0082 (B) 0.0075 (B)
ŀ	2/28/2008 4/17/2008	ND ND	ND ND	0.094 (B) 0.092 (B)	81 78	ND ND	0.0018 (B) ND	ND ND	6.6 6.6	38 36	ND ND	21 20	ND ND	ND ND	0.0017 (B) 0.0014 (B)	0.0073 (B) 0.0055 (B)
-	9/24/2008 12/5/2008	NT NT	NT NT	NT NT	74 75	NT NT	NT NT	NT NT	6.4 6.6	34 33	NT NT	19 20	NT NT	NT NT	NT NT	NT NT
	3/18/2009 6/23/2009	NT 0.00078	NT 0.0032	NT 0.096	76 77	NT 0.00016	NT 0.00041	NT	6.4	34	NT	19	NT	NT	NT	NT
	9/25/2009	NT	NT	NT	76 (J)	NT	NT	0.000024 NT	6.6 5.2	35 34 (J)	20 NT	0.0019 19 (J)	0.00035 NT	NT NT	NT NT	NT NT
ŀ	12/18/2009 3/11/2010	NT NT	NT NT	NT NT	79 80	NT NT	NT NT	NT NT	5.9 5.6	35 36	NT NT	20 19	NT NT	NT NT	NT NT	NT NT
	6/10/2010 2/25/2005	ND ND	ND ND	0.098 (B) ND	93 72	ND ND	ND ND	0.000024 (B) ND	6.9 5.1	43 31	NT 0.017	25 29	ND ND	NT ND	0.00094 (B) ND	NT 0.12
-	6/14/2005 9/7/2005	ND ND	ND 0.0035 (B)	ND 0.055 (B)	86 82	ND ND	ND ND	ND ND	6.6 7.6	34 33	0.038 0.035	34 31	ND ND	0.0063 0.0049 (B)	ND ND	0.068
ļ	12/20/2005	ND	ND	0.056 (B)	100	ND	ND	0.000045 (B)	6.8	43	0.033	34	ND ND	ND	ND	0.097
-	3/15/2006 6/15/2006	ND ND	ND 0.0031 (B)	0.042 (B) 0.055 (B)	81 89	ND 0.00085 (B)	ND ND	0.000034 (B) 0.0000049 (B)	5 8.3	35 37	0.021	29 31	ND ND	ND ND	0.00056 (B) 0.0011 (B)	0.21
	9/13/2006	ND	ND	0.043 (B)	66	ND	ND	0.000016 (B)	8.3	27	0.038	30	ND	ND	ND	0.082
t	3/8/2007 6/27/2007	ND ND	0.0057 (B) ND	0.072 (B) 0.067 (B)	120 110	0.00023 (B) ND	ND ND	0.000018 (B) 0.000022 (B)	11	49 46	0.015	47 47	ND ND	0.019 ND	ND 0.00073 (B)	0.088
CSMRI-4	9/11/2007 11/26/2007	ND ND	0.0045 (B) ND	0.089 (B) 0.081 (B)	120 110	0.0011 (B) 0.00049 (B)	0.0014 (B) ND	0.000037 (B)	12 10	49 50	0.05	41	ND	ND	0.0012 (B)	0.17
	2/27/2008	ND	ND	0.073 (B)	130	ND	ND ND	0.000035 (B) 0.000016 (B)	8.2	58	0.024 0.015	43 45	ND ND	ND 0.0034 (B)	0.0011 (B) ND	0.1 0.069
-	4/17/2008 9/25/2008	ND NT	0.0063 (B) NT	0.089 (B) NT	150 130	0.00047 (B) NT	ND NT	0.000016 (B) NT	10 13	66 55	0.014 NT	53 50	ND NT	ND NT	0.00078 (B) NT	0.087 NT
-	12/5/2008 3/17/2009	NT NT	NT NT	NT NT	130 100	NT NT	NT NT	NT NT	11 9.3	54 45	NT NT	48 63	NT NT	NT NT	NT NT	NT NT
ļ	6/23/2009	0.00078	0.0032	0.084	89	0.00016	0.00041	0.00013	12	38	70	0.0019	0.00068	NT	NT	NT
t	9/24/2009 12/16/2009	NT NT	NT NT	NT NT	160 (J) 110	NT NT	NT NT	NT NT	14 11	65 (J) 49	NT NT	69 (J) 62	NT NT	NT NT	NT NT	NT NT
	3/10/2010 6/8/2010	NT ND	NT ND	NT 0.1	120 140	NT 0.00029 (B)	NT ND	NT 0.00007 (B)	11 16	51 55	NT NT	55 59	NT ND	NT NT	NT ND	NT NT
	2/25/2005 6/14/2005	ND ND	ND ND	ND ND	54 63	ND ND	ND ND	ND ND	3.4 3.3	22	ND ND	27 28	ND ND	ND ND	ND ND	0.067
ļ	9/7/2005	ND	ND	0.085 (B)	85	ND	ND	ND	4.2	31	0.0042 (B)	35	ND	0.0037 (B)	0.0018 (B)	0.089
-	12/20/2005 3/15/2006	ND ND	ND ND	0.072 (B) 0.058 (B)	79 70	0.00071 (B) 0.00037 (B)	ND ND	0.000048 (B) 0.000029 (B)	4.1 3.5	30 26	0.002 (B) 0.0031 (B)	31 29	ND ND	ND 0.0035 (B)	0.0012 (B) 0.00067 (B)	0.17 0.11
-	6/15/2006 9/13/2006	ND ND	ND ND	0.052 (B) 0.087 (B)	51 110	ND ND	ND 0.0022 (B)	0.000012 (B) ND	3.6 4.5	19	0.0028 (B) 0.0027 (B)	26 50	ND ND	ND ND	ND 0.001 (B)	0.055
ļ	3/8/2007	ND	0.0037 (B)	0.063 (B)	80	ND	ND `	ND	4.5	31	0.0019 (B)	34	ND	0.015	ND	0.083
	6/27/2007 9/11/2007	ND ND	ND ND	0.066 (B) 0.13	98 110	ND ND	ND 0.00082 (B)	0.0000091 (B) 0.000023 (B)	4.5 4.9	40	0.006 (B) 0.0042 (B)	40 47	ND ND	ND ND	0.0017 (B) 0.0015 (B)	0.025 0.054
CSMRI-5	11/26/2007 2/27/2008	ND ND	ND ND	0.087 (B)	110 100	ND ND	0.00089 (B)	0.000032 (B)	4.5	42 40	ND	47 42	ND	ND	0.0012 (B)	0.12
ŀ	4/17/2008	ND	ND	0.073 (B) 0.078 (B)	100	ND	ND ND	ND 0.000018 (B)	4.3 4.6	40	ND 0.0011 (B)	41	ND ND	ND ND	ND 0.0011 (B)	0.094 0.093
}	9/25/2008 12/4/2008	NT NT	NT NT	NT NT	160 110	NT NT	NT NT	NT NT	5.5 4.8	61 40	NT NT	59 47	NT NT	NT NT	NT NT	NT NT
	3/17/2009 6/23/2009	NT 0.00078	NT 0.0032	NT 0.12	110 130	NT 0.00016	NT 0.00041	NT 0.000026	4.4 5.8	40 50	NT 51	44 0.0019	NT 0.00049	NT NT	NT NT	NT NT
	9/24/2009	NT NT	NT NT	NT NT	159 (J)	NT	NT NT	NT NT	4.2	56 (J)	NT NT	57 (J)	NT	NT	NT	NT
	12/16/2009 3/10/2010	NT	NT	NT	130	NT NT	NT	NT	4.4	50 49	NT	55 48	NT NT	NT NT	NT NT	NT NT
	6/8/2010 2/27/2006	ND NT	ND NT	0.11 NT	150 NT	ND NT	ND NT	0.000028 (B) NT	5 NT	54 NT	NT NT	53 NT	ND NT	NT NT	ND NT	NT NT
	6/26/2007	ND	ND	0.12	100	ND	ND	0.0000059 (B)	5.9	56	0.004 (B)	41	ND	ND	ND	ND
	9/10/2007 11/27/2007	ND ND	0.0046 (B) 0.0048 (B)	0.15 0.17	110 110	ND ND	0.00088 (B) ND	0.000013 (B) 0.000025 (B)	4.8 6	48 49	0.0022 (B) 0.0028 (B)	46 57	ND ND	ND 0.0051	0.00081 (B) 0.00066 (B)	0.0051 (B) ND
CSMRI-6B	2/28/2008	ND ND	ND ND	0.17 0.17	100	ND ND	ND ND	ND ND	5.8 6.1	43	0.004 (B) 0.0059 (B)	49 45	ND ND	ND ND	ND 0.0013 (B)	0.0048
CSMRI-6B	4/18/2009	. 1017	IND	U.17	30	730000								-	1	NT
CSMRI-6B	4/18/2008 12/3/08 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	
CSMRI-6B				NT NT 0.24	NT NT 120	NT NT 0.00016	NT 0.00041	NT 0.000027	NT 18	NT 63	NT 46	NT 0.0019	NT 0.0006	NT NT	NT NT	NT NT
CSMRI-6B -	12/3/08 (DRY) 3/16/09 (DRY)	NT NT	NT NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT

Table G-2 Historical Summary of Metals in Groundwater (Stoller) (All results in milligrams per liter)

Sample Station	Sample Date	A.	A.	D.	<i>p</i> .	63			٧			, t				
Station	2/27/2007	Ag NT	As NT	Ba NT	Ca NT	Cd NT	Cr NT	Hg NT	NT NT	Mg	Mo NT	Na NT	Pb	Se	V	Zn
1	6/26/2007	ND	ND	0.056 (B)	70	ND	ND ND	0.000006 (B)	5.5	NT 37	0.024	NT 53	NT ND	NT ND	NT 0.00064 (B)	NT 0.0044 (D)
	9/10/2007	NT	NT	NT NT	NT	NT	NT	NT	NT	NT NT	NT	NT	NT	NT	0.00061 (B) NT	0.0041 (B) NT
	11/26/07 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
3	2/27/2008 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	4/15/08 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
CSMRI-7B	9/24/08 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
OOMIN TE	12/3/08 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT -	NT	NT	NT
	3/16/09 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	6/22/09 (DRY	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	9/23/2009 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	12/15/2009 3/8/10 (DRY)	NT NT	NT NT	NT NT	NT NS	NT NT	NT NT	NT NT	NT NS	NT NS	NT	NT	NT	NT	NT	NT
	6/10/2010	NT	NT	NT	NT	NT	NT	NT NT	NT	NT NT	NT NT	NS NT	NT NT	NT NT	NT NT	NT NT
	3/8/2007	ND	0.0053 (B)	0.068 (B)	230	ND	ND	ND	23	72	0.094	74	ND	0.034	ND	0.0024 (B)
	6/27/2007	ND	ND	0.053 (B)	190	ND	ND	0.0000099 (B)	19	55	0.043	52	ND	ND	ND	0.069
	9/10/2007	ND	0.0069 (B)	0.076 (B)	160	ND	0.00074 (B)	0.000027 (B)	15	49	0.034	54	0.0018 (B)	ND	ND	0.025
	11/27/2007	ND	ND	0.091 (B)	230	ND	ND	0.000024 (B)	15	67	0.026	70	ND	0.0046 (B)	0.001 (B)	0.011 (B)
	2/27/2008	ND	0.036 (B)	0.07 (B)	270	ND	ND	ND	15	82	0.019	100	ND	ND	ND ND	0.038
	4/17/2008	ND NT	ND	0.046 (B)	210	ND	0.0011 (B)	ND	13	63	0.016	73	ND	ND	ND	0.032
CSMRI-8	9/25/2008 12/5/2008	NT NT	NT NT	NT NT	230 400	NT NT	NT NT	NT NT	17 18	68 95	NT	70	NT	NT	NT	NT
	3/18/2009	NT	NT	NT	250	NT NT	NT NT	NT NT	18	74	NT NT	84 97	NT NT	NT NT	NT NT	NT NT
1	6/23/2009	0.00078	0.0032	0.038	170	0.00095	0.00041	0.00003	14	48	60	0.0019	0.00035	NT	NT	NT
1	9/24/2009	NT	NT	NT	250 (J)	NT	NT	NT	13	63 (J)	NT	78 (J)	NT	NT	NT	NT
	12/16/2009	NT	NT	NT	210	NT	NT	NT	12	59	NT	56	NT	NT	NT	NT
	3/10/2010	NT	NT	NT 0.050 (D)	250	NT	NT	NT	12	77	NT	79	NT	NT	NT	NT
	6/8/2010 2/27/2007	ND ND	ND ND	0.052 (B)	170	ND	ND 0.0044 (D)	0.000024 (B)	14	60	NT	48	ND	NT	ND	NT
	6/26/2007	ND ND	ND ND	0.08 (B) 0.049 (B)	69 160	ND ND	0.0011 (B) ND	0.000024 (B)	12	31 77	0.045	33	ND	0.011	0.001 (B)	ND 0.0000 (D)
	9/10/2007	ND	0.004 (B)	0.049 (B) 0.059 (B)	100	ND ND	0.0009 (B)	0.000002 (B) 0.000016 (B)	8.5 6	51	0.0028 0.0037 (B)	150 49	ND ND	0.0049 (B) ND	0.00096 (B) 0.00071 (B)	0.0096 (B)
	11/26/2007	ND	ND	0.039 (B)	110	0.00051 (B)	0.0003 (B) 0.0011 (B)	0.000010 (B) 0.000031 (B)	5.9	56	0.0037 (B) 0.0023 (B)	52	ND ND	0.0054	0.00071 (B) 0.0012 (B)	0.0097 (B) 0.015 (B)
1	2/27/2008	ND	ND	0.079 (B)	110	ND	ND	ND ND	5.4	56	ND	49	ND	0.0034 (B)	ND	0.013 (8)
	4/15/2008	ND	ND	0.077 (B)	100	ND	ND	0.000013 (B)	5	52	0.0017 (B)	46	ND	ND	0.00077 (B)	0.0079 (B)
CSMRI-9	9/24/2008	NT	NT	NT.	110	NT	NT	NT \	5.8	54	NT	50	NT	NT	NT	NT
	12/5/2008	NT	NT	NT	100	NT	NT	NT	5.3	48	NT	46	NT	NT	NT	NT
	3/16/2009 6/22/2009	NT 0.00078	NT 0.0032	NT 0.054	100 250	NT 0.00070	NT	NT	4.7	49	NT	45	NT	NT	NT	NT
	9/24/2009	NT	0.0032 NT	0.054 NT	120 (J)	0.00079 NT	0.00041 NT	0.000026 NT	12 5.6	100 58 (J)	120 NT	0.0019 64 (J)	0.00035 NT	NT NT	NT NT	NT NT
	12/16/2009	NT	NT	NT	140	NT	NT	NT	6.2	67	NT	59	NT	NT	NT	NT
	3/11/2010	NT	NT	NT	140	NT	NT	NT	5.1	67	NT	49	NT	NT	NT	NT
	6/9/2010	ND	ND	0.07 (B)	150	ND	ND	0.000019	6.7	69	NT	69	ND	NT	ND	NT
	3/1/2007	0.00051 (B)	ND	0.064 (B)	79	ND	0.0013 (B)	0.000024 (B)	7.3	33	0.01	36	ND	0.01	0.0011 (B)	ND
	6/26/2007	ND	ND 0.0000 (D)	0.079 (B)	100	ND	ND ND	0.0000063 (B)	4.7	44	ND	37	ND	0.0044 (B)	0.00055 (B)	ND
	9/10/2007	ND	0.0039 (B)	0.071 (B)	89	ND	0.0012 (B)	0.00002 (B)	4.2	38	0.0014 (B)	36	ND	ND	0.00099 (B)	0.0042 (B)
	11/26/2007 2/26/2008	ND ND	ND ND	0.085 (B) 0.09 (B)	110 110	ND ND	ND ND	0.000026 (B) ND	4.7	43 46	ND ND	41	ND ND	ND ND	ND ND	ND 0.0052
	4/15/2008	ND	ND	0.088 (B)	100	ND	0.0044 (B)	ND ND	4.5	44	ND ND	40	ND ND	ND	0.00059 (B)	
CSMRI-10	9/24/2008	NT	NT	NT	100	NT	NT	NT	4.6	42	NT	41	NT	NT	NT	NT NT
00111111110	12/4/2008	NT	NT	NT	100	NT	NT	NT	4.8	41	NT	43	NT	NT	NT	NT
	3/16/2009	NT	NT	NT	110	NT	NT	NT	4.5	43	NT	43	NT	NT	NT	NT
	6/22/2009 9/25/2009	0.00078 NT	0.0032 NT	0.09 NT	100 120 (J)	0.00016 NT	0.00041 NT	0.00002 NT	4.5 3.8	41 47 (J)	40 NT	0.0019	0.00035	NT	NT NT	NT
	12/16/2009	NT	NT	NT	130	NT	NT	NT	4.9	51	NT	43 (J) 49	NT NT	NT NT	NT	NT NT
	3/11/2010	NT	NT	NT	130	NT	NT	NT	4.4	52	NT	45	NT	NT	NT	NT
	6/9/2010	ND	ND	0.098 (B)	130	ND	ND	0.000025	4.7	48	NT	49	ND	NT	ND	NT
	2/27/2007	ND	ND	0.073 (B)	75	ND	0.00013 (B)	0.000023 (B)	9.7	29	0.033	33	ND	0.013	0.00073 (B)	0.0023 (B)
	6/26/2007	ND	ND	0.096 (B)	110	ND	0.0012 (B)	0.0000071 (B)	5.4	44	0.0014 (B)	39	ND	0.0064	0.00059 (B)	ND
CSMRI-11	9/10/2007	ND	0.004 (B)	0.071 (B)	96	ND	0.00083 (B)	0.000016 (B)	4.5	39	0.0016 (B)	44	ND	ND	0.00078(B)	0.0033 (B)
	11/26/2007	ND	ND	0.11	110	ND	ND	0.000028 (B)	4.9	44	0.0012 (B)	40	ND	ND	0.0013 (B)	ND
	2/26/2008	ND ND	ND	0.11	110	ND	ND	ND ND	4.6	42	ND	44	ND	ND	ND	0.0048
	4/15/2008 12/3/08 (DRY)	ND NT	ND NT	0.12	100	ND	ND NT	ND NT	4.7	41 NT	ND NT	44 NT	ND	ND	ND	ND
	3/16/09 (DRY)	NT NT	NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT	NT NT	NT NT	NT	NT
	6/24/2009	0.00078	0.0032	0.22	89	0.00043	0.00041	0.000027	19	43	NT 48	NT 0.0019	NT 0.00066	NT NT	NT NT	NT NT
CSMRI-11B	9/25/2009	NT	NT	NT	130 (J)	NT	NT	NT	6.2	57 (J)	NT NT	49 (J)	NT	NT	NT	NT
OCIVILA LID	12/15/2009	NT	NT	NT	NT NT	NT	NT	NT	NT NT	NT NT	NT	NT NT	NT	NT	NT	NT
OCIVITA TIB	12/10/2000							NT	NT	NT	NT	NT	NT	NT	NT	NT
001111111111111111111111111111111111111	3/8/2010	NT	NT	NT	NT	NT	NT		INI	INI	IVI	18.1		INT	141	13.1
2000 AUGUSTAWA - 155 A 144	3/8/2010 6/8/2010	ND	ND	0.091 (B)	130	ND	0.0013 (B)	0.000026	5.6	55	NT	49	ND	NT	ND	NT
Detection Lim	3/8/2010 6/8/2010															

**Maximum Contaminant Level – National Primary Drinking Water Regulations

ND – non detect

NE – not established

NT – not tested

(B) – Detected above Instrument Detection Level but below Reported Detection Level

Table G-3
Historical Summary of Radioisotopes in Surface Water (Stoller)

		Histori	cal Summ	ary of Rac	dioisotope	s in Surfac	ce Water (Stoller)		
Sample	Sample	Ra-226	Ra-228	Th-228	Th-230	Th-232	U-234	U-235	U-238	Total U
Station	Date	(pCi/l)	(pCi/l)	(pCi/l)	(pCi/l)	(pCi/l)	(pCi/l)	(pCi/l)	(pCi/l)	(µg/l)
	2/25/2005	0	0.58	0.018	-0.026	-0.001	0.89	0.083	0.65	1.97
	6/14/2005	0.14	0.05	0.05	-0.025	0.016	0.246	0.021	0.251	0.75
	9/7/2005	0.18	0.42	0.041	0.25	0.102	0.35	0.031	0.35	1.04
	12/20/2005	-0.31	0.47	0.028	0.197	-0.005	0.64	0.041	0.7	2.11
	3/15/2006	-0.16	0.35	0.059	0.125	0.005	0.6	0.029	0.53	1.59
	6/14/2006	0.13	0.45	0.16	0.53	0.062	0.11	0.08	0.19	0.61
	9/13/2006	-0.03	0.25	-0.019	-0.035	0.01	0.37	-0.005	0.34	1
	3/1/2007	-0.1	0.25	-0.038	0.15	0.026	NT	NT	NT	1.7
	6/27/2007	0.13	0.77	0.006	0.016	0.014	NT	NT	NT	0.6
	9/11/2007	0.15	0.74	0.063	0.088	0.012	NT	NT	NT	0.94
SW-1	11/27/2007	0.2	0.24	0.026	0.049	0.025	NT	NT	NT	1.8
	2/27/2008	0.1	0.48	0.014	0.002	0.024	NT	NT	NT	2
	4/18/2008	0.06	-0.07	-0.023	-0.026	0.012	NT	NT	NT	1.9
	9/25/2008	0.18	-0.01	NT	NT	NT	NT	NT	NT	1.1
	12/3/2008	-0.06	0.34	NT	NT	NT	NT	NT	NT	1.6
	3/16/2009	0.14	0.73	NT	NT	NT	NT	NT	NT	1.9
	6/24/2009	0.33	1.228 J	NT	NT	NT	NT	NT	NT	0.55
	9/24/2009	-0.08	0.37	NT	NT	NT	NT	NT	NT	1.1
	12/17/2009	0.1	0.42	NT	NT	NT	NT	NT	NT	1.7
	3/9/2010	-0.04	0.2	NT	NT	NT	NT	NT	NT	2
	6/9/2010	0.07	0.44 (J)	NT	NT	NT	NT	NT	NT	0.46

Table G-3
Historical Summary of Radioisotopes in Surface Water (Stoller)

Sample	Sample	Ra-226	Ra-228	Th-228	Th-230	Th-232	U-234	U-235	U-238	Total U
Station	Date	(pCi/l)	(pCi/l)	(pCi/l)	(pCi/l)	(pCi/l)	(pCi/l)	(pCi/l)	(pCi/I)	(µg/l)
	2/25/2005	0.45	0.06	0.011	-0.016	0.033	0.8	0.066	0.42	1.29
	6/14/2005	0.04	0.29	0.071	-0.028	0.007	0.259	0.032	0.23	0.69
	9/7/2005	-0.08	0.24	-0.013	0.107	0.051	0.54	0.014	0.54	1.62
	12/20/2005	0.09	0.07	-0.003	0.126	0	0.71	0.067	0.49	1.5
	3/15/2006	-0.04	-0.15	0.009	0.184	0.01	0.79	0.004	0.51	1.52
	6/14/2006	0.03	0.04	0.172	0.24	0.1	0.39	0	0.48	1.44
	9/13/2006	0.11	0.35	0.009	-0.03	0.01	0.43	-0.006	0.3	0.89
	3/8/2007	0.12	0.73	0.047	-0.055	0	NT	NT	NT	1.7
	6/28/2007	0.02	0.78	0.028	0.014	0	NT	NT	NT	0.57
	9/11/2007	0.1	0.27	0.066	0.068	0.002	NT	NT	NT	0.97
SW-2	11/26/2007	0.11	0.36	0.007	0	0.012	NT	NT	NT	1.7
	2/26/2008	0.1	0	-0.01	0.113	0.011	NT	NT	NT	2
	4/18/2008	0.13	0.58	0.015	0.24	0.024	NT	NT	NT	1.8
	9/24/2008	-0.16	-0.02	NT	NT	NT	NT	NT	NT	0.99
	12/3/2008	0.1	0.46	NT	NT	NT	NT	NT	NT	1.5
	3/16/2009	0.2	0.29	NT	NT	NT	NT	NT	NT	1.9
	6/24/2009	0.03	0.47 J	NT	NT	NT	NT	NT	NT	0.059
	9/24/2009	0	0.28 (J)	NT	NT	NT	NT	NT	NT	1.1
	12/17/2009	0.03	0.44	NT	NT	NT	NT	NT	NT	1.9
	3/9/2010	-0.03	0.27	NT	NT	NT	NT	NT	NT	2
	6/9/2010	0.07	-0.06	NT	NT	NT	NT	NT	NT	0.52
SW-3	6/10/2010	0.39	0.01	NT	NT	NT	NT	NT	NT	0.49
M	CL*	Total	Ra = 5	NE	Th 230 + T	n 232 = 60**	NE	NE	NE	30

^{*}Maximum Contaminant Level - National Primary Drinking Water Regulations

pCi/l - picoCuries per liter

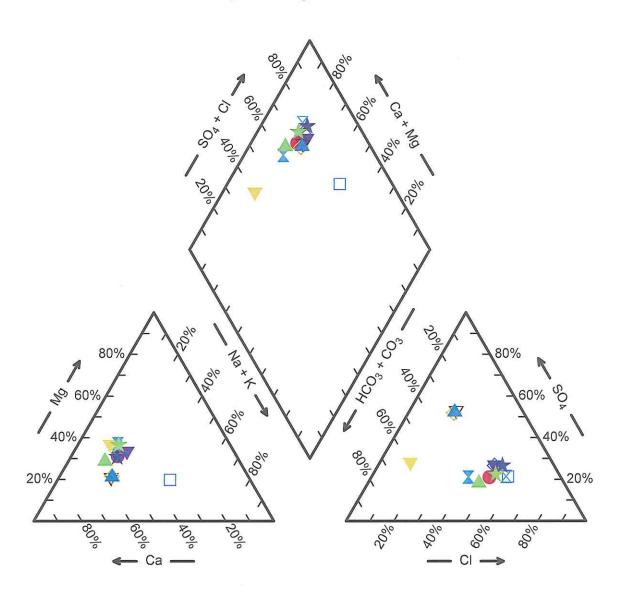
μg/l – micrograms per liter

^{**5} CCR 1002-31 Reg 31 - Colorado Surface Water Standards

Table G-4
Historical Summary of Metals in Surface Water (Stoller)
(All results in milligrams per liter)

Sample Station Sample Date Ag As Ba Ca Cd Cr Hg Mq Mo Na Pb Se Zn 2/25/2005 ND ND ND ND ND ND ND ND ND ND ND ND ND ND 0.2 6/14/2005 ND ND ND 11 ND ND ND 1.1 2.8 ND 5.2 ND ND ND 0.09 9/7/2005 ND 0.0037 (B) 0.029 (B) 20 ND ND ND 2.2 4.4 0.0044 (B) 8.5 ND 0.0045 (B) ND 0.063 12/20/2005 ND ND 0.000034 (B) 0.004 (B) 0.042 (B) 35 0.00057 (B) ND 3.7 7.6 19 ND ND ND 0.22 3/15/2006 ND ND 37 0.04 (B) 0.00084 (B) 0.00047 (B) 0.000024 (B) 3.7 8.5 0.0048 (B) 23 ND 0.00067 (B) ND 0.19 6/14/2006 0.0012 (B) 0.0032 (B) 0.011 (B) 8.2 ND ND ND 1 1.9 0.0042 (B) 3.1 ND ND ND 0.029 9/13/2006 ND ND 0.03 (B) 21 ND ND ND 2.1 4.4 0.0049 (B) 8.6 ND ND ND 0.053 3/1/2007 ND ND 0.049 (B) 44 0.0011 (B) 0.00092 (B) 0.000023 (B) 4.3 11 0.0046 (B) 26 ND ND ND 0.22 6/27/2007 ND ND 0.018 (B) 10 ND ND 0.0000068 (B) 0.93 (B) 2.5 0.0017 (B) 3.2 ND ND ND 0.067 9/11/2007 ND ND 0.032 (B) 21 ND ND 0.000019 1.7 5 0.0029 (B) 7.4 ND ND ND 0.078 SW-1 11/27/2007 ND ND 0.042 (B) 33 0.00076 (B) ND 0.00027 (B) 2.8 8.2 0.0032 (B) 15 ND ND ND 0.18 2/27/2008 ND ND 0.042 (B) 36 ND ND ND 3.3 9.6 0.0022 (B) 19 ND ND ND 0.15 4/18/2008 ND ND 0.044 (B) 35 0.00044 (B) ND ND 3.4 0.0034 (B) 9 23 ND ND ND 0.13 9/25/2008 NT NT NT 23 NT NT NT 1.9 5.1 NT 9 NT NT NT NT 12/3/2008 NT NT NT 32 NT NT NT 3 7.1 NT 15 NT NT NT NT 3/16/2009 NT 35 NT NT NT NT NT 3.1 8.9 NT 17 NT NT NT NT 6/24/2009 0.00078 0.0032 0.017 8.7 0.00016 0.00041 0.000024 0.92 2.1 3.3 0.0019 0.00035 NT NT NT 9/24/2009 NT NT NT 25 (J) NT NT NT 1.4 5.5 (J) NT 9.7 (J) NT NT NT NT 12/17/2009 NT NT NT 39 NT NT NT 2.8 8.5 NT 18 NT NT NT NT 3/9/2010 NT NT NT 40 NT NT NT 2.8 11 NT 21 NT NT NT NT 6/9/2010 ND ND 0.012 (B) 8.4 ND 0.001 (B) 0.000027 (B) 0.47 (B) 1.9 NT 2.8 ND NT ND NT 2/25/2005 ND ND ND ND ND ND ND ND ND ND ND ND ND ND 0.17 6/14/2005 ND ND ND 11 'ND ND ND 1.1 2.8 ND 4.8 ND ND ND 0.085 9/7/2005 ND ND 0.028 (B) 20 ND ND ND 2.1 4.4 0.0037 (B) 8.7 ND 0.0037 (B) ND 0.051 12/20/2005 ND ND 0.042 (B) 35 0.00043 (B) ND 0.000034 (B) 3.8 8 19 0.0038 (B) ND ND ND 0.21 3/15/2006 ND ND 0.042 (B) 39 0.00053 (B) 0.00055 (B) 0.000022 (B) 3.8 8.9 0.0046 (B) 25 ND ND 0.00053 (B) 0.2 6/14/2006 ND 0.0022 (B) 0.011 (B) 8.4 ND ND 1.9 ND 1 0.0045 (B) 3 ND ND ND 0.031 9/13/2006 ND ND 0.03 (B) 21 ND ND ND 2.1 4.4 0.0048 (B) 8.5 ND ND ND 0.04 3/8/2007 ND 0.0053 (B) 0.049 (B) 39 0.00064 (B) ND ND 4.2 9.8 0.0014 (B) 22 ND ND ND 0.17 6/28/2007 ND ND 0.019 (B) 10 ND ND 0.0000056 (B) 0.93 (B) 2.6 ND 3.3 ND ND ND 0.075 9/11/2007 ND ND 0.033 (B) 21 ND ND 0.00001 1.7 5.1 0.0035 (B) 7.5 ND ND ND 0.084 SW-2 11/26/2007 ND ND 0.044 (B) 35 0.0005 (B) ND 0.00027 (B) 2.9 8.6 0.0027 (B) 15 ND ND ND 0.19 2/26/2008 ND ND 0.051 35 0.0005 (B) ND ND 3.1 9.2 0.0023 (B) 21 ND ND ND 0.15 4/18/2008 ND ND 0.045 (B) 35 0.0005 (B) ND ND 3.4 9.1 0.0031 (B) 23 ND ND ND 0.14 9/24/2008 NT NT NT 23 NT NT NT 1.9 5.1 NT 9 NT NT NT NT 12/3/2008 NT NT NT 31 NT NT NT 7.5 3 NT 15 NT NT NT NT 3/16/2009 NT NT NT 37 NT 3.5 NT NT 9.7 NT 19 NT NT NT NT 6/24/2009 0.00078 0.0032 0.016 8.7 0.00016 0.00041 0.000027 0.9 2.2 3.3 0.0019 0.00035 NT NT NT 9/24/2009 NT NT NT 25 (J) NT NT NT 1.4 5.5 (J) NT 9.4 (J) NT NT NT NT 12/17/2009 NT NT NT 42 NT NT NT 3 9.8 NT 19 NT NT NT NT 3/9/2010 0.01 0.01 0.1 0.005 0.01 0.0002 NT 1 0.003 NT 0.01 NT 1 0.012 (B) 6/9/2010 ND ND 8 ND ND 0.000024 (B) 0.49 (B) 1.9 NT 2.7 ND NT ND NT SW-3 6/10/2010 ND ND 0.012 (B) 8.4 ND ND 0.000024 (B) 0.5 (B) 1.9 NT 2.7 ND NT ND NT **Detection Limits** 0.01 0.01 0.1 0.005 0.01 0.0002 1 0.01 1 0.003 0.005 0.01 0.02 MCL* 0.01 0.01 NE 0.005 0.1 0.002 NE NE NE NE 0.015 0.05 NE NE

^{*}Maximum Contaminant Level - National Primary Drinking Water Regulations


ND - Non Detect

NE - Not Established

⁽B) - Detected above Instrument Detection Level but below Reported Detection Level

Appendix H Anion and Cation Balances and Piper Diagram

Piper Diagram CSMRI 2010 Quarter 3

Legend

- ☐ CSMRI-1
- CSMRI-10
- ▼ CSMRI-11B
- ▼ CSMRI-1B
- ▼ CSMRI-2
- ♦ CSMRI-4
- ★ CSMRI-5
- X CSMRI-6C
- ▲ CSMRI-8 ★ CSMRI-9
- ♦ SW-2
- ▲ SW-3

Water Type Dissolved Solids Density Conductivity Hardness (as CaCO ₂ Total Carbonate Non-Carbonate	Na-Cl 381.02 mg/kg 0.99732 g/cm 900 μmho/cm 3) 155.45 mg/kg 155.45 0.0	3	380 mg/L 155.04 mg/L 155.04 0.0	Measured Calculated Measured Calculated
Primary Tests Anion-Cation Balar				
	ice	5 O O		
Anions		5.98		
Cations		5.82 1.312		OK
% Difference	-11-4-1 TDC	1.312		OK
Measured TDS = C	alculated LDS	381.0	22	
Measured				
Calculated	395.86		02	Not within range 1.0 to 1.2
Ratio 0.963 Measured EC = Calculated EC			Not within range 1.0 to 1.2	
	iculated EC	900.0	00	
Measured				
Calculated		609.6		Not within you co 0.0 to 1.1
Ratio		1.476		Not within range 0.9 to 1.1
Secondary Tests				
Measured EC and I	on Sums:	0.001	220	Not within anofomed nonce
Anions		0.6642	239	Not within preferred range
(0.9-1.1)		0.645	001	N. ('41'
Cations		0.647	031	Not within preferred range
(0.9-1.1)		0.440		N / '/l.' C 1
Calculated TDS to	EC ratio	0.440		Not within preferred range
(0.55-0.7)		0.400		N ('d'
Measured TDS to E	C ratio	0.423		Not within preferred range
(0.55-0.7)				
Organic Mass Balan				
DOC ≥ Sum of Org	anics			
DOC unavailable				

CSMRI-1B

Water Type Dissolved Solids Density Conductivity Hardness (as CaCO ₃	Ca-Cl 811.91 mg/kg 0.99764 g/cm ² 940 µmho/cm 3)	3	810 mg/L	Measured Calculated Measured
Total	610.45 mg/kg		609.01 mg/L	Calculated
Carbonate	427.5		426.49	
Non-Carbonate	182.96		182.52	
Primary Tests				
Anion-Cation Balar	ıce			
Anions		14.7		
Cations		14.6		
% Difference		0.242		OK
Measured TDS = C	alculated TDS			
Measured		811.9		
Calculated	969.685			
Ratio	0.837			Not within range 1.0 to 1.2
Measured EC = Ca	lculated EC			
Measured		940.0		
Calculated	1377.428			
Ratio		0.682		Not within range 0.9 to 1.1
Secondary Tests	1965 1965			
Measured EC and I	Ion Sums:		*10	N. (
Anions		1.562	518	Not within preferred range
(0.9-1.1)		1 554	0.60	Net within mustamed range
Cations		1.554	968	Not within preferred range
(0.9-1.1)	FG /	1 022		Not within preferred range
Calculated TDS to	EC ratio	1.032		Not within preferred range
(0.55-0.7)	10 "	0.064		Not within preferred range
Measured TDS to E	LC ratio	0.864		Not within preferred range
(0.55-0.7)	maa			
Organic Mass Bala DOC ≥ Sum of Org				
Dissolved Organi		1.800	mg/L	
Sum of Organics	o Carbon		mg/L	OK
built of Organies		0.000		0.720,77.07

Water Type Dissolved Solids Density Conductivity Hardness (as CaCO Total Carbonate Non-Carbonate	Ca-Cl 671.65 mg/kg 0.99754 g/cm 1340 μmho/ci 3) 490.28 mg/kg 378.21 112.06	3 n	670 mg/L 489.07 mg/L 377.28 111.79	Measured Calculated Measured Calculated
Primary Tests Anion-Cation Balan	maa			
Anions Anions	nce	11		
Cations		12.1		
% Difference		4.960		OK
Measured TDS = C	alculated TDS	1.500		
Measured	anculated 125	671.6	554	
Calculated		759.8		
Ratio	0.884			Not within range 1.0 to 1.2
Measured EC = Ca	Iculated EC			The state of the s
Measured		1340.	.000	
Calculated		1091.	.139	
Ratio		1.228		Not within range 0.9 to 1.1
Secondary Tests				
Measured EC and	Ion Sums:			
Anions		0.818	3992	Not within preferred range
(0.9-1.1)				
Cations		0.904	1470	Within preferred range (0.9-
1.1)				
Calculated TDS to		0.567		OK
Measured TDS to I	EC ratio	0.501		Not within preferred range
(0.55-0.7)				
Organic Mass Bala				
DOC ≥ Sum of Org		1 200) = /T	
Dissolved Organi	ic Carbon) mg/L	OK
Sum of Organics		0.000) mg/L	OK

CSMRI-11B

Water Type Dissolved Solids Density Conductivity Hardness (as CaCO Total Carbonate	Ca-Cl 922.1 mg/kg 0.99773 g/cm 1690 µmho/cr 3) 614.53 mg/kg 443.9	n	920 mg/L 613.13 mg/L 442.89	Measured Calculated Measured Calculated
Non-Carbonate	170.63		170.24	
Primary Tests Anion-Cation Balar Anions	ıce	14.1		
Cations		15.7		
% Difference		5.602		Not within ± 5%
Measured TDS = C	alculated TDS			
Measured		922.0	545	
Calculated	985.4			
Ratio	0.936			Not within range 1.0 to 1.2
Measured $EC = Ca$	lculated EC	0.1202.007	272327	
Measured		1690.		
Calculated		1377.		
Ratio		1.227		Not within range 0.9 to 1.1
Secondary Tests				
Measured EC and I	on Sums:			24
Anions		0.831	884	Not within preferred range
(0.9-1.1)		0.000	ć2.5	Wid: 6 1 (0.0
Cations		0.930	625	Within preferred range (0.9-
1.1)	T.C	0.500		OV
Calculated TDS to		0.583		OK
Measured TDS to E	C ratio	0.546		Not within preferred range
(0.55-0.7)	name at			
Organic Mass Bala				
DOC ≥ Sum of Org		1 500	mg/L	
Dissolved Organi	C Calbon		mg/L	OK
Sum of Organics		0.000	mg/L	

Water Type Ca-HCO₃ **Dissolved Solids** 451.19 mg/kg 450 mg/L Measured Density 0.99737 g/cm³ Calculated 809 µmho/cm Measured Conductivity Hardness (as CaCO₃) Calculated Total 378.84 mg/kg 377.84 mg/L Carbonate 378.84 377.84 0.0 Non-Carbonate 0.0 **Primary Tests Anion-Cation Balance** 6.65 Anions Cations 8.72 Not within $\pm 2\%$ % Difference 13.509 Measured TDS = Calculated TDS Measured 451.186 Calculated 567.191 Ratio 0.795 Not within range 1.0 to 1.2 Measured EC = Calculated EC 809.000 Measured Calculated 701.756 1.153 Not within range 0.9 to 1.1 Ratio Secondary Tests Measured EC and Ion Sums: Anions Not within preferred range 0.821569 (0.9-1.1)1.078203 Within preferred range (0.9-Cations 1.1) Not within preferred range Calculated TDS to EC ratio 0.701 (0.55-0.7)OK 0.558 Measured TDS to EC ratio Organic Mass Balance

DOC ≥ Sum of Organics DOC unavailable

Water Type Dissolved Solids Density Conductivity Hardness (as CaCO ₃ Total Carbonate Non-Carbonate	Ca-Cl 902.06 mg/kg 0.99771 g/cm ² 1510 µmho/cr) 631.31 mg/kg 493.23 138.08	n	900 mg/L 629.87 mg/L 492.1 137.76	Measured Calculated Measured Calculated
Primary Tests				
Anion-Cation Balan	ice	100		
Anions		13.3		
Cations		15.6		Not within ± 5%
% Difference	-11-4-1 TDC	7.931		Not Within ± 376
Measured TDS = Ca Measured	alculated IDS	902.00	6.1	
Calculated		993.2		
Ratio		0.908	53	Not within range 1.0 to 1.2
Measured EC = Cal	culated FC	0.700		110t Within Tunge 1.0 to 1.2
Measured	culated EC	1510.0	000	
Calculated		1347.		
Ratio		1.121		Not within range 0.9 to 1.1
Secondary Tests				The special control of the special control of
Measured EC and I	on Sums:			
Anions		0.883	537	Not within preferred range
(0.9-1.1)				
Cations		1.035	749	Within preferred range (0.9-
1.1)				
Calculated TDS to I	EC ratio	0.658		OK
Measured TDS to E	C ratio	0.597		OK
Organic Mass Balar				
$DOC \ge Sum of Organian$			W-S	
Dissolved Organic	c Carbon	2.100		
Sum of Organics		0.000	mg/L	OK

Water Type Dissolved Solids Density Conductivity Hardness (as CaCO ₂ Total Carbonate Non-Carbonate	Ca-Cl 851.98 mg/kg 0.99767 g/cm 1490 µmho/cr 3) 606.57 mg/kg 361.72 244.85	n	850 mg/L 605.16 mg/L 360.88 244.28	Measured Calculated Measured Calculated
Primary Tests				
Anion-Cation Balar	ice			
Anions		14.2		
Cations		15		OW
% Difference	1 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1	2.840		OK
Measured TDS = C	alculated TDS	851.9	00	
Measured				
Calculated		941.4		Not within range 1.0 to 1.2
Ratio Measured EC = Cal	Indiana EC	0.905		Not within range 1.0 to 1.2
Measured EC = Car	iculated EC	1490.	000	
Measured Calculated		1371.		
Ratio		1.086		OK
Secondary Tests		1.000		OK
Measured EC and I	on Sume			
Anions	on Sums.	0.951	601	Within preferred range (0.9-
1.1)		0.551	001	www.b.eranten.ze.Ze.Ze.
Cations		1.007	241	Within preferred range (0.9-
1.1)				3 (
Calculated TDS to	EC ratio	0.632		OK
Measured TDS to E		0.572		OK
Organic Mass Bala				
DOC ≥ Sum of Org				
Dissolved Organi		1.500	mg/L	
Sum of Organics		0.000	mg/L	OK

CSMRI-6C

Water Type Dissolved Solids Density Conductivity Hardness (as CaCO Total Carbonate Non-Carbonate	Ca-Cl 801.9 mg/kg 0.99764 g/cm 1450 µmho/co 3) 585.43 mg/kg 509.71 75.716	m	800 mg/L 584.04 mg/L 508.51 75.537	Measured Calculated Measured Calculated
Primary Tests				
Anion-Cation Balan	nce	10		
Anions		12 14		
Cations % Difference		7.623		Not within \pm 5%
Measured TDS = C	alculated TDS			Not within ± 370
Measured	alculated 100	801.8	96	
Calculated		859.5		
Ratio		0.933		Not within range 1.0 to 1.2
Measured EC = Ca	lculated EC			
Measured		1450.	000	
Calculated		1179.	127	
Ratio		1.230		Not within range 0.9 to 1.1
Secondary Tests				
Measured EC and	lon Sums:			ST
Anions		0.827	218	Not within preferred range
(0.9-1.1)		0.062	711	Wid-in and found and 22 (0.0
Cations		0.963	/44	Within preferred range (0.9-
1.1) Calculated TDS to	EC ratio	0.593		OK
Measured TDS to F		0.553		OK
Organic Mass Bala		0.555		
DOC ≥ Sum of Org				
Dissolved Organi		2.000	mg/L	
Sum of Organics			mg/L	OK
9,53				

Water Type Dissolved Solids Density Conductivity Hardness (as CaCO ₂ Total Carbonate Non-Carbonate	Ca-Cl 1102.4 mg/kg 0.99786 g/cm ² 2160 μmho/cr 3) 910.08 mg/kg 723.3 186.78	n	1100 mg/L 908.13 mg/L 721.75 186.38	Measured Calculated Measured Calculated
Primary Tests Anion-Cation Balar	100			
Anions	ice	18.3		
Cations		21.4		
% Difference		7.942		Not within ± 5%
Measured TDS = C	alculated TDS	1.5 12		1100 11111111 — 370
Measured	areanatea x25	1102.	356	
Calculated	1300.780			
Ratio	0.847			Not within range 1.0 to 1.2
Measured EC = Cal	culated EC			
Measured	10	2160.	000	
Calculated		1732.	635	
Ratio		1.247		Not within range 0.9 to 1.1
Secondary Tests				
Measured EC and I	on Sums:			
Anions		0.845	657	Not within preferred range
(0.9-1.1)				
Cations		0.991	578	Within preferred range (0.9-
1.1)				
Calculated TDS to I		0.602		OK
Measured TDS to E	C ratio	0.510		Not within preferred range
(0.55-0.7)				
Organic Mass Balan				
DOC≥Sum of Org		2 400	/T	
Dissolved Organic	c Carbon		mg/L	OK
Sum of Organics		0.000	mg/L	OK

Water Type	Ca-Cl				
Dissolved Solids	751.81 mg/kg	751.81 mg/kg		Measured	
Density	0.9976 g/cm^3			Calculated	
Conductivity	1410 μmho/ci			Measured	
Hardness (as CaCO	3)				
Total	581.32 mg/kg	ri	579.93 mg/L	Calculated	
Carbonate	427.52 mg ng	>	426.49		
Non-Carbonate	153.81		153.44		
Tion Carbonate	155.01		155		
Primary Tests					
Anion-Cation Balan	nce				
Anions		12.2			
Cations		14		ari was too.	
% Difference		6.777		Not within \pm 5%	
Measured TDS = C	alculated TDS				
Measured		751.80			
Calculated	866.88				
Ratio	0.867			Not within range 1.0 to	1.2
Measured EC = Ca	lculated EC				
Measured		1410.			
Calculated		1223.9			
Ratio		1.152		Not within range 0.9 to	1.1
Secondary Tests					
Measured EC and	lon Sums:				
Anions		0.865	729	Not within preferred ran	ige
(0.9-1.1)					
Cations		0.991	606	Within preferred range ([0.9-
1.1)					
Calculated TDS to		0.615		OK	
Measured TDS to F	EC ratio	0.533		Not within preferred ran	ige
(0.55-0.7)					
Organic Mass Bala	nce				
DOC ≥ Sum of Org	anics				
Dissolved Organi		1.300	mg/L		
Sum of Organics		0.000	mg/L	OK	

SW-1

Water Type	Ca-SO ₄			
Dissolved Solids	130.37 mg/kg	,	130 mg/L	Measured
Density	0.99713 g/cm	3		Calculated
Conductivity	340 µmho/cm	ι		Measured
Hardness (as CaCO	3)			
Total	78.659 mg/kg		78.433 mg/L	Calculated
Carbonate	57.577	,	57.412	
Non-Carbonate	21.081		21.021	
Drimany Tosts				
Primary Tests Anion-Cation Balan	100			
Anions Anions	ice	1.89		
Cations		2		
% Difference		3.012		OK
Measured TDS = C	alculated TDS	5.012		OK
Measured Measured	alculated 1D5	130.3	74	
Calculated		135.1		
Ratio	0.964		00	Not within range 1.0 to 1.2
Measured EC = Calculated EC		0.704		Not within range 1.0 to 1.2
		340.0	00	
Calculated		216.0		
Ratio		1.574		Not within range 0.9 to 1.1
Secondary Tests	1.5			That within runge of to the
Measured EC and I	on Sums:			
Anions		0.554	509	Not within preferred range
(0.9-1.1)		0.12(2) 11		
Cations		0.5889	952	Not within preferred range
(0.9-1.1)				1 2
Calculated TDS to	EC ratio	0.398		Not within preferred range
(0.55-0.7)				
Measured TDS to E	C ratio	0.383		Not within preferred range
(0.55-0.7)				
Organic Mass Balan	nce			
DOC ≥ Sum of Org	anics			
Dissolved Organic		1.400	mg/L	
Sum of Organics		0.000	mg/L	OK

SW-2

	- 100 E-100 E-100 E-100 E-100 E-100 E-100 E-100 E-100 E-100 E-100 E-100 E-100 E-100 E-100 E-100 E-100 E-100 E-			
Water Type	Ca-SO ₄			
Dissolved Solids	130.37 mg/kg		130 mg/L	Measured
Density	0.99713 g/cm			Calculated
Conductivity	340 µmho/cm	le:		Measured
Hardness (as CaCO ₂	3)			
Total	79.485 mg/kg		79.256 mg/L	Calculated
Carbonate	57.577		57.412	
Non-Carbonate	21.907		21.844	
Primary Tests				
Anion-Cation Balan	ice	0.022		
Anions		1.93		
Cations	9	2.03		
% Difference		2.502		OK
Measured TDS = Calculated TDS			7.4	
Measured		130.3		
Calculated	135.58		89	NEW 2011
Ratio	0.962			Not within range 1.0 to 1.2
Measured EC = Cal	culated EC	240.00	00	
Measured Calculated		340.00 218.9		
			40	Not within range 0.0 to 1.1
Ratio		1.553		Not within range 0.9 to 1.1
Secondary Tests Measured EC and I	on Cuma.			
Anions	on Sums.	0.5672	226	Not within preferred range
(0.9-1.1)		0.307.	220	Not within preferred range
Cations		0.596	3/10	Not within preferred range
(0.9-1.1)		0.570.	540	Not within preferred range
Calculated TDS to I	EC ratio	0.399		Not within preferred range
(0.55-0.7)				
Measured TDS to E	C ratio	0.383		Not within preferred range
(0.55-0.7)				
Organic Mass Balan	<u>ice</u>			
DOC ≥ Sum of Orga				
Dissolved Organic	c Carbon	1.300		
Sum of Organics		0.000	mg/L	OK

SW-3

Water Type	Ca-SO ₄				
Dissolved Solids	140.4 mg/kg		140 mg/L	Measured	
		3	140 mg/L	Calculated	
Density	0.99714 g/cm ²			Measured	
Conductivity	340 μmho/cm			Measured	
Hardness (as CaCO					
Total	79.071 mg/kg		78.845 mg/L	Calculated	
Carbonate	55.932		55.772		
Non-Carbonate	23.139		23.073		
D.:T4					
Primary Tests Anion-Cation Balan					
Anion-Cation Balai Anions	nce	1.91			
Cations		2.02			
% Difference		2.845		OK	
Measured TDS = C	alculated TDS	2.043		OK	
Measured 1DS – C	alculated 1D3	140.4	02		
Calculated		134.5			
Ratio	1.043		63	OK	
	red EC = Calculated EC			OIL	
Measured Measured	iculated EC	340.0	00		
Calculated		218.1			
Ratio		1.559		Not within range 0.9 to 1.	1
Secondary Tests		1.557		Title William Tange on to 1.	•
Measured EC and	Ion Sums				
Anions	ion builds.	0.562	268	Not within preferred rang	e
(0.9-1.1)		0.002		Y	2004
Cations		0.595	199	Not within preferred rang	e
(0.9-1.1)		0.00			2000
Calculated TDS to	EC ratio	0.396		Not within preferred rang	e
(0.55-0.7)	201411				9.0
Measured TDS to I	EC ratio	0.413		Not within preferred rang	e
(0.55-0.7)					
Organic Mass Bala	nce				
DOC ≥ Sum of Org					
Dissolved Organi		1.300	mg/L		
Sum of Organics		0.000	mg/L	OK	