Monitoring Report for CSMRI Site Third Quarter 2009

Prepared for:

Colorado School of Mines Golden, Colorado

Prepared by:

The S.M. Stoller Corporation Broomfield, Colorado

November 2009

TABLE OF CONTENTS

1.	INT	RODUCTION	1
2.	SAM	PLING AND ANALYSIS	1
	2.1	GROUNDWATER SAMPLING	1
	2.2	SURFACE WATER SAMPLING	2
	2.3	ANALYSES	
	2.3.1	Groundwater Quality Analyses	3
	2.3.2	Surface Water Analyses	3
	2.4	HEALTH AND SAFETY PROGRAM	4
3.	RES	ULTS	4
	3.1	GROUNDWATER CONDITIONS	4
	3.2	GROUNDWATER QUALITY	4
	3.2.1	Ionic Balance Evaluation	
	3.2.2	Comparison of Upgradient and Downgradient Groundwater Quality	6
	3.2.3	Comparison with Previous Groundwater Quality Analyses	7
	3.2.4		7
	3.3	SURFACE WATER QUALITY	8
4.	ACT	IVITIES FOR THIRD QUARTER 2009	8
5.	REF	ERENCES	8

LIST OF TABLES

TABLE 2-1 SUMMARY OF RADIOISOTOPES IN GROUNDWATER	9
TABLE 2-2 SUMMARY OF METALS IN GROUNDWATER	9
TABLE 2-3 SUMMARY OF ANIONS AND CATIONS IN GROUNDWATER	10
TABLE 2-4 SUMMARY OF RADIOISOTOPES IN SURFACE WATER	10
TABLE 2-5 SUMMARY OF METALS IN SURFACE WATER	10
TABLE 2-6 SUMMARY OF ANIONS AND CATIONS IN SURFACE WATER	11
TABLE 2-7 CSMRI HISTORICAL GROUNDWATER DATA (PREVIOUS CONSULTANTS)	11

LIST OF FIGURES

Figure 1	MONITORING WELL LOCATIONS AND GROUNDWATER ELEVATION MAP
FIGURE 2	CSMRI ALL MONITOR WELLS HYDROGRAPH
FIGURE 3	CSMRI-2 Hydrograph
FIGURE 4	Clear Creek Gauging Graph (July – September 2009)
FIGURE 5	CSMRI-4 HISTORICAL TOTAL URANIUM CONCENTRATION (1991 – 2009)
FIGURE 6	CSMRI-4 TOTAL URANIUM CONCENTRATION AND POTENTIOMETRIC ELEVATION
FIGURE 7	CSMRI-8 TOTAL URANIUM CONCENTRATION AND POTENTIOMETRIC ELEVATION

LIST OF APPENDICES

GROUNDWATER SAMPLING PROCEDURES
SAMPLE COLLECTION FORMS
SURFACE WATER SAMPLING PROCEDURES
DATA VALIDATION REPORTS
RESULTS OF ANALYSES ON CD
CHAIN-OF-CUSTODY DOCUMENTATION
HISTORICAL SUMMARY TABLES
ANION AND CATION BALANCES AND PIPER DIAGRAM

1. Introduction

This report presents the third quarter (July, August, September) 2009 results for groundwater and surface water monitoring conducted at the Colorado School of Mines Research Institute (CSMRI) site in Golden, Colorado. The monitoring was conducted by the S.M. Stoller Corporation (Stoller).

2. Sampling and Analysis

Stoller obtained quarterly samples of groundwater and surface water on September 24 and 25, 2009, from ten groundwater monitoring wells and two surface water sample locations. Groundwater quality samples were obtained on September 24 (CSMRI-1, CSMRI-4, CSMRI-5, CSMRI-6C, CSMRI-8, and CSMRI-9) and September 25 (CSMRI-1B, CSMRI-2, CSMRI-10, and CSMRI-11B). Several monitor wells require purging on one day and sample collection on subsequent visits over the following days to obtain sufficient sample volume. Monitor well CSMRI-7B contained sufficient groundwater to measure the water table but insufficient water to collect a sample with a bailer.

Surface water samples were collected on September 24, 2009, from SW-1 and SW-2. All aqueous samples were placed in iced coolers and couriered to Paragon Analytics Laboratory, Inc. of Fort Collins, Colorado or to TestAmerica, Inc. of Arvada, Colorado for analysis.

Figure 1 presents the monitor well and surface water sample locations. The figure also presents the groundwater potentiometric surface elevations based on depth to groundwater relative to the surveyed top-of-casing for September 24 and September 25, 2009. All monitor wells have depth-to-water measured to the nearest 1/100th of a foot (0.01) prior to sample purging. The elevations of the groundwater potentiometric surface at the time of sampling are posted adjacent to each monitor well location. Historically the figure indicates a northeasterly component of flow for groundwater located on the bench terrace above the Clear Creek flood plain.

2.1 Groundwater Sampling

Water quality samples were collected following the procedure outlined in Appendix A, Groundwater Sampling Procedures. Graphs of water table elevation are presented as Figure 2 for monitor wells CSMRI-1, CSMRI-1B, CSMRI-4, CSMRI-5, CSMRI-6B (abandoned July 2008), CSMRI-6C, CSMRI-7B (intermittent presence of groundwater), CSMRI-8, CSMRI-9, CSMRI-10, CSMRI-11 (abandoned July 2008), and CSMRI-11B. Figure 2 monitor wells are located within the CSMRI site proper and illustrate historical trends in changes to the potentiometric surface throughout the site. The presence of groundwater at monitor wells CSMRI-6C, CSMRI-7B, and CSMRI-11B are indicated by solitary geometric shapes for September 2009.

The Figure 3 hydrograph of monitor well CSMRI-2, located near the southeast corner of the freshman parking lot on West Campus Drive and the former Welch Ditch, is located upgradient of the CSMRI site and historically is used to provide background groundwater quality conditions. The hydrograph initially reflected the use of and leakage from the nearby irrigation ditch during the summer months in 2005 and 2006 by a seasonal rise in the potentiometric surface. In 2007 the Welch Ditch was diverted upstream of CSMRI and piped to Washington

Avenue in Golden and then to down-ditch users. Through late 2006 and 2007, the water level has remained elevated and only recently has shown a seasonal pattern of rising and falling.

Sample collection field forms showing the water quality parameters of the monitor well groundwater as it is purged and the volume removed are provided in Appendix B, Sample Collection Forms. After parameter stabilization, the water samples are filtered through a 0.45 micron (μ) filter, collected in laboratory-provided containers, and preserved in the field as appropriate for the analyte and analytical method. Some monitor wells require multiple visits to collect sufficient sample volume due to slow recharge.

2.2 Surface Water Sampling

Surface water samples from Clear Creek were collected on September 24, 2009, from two locations: one upstream of the site (SW-1) and one downstream of the site (SW-2) as shown on Figure 1. The surface water samples were collected following the procedure outlined in Appendix C, Surface Water Sampling Procedures. Surface water samples are filtered through a 0.45μ filter, collected in laboratory-provided containers, and preserved in the field as appropriate for the analyte and analytical method.

Discharge data of stream flow of Clear Creek, as measured by the U.S. Geological Survey, Golden, Colorado Clear Creek gauging station (#06719505 USGS Surface Water Online Database) during the third quarter from July 1, 2009 through September 30, 2009 are presented as Figure 4. Tabular representation of the data indicates values of stream flow of 92 and 90 cubic feet per second during the sample dates of September 24 and 25, respectively.

2.3 Analyses

All samples collected were analyzed using a Comprehensive Environmental Response, Compensation and Liability Act-certified analytical laboratory. The results received from the laboratory were evaluated based on the following parameters:

- Data completeness
- Holding times and preservation
- Instrument initial calibrations
- Instrument performance checks
- Preparation blanks
- Duplicate sample results
- Laboratory control sample results
- Compound quantization and reporting limits (full validation only)

As a quality control/quality assurance (QA/QC) check, an equipment blank sample was collected in the field by pouring distilled water through a sample bailer and submitting the filtered aqueous sample for the identical analytical parameters as the groundwater and surface water samples. The results of the equipment blank analyses did not identify any interferences or anomalies in the laboratory data.

Results of the QA/QC check indicate the radium-228 analysis in water sample SW-2 is qualified as 'J' (estimated) due to a failed detector and low bias. The results for metals calcium,

magnesium, and sodium in all samples are qualified as 'J' (estimated) due to failed serial dilutions. Data validation results are presented in Appendix D.

2.3.1 Groundwater Quality Analyses

Summaries of groundwater results for radioisotopes, metals, and inorganic anion and cations are presented in Table 2-1, Table 2-2, and Table 2-3, respectively. Groundwater parameters are reported as picoCuries per liter (pCi/L) for radioisotopes, micrograms per liter (μ g/L) for uranium and iron, and milligrams per liter (mg/L) for all other metals and ions.

Paragon Analytics Laboratory, Inc. of Fort Collins, Colorado and TestAmerica Laboratories, Inc. of Arvada, Colorado conducted laboratory analyses of the aqueous samples. Analytical parameters submitted to Paragon included radium isotopes (Ra-226 and Ra-228), uranium (U), calcium (Ca), potassium (K), magnesium (Mg), sodium (Na), phosphorus (P), chloride (Cl), sulfate (SO₄), carbonate as calcium carbonate (CO₃), bicarbonate as calcium carbonate (HCO₃), dissolved organic carbon (DOC), and dissolved phosphorous.

Analytical parameters submitted to TestAmerica included nitrate (NO₃), nitrite (NO₂), ferrous (Fe²), and ferric (Fe³) iron. TestAmerica was selected to conduct the short holding time analyses because of their proximity to the CSMRI site. Nitrate and nitrite for monitor wells CSMRI-1B, CSMRI-2, CSMRI-10, and CSMRI-11B were sampled and submitted on September 28, 2009 due to each monitor well dewatering from sampling on September 25, 2009.

Groundwater samples were measured onsite for purged volume, temperature, pH, specific conductance, dissolved oxygen (DO), oxidation-reduction potential (ORP), and turbidity as nephlometer turbidity units (NTU) during the purging and sampling process. Onsite measurement parameters are presented on the sample collection forms in Appendix B.

Since the first quarter of monitoring in February 2005, the concentration of total uranium in mg/L had been analyzed using Paragon method 714R9. In this method, the concentration of uranium is calculated based on the activity of the uranium isotopes U-234, U-235, and U-238. Effective in the first quarter 2007 sampling event, the concentration of uranium is now analyzed using mass spectrometry method EPA 6020, which analyzes for total isotopic uranium and not for the activity of the individual isotopes.

Analytical data from Paragon and from TestAmerica as an electronic data deliverable are presented in Appendix E on a compact disk as a series of Excel spreadsheets. Appendix F presents copies of the chain-of-custody for the CSMRI samples.

2.3.2 Surface Water Analyses

A summary of Clear Creek surface water results for radioisotopes, metals, anions, and cations is presented in Table 2-4, Table 2-5, and Table 2-6, respectively. Surface water parameters are reported as pCi/L for radioisotopes, μ g/L for uranium and iron, and mg/L for all other metals and ions. Surface water samples were measured onsite for temperature, pH, specific conductance, DO, ORP, and NTU as the sampling was conducted. Onsite measurement parameters are presented on the sample collection forms in Appendix B.

2.4 Health and Safety Program

Stoller developed a program to protect the health and safety of field personnel for implementation of the environmental monitoring at the CSMRI site. This program has been developed in accordance with requirements of 29 CFR 1910.120.

3. Results

Groundwater analytical results from samples collected from the CSMRI site during the third quarter 2009 for radioisotopes, metals, and anions and cations are summarized on Table 2-1, Table 2-2, and Table 2-3, respectively. Surface water analytical results from samples collected from the CSMRI site during the third quarter 2009 for radioisotopes, metals, and anions and cations are summarized on Table 2-4, Table 2-5, and Table 2-6, respectively. Table 2-7 presents historical data collected by previous consultants for select contaminants of potential concern in groundwater at the site. The historical uranium data presented in Table 2-7 are presented in pCi/L as "activity," yet recent (2005 through 2009) analytical data are presented in µg/L as "mass concentration." The December 7, 2000 Federal Register discusses the final uranium maximum contaminant level (MCL) and presents a conversion factor of a geometric average mass: activity ratio of 0.9 pCi/g for values near the National Primary Drinking Water Standards MCL, based on data from the National Inorganics and Radionuclides Survey.

Tables G-1 and G-2 in Appendix G present the quarterly historical groundwater radioisotopic and metals sample results, respectively, collected by Stoller since February 2005. Tables G-3 and G-4 in Appendix G present the quarterly historical Clear Creek surface water radioisotopic and metals sample results, respectively, collected by Stoller since February 2005.

3.1 Groundwater Conditions

Groundwater monitor wells are located in areas likely to detect impacts, if any, to groundwater emanating from the site and at locations that represent background water quality. Monitor wells CSMRI-4 and CSMRI-5 are located downgradient from the site in the Clear Creek flood plain. Well CSMRI-1 is located along Clear Creek upstream from the site, and well CSMRI-2 is located offsite on the southeast corner of the freshman parking lot on West Campus Drive.

In February 2007, seven new groundwater monitor wells were installed to assess the effectiveness of the source removal excavation that was conducted in 2006. Monitor well CSMRI-8 is located along Clear Creek within the flood plain area; and monitor wells CSMRI-1B, CSMRI-6B, CSMRI-7B, CSMRI-9, CSMRI-10, and CSMRI-11 are located on the bench terrace and essentially encircle the CSMRI site.

In July 2008, two monitor wells (CSMRI-6B and CSMRI-11) were abandoned due to construction activities at the CSMRI site. These two wells were replaced in December 2008 with CSMRI-6C and CSMRI-11B, respectively.

3.2 Groundwater Quality

Groundwater samples were collected from ten monitor wells and tested for the presence of metals and radioisotopes as identified in Section 2.3.1. A groundwater sample was not collected from monitor well CSMRI-7B due to insufficient volume of water in the well at the time of sampling.

Uranium was detected in monitor wells CSMRI-1B at 34 μ g/L, CSMRI-4 at 160 μ g/L, CSMRI-8 at 880 μ g/L, and CSMRI-9 at 43 μ g/L at concentrations exceeding the State of Colorado groundwater standard of 30 μ g/L. Uranium was also detected in the remaining six groundwater monitor wells but at concentrations below the groundwater standard.

The detected concentration of uranium in CSMRI-1B at 34 μ g/L barely exceeds the Colorado groundwater standard and is the highest value ever detected at this location. The presence of uranium at this location has steadily been increasing since January 2009.

In the flood plain area, uranium was detected in monitor wells CSMRI-4 at 160 μ g/L, CSMRI-5 at 11 μ g/L, and CSMRI-8 at 880 μ g/L. Monitor well CSMRI-4 historically has had elevated concentrations of uranium, but the values had been declining since 1991 until the last several quarterly sampling events as shown on Figure 5. Historically, the concentration of uranium in this monitor well has spiked; once in 1999 and again in 2003. The spike in the concentration of uranium in 2003 was attributed to precipitation effects at the CSMRI site and removal of the site asphalt and concrete as discussed in Section 4.2.2 of the New Horizons RI/FS (New Horizons 2004). The recent rise in the concentration of uranium in this monitor well appears to be attributed to the stormwater discharge from the new CSM artificial turf soccer field subdrains. Precipitation collected in the subdrains is discharged near the northern edge of the bench terrace and flows down a riprap-embedded concrete rundown on to the flood plain. During the process, the discharge water becomes oxygenated and is introduced into the poorly oxygenized environment of the flood plain area. Uranium present in the saturated sediments of the flood plain is then mobilized by the oxygenated discharge water and flows towards monitor well CSMRI-4.

Figure 6 presents the potentiometric surface elevation of the groundwater in CSMRI-4 (left Y axis) and the concentration of uranium (right Y axis) from 2005 through the third quarter 2009. The figure indicates the concentration of uranium had previously been fluctuating seasonally slightly above to slightly below the groundwater standard of 30 μ g/L for seven quarterly sampling events in 2005 and 2006. An ice chest from the fourth quarter 2006 (December) sampling event was lost by the courier service resulting in a gap in the analytical data for CSMRI-4. Since 2007, the concentration of uranium in this well has increased after the 2006 surface soil remediation activities.

The concentration of uranium detected in CSMRI-8 increased to 880 μ g/L from the previous quarterly value of 700 μ g/L. Monitor well CSMRI-8 was installed in February 2007. Figure 7 presents the potentiometric surface elevation of the groundwater at this well (left Y axis) and the concentration of uranium (right Y axis) from 2007 through the third quarter 2009. Quarterly monitoring will be continued to document seasonal variability and trends in the concentration of uranium in groundwater at this location.

The detected concentration of uranium in CSMRI-9 at 43 μ g/L is significantly lower than the June 2009 sampling event value and is more in line with historical values. This monitor well is located at the top of the bench terrace that rises above the flood plain and is downgradient of the CSMRI site.

3.2.1 Ionic Balance Evaluation

Groundwater and surface water samples were collected and tested for major anions and cations, dissolved organic carbon, and at select locations (CSMRI-1, CSMRI-4, CSMRI-5, and CSMRI-8) ferric and ferrous iron. Analytical results for these parameters are presented in Table 2-3 for groundwater and Table 2-6 for surface water. AqQA[®] geochemical software is used to calculate ionic balances of water samples and to show the graphical representation of anions and cations. Ionic balance calculations for the anions and cations for most of the water samples fall within the acceptable range of 1 to 7 percent; however, CSMRI-8 had an ionic balance of 9.7 percent.

Summary sheets from the AqQA® geochemical software for each of the water samples are presented in Appendix H. Dominant water types identified at the CSMRI site include Ca-Cl (CSMRI-1, CSMRI-1B, CSMRI-5, CSMRI-6C, CSMRI-10, and CSMRI-11B); Ca-HCO₃ (CSMRI-2, CSMRI-4, CSMRI-8, and CSMRI-9); and Ca-SO₄ (SW-1 and SW-2). All upgradient and lateral gradient monitor wells located on the bench terrace area of the CSMRI site are characterized as Ca-Cl type waters, except for downgradient monitor well CSMRI-9, which is characterized as a Ca-HCO₃ type water.

A Piper quadrilateral diagram is included in Appendix H and presents the overall ionic properties for each water sample. The cation triangle in the lower left of the figure indicates the cation compositions of the water samples are similar as exhibited by the tight grouping of the monitor well symbols. The anion triangle in the lower right of the figure indicates the anion compositions of the water samples are more diverse as exhibited by the dispersed nature of the monitor well symbols.

3.2.2 Comparison of Upgradient and Downgradient Groundwater Quality

Monitor wells CSMRI-4, CSMRI-5, and CSMRI-8 are downgradient from the site and are located on the Clear Creek flood plain. Monitor wells CSMRI-7B and CSMRI-9 are located downgradient of the CSMRI site at the top of the bench terrace above the flood plain. Monitor wells CSMRI-10 and CSMRI-11B are located at the eastern edge of the site, and monitor wells CSMRI-1B and CSMRI-6C are located upgradient of the site.

The Piper quadrilateral diagram in Appendix H indicates a slight change in the anions concentration of the monitor wells located on the bench terrace area, particularly the chloride ion as shown by the linear orientation of the monitor well symbols in the diamond-shaped graph. However groundwater quality shows no significant trend for the anion and cation analyses when comparing upgradient to downgradient monitor wells.

Uranium was detected in monitor wells CSMRI-1B at a concentration of 34 μ g/L, CSMRI-4 at a concentration of 160 μ g /L, CSMRI-8 at a concentration of 880 μ g/L, and CSMRI-9 at a concentration of 43 μ g/L, which all exceed the groundwater standard of 30 μ g/L. The potentiometric surface map (Figure 1) indicates monitor well CSMRI-1B is located in an upgradient position on the bench terrace. Monitor wells CSMRI-4 and CSMRI-8 are located in the flood plain area. CSMRI-9 is located at the downgradient position on the bench terrace at the CSMRI site and only in the past two quarterly sampling events has it exceeded the groundwater standard.

3.2.3 Comparison with Previous Groundwater Quality Analyses

Table 2-7 presents groundwater analytical results from past sampling events dating back to 1991 for radioisotopes of concern. The data indicate fluctuating concentrations of tested analytes; particularly for monitor well CSMRI-4.

Each sampling quarter as additional data are collected and trends become more defined, graphs of concentration versus time are produced and presented. These analytical data are incorporated to show long-term trends and correlation between the detected concentration of uranium in groundwater, the fluctuating water table, and seasonal variability if present.

3.2.4 Comparison with Colorado Groundwater Standards

The groundwater standard of 30 μ g/L for uranium in groundwater was exceeded in monitor wells CSMRI-1B at a concentration of 34 μ g/L, CSMRI-4 at a concentration of 160 μ g/L, CSMRI-8 at a concentration of 880 μ g/L, and CSMRI-9 at a concentration of 43 μ g/L. In January 2008, CDPHE Water Quality Control Commission adopted the surface water quality standard of 30 μ g/L as the groundwater quality standard in an effort to keep both uranium standards consistent.

The presence of uranium in monitor well CSMRI-1B at a concentration of $34 \mu g/L$ has been steadily climbing for the past two sampling quarters. With the third quarter (September) 2009 sampling event, uranium exceeded the groundwater quality standard for the first time. This trend will be evaluated through continued monitoring of the groundwater at this location.

The spikes in the concentration of uranium in CSMRI-4 shown in Figure 5 have been attributed to the increased precipitation from December 2006 through February 2007 and surface soil remediation activities in the flood plain. This monitor well exhibited the same trend in 2003 during a prolonged high-precipitation period and when the asphalt cover and buildings associated with CSMRI had been removed. The recent rise in the concentration of uranium in this monitor well appears to be attributed to the stormwater discharge from the new CSM artificial turf soccer field subdrains. Precipitation collected in the subdrains is discharged near the northern edge of the bench terrace and flows down a riprap-embedded concrete rundown on to the flood plain. During the process, the discharge water becomes oxygenated and is introduced into the reducing environment of the flood plain area. The oxygen-rich influent enhances the mobility of the uranium present in the saturated sediments of the flood plain. The flux of water in the flood plain then flows towards monitor well CSMRI-4. The Colorado School of Mines (CSM) is assessing the relocation of the discharge pipe away from the flood plain area.

The concentration of uranium at 880 μ g/L at monitoring well CSMRI-8 may be due to the following factors:

- The soil surrounding the monitor well contains residual uranium from the former pond area on the flood plain.
- Uranium was disturbed and introduced into the monitor well during installation.
- The well contains residual uranium from the former Building 101 area at the top of the slope above the flood plain.
- Uranium is naturally occurring in the Fox Hills bedrock formation.

• The well is located in a zone where strong mixing between Clear Creek water and groundwater occurs, and the oxidizing conditions associated with creek water causes uranium to mobilize more readily.

Monitoring well CSMRI-8 will continue to be sampled on a quarterly basis along with CSMRI-9 and all other site wells, and the reason(s) for the elevated level of uranium will be evaluated.

3.3 Surface Water Quality

Surface water samples are collected from two locations at the site. Location SW-1 is located upstream from the site and the second location, SW-2, is downstream from the site. The upstream and downstream surface-water concentrations of tested parameters detected at the CSMRI site from stations SW-1 and SW-2 are similar. No established water quality standards were exceeded.

4. Activities for Third Quarter 2009

The artificial turf soccer field that overlies the former CSMRI site and the artificial turf football practice field to the south are in-place and construction is complete. Both fields overlie drain beds with perimeter drains that collect any direct precipitation onto the fields and discharge the water to the flood plain area approximately 32 feet northeast of monitor well location CSMRI-9. The discharged water then flows down a riprap-embedded concrete rundown that allows the discharge to flow onto the flood plain. The recent exceedances of uranium at CSMRI-4 may be attributable to the athletic fields' discharge. CSM is currently assessing alternatives to diverting the discharge away from the flood plain to an alternative location.

5. References

Colorado Department of Public Health and Environment, Water Quality Control Commission, Regulation No. 41, *The Basic Standards for Ground Water*. Amended: January 14, 2008, Effective: May 31, 2008.

New Horizons Environmental Consultants, Inc. Remedial Investigation/Feasibility Study and Proposed Plan, Colorado School of Mines Research Institute Site, Golden, CO, January 21, 2004.

Stoller, Final Site Characterization Work Plan, May 2006.

USGS Surface Water website: http://nwis.waterdata.usgs.gov

	Sumr	nary of Rad	lioisotopes in	Groundwa	iter	
			-226 Ci/L)		-228 Ci/L)	Total U (μg/L)
Sample Station	Sample Date	Result	Uncertainty	Result	Uncertainty	Result
CSMRI-1	9/24/09	2.64	0.87	1.01	0.48	2.4
CSMRI-1B	9/25/09	0.08	0.42	0.89	0.49	34
CSMRI-2	9/25/09	0.63	0.39	2.12	0.79	0.6
CSMRI-4	9/24/09	0.11	0.26	0.73	0.46	160
CSMRI-5	9/24/09	-0.15	0.19	0.85	0.44	11
CSMRI-6C	9/24/09	0.09	0.23	1.39	0.58	17
CSMRI-7B	NT	NT	NT	NT	NT	NT
CSMRI-8	9/24/09	0.39	0.3	1.25	0.56	880
CSMRI-9	9/24/09	0.24	0.27	0.59	0.47	43
CSMRI-10	9/25/09	0.25	0.28	0.62	0.43	13
CSMRI-11B	9/25/09	3.5	1.1	0.88	0.48	17
M	CL*		Total F	Ra = 5		30

Table 2-1Summary of Radioisotopes in Groundwate

*Maximum Contaminant Level – National Primary Drinking Water Regulations

NT – Not Tested

Table 2-2 Summary of Metals in Groundwater (All results in mg/L)

Sample Station	Sample Date	Ag	As	Ва	Са	Cd	Cr	Hg	к	Mg	Na	Pb	v
CSMRI-1	9/24/09	NT	NT	NT	48 (J)	NT	NT	NT	3.2	18 (J)	45 (J)	NT	NT
CSMRI-1B	9/25/09	NT	NT	NT	120 (J)	NT	NT	NT	7	55 (J)	42 (J)	NT	NT
CSMRI-2	9/25/09	NT	NT	NT	76 (J)	NT	NT	NT	5.2	34 (J)	19 (J)	NT	NT
CSMRI-4	9/24/09	NT	NT	NT	160 (J)	NT	NT	NT	14	65 (J)	69 (J)	NT	NT
CSMRI-5	9/24/09	NT	NT	NT	150 (J)	NT	NT	NT	4.2	56 (J)	57 (J)	NT	NT
CSMRI-6C	9/24/09	NT	NT	NT	120 (J)	NT	NT	NT	5.1	60 (J)	49 (J)	NT	NT
CSMRI-7B	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
CSMRI-8	9/24/09	NT	NT	NT	250 (J)	NT	NT	NT	13	63 (J)	78 (J)	NT	NT
CSMRI-9	9/24/09	NT	NT	NT	120 (J)	NT	NT	NT	5.6	58 (J)	64 (J)	NT	NT
CSMRI-10	9/25/09	NT	NT	NT	120 (J)	NT	NT	NT	3.8	47 (J)	43 (J)	NT	NT
CSMRI-11B	9/25/09	NT	NT	NT	130 (J)	NT	NT	NT	6.2	57 (J)	49 (J)	NT	NT
Detection	n Limits	0.01	0.01	0.1	1	0.005	0.01	0.0002	1	1	1	0.003	0.01
MC	*	NE	0.010	2	NE	0.005	0.1	0.002	NE	NE	NE	0.015	NE

*Maximum Contaminant Level - National Primary Drinking Water Regulations

NE - Not Established

NT - Not Tested

J – Estimated

Sample Station	Sample Date	Bicarbonate as CaCO₃ (mg/L)	Carbonate as CaCO₃ (mg/L)	Total Alkalinity as CaCO₃ (mg/L)	Chloride (mg/L)	Dissolved Organic Carbon (mg/L)	Ferric Iron (mg/L)	Ferrous Iron (mg/L)	Total Iron (ug/L)	Nitrate (mg/L)	Nitrite (mg/L)	Dissolved Phosphorous (mg/L)	Sulfate (mg/L)
CSMRI-1	9/24/09	91	5	91	120	1	ND	ND	ND	1.3	ND	0.05	56
CSMRI-1B	9/25/09	270	20	270	200	2.8	NT	NT	NT	1.8	ND	0.05	90
CSMRI-2	9/25/09	300	20	300	22	1	NT	NT	NT	ND	ND	0.05	74
CSMRI-4	9/24/09	430	20	430	120	5.7	ND	ND	ND	ND	ND	0.16	250
CSMRI-5	9/24/09	230	20	230	230	1.5	ND	ND	ND	2.8	ND	0.05	200
CSMRI-6C	9/24/09	260	20	260	230	1.4	NT	NT	NT	5.5	ND	0.05	100
CSMRI-7B	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
CSMRI-8	9/24/09	530	20	530	160	5.9	ND	ND	ND	ND	ND	0.05	260
CSMRI-9	9/24/09	300	20	300	160	1.8	NT	NT	NT	8.6	ND	0.05	190
CSMRI-10	9/25/09	220	20	220	200	1.2	NT	NT	NT	5.3	ND	0.05	110
CSMRI-11B	9/25/09	290	20	290	160	1.3	NT	NT	NT	5.5	ND	0.05	150
Reporti	ing Limits	5 or 20	5 or 20	5 or 20	1, 2 or 4	1	0.2	0.2	100	0.5	0.5	0.05	5, 10 or 20

 Table 2-3

 Summary of Anions and Cations in Groundwater

ND – Non Detect

NT – Not Tested

Table 2-4Summary of Radioisotopes in Surface Water

Sample	Sample	Ra-226	(pCi/L)	Ra-228	Total U (µg/L)	
Station	Date	Result	Uncertainty	Result	Uncertainty	Result
SW-1	9/24/09	-0.08	0.2	0.37	0.44	1.1
SW-2	9/24/09	0	0.24	0.28 (J)	0.39	1.1
M	CL*		Total I	Ra = 5		30

*Maximum Contaminant Level – National Primary Drinking Water Regulations

J – Estimated

Table 2-5Summary of Metals in Surface Water(All results in milligrams per liter)

					(1)					
Sample Station	Sample Date	Ag	As	Ba	Ca	Cd	Cr	Hg	K	Mg	Na	Pb	V
SW-1	9/24/09	NT	NT	NT	25 (J)	NT	NT	NT	1.4	5.5 (J)	9.7 (J)	NT	NT
SW-2	9/24/09	NT	NT	NT	25 (J)	NT	NT	NT	1.4	5.5 (J)	9.4 (J)	NT	NT
Detecti	ion Limits	0.01	0.01	0.1	1	0.005	0.01	0.0002	1	1	1	0.003	0.01
M	CLs*	0.01	0.010	2	NE	0.005	0.1	0.002	NE	NE	NE	0.015	NE

*Maximum Contaminant Level - National Primary Drinking Water Regulations

NE – Not Established

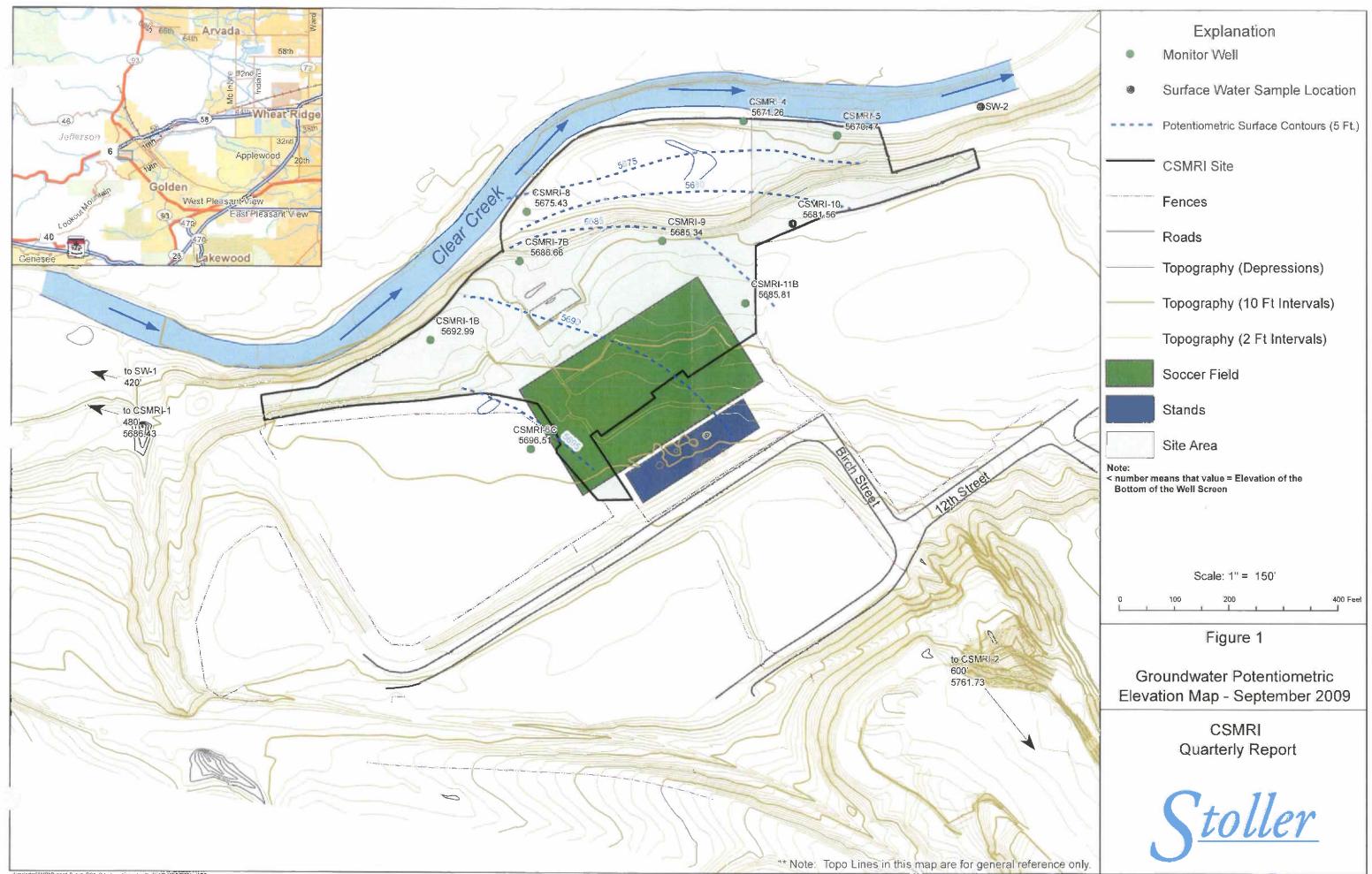
NT – Not Tested - Scheduled for June only (2nd Quarter)

Sample Station	Sample Date	Bicarbonate as CaCO ₃ (mg/L)	Carbonate as CaCO₃ (mg/L)	Total Alkalinity as CaCO₃ (mg/L)	Chloride (mg/L)	Dissolved Organic Carbon (mg/L)	Ferric Iron (mg/L)	Ferrous Iron (mg/L)	Total Iron (μg/L)	Nitrate (mg/L)	Nitrite (mg/L)	Total Phosphorous (mg/L)	Sulfate (mg/L)
SW-1	9/24/09	38	5	5	17	1.1	NT	NT	NT	ND	ND	0.05	56
SW-2	9/24/09	40	5	5	16	1.1	NT	NT	NT	ND	ND	0.05	58
Reportir	ng Limits	5	5	5	0.2	1	NT	NT	NT	0.5	0.50	0.05	1

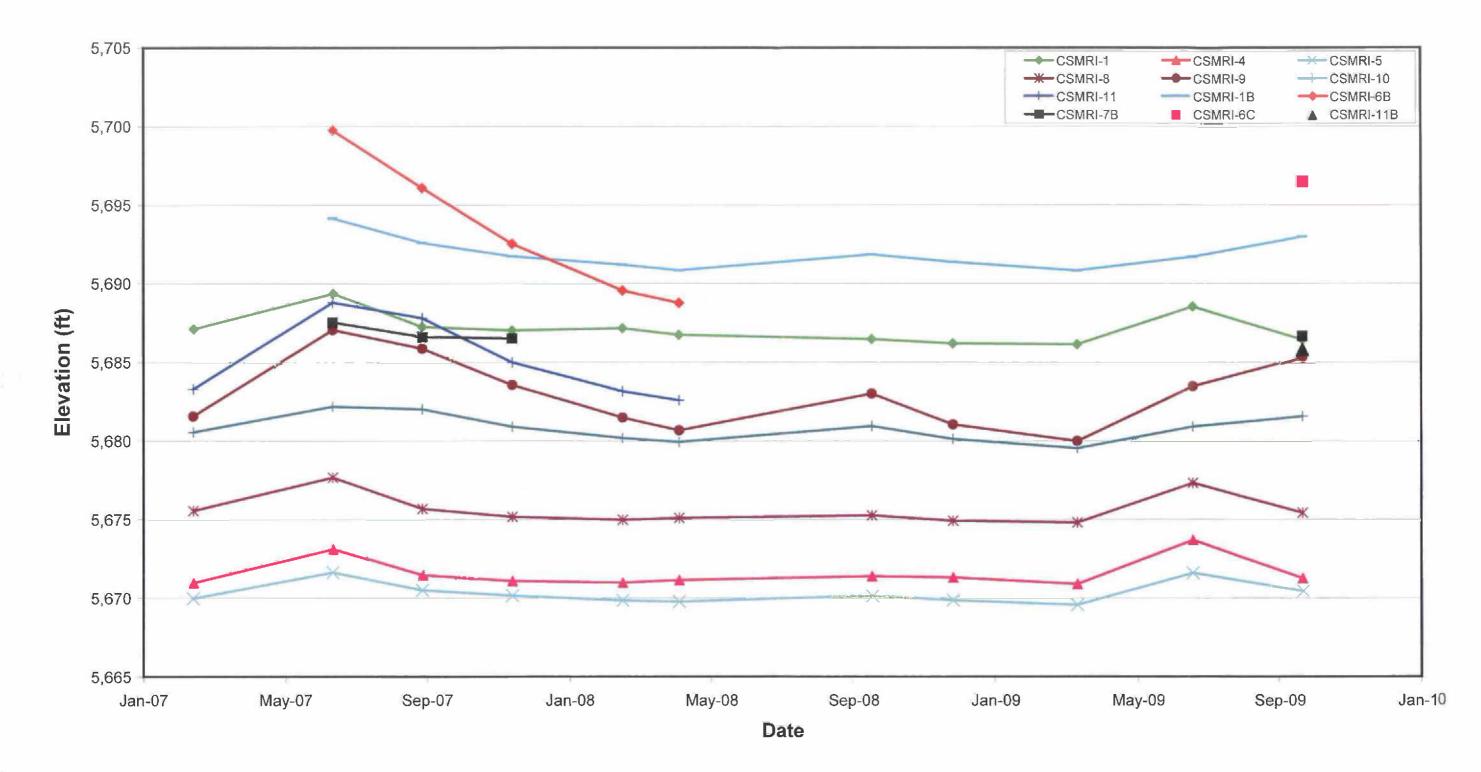
Table 2-6 Summary of Anions and Cations in Surface Water

ND = Not Detected at or above the Reporting Limits

NT = Not Tested

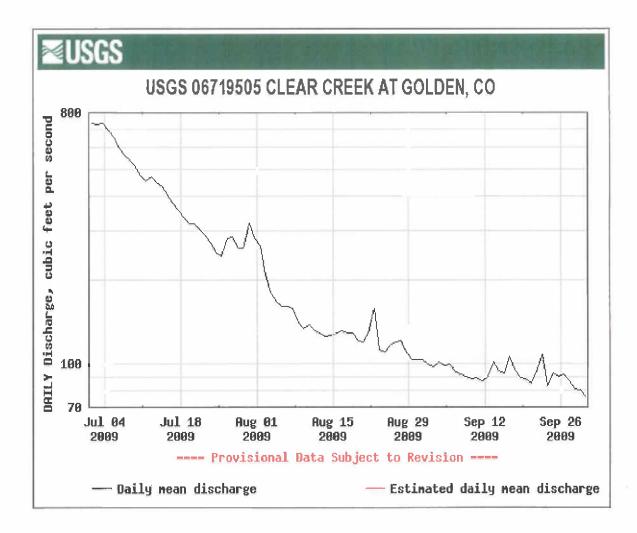

	Table	e 2-7	
CSMRI Historical	Groundwate	er Data (Pre	vious Consultants)

(All results in picoCuries per liter)


Well ID (d)	Analyte	1/1991 (a)	6/1991 (a)	3/1999 (b)	6/1999 (b)	10/1999 (b)	2/2003 (c)	4/2003 (c)	7/2003 (c)	10/2003 (c)
	Ra-226			0.1	0.3	0.2	<0.55	<0.45	ND (<0.38)	ND (<0.31)
CSMRI-1	U Total			2.09	2.59	1.44	2.4	2.9	0.87	1.4
	Th-230			0.4	0.2	0.2	<0.19	0.21	ND (<0.13)	<0.15
	Ra-226		1.9	1.9	1.4	1.4	1.4	2.8	2.1	1.7
CSMRI-2	U Total	11	5.7	0.55	1.46	0.71	1.5	1.3	1.9	1.3
	Th-230		0	0.1	0.1	0.9	<0.17	0.43	0.20	0.31
	Ra-226		0.6	1.5	1.2	1.6	<0.75	<0.81	ND (<0.49)	<0.98
CSMRI-3	U Total	17	10.4	8.41	12.4	10	12	12	9	10
	Th-230		0	0.3	0.3	1.1	<0.12	ND (<0.15)	ND (<0.17)	ND (<0.14)
	Ra-226		1	<0.4	0.6	0.4	<0.85	<0.42	<0.32	ND (<0.64)
CSMRI-4	U Total	86	57.3	23.4	58.6	33.7	16	34.2	53	19
	Th-230		0	0.7	0.3	0.4	<0.099	ND (<0.15)	ND (<0.17)	ND (<0.12)
	Ra-226		0.6	2.4	3.3	2.7	ND (<0.49)	1.1	2.6	1.59
CSMRI-5	U Total	14	16.8	3.6	3.6	4	2.8	2.3	2.7	3.3
	Th-230		0	0.2	0.2	1.4	0.062	ND (<0.14)	ND (<0.19)	ND (<0.13)

Notes: ND = Not Detected

a - Samples collected by Grant and Associates and analyzed by Barringer Labs
b - Samples collected by URS Greiner Woodward Clyde and analyzed by CORE Labs
c - Samples collected by New Horizons Environmental Consultants and analyzed by Paragon Analytics; Total U activity (pCi/L) calculated from concentration (μg/L) reported by Paragon.
d - Well Identification numbers changed from the 1991 data to the 1999 data. Data presented account for this change


Figure 2 CSMRI All Monitor Wells Hydrograph

U

Figure 4 Clear Creek Gauging Graph July – September 2009

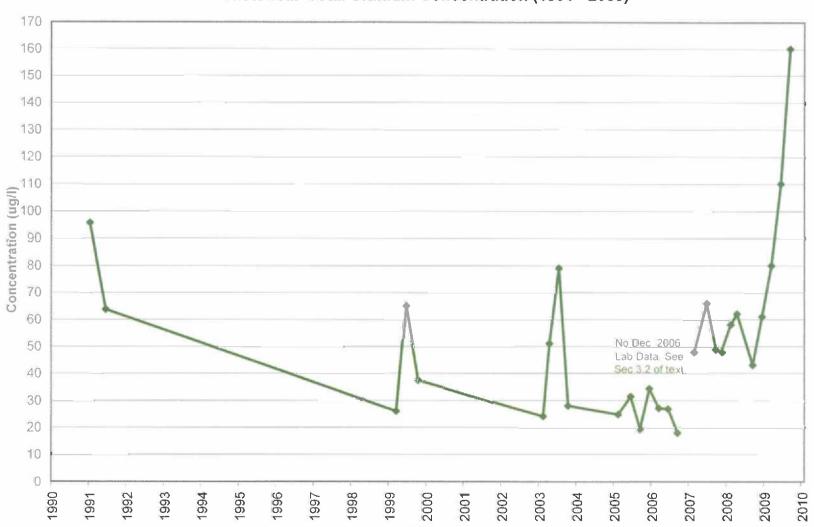
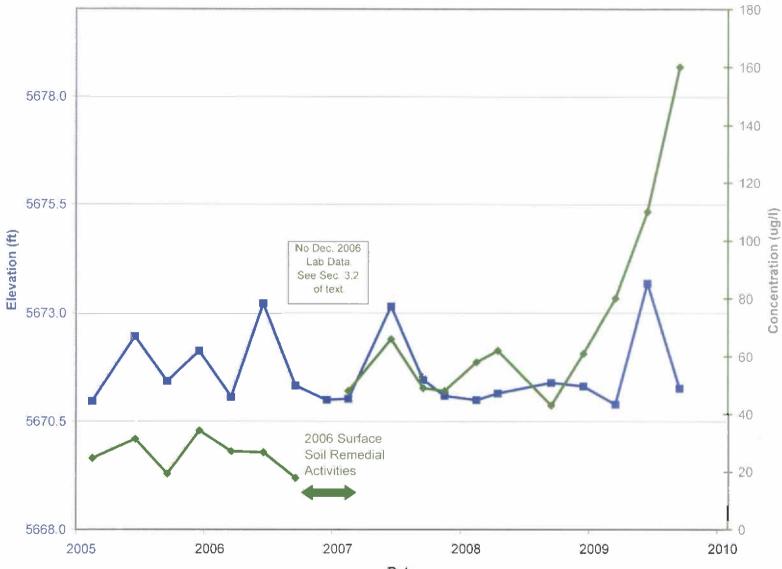
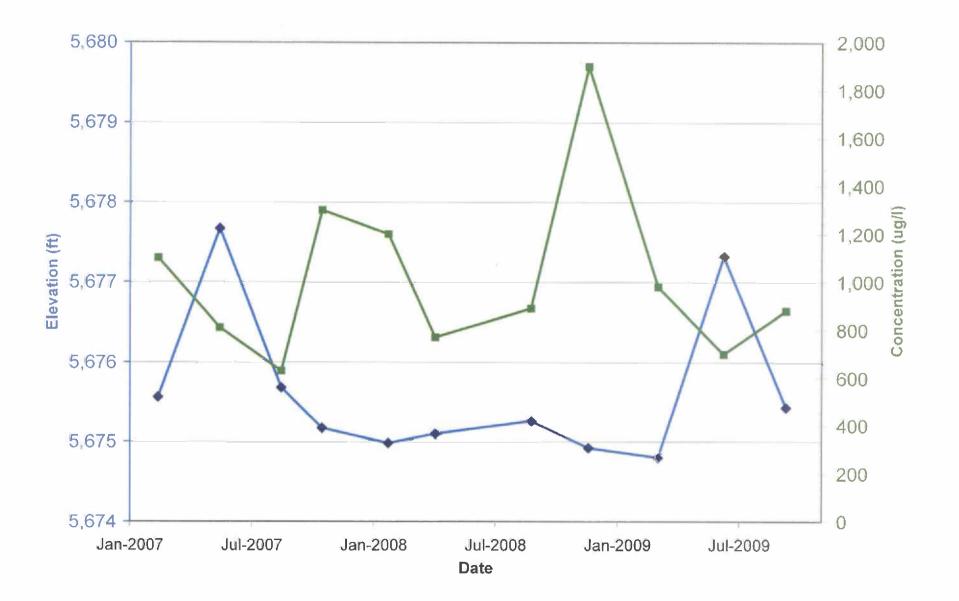



Figure 5 CSMRI-4 Historical Total Uranium Concentration (1991 - 2009)

Date


Figure 6 CSMRI-4 Total Uranium Concentration and Potentiometric Elevation

à.

Date

Figure 7 CSMRI-8 Total Uranium Concentration and Potentiometric Elevation

.

Appendix A Groundwater Sampling Procedures

Groundwater Sampling

1.0 Purpose

This procedure describes actions to be used to sample groundwater from monitoring wells and piezometers. Monitoring wells are generally sampled on a semiannual, quarterly, or monthly basis, or by special request in support for specific projects. All wells are to be sampled using this procedure unless superseded by specific site, facility, or client procedures.

This procedure describes equipment decontamination and transport, site preparation, detection and sampling of immiscible layers, water level measurements, well purging, sample collection, field and analytical parameters, quality assurance/quality control (QA/QC) requirements, and documentation that shall be used for field data collection.

2.0 Scope

This document describes acceptable methods for the sampling of wells and piezometers.

3.0 Responsibilities and Qualifications

Personnel performing groundwater sampling procedures are required to have completed the initial 40-hour OSHA classroom training that meets the Department of Labor requirements at 29 CFR 1910.120(e)(3)(i), and must maintain a current training status by completing the appropriate annual 8-hour OSHA refresher courses. Personnel must also have read the appropriate project, site, or facility Health and Safety Plan(s). Prior to engaging in groundwater sampling activities, personnel must have a complete understanding of the procedures described within this procedure and, if necessary, will be given specific training regarding these procedures by other personnel experienced in the methods described within this procedure.

4.0 Groundwater Sampling Procedures

4.1 Introduction

Many monitoring wells are constructed of either 2-inch stainless steel, or 2- or 4-inch flush threaded PVC casing. Some piezometers are completed as monitoring wells, and they are usually constructed of ³/₄-inch inside diameter, flush threaded PVC casing. Some wells have been constructed to incorporate a sump below the well screen. Because these vary in length, the well construction diagrams should be consulted to determine the sump lengths for specific wells. Most piezometers are constructed with a flush threaded cap at the bottom of the well screen. However, the well construction diagrams should also be consulted for information about specific piezometers.

Procedures for groundwater sampling are designed to obtain a sample that is representative of the formation water beneath the site in question. Since an analysis of the quality of formation water is desired, standing water within the well must be purged before sampling. Also, a measure of the static water elevations is important to determine the effect of seasonal horizontal and vertical flow gradient changes during site characterization activities.

Groundwater sampling procedures can be initiated after sampling personnel take the required water level measurements and purge the well in accordance with this procedure. Methods for accomplishing each of these activities are included in this procedure in the following sequence:

- Collection of immiscible layers samples, if present
- Well purging
- Groundwater sampling using a bailer

- Groundwater sampling using a peristaltic pump
- Groundwater sampling with a bladder pump

4.2 General Equipment Requirements

Down-hole sampling equipment shall be constructed of inert material such as polytetrafluoroethylene (Teflon[®]) or stainless steel. This equipment shall be assessed on an individual basis prior to use in the field.

The following is a primary list of well sampling and associated equipment:

- Bailers Teflon[®], stainless steel, or other appropriate inert materials
- Teflon[®] coated stainless steel cable with reels
- Peristaltic pumps and tubing
- Water level measuring devices sufficiently accurate to measure water levels to the nearest 0.01 foot
- Graduated purge water containers
- Plastic sheeting
- Distilled or deionized water
- Decontamination equipment and supplies
- Organic vapor detector (OVD)
- Gloves (nitrile)
- Calculator and watch
- Sample containers precleaned to EPA specifications
- pH paper
- Custody tape
- Coolers with sufficient blue ice to cool samples to 4°C
- Preservatives (trace metals grade)
- Disposable in-line 0.45-micron membrane filters
- Logbooks and field forms
- Black waterproof pens
- Portable laboratory equipment for measuring field parameters for pH, temperature, specific conductance, and turbidity
- Total alkalinity reagent
- Beakers and graduated cylinders

Additional equipment may be required to meet project or client health and safety standards, to perform specialized sampling, or to meet personnel and equipment decontamination requirements.

4.3 Equipment Decontamination and Transport

Equipment associated with the tasks involved in groundwater sampling shall be decontaminated upon arrival at the sampling location. All sampling equipment shall be decontaminated between

sample locations. Decontamination frequency shall be increased appropriately as field conditions dictate.

Transportation of all equipment shall be performed in a manner that eliminates any possibility of cross-contamination. Calibration solutions, fuel, decontamination solutions and wastewater, and all other sources of contamination shall be segregated from sampling equipment during transport. Purge water being transported to holding areas shall be kept in closed containers.

If the decontamination of downhole equipment is not performed at the well, used downhole equipment shall be wrapped in plastic sheeting and/or segregated from clean equipment to eliminate the possibility of cross contamination. The equipment shall then be decontaminated as soon as possible.

4.3.1 Routine Field Decontamination

Decontamination of delicate equipment and the routine decontamination of sampling equipment prior to use at each well shall consist of the following steps:

- Vigorously scrub the equipment with a brush and solution of phosphate-free laboratory grade detergent (e.g., Liquinox) and distilled water.
- Rinse the equipment thoroughly with approved distilled water.
- If the decontaminated equipment is not immediately packaged to eliminate any adhesion of airborne impurities, perform an additional final rinse, or decontamination and rinse, immediately prior to actual sampling operations.
- 4.3.2 Routine Decontamination of Sampling Pumps

The external surfaces of all non-dedicated pumping equipment shall be decontaminated as described in Subsection 4.3.1. Internal surfaces shall be decontaminated according to the following procedures, except under special situations where the pump(s) must be disassembled and the internal parts cleaned separately (see Subsection 4.3.3). For routine decontamination, the following procedures shall be followed.

- Pump several pump volumes of a solution of a phosphate-free laboratory grade detergent (e.g., Liquinox) and water through the equipment.
- Displace the soap solution immediately by pumping approved distilled water, equivalent to three or more volumes of the pump storage capacity, through the equipment.
- If any detergent solution remains in the pump, continue pumping distilled water through the system until the detergent is no longer visibly present. Sudsing is the common indicator used to determine incomplete rinsing.
- 4.3.3 Unusual Decontamination Requirements

When equipment becomes grossly contaminated, such as from the collection of immiscible layer samples (see Subsection 4.5), routine decontamination of sampling equipment is not considered sufficient and thus is not allowed. This situation and other unusual equipment decontamination problems shall be reported to the field site supervisor. Under certain circumstances, a pump can be disassembled and the parts cleaned separately using approved solvents (i.e., hexane, alcohol, etc.). If specific instructions are required, the field site supervisor shall consult with a management representative for proper decontamination procedures.

4.3.4 Disposition of Decontamination Water

All water generated during the decontamination of equipment used for the sampling of wells shall be containerized in either a satellite container or in the purge water container in the groundwater sampling vehicle. It will then be disposed of according to the procedure designated in Subsection 4.6.3 of this procedure.

4.4 Site Preparation

Sheet plastic may be used to protect clean equipment from contacting contaminated surfaces. Plastic bags and sheeting, along with the segregation of clean and dirty equipment, can be used to reduce the chances of cross contamination. If a mechanical bailer retrieval system is used, the amount of plastic appropriate for protection of sampling equipment may be lessened. The sampling crew members are responsible for determining the amount of plastic sheeting required.

Disposable nitrile gloves, or gloves made of other approved materials, shall be used at all times when handling sampling equipment. Gloves shall be changed between each site and as often as necessary to ensure the integrity of clean sampling equipment.

4.5 Collection of Immiscible Layer Samples

When specified in the project sampling plan, or when the well to be sampled contains immiscible layers, immiscible phases must be collected before purging activities begin. The method of choice for collecting light non-aqueous phase liquids (LNAPLS) is a bottom valve bailer or peristaltic pump. Dense non-aqueous phase liquids (DNAPL) or "sinkers" shall be collected with a bottom double check valve bailer or peristaltic pump.

In all cases, the bailer shall be carefully lowered into the well so that agitation of the immiscible layer is minimal. Any bailer used to collect immiscible layers shall be dedicated to the well that is sampled. Peristaltic pumps shall be equipped entirely with silicon, or other chemical compatible tubing, when sampling immiscible layers. The project manager shall be responsible for determining the type materials to be used for specific projects. Dedicated equipment used for collecting immiscible layers shall be decontaminated prior to and after use as described in Subsection 4.3 of this procedure, if removed from the well.

Immiscible layer sampling shall be performed as follows.

- Remove dedicated bailers from the well and decontaminate as specified in Subsection 4.3 of this procedure. Decontaminate dedicated pump tubing, if used, prior to use.
- For LNAPLs, carefully lower the bailer intake or sampling port to the midpoint of the immiscible layer and allow it to fill while it is held at this level. The bailer must be lowered into the immiscible layer slowly so that minimal agitation of the immiscible layer occurs. Peristaltic pump intakes must also be lowered to the midpoint of the immiscible layer.
- If a DNAPL layer is being sampled, use either the double check valve bailer or peristaltic pump. Lower the bailer into the well until bottom is encountered. Lower peristaltic pump intakes also to the well bottom. Care must be taken not to immerse the pump intake into accumulated sediments.
- Do not allow the bailer or line to touch the ground at any time or allow the ground to come in contact with other physical objects that might introduce contaminants into the well.
- Decontaminate all equipment immediately after sampling is completed. Suspend dedicated bailers in the well from the well cap above the high water level. Discard silicon tubing used with peristaltic pumps.

4.6 Well Purging

Purging stagnant water from a well is required so that the collected sample is representative of the formation groundwater. The device used (bailer or pump) depends upon aquifer properties, individual well construction, and data quality objectives. Wells that contain immiscible layers will not be purged unless specified in the site-specific work plan. Any well scheduled for purging and sampling that subsequently is found to contain immiscible layers must be reported to the site supervisor or project manager. The project manager shall be notified immediately prior to continued activities.

Before obtaining water level elevations or initiating purge activities, obtain the following information in reference to the well to be sampled, and enter the applicable information on the sample collection log.

- Location code (well number)
- Previous purge volume (information only)
- Depth to top of screen (bailed wells only)
- Well sample number
- Report Identification Number (RIN)
- Sample event number

Record the location code (well number), date, sampling team members, visitors, well condition, and any other pertinent information on the sample collection log. Enter the well number, time well is opened, and other information regarding the field activities on the Field Activity Daily Log.

The field instruments shall be standardized (to check calibration) and the results recorded on the sample collection form.

Measure the depth to the top of the water column and the total depth of the well in order to determine the height of the water column in the well. Calculate the well casing volume using the well casing inner diameter and the height of the water column in the well. The formula for calculating the volume in gallons of water in the well casing is as follows:

 $(\pi r^2 h)$ 7.481 = gallons; where

 $\pi = 3.142$

r = inside radius of the well pipe in feet

h = linear feet of water in well

7.481 = gallons per cubic foot of water

1 gallon = 3785 ml

Calculations of the volume of water in typical well casings may be done as follows:

a. 2" diameter well:

0.16 gal./ft x (linear ft of water) = gallons of water

b. 4" diameter well:

0.65 gal./ft x (linear ft of water) = gallons of water

c. 3/4" diameter well:

87 ml./ft x (linear ft of water) = milliliters of water

4.6.1 Purging Duration

Purging shall be considered complete if any of the following conditions are met.

- Purging is complete if at least three casing volumes of water are removed from the well, and the last three consecutive pH, specific conductance, and temperature measurements do not deviate by more than the following: 1) pH = ±0.1 pH units; 2) Specific Conductance = ±10% and; 3) temperature ±0.5°C. A turbidity measurement will be taken for every other purge sample for wells that are purged using a bailer. For wells that are equipped with a dedicated bladder pump, the turbidity will be measured each time the parameters are taken. The purge rate should be such that the turbidity is maintained at 5 NTU units or less (if possible). If the readings are not stabilized after three volumes, continue purging until stabilization or until five volumes have been removed. Field parameter measurements shall be collected after every half-casing volume (approximate) is removed from the well. When casing volumes are less than 1-liter, parameter measurements will be collected after each whole casing volume is removed. If readings do not stabilize after five well volumes have been recovered, obtain additional guidance from the project manager concerning the proper course of action.
- 2. A well is considered dewatered when only a few milliliters of water (or none) can be recovered each time the bailer is lowered into the well. When this occurs, a 10-minute recharge rate will be calculated (linearly). If, at the end of the 10-minute period, the well has not recovered sufficiently to continue the purge in thirty minutes, the purge is considered completed. If, at the end of the 10-minute period, there is sufficient water to collect the VOA samples, the samples may be collected at that time. If the well has not recovered sufficient water during the 10 minutes, and depending upon the well history, the samplers may elect to return to the well the same day (preferably within two hours), check the water level, and collect the VOA samples (first), and other samples as feasible. If the sample team cannot return the same day, the well will be checked in 24 hours to determine if sample collection is feasible. If an extended period of time is required to collect samples, the procedures in Subsection 4.8.1 shall be followed. The well will not require an additional purge before sampling.

Wells that dewater (have a slow recharge rate as specified in 2 above) will not be restricted by parameter stabilization requirements. Sampling of these wells will follow the protocol established in Subsection 4.8.

4.6.2 Purging Methods

Wells will be purged by either bailing or pumping. When purging a well, the rate of water withdrawal during purging should not exceed the rate of withdrawal at which the well was developed (if known). All purge times (initiation and completion) and the rate of purging will be recorded on the field log sheets.

4.6.2.1 Bailing

Generalized procedures for purging a well with a bailer are as follows.

• Prepare the sampling site as discussed in Subsection 4.4. Use properly decontaminated equipment to determine the static water level of the well. Measure the total depth of the well. Use this information to determine the volume of water in the well casing.

- Decontaminate all dedicated bailers prior to initiating purging as described in Subsection 4.3 of this procedure.
- Use a mechanical reel equipped with Teflon[®] coated stainless steel cable attached to a bailer for bailing and sampling operations. Lower the bailer slowly into the well until water is encountered. Minimize agitation of the well water. Avoid lowering the bailer to the bottom of the well so sediments accumulated in the bottom do not become suspended. For wells that dewater, do not allow the bailer to strike the well bottom with force. Raise and lower the bailer carefully to limit surge energy and ensure that cable does not come in contact with any potentially contaminated surfaces. Do not allow the cable to drag along the well casing or against other objects that will cause fraying. Monitor the amount of water purged.

Wells with significant levels of contamination may have dedicated bailers installed. Dedicated bailer systems shall consist of a Teflon[®] bailer with check valve or double check valve for DNAPLS and a 5-foot leader of Teflon[®] coated stainless steel cable. Bailer sampling attachments and the stainless steel reel cable will not be dedicated to individual wells.

Dedicated bailers will be decontaminated at the conclusion of sampling activities and suspended from the well cap above the high water table. If the well interval above the high water table is not adequate to allow for storage in the casing, the dedicated bailers will be stored in labeled and sealed plastic bags at the equipment trailer.

4.6.2.2 Pumping

Pump designs that meet the following criteria are allowed for purging.

- The pump is constructed of a material that does not introduce a source of contamination to the well.
- The pump drive system does not introduce a source of contamination into the well.
- All downhole parts to the pump can be easily decontaminated.
- A return check system that does not allow pumped water to return to the well is integral in the pump design.
- The pump is easily used and does not require excessive amounts of time to install, use, remove, and decontaminate.

The pumps currently in use to purge groundwater include peristaltic pumps and dedicated submersible bladder pumps. A procedure for the use of each style of pump is specific to its applications. User manuals, which accompany each pump, shall be referenced for operating procedures.

Basic operating procedures common to all pumps are as follows.

- Prepare the sampling site as described in Subsection 4.4 regardless of the type of pump being used.
- Use properly decontaminated equipment to determine the static water level and the total depth of the well. This information is utilized to determine the volume of water in the well casing.

- For wells with dedicated pumps, calculate the minimum purge volume using the pump storage volume and the volume of the discharge tubing. A total depth of a 2-inch well cannot be taken without the removal of the pump.
- Position a dedicated pump near the bottom of the well or according to the information on the well construction form. Monitor the discharge rates and the amount of water purged during purging. The pumping rate for purging can be higher than the pumping rate for sampling, however, the water level in the well should be monitored during purging to avoid excessive water level drawdown.
- Ensure that any tubing that enters the well casing is composed of inert material. Disposable silicon tubing will be used in the drive mechanism of peristaltic pumps and discarded after each well is purged. The air supply for all air-driven pumps (dedicated bladder pumps) will be free of oil (i.e., no hydrocarbon containing substances will be added to the compressor).
- 4.6.3 Disposition of Purge Water

All water removed from a well during sampling operations shall be collected either in a satellite container or the purge water collection container in the groundwater sampling vehicle. The water from these containers will then be transferred to another approved collection container on the sampling or project site. When the collection container is filled, or is near capacity, it will be transported for disposition or treatment in accordance with approved project plans.

4.7 Measurement of Field Parameters

The following field parameters will be measured during groundwater purging operations unless otherwise specified by the project manager or the approved project work plans.

Parameter	Relative Precision	Minimum Calibration	
рН	0.01 pH units	Daily	
Conductivity	10 µS/cm	Daily	
Temperature	0.1 °C	Weekly	
Total Alkalinity (unfiltered)	1 mg/l	None	
Turbidity (photometric)	2 FTU (or NTU)	Specified purge samples (bailed wells) Daily (dedicated bladder pump wells)	

The measuring equipment shall be stored and handled in a manner that will maintain the integrity of the equipment. Appropriate field manuals will accompany each instrument in the field. Each instrument will also be given an identification number. All logbook and field form references to individual instruments will refer to this number for ease of identification.

Field parameters will be measured at the following intervals.

• Conductivity, pH, temperature, and turbidity shall be measured from the first water removed from the well when initiating well purging procedures. For bailed wells, the initial bail of water will be carefully removed from the well and the water transferred to a sample beaker by decanting the bailer through a bottom control valve. For wells

purged with a peristaltic pump, similarly collect the first water removed in a sample beaker and then measure parameters. For wells with dedicated pumps, measure the parameters of the first recovered water that is collected in the continuous sampler.

- During purging operations, conductivity, pH, and temperature shall be measured for every half-casing volume (one half of the initial casing volume as calculated on the sample collection log form) of water removed from the well (because of the accuracy of the graduated containers for the purge water, the purge volume will be estimated as close as feasible). For wells that have half volumes less than the volume of a sample bailer (approximately 1 liter), only measure parameters after each full casing volume of water is removed from the well. Turbidity will be measured on every other sample recovered for parameters for bailed wells, or wells purged with a peristaltic pump. All parameters, including turbidity, will be measured at predetermined intervals while purging wells with dedicated pumps.
- During purging, if a well is dewatered prior to the measurement of the final required set of parameters, then conductivity, pH, temperature, and turbidity shall be measured immediately before the start of sample collection. These parameters may be delayed until sampling is completed if, at the discretion of the sampling crew, the well recharge has provided insufficient water volume to collect all the samples and also measure parameters. If there is insufficient water for samples and field parameters, the parameters will not be measured.
- Total alkalinity measurements shall be collected only once upon completion of purging. For wells that do not dewater and sample collection proceeds to completion immediately after purging, alkalinity will be measured after the completion of all other final purge field parameters. Wells that dewater and require repeated visits for the collection of samples will have alkalinity measured subsequent to the collection of the sample for inorganic water chemistry. Alkalinity will not be measured if sufficient water is not available.
- For micro purged wells, a purge is considered completed when the parameters have stabilized.
- Whenever a method used to remove well water is changed, a set of field parameters shall be recorded from water removed with the new method.

4.8 Groundwater Sampling

Techniques used to withdraw groundwater samples from a well shall be based on consideration of the parameters of interest. The order of collection, collection techniques, choice of sample containers, preservatives, and equipment are all critical to ensuring that samples are not altered or contaminated. The preferred methods for collection of groundwater samples are either bailing and/or the use of bladder pumps.

Sites shall be prepared prior to sampling as described in Subsection 4.4. All necessary and appropriate information will be recorded on the sample collection log and on the Field Activity Daily Log.

4.8.1 Sample Collection

The following discussion involves collection of groundwater samples using bailers and peristaltic or bladder pumps. Regardless of the collection method, care shall be taken not to alter the chemical nature of the sample during the collection activity by agitating the sample or allowing prolonged contact with the atmosphere. To minimize the potential for

altering the sample and to maximize the available water, the following sample collection sequence is preferred.

- Radiation Screening
- VOC
- Nitrate/Nitrite, as N
- Dissolved Metals TAL, with Cs, Li, Sr, Sn, Mo, Si
- ^{239/240} Plutonium, ²⁴¹ Americium
- ^{233/234}U, ²³⁵U, ²³⁸U
- Gross alpha and beta
- ^{89/}Strontium
- ¹³⁷Cesium
- ^{226,228}Radium
- Tritium
- Total Metals TAL, with Cs, Li, Sr, Sn, Mo, Si
- TDS, CL, F, SO^4 , CO3, HCO^3
- TSS
- BNA
- Pesticides/PCB
- Cyanide
- Orthophosphate

VOC samples shall be collected first and as soon as possible after the well has been purged. If a well is purged using a peristaltic pump, then all other samples shall be collected prior to removing the pump from the well. The VOC sample will then be collected using a bailer.

For wells that dewater, if a sufficient volume of water for VOC sample collection has still not accumulated within 48 hours after the completion of purging, VOCs will not be collected for that well. Other samples may be collected using a maximum of five attempts to recover sufficient sample water for analysis. This procedure is discussed in the following paragraph.

The containers used for sample collection from poor producing wells may differ from those used for high yield wells in some instances due to constraints on obtaining enough sample to fill sample containers. In some instances smaller containers may be utilized, or analyte samples normally collected in separate containers may be combined into a single container. Well histories can be used to identify which wells may require a modified sample suite and an extended sampling period. These wells will initially be sampled for a period of 48 hours after the completion of purging, with the exception of VOC sample collection, which is discussed in the previous paragraphs. The completion of purging will be considered 0 hour. At the end of 48 hours, any partial sample will be measured. The accumulated sample will be compared to the minimum volume requirement identified in Table 1 and the allowed sample holding time. If the minimum volume requirement for the target analyte has not been achieved, then sampling may continue as determined from the well recharge

history. All analyte samples that have only minimum sample volumes collected, and all uncollected samples will be documented on the sample collection log.

Table 1

Sample Containers and Preservatives for Groundwater Samples

Parameter	Minimum Container ¹	Preservative	Holding Time
Radiation Screen	120 ml poly	None	NA
VOC - CLP	3 – 40 ml amber glass	Cool to 4° C	4 Days
BNA	1 L amber glass	Cool to 4° C	7 Days
Pesticides/PCB	1 L amber glass	Cool to 4° C	7 Days
TSS	125 ml poly	Cool to 4° C	7 Days
TDS, CI, F, SO ₄ , CO ₃ , HCO ₃	1 L poly	Cool to 4° C	7 Days
Dissolved Metals - CLP, with Cs, Li, Sr, Sn, Mo, Si	1 L poly	*Filtered, HNO ₃ to pH <2, Cool to 4° C	6 Months
TOC	125 ml poly	$H_2SO_4 < pH2$, Cool to 4° C	28 Days
COD	125 ml poly	$H_2SO_4 < pH_2$, Cool to 4° C	28 Days
Total Metals - CLP with Cs, Li, Sr, Sn, Mo, Si	1 L poly	Unfiltered, HNO ₃ to pH <2, Cool to 4° C	6 Months
Orthophosphate	250 ml poly	Filtered, Cool to 4° C	2 Days
Nitrate / Nitrite as N	250 ml poly	H_2SO_4 to pH <2, Cool to 4° C	28 Days
Cyanide	1 L poly	NaOH to pH >12, Cool to 4° C	14 Days
Gross Alpha / Beta	550 ml poly	HNO₃ to pH <2	6 Months
233/234U, 235U, 238U	100 ml poly	Filtered, HNO ₃ to pH <2	6 Months
^{239/240} Pu	1 L poly	HNO ₃ to pH <2	6 Months
²⁴¹ Am	1 L poly	HNO₃ to pH <2	6 Months
^{89/90} Sr	700 ml poly	Filtered, HNO ₃ to pH <2	6 Months
^{226/228} Ra	750 ml poly	Filtered, HNO ₃ to pH <2	6 Months
¹³⁷ Cs	2.5 L poly	Filtered, HNO ₃ to pH <2	6 Months

¹ The volume listed is the minimum amount required for analysis. Actual sample volumes may be slightly higher and some parameters may be combined in a single container.

* Some samples may not require filtering if taken from a well with a dedicated pump and turbidity of 5 NTU or less.

The order of sample collection may be changed at the discretion of the sampling team. Changes in the order shall be based on the predicted volume of water that will be recovered and the priority stated in the controlling document. The sampling team shall document their sample selections on the sample collection log.

Sample containers shall be stored away from sunlight and cooled to 4°C prior to filling. Immediately after collection, samples requiring cooling shall be cooled to 4°C. A chilled cooler shall be used as the storage container. Whenever a sample bottle that requires chilling is not being physically handled, it will be placed in the cooler to prevent heating or freezing, exposure to sunlight, and possible breakage.

VOC samples shall be collected using a bailer equipped with a bottom-decanting control valve or directly from the pump discharge line on wells equipped with bladder pumps. The procedures for collecting VOC samples are discussed in Subsections 4.8.1.1 and 4.8.1.2 of this procedure.

VOC vials shall never be filled and stored below capacity because of insufficient quantities of water in the well. Except for the VOC vials, adequate air space should be left in the sample bottles to allow for expansion.

Samples shall be placed in the appropriate containers and packed with ice in coolers as soon as practical. VOC samples will be stored in the cooler in an inverted position immediately after collection. When sampling is complete, the well cap shall be replaced and locked.

Sampling tools, instruments, and equipment shall be protected from sources of contamination before use and decontaminated after use as specified in Subsection 4.3. *Liquids from decontamination operations will be handled in accordance with the procedures in Subsection 4.6.3 of this procedure.* Sample containers shall also be protected from sources of contamination. Sampling personnel shall wear chemical-resistant gloves (e.g., nitrile) when handling samples, and the gloves will be disposed of between well sites.

4.8.1.1 Groundwater Sampling Using a Bailer

This subsection describes the use of a bailer for collecting groundwater samples that may be used to obtain physical, chemical, or radiological data.

A bailer attached to a Teflon[®] coated stainless steel cable is carefully lowered into the well. After filling within the well, the bailer is withdrawn by rewinding the bailer line, and the bailer contents are drained into the appropriate containers. Certain recommendations and/or constraints should be observed when using bailers for sampling groundwater monitoring wells, as follows.

- Use only bottom-filling Teflon[®] bailers or bailers made of other inert materials.
- Ensure that bailers are attached to a Teflon[®] coated stainless steel line that is pre-wound on a reel.
- Do not use bailers constructed with adhesive joints.
- Lower the bailer slowly to the interval from which the sample is to be collected.

VOC samples shall be collected using a bailer equipped with a bottom-decanting control valve. The first water through the valve assembly will be discarded into the purge water container. Vials will be filled by dispensing water through the control valve along the inside edge of the slightly tilted sample vial. Care shall be taken to eliminate aeration of the sample water. The vials will be filled beyond capacity so the resulting meniscus will produce an airtight seal when capped. The capped vial will be checked for trapped air by lightly tapping the vial in an inverted position. If air becomes trapped in the vial, the sample water shall be discarded, and the vial refilled. If two consecutive attempts to fill a VOC vial result in trapped air bubbles, the vial shall be discarded.

The remainder of the sampling water shall be collected in a stainless steel container from which the remaining sample bottles will be filled. Samples requiring filtration shall be filtered and then containerized.

4.8.1.2 Groundwater Sampling Using a Peristaltic Pump

Use of peristaltic pumps shall generally be limited to collecting sample aliquots for radionuclides, metals, and other species that are not subject to volatilization and degassing. Peristaltic pumps shall never be used to collect VOCs or other

volatile species in routine wells, although such samples may be collected for special screening applications. All downhole tubing shall be Teflon[®] except in areas of special concern (e.g., where immiscible layers exist) where special tubing, such as stainless steel or Viton[®], may be required. If so, the project manager will make this determination. Only the portion of tubing that is inserted into the mechanical drive shall be made of silicon. This drive portion of the tubing shall be discarded after each use.

4.8.1.3 Groundwater Sampling Using a Downhole Bladder Pump

Some wells are equipped with dedicated downhole bladder pumps for purging and sampling. These are wells that will normally produce an adequate amount of water during a single visit to complete the required sampling suite. The equipment required to purge and sample a well consists of a pump control unit, a portable air compressor, a continuous sampler for measuring the field parameters, and the necessary sample containers, graduated cylinders, and container(s) to collect the purge and excess water. The following precautions should be observed during the sampling operation.

- Locate the compressor used to power the pump downwind from the well to eliminate the contamination of equipment and samples with exhaust.
- If the flow-through cell will not maintain a full sample chamber (tends to drain back), then clean the check valve on the pump if it is fouled, or replace the pump.
- Calculate the minimum purge volume using the procedure in Section 4.6. Note that a purge is considered completed only when the groundwater parameters have stabilized.
- Upon completion of purging, initiate sampling with the collection of the VOC sample(s). The pump should operate with minimum interruptions while the full sample suite is collected. Allowing the pump to stop for an extended period of time will cause the water trapped in the discharge lines to equilibrate to ambient temperatures, which is not acceptable. During sampling, the pump can be slowed to any rate that allows efficient sampling while also maintaining stable field parameters.
- Measure groundwater parameters periodically during sample collection and record them on the sample collection log to document conditions during sampling.
- Because micropurging is the method used for sampling, adjust the flow rate to limit the drawdown in the well. Also adjust the rate such that the turbidity is below 5 NTU for sampling. If this criterion is met, the samples need not be filtered.
- Operate the pump, pump control unit, and the flow-through cell according to the manufacturer's recommendations.
- 4.8.1.4 Groundwater Sampling Using a Push Type Sampler

This portion of this procedure describes the use of a Geoprobe[®] Screen Point 15 Groundwater Sampler, or similar type equipment, for collecting groundwater samples at predetermined depths. These samples may be used to obtain physical, chemical, or radiological analyses.

A Geoprobe[®] Screen Point 15 Groundwater Sampler, or equivalent tool, is driven to a predetermined depth by a push type-sampling rig. The Screen Point 15 Groundwater Sampler is equipped with a 41-inch retractable screen and expendable drive point. It can then be partially or fully withdrawn (up to 41 inches) to expose a portion or the entire deployed well screen. After groundwater enters the exposed screen, a sample is collected using either the procedures in Subsection 4.8.1.1, Groundwater Sampling Using a Bailer, or in Section 4.8.1.2, Groundwater Sampling Using a Peristaltic Pump. Note that these samples are collected only for screening purposes because the sampling tool hole has not been completed as a well.

The method for obtaining QC samples using the push type-sampling tool is provided in Subsection 4.8.4.1 for groundwater sampling. Duplicate groundwater samples shall be collected only if there is enough water to collect two full suites of analytes without dewatering the annulus. If insufficient water is available for the collection of a planned QC sample, it shall be explained and documented in the field log book, and the project manager informed. If insufficient water is available for two full suites of analytes, it may be come necessary to prioritize the analyte list. The prioritization sequence should be described in the project-specific work plan.

4.8.2 Sample Filtering and Preservation

Samples for dissolved metals, Gross Alpha/Beta, ^{233/234}Uranium, ²³⁵Uranium, ²³⁸Uranium, ^{89/90}Strontium, ¹³⁷Cesium, ²²⁶Radium, ²²⁸Radium, and orthophosphate shall be filtered in the field at the well location during the sampling event through a disposable 0.45-micrometer membrane filter. If a peristaltic or bladder pump is used, a disposable filter may be attached directly to the sample delivery line so that the sample is filtered directly into the sample container as it exits the delivery line. Discharge pressure shall be gauged so it does not exceed 50 psi. Alternatively, sample water may be collected in a stainless steel container and filtered with a peristaltic pump. Before sample collection, 100 to 200 milliliters of sample water shall be passed through the filter in order to rinse the filter and filtration apparatus of possible contaminating substances.

Preservatives shall be added to the sample bottles prior to the introduction of the filtered sample water. The preservative shall be added in aliquots appropriate to the size of the bottle.

After sample collection has been completed, the pH of preserved samples shall be checked as follows.

- Pour a small amount of sample from the sample bottle directly onto approved pH paper. Use care so that the threaded neck of the bottle does not contact the pH paper. Do not, under any circumstances, insert the pH paper into the sample bottle.
- Check the pH paper against the supplied color chart. If the appropriate pH has not been achieved, add additional preservative to the sample in 5 ml aliquots and repeat the pH test after each addition.

4.8.3 QA/QC Samples

The frequency and types of field QA/QC samples collected during groundwater sampling are described in project-specific work plans or quality assurance plan documents. These documents detail the applicable criteria for collecting QA/QC samples.

4.8.3.1 Duplicates

Duplicate samples shall be collected only from wells that produce enough water to collect two full suites of analytes without dewatering. Wells that produce sufficient water shall be incorporated into the sampling program such that the required duplicate frequency can be maintained.

Wells scheduled for duplicate sample collection shall be sampled as described in Subsection 4.8 of this procedure, and in relevant sections of project-specific work plans and/or quality assurance documents. Field duplicates are collected following the same sampling procedures used to obtain the real samples. With the exception of VOCs, the typical procedure for a location is to collect the real and duplicate of each sample at the same time, in two equal portions, with each portion going to the laboratory in separate containers. This is accomplished by alternately filling two sample bottles one half at a time to minimize heterogeneity. Note that real and duplicate VOC samples shall be collected independently to reduce the possibility of volatilization of the sample.

When a well with a dedicated pump is being used for sample collection, all samples shall be collected in the normal order, with duplicate VOC samples being collected first. The remaining samples will be sampled as described above.

If a well is being used for matrix spike (MS) and matrix spike duplicate (MSD) samples, the duplicate shall be collected after collection of the MS and MSD.

All duplicate samples shall be given a sample number different from the original sample and the information recorded on the sample collection log and/or the field QC sample collection log.

4.8.3.2 Matrix Spike and Matrix Spike Duplicate

MS and MSD samples shall be collected only from wells that produce enough water to collect the required suites of analytes without dewatering. MS and MSD samples are not collected on a routine basis, but will be collected if so designated in a site-specific sampling plans, or if requested by the project manager.

MS and MSD samples shall be collected as follows.

- Purge the well as described in Subsection 4.6 of this procedure..
- After completion of purging, collect VOC samples. Collect the real sample followed by the MS and MSD. Collect these samples in immediate succession.
- Collect the remaining samples not requiring filtering. For each sample parameter, collect the original sample, MS, and MSD concurrently. Fill the original sample bottle one-third full followed by the MS and MSD sample bottles, which are also filled one-third full. Rotate each bottle in the sequence, filling in one-third full until all three bottles are full. For analytes not requiring an MSD, collect only the original sample and the MS.
- After the real sample, MS, and MSD (where appropriate) are collected for one parameter, repeat the process for the next parameter.
- Similarly, collect samples requiring filtering. When a bailer is used, fill a stainless steel bucket with sample water. As samples are collected and the reservoir of water in the bucket is depleted, add more water with discretion. When a pump is used, attach the filter directly to the discharge line. Fill

sample bottles as described above, partially filling the original sample, MS, and MSD in rotating sequence until each parameter bottle is full.

- Radiochemistry samples may have more than one bottle for each parameter group. In this case, include all required bottles in the rotating sequence.
- Field parameter measurements are not be required for MS and MSD samples.
- Retain the original sample number for MS and MSD samples. However, add a suffix of MS or MSD to the sample number to correspond with each QA/QC sample. Record all information on the field QC groundwater sample collection log.

4.8.3.3 Replicates and Splits

Replicate and split samples shall be collected in the same manner as described for the MS and MSD. Seek instruction from the project manager for replicates and splits exceeding three samples. Record all information will be recorded on the groundwater sample collection logs.

4.8.3.4 Field Equipment Rinses

Wells scheduled for equipment rinsate samples shall be sampled as described in Subsection 4.8 of this procedure, and field equipment rinses shall be collected as described in this Subsection and in relevant portions of project-specific QC documents and work plans. Field equipment rinses shall be collected in a manner designed to reflect sampling techniques. All equipment used during sampling will be fully decontaminated as described in Subsection 4.3, then rinsed with distilled or deionized water. The rinse water will then be collected in bottles identical to those used for the original sample, and assigned a separate sample number. Analytes requiring filtration will be filtered using a new filter and tubing as required for the real sample. All information will be recorded on groundwater sample collection logs.

4.8.3.4.1 Bailed Wells

After completion of sampling, all equipment shall be decontaminated. Prior to leaving the well location, the equipment rinse will then be collected as follows.

- Fill the bailer with distilled or deionized water by pouring the water into the top opening.
- Decant the rinse water to the VOC vials through the bottom valve just as was done during sample collection.
- For the remaining unfiltered samples, fill the bailer with distilled or deionized water each time additional rinsate is needed. Transfer the rinsate to sample bottles or to a stainless steel bucket and then to sample containers in the same manner used during collection.
- Collect filtered samples in an identical manner as the real samples. Fill the bailer with distilled or deionized water. Then transfer the rinse water to a stainless steel bucket. Filter the rinse water in the bucket through a new disposable filter.

- Preserve rinse samples in the same manner as the real samples.
- 4.8.3.4.2 Pumped Wells

Rinsate samples are not routinely collected from wells that are equipped with dedicated bladder pumps because the samples from these wells are collected directly from the pump discharge line. However, wells sampled using peristaltic pumps for sampling may be selected for rinsate sampling, with equipment used in sample collection (down hole tubing, filter tubing and the stainless steel bucket used for sample water collection, etc.) being decontaminated prior to rinsate sampling. The tubing at the pump head will be replaced, and a new filter used for filtered analytes. To collect the samples, distilled or deionized water will be poured into the decontaminated stainless steel bucket and pumped, using the decontaminated tubing, into the sample containers. The equipment used to collect the real VOC samples will also be decontaminated, rinsed, and used to collect the VOC rinse samples. All samples will be preserved at the same pH levels as the real samples.

4.8.3.5 Distilled Water Blanks

Distilled water sample blanks are not submitted on a routine basis, but will be made up if so designated in a site-specific sampling plan. Samples of the distilled or deionized water used for the final decontamination of equipment will be transferred directly to sample bottles to determine any baseline contamination the water may have introduced into the samples. Five-gallon bottles of the distilled or deionized water will be opened in a controlled area, such as the bottle storage room, and then poured directly into the appropriate sample bottle. A Teflon[®], glass, or stainless steel funnel may be used to help control flows into small mouth bottles. Blank samples will be preserved to the appropriate pH required for each analyte. All information will be recorded on groundwater sample collection logs.

4.9 Sample Handling and Control

Pre-cleaned sample containers will be obtained from a contract analytical sample container source. Preserving solution will be added to the bottles by a laboratory, the sample manager or qualified sampling personnel. The bottles will be labeled to indicate the preservative added.

The sampling containers, preservation requirements, and holding times for the various types of analyses are shown in Table 1. Groundwater samples will be properly labeled so that they can be easily identified. The sample numbering system will be assigned by project-specific sampling plan documents. A sample identification (ID) number will be assigned to each sample suite. The sample ID number will contain the following information as part of a nine to twelve character, alpha-numeric code:

Character(s)	Description	Code
1 and 2	Project ID	GW
3 through 7	Sample Number	00001 to 99999
8 and 9	Subcontractor ID	Alpha (e.g. TE = Tierra Environmental Consultants)
10, 11, and 12	QA/QC	MS for matrix spike, MSD for matrix spike duplicate

In addition to a sample number, each well sampled will be assigned a current Record Identification Number (RIN), an event number (specific to the RIN), and bottle numbers that are specific to the RIN and event number.

5.0 Records

All field activities shall be recorded on a Field Activity Daily Log or Groundwater Sample Collection Log. Additional logs may be required to record QC samples and for recording well status. Refer to specific project, site, or facility work plans for further information. Summary information of the day's activities or other pertinent information should always be recorded on the field forms. Under some circumstances, the project manager may assign a bound field logbook to the field personnel that will remain in their custody during all sampling activities. The cover of each logbook shall contain the following information at a minimum:

- Name of the organization to which the book is assigned
- Book number
- Project name
- Start and end dates

Logbook pages shall be sequentially numbered and marked with the book number before any data are recorded. All data and information pertinent to field sampling shall be recorded in the logbook or on the field forms that identify all required data entries. Enough detail must be included in the documentation to reconstruct the sampling event. Field form entries shall include the following minimum information:

- Date and time
- Names of field personnel
- Names of all visitors
- Location of field activities
- Description of sampling sites including weather conditions
- All field observations and comments
- Field parameters
- Sample identification information
- References to all prepared field activity forms and chain-of-custody records

Field logbooks, when required on specific projects, shall normally be kept only by the field sampling team leaders and the site supervisor and shall typically be used only to summarize field activities and to document project information not required by the procedure field forms.

Permanent ink shall be used for all entries in the logbooks and on the field forms. Mistakes shall be crossed out with a single line, initialed, and dated. Unused pages or partial pages shall be voided by drawing a line through the blank sections and initialing and dating the mark. Any deviation from this procedure shall require documentation in the site supervisor's logbook.

The field activity daily log narrative should create a chronological record of the sampling team's activities, including the time and location of each activity. Descriptions of problems encountered, personnel contacted, deviations from the procedure, and visitors on site shall also be included. The weather conditions, date, signature of the person responsible for entries, and the number of field activity daily log sheets used to record media team activities for a given day shall also be included.

The Groundwater Levels Measurement/Calculations Form and the Chain of Custody Record (see *Containing, Preserving, Handling, and Shipping Soil and Water Samples*) shall also be completed for each site. All blank fields on the forms must be completed or voided.

6.0 References

- Environmental Protection Agency, 1982, Test Methods for Evaluating Solid Waste, SW-846, Volume II. Field Methods, 2nd edition.
- Environmental Protection Agency, 1986a, Engineering Support Branch Standard Operating Procedures and Quality Assurance Manual, EPA Region IV Environmental Service Division.
- Environmental Protection Agency, September 1986b, RCRA Ground Water Monitoring Technical Enforcement Guidance Document, OSWER-9950.1.
- Environmental Protection Agency, 1987a, A Compendium of Superfund Field Operations Methods, EPA/540/P-87/001. 1987.
- Environmental Protection Agency, 1987b, Data Quality Objectives for Remedial Activities, Development Process, EPA/540/G-87/003.
- Environmental Protection Agency, December 1988, User's Guide to the Contract Laboratory Program.

APPENDIX A

STANDARD GROUNDWATER FORMS

Appendix B Sample Collection Forms

105 Technology Dr., Suite 190 Broomfield, CO 80021 (303) 546-4300

Project Name:	- /	, 1	Sample Location	Sample Location:			
Project Number:	<u>Colorndo Sel</u>	100/0	- Mine	Date:	CSART-1		
Someta Trans	4107-510			9,	24/09		
Sample Type:	Duplicate	SW Other:	EB	Sampler:	Malcark		

Purge Volume Calculation				Sample Collection						
Measured TD =	24,96 (ft)	Analysis	Container	Preservative	Date	Time				
Total Depth =	(+.28) 25.24 (ft)	22-226 -228 Diss. U	1 gel cuse	HNO3	9/24/09	1050				
Depth to Water =	7.99 ^(ft)		Plastiz		9/24/09	1050				
Initial Water Column =	17.25 ^(ft)	Cations	Soonl	HNO.2	9/24/04	1050				
Initial Water Volume =	2.76 (gal)	Diss. Phosphony	750ml	Hzsoy	9/24/09	1050				
3 X Water Volume	8.28 (gal)			Mirs Test	- Aner 20					

Time				easurement	IS			
aime	Volume	Temperature	рН	Conductivity	DO	ORP	Turbidity	Appearance
	(gal)	℃ °F)	(SU)	(uS/cm)	(mg/L)	(mV)	(NTU)	1
1034	1.38	11.91	7.14	711	4.41	243	Overringe	Brown
1037	2.76	12.26	7.22	681	4.31	241	1 1	1
1039	4.14	12.33	7.21	682	4.31	238		
1641	5.52	12.30	7.17	687	4.63	238		
1043	6.90	12.57	7.18	676	4.58	235		
1045	8.28	12.47	7.17	684	4.60	235		
								<u>₩</u>
olume purge	d:	1	_	···· · · · · · · · · · · · · · · · · ·				Nem
	8,2	8 9-1						-
	Analys	3 (m	terner	Dette	n- fur	Date		ine
omments:			Sml Amf	- 11 0	netve Og	,	/	
A	NO, IN		Plastic	ar (1-,)	<u> </u>	71-17		1000
A A	Ferriz			-				620
4			Orl Ples	trz HNI	0.3		29	650
¥	Ferrors	<u> </u>	Plestiz			9/24/	09 1	050

105 Technology Dr., Suite 190 Broomfield, CO 80021 (303) 546-4300

Project Name:			4	Sample Location:				
	Colomdo Se	hool u	f Mines		CSMRI-1B			
Project Number				Date ⁷				
	4107-510	1		9/23/09, 9/25/09, 4/29				
Sample Type:	Ø	SW	EB	Sampler:		Ĩ		
	Duplicate	Other:			V Malezzk			

Purge Volume Calcula	tions		Sample Collection					
Measured TD =	23.41	(ft)		Container	Preservative	Date	Time	
Total Depth =	(+.28) 23.69		R226 -228 Diss. U	lgcl cube	HNO3	9/25/09	1000	
Depth to Water =	19.15	(ft)		StoomL Plastiz	-	glestog	1000	
Initial Water Column =	4.54	(ft)	Cations	Soonl	HNO.3	a/zstog	1000	
Initial Water Volume =	0,72	(gal)	Diss. Phosphons	250ml Plastre	Hzsoy	9/25/09	1000	
3 X Water Volume	2.16	(gal)			olling Tech	America	-Anala	

Time	Volume	Temperature	рН	Conductivity	DO	ORP	Turbidity	Appearance
	(gal)	(****)	(SU)	(uS/cm)	(mg/L)	(mV)	(NTU)	
1225	0,72	13.18	6.39	1330	3.55	-15	Cover conce	black
1778	1.44	1315	6.68	1320	3.86	-31	V	4
	2.16							
				·				
								Arcm
lume purge	d: 2 Aralys	gallons 3 Cor	ternet	Prese	rvefive	Date		Time
omments	•		5mL Am	for Has	Ors.	9/257	L 09	1000
4	No, 1		Plastic		7	9/201	09	0705
	Ferre		ont De	eta HN	0	9/ 1	09 N	en
4								

105 Technology Dr., Suite 190 Broomfield, CO 80021 (303) 546-4300

Project Nam	ie:	1	110		Sample Loca			
	<u> </u>	rado St	oul of	Mints	-	j –	1RJ-2	
Project Num		7			Date:	alar	1	109,9/z
Sample Type		7-510	sw	EB	Sampler:	9/23 /	09,9/3	709,9/ -
oanthe Type	G .	Ouplicate	Other:	μD	Sampler.	V Mela	1-	
·		Duplicate	Outer.			V - (a-10	E-JK	
Purge Vo	lume Calcu	Ilations		Sample C	ollection			
Measured TE) =	9	5.13 (ft) Analysis	Container	Preservative	Date	Time
			(+.28)	R - 726	1 gcl	1	1 1	
Total Depth =		9		Diss. U	ense	HNO3	9/25/09	1145
Depth to Wat	ter =	-	(ft	1	Soonl		11	
		5	7.82 "		Plastiz		9/25/04	1145
Initial Water	Column =	3	7.59 (ft	Cations	SOOM	ILAN	4	
		<u> </u>			Plasta	HNO3	9 [25]04	1145
nitial Water '	volume =	6	,o <i>O</i> (gal)	Diss. Phosphone	ZSOM	Hzsoy	9/25/09	1145
X Water Volume /\$,00 (gal								
	Jume	/%	200 (gai,	Lab: Darng	cn - H.(c	olling Tigt	- America	-Anala
Purge Vol	umes and	Field Water	Quality M	easuremen	ts			ı
Time	Volume	Temperature		Conductivity	1	ORP	Turbidity	Appearance
	(gal)	(∂ °F)	(SU)	(uS/cm)	(mg/L)	(mV)	(NTU)	
1355	3,00	13.33	7.28	561	3.80	82	over mye	brown
1405	6.00	13.22	7.22	587	3.3/	84		1
1415	9.00	13.17	7.14	617	3.58	89	4	4
<u> </u>	12.00							_
	15.00							
	18,00							
			r					
			<u></u>					
1	1							
<u> </u>					1			
/- t								via
'olume purge	ed: 12 e	collors		[L	Nea
'olume purge	12 9		Ling	D +=	I		I	
	Aralys	3 (m	nteiner = 1 A.I	•	Prostive	Date		ine
	Analys Doc	i3 (on 12	5ml Am	•		9/25/0	9 1	ine 145
Volume purge	Aralys	3 (on 12 Vo., 11		er Hzg	soy	9/25/0	9 <u>1</u> 9 <u>1</u>	ine

after devoting the well on ates, had to return for sample water

105 Technology Dr., Suite 190 Broomfield, CO 80021 (303) 546-4300

Project Name:		,	0	Sample Location:			
	Colorado Se	hoole	f Mines	CSMRI-4			
Project Number:				Date:			
-	4107-510)			9/24/09		
Sample Type:	<u>I</u>	sw	EB	Sampler:	,,,,,,		
	Duplicate	Other:			N Malezak		

Purge Volume Calculat	tions		Sample Collection					
Measured TD =	17.33	(ft)	Analysis	Container	Preservative	Date	Time	
Total Depth =	(+.28)		R226 -228 Diss.U	1 gel	HNO3	9/24/09	1510	
Depth to Water =	6.99	(ft)		Social Plastiz	-	9/24/09	1570	
Initial Water Column =	10.62	(ft)	Cations	Social	HNO.z	9/24/04	1510	
Initial Water Volume =	1.70	(gal)	Diss. Phosphory	ZSOM	Hzsoy	9/24/09	1510	
3 X Water Volume	5.10	(gal)			olling Ter	+ America	-Anala	

Time	Volume	Temperature	pН	Conductivity	DÔ	ORP	Turbidity	Appearance
	(gal)	(℃ °F)	(SU)	(uS/cm)	(mg/L)	(mV)	(NTU)	
1500	0.85	16.30	6.97	172	277	- 44	419	blackirt
1502	1.70	15.96	6.94	172	293	- 39	391	I
1503	255	15.86	6.94	171	323	-25	464	
1504	3.40	15.94	6.92	172	356	-9	510	
1505	4.25	16.02	699	171	376	5	580	
1506	5.10	16.11	6.99	170	282	22	701	\checkmark
								sam
olume purge	ed: 57/	gellons						
	Analys	3 (m	rheiner	Press	rvefix	Date		Time
Comments	DOC	17	5mL Am	er H.S	Dei	9/24/	09	1570
Johnnonito	· • • • • • • •							

HNO3

1570

1570

9/24/09

100

9/24

12 Plastiz

Ferriz Fr

Ferror's Fe

500-L Pleste

тΑ

тA

105 Technology Dr., Suite 190 Broomfield, CO 80021 (303) 546-4300

Project Name:			0		Sample Location:			
	colorado Se	hool e		CSMRI-5				
Project Number:				Date:	1 1			
	4107-510			9	124/09			
Sample Type:	GW	SW	EB	Sampler:				
	Duplicate	Other:		\mathcal{N}	Melcent			

Purge Volume Calculat	ions		Sample C	ollection			
Measured TD =	10.48	(ft)	Analysis	Container	Preservative	Date	Time
Total Depth =	(+.28) [1.26		R== 226 -228 Diss. U	1 gel cuse	HNO3	9/24/09	1545
Depth to Water =	6.14	(ft)		Plastiz	-	9/24/09	1545
Initial Water Column =	5./Z	(ft)	Cations	Soonl	HNO.z	9/24/04	1545
Initial Water Volume =	0.02		Diss. Phosphony	250inl Plastre	Hzsoy	9/24/09	1545
3 X Water Volume	2.46			i	olling Tech	+ America	-Anola

	unies anu	Field Water						
Time	Volume	Temperature	· pH	Conductivity	DO	ORP	Turbidity	Appearance
	(gal)	(0 , °F)	(SU)	(uS/cm)	(mg/L)	(mV)	(NTU)	
40	0.82	12.64	7.55	173	2438	41	202	BI
1541	1.64	12.90	7.39	165	473	21	247	
1543	2.46	12.39	7.28	164	520	32	261	×
<u> </u>								
					· · · · ·			
	. 		<u></u>					
						<u></u>		Tron.
olume purge	^{ed:} 2.	46 geller	3					
	Analys	-	terret	Pres	Profile Dy	Date		Time
Comments	Doc	12	5mL Am	er H.S	Des	9/24/	09	1545
-A	Nozl		Plastic			dhul	04	1525

HNO.Z

-

SOURL Plaster

16 Plestiz

1545

1545

9/24/09

9/24/09

тĀ

TA

Ferriz Fr

Ferrors Fe

105 Technology Dr., Suite 190 Broomfield, CO 80021 (303) 546-4300

Project Name:		. /	^	Sample Location:	
	olorado Se	Lool of	- Mine	S CSMPT -8	
Project Number:				Date:	
L	4107-510	1		9/24/09	
Sample Type:	GW	SW	EB	Sampler:	
	Duplicate	Other:		N Malezzk	

Purge Volume Calculations			Sample C	ollection			
Measured TD =	17.06	(ft)	Analysis	Container	Preservative	Date	Time
Total Depth =	(+.28) 7.34		12	1 gel cube	HNO3	9/24/09	1155
Depth to Water =	8.17	(ft)		Social Plastiz	-	9/24/09	1155
Initial Water Column =	9.17	(ft)	Cations	500ml Plastiz	HNO.3	9/24/04	1155
Initial Water Volume =	1.46	(gal)	Diss. Phosphone	ZSOM	Hzsoy	9/24/09	1155
3 X Water Volume	4.38	(gal)	Lab: Perny		olling Tech	- America	-Annla

Time	Volume	Temperature	pН	Conductivity	DO	ORP	Turbidity	Appearance
	(gal)	(°C)°F)	(SU)	(uS/cm)	(mg/L)	(mV)	(NTU)	
11.40	173	14.84	6.88	212	3.36	259	Over	Brywn
1146	1.46	14.81	6.94	210	3.71	256		
1148	2.19	14.98	6.97	209	4.24	253		
1150	292	15.06	7.01	207	4.40	243		
1151	3.65	15.01	7.04	205	4.42	238		
1152	4.38	14.88	7.07	202	4.40	235		
. —								
				· · · ·				
							+	ven
lume purge	^{d:} <i>Y</i> ,	38 oal	lens					
	Analys	3 (m	riteiner	Press	overve	Date		Time
omments:	DOC	12	5ml Amb	er Has	OU	9/24/	09 1	1155
<u>A</u> A	No, 1		Pastra	-	,	9/24/	09	1155
4	Ferriz		or-L Ples	trz Hr	0.,	9/24/	09	1155
A	Ferror		Plastiz		<u>خ</u>	9/24/		1155

٠

105 Technology Dr., Suite 190 Broomfield, CO 80021 (303) 546-4300

Project Name:			~	Sample Loca	ation:	
	Colorado SI	00/ 0	f Mines	5	CSMRI-9	
Project Number:			-	Date:		
	4107-510				9/24/09	
Sample Type:	GW	SW	EB	Sampler:		
	Duplicate	Other:			V Melezak	

Purge Volume Calcu	lations		Sample C	ollection			
Measured TD =	33.14	(ft)	· · · · · · · · · · · · · · · · · · ·	Container	Preservative	Date	Time
Total Depth =	33.42 ^(+.28)		22-226 -228 Diss.U	1 gel cuse	HNO3	9/24/09	1230
Depth to Water =	22.37	(ft)		Plastic	1	9/24/09	1230
Initial Water Column =	11.05	(ft)	Criticas	soonl	HNO.3	9/24/04	1230
Initial Water Volume =	1.76		Diss. Phosphong	ZSOM	Hzsoy	9/24/09	1230
3 X Water Volume	5.28				olling Tech	America	-Anala

Time	Volume	Temperature	рН	Conductivity	DO	ORP	Turbidity	Appearance
	(gal)	(°C, °F)	(SU)	(uS/cm)	(mg/L)	(mV)	(NTU)	
1215	,88	14.38	7.53	155	5.48	216	Over	Brown
7151	1.76	13.76	7.30	153	5.00	214		
1219	2.64	13.59	7.19	153	4.75	208		
1221	3,52	13.64	7.16	153	6.33	206		
1223	4.40	13.58	7.17	152	5.13	201		
1225	<u>5,28</u>	13.62	7.13	152	4.94	192		
				!			<u> </u>	
· · ·								Nam
lume purged	5.28	sel l						
	Analys	3 (m	nterner.	Prese	rvefix	Date	. 1	Time
omments:	DOC	121	5mL Amb	er Has	outre by	9/24/	09	055
4	NO.1	vo, 14	Plastiz	-	/	9/24/	09 1	230
4	Ferra	-F	or-L-Ples	12-170	0.,	-9/-/		1
4	Ferror		-Plestiz					en

105 Technology Dr., Suite 190 Broomfield, CO 80021 (303) 546-4300

Project Name:			^	Sample Loc	cation:
	Colorado SI	Lool of	Mines		CSMEI-10
Project Number:				Date:	
	4107-510				9/25/09, 9/28/09
Sample Type:	(GW)	SW	EB	Sampler:	
·	Duplicate	Other:			N Malczyk

Purge Volume Calcula	tions		Sample C	ollection			
Measured TD =	27.86	(ft)	Analysis	Container	Preservative	Date	Time
Total Depth =	(+.28) Z8.14		R226 -228 Diss. U	lgcl ense	HNO3	9/25/09	1030
Depth to Water ≃	22.74	(ft)		Social Plastic	-	glestog	1030
Initial Water Column =	5.40	(ft)	Criticus	Sound	HNO.3	9/25/04	1030
Initial Water Volume =	0.86	(gal)	Diss. Phosphens	250ml Plastre	Hzsoy	9/25/09	1030
3 X Water Volume	7.58	(gal)			Mirs Tect	- America	-Anala

1020 1023 1026	(gal) 0.86 1.72 2.58	0°F) 13.37 12.88 12.80	(SU) 6.27 6.35	(uS/cm) 1430	(mg/L) 7./2	(mV)	(NTU)	
623	1.72	12.88		1430	712	0-11		
			630			204	over	born
1026	2.58	1200		1360	6.60	212		
		1	6.44	1350	6.58	214	+	+
		· · · · · · · · · · · · · · · · · · ·						
					<u> </u>			
<u> </u>								<u> </u>
		ļ	•	ļ				ļ
						~		
								han
lume purged		58				·		-
	Analys	3 Cor	terner	Prese	refive	Date		Time
omments:	DOC_	124	5ml Am	er Has	OU	9/25/	<u>09 1</u>	1030
<u>A</u>	NO,1		Plastra		/	9/28/0	59 0	0745
4	Ferry		Ort-Ples	the Hro	0.,	-11-1	29 A	r n

had to return afes for additional sample water

 $1 \neq N',$

•

105 Technology Dr., Suite 190 Broomfield, CO 80021 (303) 546-4300

Project Name:	4	10		Sample Loca			
	ndo Sch	ool of	Mines		<u>5</u> W-	<u></u>	
Project Number:	7-510			Date:	9/24/	i na	
Sample Type:	<u>7-510</u> GW	500	EB	Sampler:	J <u><u> </u></u>	- f	
· · · · · · · · · · · · · · · · · · ·	Duplicate	Other:			V Male	z-pt	
Purge Volume Calcu	lations		Sample C				·····
Measured TD =			Analysis	Container	Preservative	Date	Time
		(+.28)	2-226	1 341	HNO3	abula	1424
Total Depth =			Diss. U	cinte social		7/24/09	1020
Depth to Water =		(ft)	Anichs	Plastiz		9/24/09	1020
Initial Water Column =	A	rn (ft)	Cations	Social	HNO3	9/24/04	1020
Initial Water Volume =	1	(gal)	Drss.	ZSOINC	Hz SOL		1020
			Phosphons			9/24/09	1000
3 X Water Volume		(gal)	Lab: Perny	:n-Ff.(c	olling Tert	- America	- Horanda
						·	
Purge Volumes and I			· · · · · · · · · · · · · · · · · · ·				
Time Volume	Temperature	рH	Conductivity	DO (mm/l)	ORP	Turbidity	Appearance
(gal)	(G , °F)	(SU)	(uS/cm)	(mg/L)	(mV) 231	(NTU) 65.4	Clear
1025 N/A	7.19	7.59	268	12.60	231	63.7	<u> (e a / _</u>
			· · · · · ·				
·····							
·							mm
Volume purged:							
N/A	iz (m	nteiner	Pres	errefive	Date	7	ime
N/A Analys			-		Dete 9/24/0		ine 1020
Comments: DOC	12	sml Amb	-		9/24/0	<u>59</u>	
N/A Analys	12	5ml Amb	-		9/24/0	<u>59</u>	1020

105 Technology Dr., Suite 190 Broomfield, CO 80021 (303) 546-4300

				.			
Project Name:	4 . 1			Sample Loca	ation:		
Cole	mado School	of	Mines		54-	·2	
Project Number:				Date:		1	
4/6	7-510				9/24/	09	
Sample Type:	GW SW)	EB	Sampler:			
	Duplicate Other:				V Male	rate	
				·			
Purge Volume Calc	ulations		Sample C	ollection		•••••	
Measured TD =		(ft)	Analysis	Container	Preservative	Date	Time
	(+.28)	<u>/</u>	R226 -228	Igel	11.00	11	
Total Depth =			Diss. U	cube	HNO3	9/24/09	0845
Depth to Water =	1 7	(ft)		SoomL			
			Anions	Plastic		9/24/09	0845
Initial Water Column =	Iven	(ft)		SOONL		1, 1,	
	1000		Cations	Plasta	HNO3	9/24/04	0845
Initial Water Volume =	17	(gal)	Drss.	ZSTOM	11 01	111	· · _ · _ · _ · _ · _ · _ · _ · _ ·
			Phosphory	Platr	Hzsoy	9/24/09	0845
3 X Water Volume	/			m-Ft. (a	olling Tech	- America	-Anala

Time	Volume	Temperature	рH	Conductivity	DO	ORP	Turbidity	Appearance
	(gal)	<u>(</u> 9°F)	(SU)	(uS/cm)	(mg/L)	(mV)	(NTU)	
0350	N/A_	7.72	6.13	338	10.25	216	108	cher
	· · · · · · · · · · · · · · · · · · ·							
	······							
				-				<u>\</u>
								Ann
lume purge	d: v/A	· · · ·		t.	I			
	Analys		terrer	Prese	out ve	Date		Time
omments:	DOC	12	5ml Am	for Has	OU	9/24/	/	0845
<u>A</u>	No.1		Plastra		7	9/24/		0845
A	Ferrie		Or L Dle	eta HA	۵,	1 1	09 - n-	9
1	Ferrer		Plashz		<u> </u>	a' 1	Der MA	- <u>(</u>

105 Technology Dr., Suite 190 Broomfield, CO 80021 (303) 546-4300

Project Name:	Colorado S	houl a	f Mines	Sample Location:	smRI-6	C. /	
Project Number:	4107-510			Date: 9/2	23/09.9	9/24/09	-/or,
Sample Type:	Duplicate	SW Other:	EB	Sampler:	Melczyk	ven	[nen

Purge Volume Calculat	tions		Sample Collection						
Measured TD =	29.95	(ft)	Analysis	Container	Preservative	Date	Time		
	(+.28)		2226	1 gel	HNO3	a/24	0940		
Total Depth =	30.23	(11)	Diss.U	ense		1/25/04	0170		
Depth to Water =	26.52	(ft)	Anions	Plastic		9/25/09	0740		
Initiał Water Column =	3.71	(ft)	Cations	Plasta	HNO.Z	9 3509	0940		
Initial Water Volume =	0.59 (9	gal)	Drss. Phosphens	ZSOM	Hzsoy	9/25/09	0940		
3 X Water Volume	/.77 (g	gal)		L,	olling Test	America	-Anola		

Time	Volume	Temperature	pН	Conductivity	DO	ORP	Turbidity	Appearance
	(gal)	(C)°F)	(SU)	(uS/cm)	(mg/L)	(mV)	(NTU)	
0935	a.E.	12.10	6.81	151	6.98	239	356	Brown
							ļ	
							· · ·	
								<u> </u>
		· · ·						
	· · · ·			+				<u> </u>
		<u> </u>						
<u> </u>								win
lume purge		<u> </u>		·			J	
name parge	5	gallons						
	Analys	53 Con	terres	Prese	metre	Date	1	Time
omments	•	-	5mL Am	der H.S	netve	9/5/	09,	0740
A	No. 1		Plastra	-	7	9/25/		0940
Δ	T.		or L Dle	str. HN	·O	9/ 1	09 m	

•

٠.

105 Technology Dr., Suite 190 Broomfield, CO 80021 (303) 546-4300

Project Name:		3	~	Sample Locati	on:	
	Colorado Se	hoole	f Mines	v	CSMRI-7B	
Project Number:				Date:	1 1	
	4107-510			6	9/23/09	
Sample Type:	GW	SW	EB	Sampler:	,,	
	Duplicate	Other:		N	1 Malcark	

Purge Volume Calcula	tions		Sample C	ollection				
Measured TD =	16.8Z	(ft)	Analysis	Container	Preservative	Dat	e	Time
	(+.28)		22-226	1 gcl	HNO3	. /	1	•
Total Depth =	17.10	(ft)	Diss. U	conse	47003	9/	109	
Depth to Water =	16.42	(ft)	,	soonl		1	7	
			The cary	Plastic		91	109	
Initial Water Column =	,68	(ft)	e dave	SOOM		1		
	•		Cations	Plasta	HNO3	9/	104	
Initial Water Volume =		(gał)	টাঙ্গের্	ZSOM	1.6	1	1	
			Phosphory	Plastre	Hzsoy	9	109	
3 X Water Volume					olling Tect	- Amer	17.2 -	Anala

Time	Volume	Temperature	pН	Conductivity	DO	ORP	Turbidity	Appearanc
	(gal)	(°C, °F)	(SU)	(uS/cm)	(mg/L)	(mV)	(NTU)	
	ļ						ļ	
		<u> </u>	<u> </u>				1	
,								
	<u> </u>							
							·	
	ļ						·	·
ume purge	I		· · ·					<u> </u>

	Analysi3	Conteiner	Preservetive	Del	-e	Time
Comments:	DOC	125ml Amber	H-SOU	9/.	109	
TA	No. INO.	16 Plastic		4	109	· · · · · · · · · · · · · · · · · · ·
тA	Ferriz Fr	500-L Pleste	HNO.	9]	109	
TA	Ferrors Fe	11 Plestiz		9/	109	······································
discuter,						

Und not sample due to small volume of water in well

105 Technology Dr., Suite 190 Broomfield, CO 80021 (303) 546-4300

Project Name:	- 1		0	Sample Location:	
	Colorado	School o	F Mines	CSMRJ-11B	
Project Number:				Date:	/
	4107-51	<i>'</i> 0		9/23/09, 9/05/0	2. 8/25/00
Sample Type:	GAD	SW	EB	Sampler:	
	Duplicate	e Other:		N Malcark	

Purge Volume Calculations			Sample C	ollection	·		
Measured TD =	28.55	" (ft)	Analysis	Container	Preservative	Date	Time
Total Depth =	(+.28) 28.83	(ft)	R226 -228 Diss.U	1 gal cube	HNO3	9/09	0930
Depth to Water =	26.10	(ft)		Plastiz		9/25/09	0930
Initial Water Column =	2.73	(ft)	Cations	Soonl	HNO3	9/05/04	0930
Initial Water Volume =	.44	(gal)	Drss. Phosphone	250ml Photo	Hzsoy	9/25/09	0930
3 X Water Volume	1.32	(gal)			Mirs Tect	America	

Time	Volume	Temperature	pН	Conductivity	DO	ORP	Turbidity	Appearance
	(gal)	(○ , °F)	(SU)	(uS/cm)	(mg/L)	(mV)	(NTU)	
1305	.44	12,94	6.74	1340	7.35	26	over	brown
1308	.88	12.92	682	1330	7.70	34	5-	
13/1	1.32	12.91	6.79	1330	7.49	41	4	+
~								
								· · ·
		ļ	· · · · · ·					
				ļ				
								Ara
olume purge	^{ed:} 1.3.	2 gellens						
	Analys		terres	Prese	metre	Date		Time
Comments	DOC	124	mL Am	er Has	0 _{cl}	9/251	09	- 730
-A	No, l.		Plastic		/	9/20		2925
A	Ferriz		SHE Play	ta Usi	a	-97-7	09- ATA	

had to return 9/28 for additional water

105 Technology Dr., Suite 190 Broomfield, CO 80021 (303) 546-4300

Project Name:					Sample Location:				
Colorado School of				Mines	Mines Equipment Blank				
Project Num				-	Equipment Blank Date: 9/25/09 9/28/09				
		7-510			<u> </u>	9/25/	09 9/2	8/09	
Sample Type: GW SW			(B)	Sampler:					
Duplicate Other:					Sampler: NMelcz-tr				
<u> </u>									
	ume Calcu	ilations		Sample Collection					
Measured TD =			. (At)		Container	Preservative	Date	Time	
			(+.28)	2 226	1 gel	HNO3	11	110	
Total Depth =				Diss. U	inte	T7703	9/23/09	1100	
Depth to Wat	er =		(ft)	Anions	Soonl		11		
			/		Plastiz		9/25/09	1100	
Initial Water (Jolumn =	/	(ft)	Criticas	soont	HNOZ	11	1	
Indian Parts	(a).	1	in		Plastiz	i _>	9/25/04	1100	
Initial Water Volume =			(gal)	Drss.	ZSOM	Hzsoy	al-	1100	
2 V Mater 1/	lume	/	,	Phospherry			71 09/09		
3 X Water Vo	iume	1	(gal)	Lab:Perny	m - Ft.(a	Mirs Tect	America	-Anola	
Purgo Vol	umon ord	Field Weter	Quality #4						
Time		Field Water							
Tune	Volume (gat)	Temperature (°C, °F)	pH (SLI)	Conductivity	DO (mail.)	ORP	Turbidity	Appearance	
	(gat)		(SU)	(uS/cm)	(mg/L)	(m∨)	(NTU)		
					·····				
	· · · · ·					ľ			
		<u> </u>							
		<u> </u> −−							
					7				
		<u> </u>					$\overline{}$		
· · · ·		<u> </u>					\sim	111.1-	
√olume purge	d:	1	I	I					
. 5-	~ ~ /	'A						\sim	
	Analys	is Con	teiner	Pres	rrefive	Date	7	me	
Comments:		-	5ml Amf			9/25/0		100	
r <u>A</u>	No, 1		Plastic		7	9/28/0		845	
-A	Ferriz		Or L Pless	tre Hr	10.,	9/ 10			
-A	Fran		Photos		<u>.</u>	<u>4</u> 10			

Appendix C Surface Water Sampling Procedures

Surface Water Sampling

1.0 Scope and Objective

1.1 Scope

This procedure provides instructions and establishes requirements for the collection and documentation of surface water samples by Stoller personnel. This procedure applies to the collection of surface water samples from streams, rivers, ponds, lakes, seeps, impoundments, and other surface sources.

1.2 Objective

The objective of this procedure is to establish a uniform method for the collection of surface water samples that provides representative samples in a safe and responsible manner.

2.0 Definitions

Composite Sample – A sample that is comprised of roughly equal amounts of water collected from a set of sample locations known as a sample group.

Grab Sample – A single sample collected at one sampling point over a short period of time. Grab sample results are representative of the sample location at the time of sample collection. Also called a catch sample.

Peristaltic Pump – A self-priming, low volume pump consisting of a rotor and ball bearing rollers. Tubing placed around the rotors is squeezed by the rotors as they revolve. The squeezing produces a wavelike contractual movement which causes water to be drawn through the tubing. The peristaltic pump is limited to sampling at depths of less than 25 feet.

3.0 Responsibilities and Qualifications

3.1 Project Manager

The Project Manager is responsible for ensuring that surface water samples are properly and safely collected. This will be accomplished through staff training and by maintaining quality control (QC). At a minimum, project management shall:

- 3.1.1 Verify that personnel have reviewed, and are familiar with, site-specific work plans which address surface water sampling, this procedure, and any associated procedures.
- 3.1.2 Ensure that hazards are identified and analyzed with respect to collecting surface water samples, and develop and implement controls to minimize hazards.
- 3.1.3 Provide personnel with training in the operation of surface water sampling equipment and the requirements of this procedure.
- 3.1.4 Periodically review field generated documentation associated with surface water sampling to ensure compliance with project requirements and implement corrective action if necessary.
- 3.1.5 Receive feedback from field sampling personnel in order to continually improve surface water sampling process.

3.2 Site Supervisor

The Site Supervisor is responsible for directing and overseeing all field activities, including sampling, to ensure that site-specific plan requirements are met in a safe and efficient manner within the established safety envelope.

3.3 Field Sampling Personnel

Field sampling personnel are responsible for the proper sample collection and documentation of the sampling event in accordance with this procedure. At a minimum, field sampling personnel have the responsibility to:

- 3.3.1 Familiarize themselves with site-specific work plans, surface water sampling procedures, potential hazards, and health and safety plan.
- 3.3.2 Implement the controls to minimize hazards.
- 3.3.3 Be familiar with sampling equipment and its proper use.
- 3.3.4 Properly complete field documentation.
- 3.3.5 Provide feedback to project manager in order to improve sampling process.

4.0 Equipment/Materials and Calibration

4.1 Equipment/Materials

A number of devices are available for the collection of surface water samples. These devices are constructed of a number of materials including, but not limited to: stainless steel, glass, Teflon[®], Tygon[®]. The sampling and analytical requirements, as well as site characteristics, must be taken into account when determining the proper surface water sampling equipment to use. The site-specific work plans should identify the specific equipment to be used, and methods for safely using equipment.

4.2 Calibration

Equipment shall be calibrated in accordance with manufacturer's recommendations and calibration documentation shall be maintained in project files.

5.0 Method

5.1 Field Preparation

Field preparation requires the organization of sample containers, sample labels, and documentation in an orderly, systematic manner to promote consistency and traceability of all data.

- 5.1.1 General sampling areas will be predetermined to ensure coverage of the various impact scenarios and should be described in project-specific work plans. The location of each sampling point shall be surveyed or mapped and staked as described in Section 5.1.6 prior to sampling.
- 5.1.2 In flowing water, surface water sampling shall be conducted from downstream locations first, then proceed to upstream locations to avoid potential cross contamination from disturbing the substrate.
- 5.1.3 Prior to sampling and between sampling locations, sampling equipment shall be decontaminated.
- 5.1.4 Appropriate personal protective equipment shall be used, as specified in the project-specific health and safety plan.
- 5.1.5 All pertinent information (date, site name, identification number, and location) shall be recorded on a Field Activity Daily Log (FADL) and a Sample Collection Log, as appropriate. Field conditions, unusual circumstances, and weather conditions shall be noted.

- 5.1.6 Due to the nature of sampling an aqueous environment, additional steps are required to verify and mark sample locations. Depending on the project needs, it may be useful to use a Global Positioning System (GPS) to verify and mark the sample locations. Refer to *Field Mapping with a Global Positioning System* for details. The following steps shall be followed by the sampler in addition to the field preparation requirements described in Section 5.1.1.
 - 5.1.6.1 Place a marker (stake) on the shore approximately perpendicular to the sampling location and mark the sample number on the stake.
 - 5.1.6.2 If the sample location is accessible by foot, use a measuring tape to measure the distance between the marked point and the sample location station. Record the compass bearing from the sample location to the shore marker.
 - 5.1.6.3 If the sample location is accessible only by boat, use a rangefinder to estimate the distance to the shore marker to obtain the most accurate measurement. Record the compass bearing from the sample location to the shore marker. It is recommended that the boat's position on the water be stabilized to prevent drifting.
 - 5.1.6.4 Determine and record the distance and direction of each shore marker from a reference point shown on the topographic map and mark all points on a map or use a GPS, if available.
- 5.1.7 Quality Control samples, including field and source blanks, shall be collected in accordance with the project-specific work plan.

5.2 Surface Water Sample Collection Using a Transfer Container

The device most commonly used to collect grab surface water samples is a transfer container (beaker, flask, etc.) made of inert material such as glass, stainless steel or Teflon[®]. When sampling with a transfer container, the procedure is as follows:

- 5.2.1 Survey and clearly map sampling points as described in Section 5.1.6 prior to sampling. The sample should be collected as close to the mapped location as possible. If the collection point must be moved, the new location must be approved and documented.
- 5.2.2 Dip the transfer container into the surface water. Always use a clean, properly decontaminated transfer container at each sample location.
- 5.2.3 Filter the sample if required.
- 5.2.4 Fill the sample bottle, allowing the sample stream to flow gently down the inside of the bottle with minimal turbulence.
- 5.2.5 Cap the bottle and handle the sample according to the procedures outlined in Project *Sample Shipping*.
- 5.2.6 Label the sample and document the sampling event.

5.3 Surface Water Sample Collection Using a Peristaltic Pump

A device used to collect composite surface water samples is a peristaltic pump. Samples to be analyzed for volatile organic analysis cannot be composited. When sampling with a peristaltic pump, the procedure is as follows:

5.3.1 Survey and clearly map sampling points as described in Section 5.1.6 prior to sampling. The sample should be collected as close to the mapped location as possible. If a collection point must be moved, the new location must be approved and documented.

- 5.3.2 Attach the appropriate tubing to the peristaltic pump. Always use new tubing at each sample location. Do not try to decontaminate and reuse tubing.
- 5.3.3 If filtering is required, attach the filtering device to the discharge end of the tubing.
- 5.3.4 Lower the intake end of the tubing into the water and begin pumping. If the pump is computerized, program the pump to collect the sample at the desired intervals and flow rate. If the pump is not programmable, record the discharge rate (compute discharge rate by dividing an amount of water collected by the time it took to collect it). Collect the sample at the desired interval.
- 5.3.5 Fill the sample bottle, allowing the sample stream to flow gently down the inside of the bottle with minimal turbulence. The programmable pump will perform this automatically.
- 5.3.6 Cap the bottle and handle the sample according to the procedures outlined in Project *Sample and Shipping*.
- 5.3.7 Label the sample and document the sampling event.

6.0 Required Inspection/Acceptance Criteria

None.

7.0 Records

The following records generated as a result of implementation of this procedure shall be maintained in a safe manner and submitted to project central files for storage and disposition.

Field Activity Daily Log

Sample Collection Log

Chain of Custody

8.0 References

8.1 Others

- U.S. Environmental Protection Agency. 1987. EPA Compendium of Superfund Field Operations Methods, EPA 540/P-87/001a, OSWER 9355.0-14. Washington, DC.
- U.S. Environmental Protection Agency. 1988. EPA Guidance for Conducting Remedial Investigation and Feasibility Studies under CERCLA, Interim Final OSWER Directive 9355.3-01. Washington, DC.
- American Public Health Association, American Water Works Association, Water Pollution Control Federation. 1985. *Standard Methods for the Examination of Water and Wastewater*, 16th Edition, American Public Health Association, Washington, DC.

Appendix D Data Validation Reports

DATA VALIDATION REPORT

To:Steve Brinkman/Robert HillFrom:John GarrettDate:November 5, 2009Project/Site:Colorado School of MinesProject No.:4060SDG No.:0909292

This report presents the inorganic anions data validation for the data obtained for eleven CSMRI water sample collected on September 24, 2009, and September 25, 2009 and submitted to Paragon Analytics, Inc on September 29, 2009 for the above referenced work assignment. The purpose of this review is to provide a technical evaluation of the inorganic anions results that were obtained by preparation method MCAWW, May 1994, and EMSL Rev 2.1 Alkalinity, Bicarbonate, and Carbonate by Method 310.1, Total Phosphorus by Method 365.2, Chloride, and Sulfate by Method 300.0 Rev 2.1 from Paragon Analytics, Inc. (Fort Collins, CO). The water samples were analyzed for Bicarbonate, Carbonate, Chloride, Sulfate, and Total Alkalinity, on October 6, 2009, and Total Phosphorus on October 7, 2009. All analyses were conducted by Paragon Analytics, Inc. The field sample numbers and corresponding laboratory numbers are presented below:

Client Sample Number	Laboratory Sample Number	Matrix	Collection Date
SW-2	0909292-1	Water	September 24, 2009
CSMRI-6C	0909292-2	Water	September 24, 2009
SW-1	0909292-3	Water	September 24, 2009
CSMRI-1	0909292-4	Water	September 24, 2009
CSMRI-8	0909292-5	Water	September 24, 2009
CSMRI-9	0909292-6	Water	September 24, 2009
CSMRI-4	0909292-7	Water	September 24, 2009
CSMRI-5	0909292-8	Water	September 24, 2009
CSMRI-11B	0909292-9	Water	September 25, 2009
CSMRI-1B	0909292-10	Water	September 25, 2009
CSMRI-10	0909292-11	Water	September 25, 2009
EQUIPMENT BLANK	0909292-12	Water	September 25, 2009
CSMRI-2	0909292-13	Water	September 25, 2009

Data validation was conducted in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review.

The Inorganic data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Preservation
- * Initial and Continuing Calibration Verification
- * Contract Required Detection Limit (CRDL)
- * Preparation/ Initial (ICB)/ and Continuing (CCB) Calibration Blanks
- * Interference Check Sample (ICSA) Results
- * Matrix Spike Results
- * Duplicate Sample Results
- * Laboratory Control Samples (LCS) Results
- * Serial Dilution Sample Results
- * Compound Quantitation and Reporting Limits (full validation only)

* All criteria were met for this parameter

Data Completeness

The data package was complete. No results were qualified as a result of the missing data.

Holding Times and Preservation

Analytical holding times were evaluated and all criteria were met.

The water samples were all found to be field filtered and had a pH less than 2.

Initial and Continuing Calibration Verification

Initial and Continuing Calibration Verification standards were analyzed at the required frequency and all were within the required 90-110%. No action was necessary.

Contract Required Detection Limit (CRDL)

All CRDL %Rs CRI %Rs were within 80-120% limits. No action was necessary.

Preparation and Initial/ Continuing Calibration Blanks

Preparation and Initial/ Continuing Calibration Blanks are evaluated to assess the level of contamination in the preparation and analytical processes.

Preparation and Initial/ Continuing Calibration Blanks were prepared and analyzed at the required frequencies.

All of the blanks that were analyzed had concentrations that were below their respective Reporting Limits (RLs).

However, if blank results were above the Instrument Detection Limits (IDLs) and below the RLs, it caused the associated sample results to be qualified for contamination as estimated and non-detected [UJ 107]. If blank results were below the negate IDL and above the negate RL, it caused the associated sample results to be qualified for negative contamination as estimated [J 107]. No sample results were qualified due to blank contamination.

Matrix Spike/Matrix Spike Duplicate Results

All MS/MSD percent recoveries were within 75-125% limits. No action was necessary.

Duplicate Sample Analysis

All original sample/duplicate sample and MS/MSD differences were less than 20% RPD or less than the RDL for results less than (5)(RDL). No actions were necessary.

Laboratory Control Samples

The laboratory analyzed laboratory control samples for all analytes. All recoveries were within 80-120% limits. No action was necessary.

Serial Dilution Results

All %Ds were less than 10% for all analytes.

Analyte Quantitation and Reporting Limits

Analyte quantitation was evaluated for all samples. No calculation or transcription errors were found. The results and reporting limits were correctly reported.

Overall Comments

Matrix Spike recoveries were not evaluated for Chloride. The Chloride concentration was above the analytical range and therefore quantitation of MS/MSD recoveries were not possible as the spike added was small relative to the unspiked sample concentration. The LCS, ICV, and CCV QC results indicate that the procedure was in control and no action was necessary.

All data were acceptable without qualification as received by the laboratory.

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- NR Result was not used from a particular sample analysis. This typically occurs when more than one result for an element is reported due to dilutions and reanalyses.

DATA VALIDATION REPORT

To:Steve Brinkman/Robert HillFrom:John GarrettDate:November 6, 2009Project/Site:Colorado School of MinesProject No.:4060SDG No.:0909292

This report presents the inorganic metals data validation for the data obtained for thirteen CSMRI water sample collected on September 24, 2009, and September 25, 2009 and submitted to Paragon Analytics, Inc on September 29, 2009 for the above referenced work assignment. The purpose of this review is to provide a technical evaluation of the inorganic metals results that were obtained by SW-846, 3rd edition, Method 6010B and Paragon Procedure PA SOP 834R7 for trace metals by Inductively Coupled Plasma (ICP) atomic emission spectrometry analysis, Method 6020A and Method 3005A and Paragon Procedure PA SOP 806R13 for dissolved metals by Inductively Coupled Plasma mass spectrometry (ICP-MS) (Uranium only) analysis for SDG 0909292 from Paragon Analytics, Inc. (Fort Collins, CO). The water samples were analyzed for dissolved ICP trace metals on October 19, 2009 and dissolved uranium by ICP-MS on October 20, 2009. All analyses were conducted by Paragon Analytics, Inc. The field sample numbers and corresponding laboratory numbers are presented below:

Client Sample Number	Laboratory Sample Number	Matrix	Collection Date
SW-2	0909292-1	Water	September 24, 2009
CSMRI-6C	0909292-2	Water	September 24, 2009
SW-1	0909292-3	Water	September 24, 2009
CSMRI-1	0909292-4	Water	September 24, 2009
CSMRI-8	0909292-5	Water	September 24, 2009
CSMRI-9	0909292-6	Water	September 24, 2009
CSMRI-4	0909292-7	Water	September 24, 2009
CSMRI-5	0909292-8	Water	September 24, 2009
CSMRI-11B	0909292-9	Water	September 25, 2009
CSMRI-1B	0909292-10	Water	September 25, 2009
CSMRI-10	0909292-11	Water	September 25, 2009
EQUIPMENT BLANK	0909292-12	Water	September 25, 2009
CSMRI-2	0909292-13	Water	September 25, 2009

Data validation was conducted in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review.

The metals data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Preservation
- * Initial and Continuing Calibration Verification
- * Contract Required Detection Limit (CRDL) Preparation/ Initial (ICB)/ and Continuing (CCB) Calibration Blanks
- * Interference Check Sample (ICSA) Results
- * Matrix Spike Results
- * Duplicate Sample Results
- * Laboratory Control Samples (LCS) Results Serial Dilution Sample Results
- * Compound Quantitation and Reporting Limits (full validation only)

* All criteria were met for this parameter

Data Completeness

The data package was complete except for the missing CRDL (2B) and IDL (10) QC Summary Forms. No results were qualified as a result of the missing data.

Holding Times and Preservation

Analytical holding times were evaluated and all criteria were met.

The water samples were field filtered and had a pH less than 2. Samples CSMRI-2, CSMRI-4, CSMRI-5, and CSMRI-1 were received at 11.8°C.

Initial and Continuing Calibration Verification

Initial and Continuing Calibration Verification standards were analyzed at the required frequency and all were within the required 90-110% limits for ICP trace. No action was necessary.

Contract Required Detection Limit (CRDL)

No CRDL or CRI standard recovery summary forms (EPA Form 2b) were included in the data package. The reviewer obtained the %Rs from the instrument raw data. All CRDL %Rs for ICP and CRI %Rs for mercury were within 80-120% limits. No action was necessary.

Preparation and Initial/ Continuing Calibration Blanks

Preparation and Initial/ Continuing Calibration Blanks are evaluated to assess the level of contamination in the preparation and analytical processes.

Preparation and Initial/ Continuing Calibration Blanks were prepared and analyzed at the required frequencies.

All of the blanks that were analyzed had concentrations that were below their respective Reporting Limits (RLs).

However, if blank results were above the Instrument Detection Limits (IDLs) and below the RLs, it caused the associated sample results to be qualified for contamination as estimated and non-detected [UJ 107]. If blank results were below the negate IDL and above the negate RL, it caused the associated sample results to be qualified for negative contamination as estimated [J 107]. No sample results were qualified due to blank contamination.

Interference Check Sample (ICSA) Results

Interference Check Samples were prepared and analyzed at the required frequencies.

No aqueous concentrations of aluminum, calcium, iron, or magnesium exceeded the ICSA values in any of the samples. No action was necessary.

Matrix Spike/Matrix Spike Duplicate Results

All ICP and Mercury MS/MSD percent recoveries were within 75-125% limits. No action was necessary.

Duplicate Sample Analysis

All ICP and Mercury original sample/duplicate sample and MS/MSD differences were

less than 20% RPD or less than the RDL for results less than (5)(RDL). No actions were necessary.

Laboratory Control Samples

The laboratory analyzed laboratory control samples for all metals and mercury. All recoveries were within 80-120% limits. No action was necessary.

Serial Dilution Results

All %Ds were less than 10% for Uranium by ICP-MS.

The %D for the serial dilution failed at great than 10% for Calcium (13%), Magnesium (14%), and Sodium (30%). Calcium, Magnesium, and Sodium results are greater than 50X the IDL's in all samples and are qualified [J] Estimated.

Analyte Quantitation and Reporting Limits

Analyte quantitation was evaluated for all samples. No calculation or transcription errors were found. The results and reporting limits were correctly reported.

Overall Comments

No CRDL or CRI standard recovery summary forms (EPA Form 2b) were included in the data package. The reviewer obtained the results from the raw data. No action was necessary.

Calcium, Magnesium, and Sodium results in all samples are qualified [J] Estimated due to failed Serial Dilutions.

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- NR Result was not used from a particular sample analysis. This typically occurs when more than one result for an element is reported due to dilutions and reanalyses.

DATA VALIDATION REPORT

To:	Steve Brinkman/Robert Hill
From:	John Garrett
Date:	November 4, 2009
Project/Site:	Colorado School of Mines
Project No.:	4060
SDG No.:	0909292 Radium-226

This report presents the radiological data validation for the data obtained during the field activities for the above referenced work assignment. The purpose of this review is to provide a technical evaluation of the radiological results that were obtained by Paragon Procedure PA SOP 783R8 for Radium-226 by Radon Emanation Counting for SDG 0909292 from Paragon Analytics, Inc. (Fort Collins, CO). This report consists of thirteen water samples for the Colorado School of Mines/4060 project collected on September 24, June 23, 2009, and September 25, 2009 and submitted to Paragon Analytics, Inc on September 29, 2009. The samples were analyzed for Radium-226 by Radon Emanation Counting on October 16, 2009. All analyses were conducted by Paragon Analytics, Inc. The field sample numbers and corresponding laboratory numbers are presented below:

Client Sample Number	Laboratory Sample Number	Matrix	Collection Date
SW-2	0909292-1	Water	September 24, 2009
CSMRI-6C	0909292-2	Water	September 24, 2009
SW-1	0909292-3	Water	September 24, 2009
CSMRI-1	0909292-4	Water	September 24, 2009
CSMRI-8	0909292-5	Water	September 24, 2009
CSMRI-9	0909292-6	Water	September 24, 2009
CSMRI-4	0909292-7	Water	September 24, 2009
CSMRI-5	0909292-8	Water	September 24, 2009
CSMRI-11B	0909292-9	Water	September 25, 2009
CSMRI-1B	0909292-10	Water	September 25, 2009
CSMRI-10	0909292-11	Water	September 25, 2009
EQUIPMENT BLANK	0909292-12	Water	September 25, 2009
CSMRI-2	0909292-13	Water	September 25, 2009

Data validation was conducted in accordance with the Analytical Services Statement of Work for the following modules: Gas Proportional Counting Module RC04-v2, October 1, 2002, and U.S. DOE Quality Systems for Analytical Services Revision 2.3 (QSAS).

The radiological data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Preservation
- * Instrument Initial Calibrations
- * Instrument Performance Checks
- * Preparation Blanks
- * Duplicate Sample Results
- * Laboratory Control Samples (LCS) Results
- * Laboratory Control Samples Duplicate (LCSD) Results
- * Compound Quantitation and Reporting Limits (full validation only)

Data Completeness

The data package was complete as per Paragon Procedure PA SOP 783R8 for Radium-226 by Radon Emanation counting.

Holding Times and Preservation

Analytical holding times were evaluated and all criteria were met. However, holding time requirements are not applicable to radiochemistry analyses unless the isotopes of interest have short half-lives.

Calibrations

The instruments were calibrated at the required frequency.

Initial Calibration

All instruments were calibrated properly using NIST traceable SRM.

Instrument Performance Checks

All isotopes were within criteria.

Preparation Blanks

All isotopes that were analyzed had activities that were below their respective MDCs in their QC batch preparation blanks.

Duplicate Sample Analysis

All isotopic activities for Radium-226 duplicate and original analysis were within the limits of the statistical test for equivalency. No action was required.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicates were not performed for the samples in this SDG, nor were any required.

Laboratory Control Samples

All recoveries were within 75-125% limits. No calculation errors or transcription errors were found.

Analyte Quantitation and Reporting Limits

Analyte quantitation was evaluated for all samples. No calculation or transcription errors were found. The results and reporting limits were correctly reported.

Overall Comments

Radium-226 was detected above the RDL in samples CSMRI-2 at 2.64 pCi/L, CSMRI-11B at 3.5, EQUIPMENT BLANK at 1.65 pCi/L, and SW-1 at 1.22 pCi/L and are considered detected.

The laboratory reported that the ICP-AES measurement of the added barium carrier prior to chemical separation had a concentration of -0.0005ug in the quality control samples LCS, LCSD, and MB. The laboratory manually adjusted the values to 0.0 in order to avoid a low bias. All QC criteria were within control limits and no action was necessary. The data are not affected.

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- NR Result was not used from a particular sample analysis. This typically occurs when more than one result for an element is reported due to dilutions and reanalyses.

0909292radAq/jpg

DATA VALIDATION REPORT

То:	Steve Brinkman/Robert Hill
From:	John Garrett
Date:	November 3, 2009
Project/Site:	Colorado School of Mines
Project No.:	4060
SDG No.:	0909292 Radium-228

This report presents the radiological data validation for the data obtained during the field activities for the above referenced work assignment. The purpose of this review is to provide a technical evaluation of the radiological results that were obtained by Paragon PA SOP 724R10 for Radium-228 by gas proportional counting for SDG 0909292 from Paragon Analytics, Inc. (Fort Collins, CO). This report consists of thirteen water samples for the Colorado School of Mines/4060 project collected on September 24, 2009, and September 25, 2009 and submitted to Paragon Analytics, Inc on October 16, 2009. The samples were analyzed for Radium-228 by Radon gas proportional counting on October 20, 2009. All analyses were conducted by Paragon Analytics, Inc. The field sample numbers and corresponding laboratory numbers are presented below:

Client Sample Number	Laboratory Sample Number	Matrix	Collection Date
SW-2	0909292-1	Water	September 24, 2009
CSMRI-6C	0909292-2	Water	September 24, 2009
SW-1	0909292-3	Water	September 24, 2009
CSMRI-1	0909292-4	Water	September 24, 2009
CSMRI-8	0909292-5	Water	September 24, 2009
CSMRI-9	0909292-6	Water	September 24, 2009
CSMRI-4	0909292-7	Water	September 24, 2009
CSMRI-5	0909292-8	Water	September 24, 2009
CSMRI-11B	0909292-9	Water	September 25, 2009
CSMRI-1B	0909292-10	Water	September 25, 2009
CSMRI-10	0909292-11	Water	September 25, 2009
EQUIPMENT BLANK	0909292-12	Water	September 25, 2009
CSMRI-2	0909292-13	Water	September 25, 2009

Data validation was conducted in accordance with the Analytical Services Statement of Work for the following modules: Gas Proportional Counting Module RC04-v2, October 1, 2002, and U.S. DOE Quality Systems for Analytical Services Revision 2.3 (QSAS).

The radiological data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Preservation
- * Instrument Initial Calibrations
- * Instrument Performance Checks
- * Preparation Blanks
- * Duplicate Sample Results
- * Laboratory Control Samples (LCS) Results
- * Laboratory Control Samples Duplicate (LCSD) Results
- * Compound Quantitation and Reporting Limits (full validation only)

Data Completeness

The data package was complete as per Paragon Procedure PA SOP 724R10 for Radium-228 by gas proportional counting for SDG 0909292.

Holding Times and Preservation

Analytical holding times were evaluated and all criteria were met. However, holding time requirements are not applicable to radiochemistry analyses unless the isotopes of interest have short half-lives.

Calibrations

The instruments were calibrated at the required frequency.

Initial Calibration

All instruments were calibrated properly using NIST traceable SRM.

Instrument Performance Checks

Detector A3 on Instrument LB4100C failed the beta efficiency daily performance check low. There is the possibility of a low sample bias of 2.96% in sample 0909292-1; therefore sample results in SW-2 are qualified as [J] Estimated.

Failed perf check Preparation Blanks

All isotopes that were analyzed had activities that were below their respective MDC's in their QC batch preparation blanks.

Duplicate Sample Analysis

Due to insufficient sample volume the laboratory prepared and analyzed a Laboratory Control Sample Duplicate (LCSD) in lieu of a client sample duplicate.

All isotopic activities for Radium-228 duplicate (LCS) and original (LCSD) analysis were within the limits of the statistical test for equivalency. No action was required.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicates were not performed for the samples in this SDG, nor were any required.

Laboratory Control Samples

All recoveries were within 75-125% limits. No calculation errors or transcription errors were found.

Analyte Quantitation and Reporting Limits

Analyte quantitation was evaluated for all samples. No calculation or transcription errors were found. The results and reporting limits were correctly reported.

Overall Comments

Radium-228 was detected above the RDL in samples CSMRI-6C at 1.39 pCi/L, CSMRI-1 at 1.01, CSMRI-8 at 1.25 pCi/L, and CSMRI-2 at 2.12 pCi/L and are considered detected.

The laboratory reported that the ICP-AES measurement of the added barium carrier prior to chemical separation had a concentration of less than the concentration added. The laboratory manually adjusted the values to the known concentration to calculate the chemical yield in order to avoid a low bias in all samples including the QC. All QC criteria were within control limits and no action was necessary.

Detector A3 on Instrument LB4100C failed the beta efficiency daily performance check low. There is the possibility of a low sample bias of 2.96% in sample 0909292-1, therefore sample results in SW-2 are qualified as **[J]** Estimated.

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- NR Result was not used from a particular sample analysis. This typically occurs when more than one result for an element is reported due to dilutions and reanalyses.

.

۰.

DATA VALIDATION REPORT

To:Steve Brinkman/Robert HillFrom:John GarrettDate:November 4, 2009Project/Site:Colorado School of MinesProject No.:4060SDG No.:0909292

This report presents the Total Organic Carbon data validation for the data obtained for eleven CSMRI water sample collected on September 24, 2009, and September 25, 2009, and submitted to Paragon Analytics, Inc on September 29, 2009 for the above referenced work assignment. The purpose of this review is to provide a technical evaluation of Dissolved Organic Carbon results that were obtained by MCAWW, May 1994, Total Organic Carbon by Method 415.1 from Paragon Analytics, Inc. (Fort Collins, CO). The water samples were analyzed October 12, 2009. All analyses were conducted by Paragon Analytics, Inc. The field sample numbers and corresponding laboratory numbers are presented below:

Client Sample Number	Laboratory Sample Number	Matrix	Collection Date
SW-2	0909292-1	Water	September 24, 2009
CSMRI-6C	0909292-2	Water	September 24, 2009
SW-1	0909292-3	Water	September 24, 2009
CSMRI-1	0909292-4	Water	September 24, 2009
CSMRI-8	0909292-5	Water	September 24, 2009
CSMRI-9	0909292-6	Water	September 24, 2009
CSMRI-4	0909292-7	Water	September 24, 2009
CSMRI-5	0909292-8	Water	September 24, 2009
CSMRI-11B	0909292-9	Water	September 25, 2009
CSMRI-1B	0909292-10	Water	September 25, 2009
CSMRI-10	0909292-11	Water	September 25, 2009
EQUIPMENT BLANK	0909292-12	Water	September 25, 2009
CSMRI-2	0909292-13	Water	September 25, 2009

Data validation was conducted in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (CLP).

The organics data were evaluated based on the following parameters:

- * Data Completeness
- * Holding Times and Preservation
- * Initial and Continuing Calibration Verification
- * Contract Required Detection Limit (CRDL)
- * Preparation/ Initial (ICB)/ and Continuing (CCB) Calibration Blanks
- * Interference Check Sample (ICSA) Results
- * Matrix Spike Results
- * Duplicate Sample Results
- * Laboratory Control Samples (LCS) Results
- * Serial Dilution Sample Results
- * Compound Quantitation and Reporting Limits (full validation only)

* All criteria were met for this parameter

Data Completeness

The data package was complete. No results were qualified as a result of the missing data.

Holding Times and Preservation

Analytical holding times were evaluated and all criteria were met.

The water samples were all field filtered and had a pH less than 2.

Initial and Continuing Calibration Verification

Initial and Continuing Calibration Verification standards were analyzed at the required frequency and all were within the required 90-110%. No action was necessary.

Contract Required Detection Limit (CRDL)

All CRDL %Rs CRI %Rs were within 80-120% limits. No action was necessary.

Preparation and Initial/ Continuing Calibration Blanks

Preparation and Initial/ Continuing Calibration Blanks are evaluated to assess the level of contamination in the preparation and analytical processes.

Preparation and Initial/ Continuing Calibration Blanks were prepared and analyzed at the required frequencies.

All of the blanks that were analyzed had concentrations that were below their respective Reporting Limits (RLs).

However, if blank results were above the Instrument Detection Limits (IDLs) and below the RLs, it caused the associated sample results to be qualified for contamination as estimated and non-detected [UJ 107]. If blank results were below the negate IDL and above the negate RL, it caused the associated sample results to be qualified for negative contamination as estimated [J 107]. No sample results were qualified due to blank contamination.

Matrix Spike/Matrix Spike Duplicate Results

All MS/MSD percent recoveries were within 75-125% limits. No action was necessary.

Duplicate Sample Analysis

All original sample/duplicate sample and MS/MSD differences were less than 20% RPD or less than the RDL for results less than (5)(RDL). No actions were necessary.

Laboratory Control Samples

The laboratory analyzed laboratory control samples for all analytes. All recoveries were within 80-120% limits. No action was necessary.

Serial Dilution Results

All %Ds were less than 10% for all analytes.

Analyte Quantitation and Reporting Limits

Analyte quantitation was evaluated for all samples. No calculation or transcription errors were found. The results and reporting limits were correctly reported.

3

Overall Comments

All data were acceptable without qualification as received by the laboratory.

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality.

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported quantitation limit is estimated because Quality Control criteria were not met. Element or compound was not detected.
- U The material was analyzed for, but was not detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- NR Result was not used from a particular sample analysis. This typically occurs when more than one result for an element is reported due to dilutions and reanalyses.

Appendix E Results of Analyses CD

Appendix F Chains of Custody

Singiniator: Retain pink page or a photocopy!		and the loss and	, A		and more than the second		etals or anions, please detail					22 - 2 april 1 april 1 april 1	Sample Constraints of the second seco		········ arvino-rar information as needed in Comments below.	SW8260C	to A AM	1 1 2 0	ALS TF: 800-443-1511 PH: 970-490-1511 FX: 970-490-1522
Form 202r7 (5/19/09)							L = liquid E = extract F = filter						SVOCs OC Pesticides PCBs Herbicides Explosives TCLP Organics SW131 TCLP Metals SW1311	1	Analytical	SW8270D SW8081A SW8082 SW8151A SW8330 SW8330B SW8321 by LC/MS/MS SW8260C SW8270D SW8081A SW8151A SW6010B SW7470A		1	Chain- Jf-Custo
pany 1465	Date 3 John Mark Time 1 - 2 - 5	Mer O. Son	Stater	Date <u>1/2 front</u> Time //2 5	Printed Name why have had here the	and the second se	Relinguished By:	×		×			Total Metals (ICP) or Hg Dissolved Metals (ICP) or Hg Total Metals (ICP-MS) Dissolved Metals (ICP-MS) Hexavalent Chromium Inorganic Anions Solids pH Perchlorate			SW6010B 7470A/7471A E200.7 E245.1 SW6010B 7470A/7471A E200.7 E245.1 SW6020A E200.8 SW6020A E200.8 SW7196A Alkaline Digestion? Y / N SW9056 E300.0 FDS: E160.1 TSS: E160.2 Total: E160.3 SW9040B SW9045C E150.1 SW6850 by LC/MS/MS E314.0	Standard) or Due	Page /	dy
Company I'me	ed Name	(1) Received By: (2) Signature	Company	Date Time	Printed Name	Signature						(T F S	Actinides Gamma Isotopes Gross Alpha / Beta Total Alpha-Emitting Radium Radium 226 Radium 228 trontium 90 (Total RadioSr) Tritium Radon 222	Circle Analytical Method Above	E SI E SV D E 9	Sircle: Am / Cm / Pu / Th / U 901.1 W9310 E900.0 W9315 E903.0 903.1 W9320 E904.0 5811 306.0 W7500Rn	Disposal By Cab or Return to Client		

Originator: Retain pink page or a photocopy!	, , , , , , , , , , , , , , , , , , ,	DW.		5.1 / 102 c		Sample ID Sample ID Data State State I Data State State I Preservative Total State No. of State State TPH VOCs		Provide additional information as needed in Comments below.	REPORTION COSTICTATING	LS Laboratory Group .25 Commerce Drive, Fort Collins, CO 80524 TF: 800-443-1511 PH: 970-490-1511 FX: 970-490-1522
Signature THAC JOANS Printed Name Love TOP	Printed Name Vick Aleks	water L=liquid E=extract F=filter Relinquished By: Signature				BTEX + MtBE SVOCs OC Pesticides PCBs Herbicides Explosives TCLP Organics SW131 TCLP Metals SW1311 Total Metals (ICP) or Hg Dissolved Metals (ICP) or Hg Dissolved Metals (ICP-MS) Dissolved Metals (ICP-MS) Dissolved Metals (ICP-MS) Dissolved Metals (ICP-MS) Porganic Anions Solids pH Perchlorate		SW8260C SW8270D SW8270D SW8270D SW8081A SW8081A SW8081A SW8082 SW8151A SW8330 SW8330B SW8321 by LC/MS/M SW8260C SW8270D SW8081A SW8151 SW6010B SW7470A SW6010B 7470A/7471A E200.7 E245.1 SW6010B 7470A/7471A E200.7 E245.1 SW6020A E200.8 SW6020A E200.8 SW7196A Alkaline Digestion? Y / N SW9056 E300.0 TDS: E160.1 TSS: E160.2 Total: E160.3 SW9040B SW9045C E150.1 SW6850 by LC/MS/MS E314.0	- Inclusion of Standard, or	
(1) Received By: (2) Signature		(1) Relinquished By: (2) Signature				Actinides Gamma Isotopes Gross Alpha / Beta Total Alpha-Emitting Radium Radium 226 Radium 228 Strontium 90 (Total RadioSr) Tritium Radon 222	bove	Circle: Am / Cm / Pu / Th / U E901.1		

Originator: Retain pink page or a photocopy!	1	 i	anions, please detail analyte list below.	Zone (Circle): EST CST (MST) PST Matrix: O = oil S = soil NS = non-soil soile			1 200 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1 22 1 Carron Carlied to 1 - 175	Sample D Sample D Sample D Sample S Sample S Sam		· · · · · · · · · · · · · · · · · · ·		PHONE:	Projectivaments. / Colected Minute	1LS Laboratory Group 225 Commerce Drive, Fort Collins, CO 80524 TF: 800-443-1511 PH: 970-490-1511 FX: 970-490-1522
5y ! Form 202r7 (5/19/09)								_	VOCs BTEX + MtBE SVOCs OC Pesticides PCBs Herbicides Explosives TCLP Organics SW1311 TCLP Metals SW1311		Circle Analy	SW8015B GRO DRO Other SW8260C SW8260C SW8270D SW8081A SW8082 SW8151A SW8330 SW8330B SW8321 by LC/MS/ SW8260C SW8270D SW8081A SW818 SW6010B SW7470A	MS	Strong Write Land	Chain _f-Custod
		Date <u>a factor</u> Time <u>1/2 r</u> Company <u>Station</u>	By:						Total Metals (ICP) or Hg Dissolved Metals (ICP) or Hg Total Metals (ICP-MS) Dissolved Metals (ICP-MS) Hexavalent Chromium Inorganic Anions Solids pH Perchlorate		Method Ahove	SW6010B SW/470A SW6010B 7470A/7471A E200.7 E245.1 SW6010B 7470A/7471A E200.7 E245.1 SW6020A E200.8 SW6020A E200.8 SW6020A E200.8 SW7196A Alkaline Digestion? Y / SW9056 E300.0 DS: E160.1 TSS: E160.2 Total: E16 W9040B SW9045C E150.1 W6850 by LC/MS/MS E314.0		have a / a / a Page 3 of	Y
Company Time			(1) Relinquished By: (2) Signature				<u>`</u>	I C I T I R S S T R R R	Actinides Samma Isotopes Gross Alpha / Beta otal Alpha-Emitting Radium Radium 226 Radium 228 trontium 90 (Total RadioSr) ritium Radon 222 Sachard Unanan Parada Mandara	Circle Analytical Method Above v		ircle: Am / Cm / Pu / Th / U 901.1 W9310 E900.0 W9315 E903.0 903.1 V9320 E904.0 8811 06.0 17500Rn			

A CONTRACTOR OF

1

CONTRACT A REAL PLACE OF A PHOTOCOPY	Originator: Batain pink page and the total			200 - 200 - 1	Comments:	V and V a		the second secon	(S.M. P. T. M. 1) 226 11 11 11 11 11 11 11 11 11 11 11 11 11				1 2 mar 1 2 2 mar 1 2 2 mar 1	Sample D D D D D D D D D D D D D D D D D D D		PHONE: FAX E MAIL COMPANY ADDRESS ADDRESS ADDRESS ADDRESS		PH: 970-490-1511 FX: 9	
ipyi	-					solid W = water L =								TPH VOCs BTEX + MtBE SVOCs		SW8015B GRO DRO Other SW8260C SW8260C SW8270D			
For						liquid E = extract								OC Pesticides PCBs Herbicides		SW8081A SW8082 SW8151A	the well of a press		Chain-
Form 202r7 (5/19/09)						F = filter								Explosives TCLP Organics SW131 TCLP Metals SW1311			T T		Chain-Jf-Custody)
		Received By:	Company	Printed Na	Signature	Relinquist		X					\times	Total Metals (ICP) or Hg Dissolved Metals (ICP) or Hg Total Metals (ICP-MS)			Princilitation		ody
		- Sack		2	A A A A A A A A A A A A A A A A A A A	ied By:	- X					\times		Dissolved Metals (ICP-MS) Hexavalent Chromium Inorganic Anions		SW6020A E200.8 SW7196A Alkaline Digestion? Y / N SW9056 E300.0	Standard or	tealog	
	Time J17 5	120		1 - 4 74										Solids pH Perchlorate		TDS: E160.1 TSS: E160.2 Total: E160.3 SW9040B SW9045C E150.1 SW6850 by LC/MS/MS E314.0	>or Due		
Company	Date	(1) Received By Signature	Date Company	Printed Name	Signature	(1) Relinnu								Actinides Gamma Isotopes Gross Alpha / Beta		Circle: Am / Cm / Pu / Th / U E901.1 SW9310 E900.0	Disposal	of //	
IV	Name	∂d By: °e	IV	Name	instred by.	ishari Riv:			××				-+	Total Alpha-Emitting Radium Radium 226 Radium 228	Circle Analytical	SW9315 E903.0 E903.1 SW9320 E904.0	osal 🛒 Lab		
	Time		Time											Strontium 90 (Total RadioSr) Tritium Radon 222	I Method Above	D5811 E906.0 SM7500Rn	or Return	• • •	
		(2)			2	<u>)</u>			\leq	->	₹			Deschart Human Destand Charden			to Client		

. 1

. *

Originator: Retain pink page or a photocopy!		ι τ <u>η τ</u>	Comments:	Zone (Circle): EST CST NS / PST Matrix: O = oil S = soil NS = non-soil solid V For metals or anions, please detail analyte list below				CAUT I KAC AW I	1	and the apple and a second second	Sampie D D A D Cate D Cate D Cate			REPORTION COSTCOLLAND	LS Laboratory Group 225 Commerce Drive, Fort Collins, CO 80524 TF: 800-443-1511 PH: 970-490-1511 FX: 970-490-1522
Form 202r7 (5/19/09)	-			W = water L = liquid E = extract F = filter							VOCs BTEX + MtBE SVOCs OC Pesticides PCBs Herbicides Explosives TCLP Organics SW1311 TCLP Metals SW1311 Total Metals (ICP) or Hg		SW8260C SW8270D SW8081A SW8151A SW6010B SW7470A	and Maleryter	Chain ∫f-Custod
V A(S	Received By (1) Signature ////////////////////////////////////	Date $\frac{2/2}{\sqrt{2}}$ Time $\frac{ir_{2}}{\sqrt{2}}$ Company $\frac{1}{\sqrt{4}}$	Signature	Relinquished By: (1)		×	×				Dissolved Metals (ICP) or Hg Total Metals (ICP-MS) Dissolved Metals (ICP-MS) Hexavalent Chromium Inorganic Anions Solids pH Perchlorate Decc Actinides			Halound Standard or Due	y A strate of Property of Marine
Company	Received By: Signature Printed Name	Date Time Company	Printed Name	Relinquished By: (2)				××			Gamma Isotopes Gross Alpha / Beta Total Alpha-Emitting Radium Radium 226 Radium 228 Strontium 90 (Total RadioSr) Tritium Radon 222	Circle Analytical Method Above	E901.1	Disposal By Tab-or Return to Client	

....

Originator: Retain pink page or a photocopy!			and the -	For metals or anions, please detail analyte list below.	Zone (Circle): EST CST MST PST Matrix: O = oil S = soil NS = non-soil solid		13 11 11 11B apple 1920 3 how 1					1 2 and repairing of the the and a large of	Sample ID Date Jume Lab ID Matrix Preservative Lingth of the No. of Companyes		Prove Pac Pac Pac Provide additional information as needed in Comments below.	BEDOBTION CO Select ALALA	5	
opy!					solid W =								TPH VOCs	_	SW8015B GRO DRO Other			
					water								BTEX + MtBE		SW8260C			
					-	-							SVOCs		SW8270D			
Í				-	liquid								OC Pesticides		SW8081A	5		0
					m								PCBs		SW8082	t.		ha
Ð					extract								Herbicides		SW8151A	17.	1	Ę.
Form 202r7 (5/19/09)				•	л Л								Explosives		SW8330 SW8330B SW8321 by LC/MS/MS	$\hat{\mathbf{x}}$	[Chain-√f-Custody
2r7 (5				č	= filter								TCLP Organics SW1311					ò
5/19/0													TCLP Metals SW1311		5 SW6010B SW7470A			Jst
	_								- 4				Total Metals (ICP) or Hg		SW6010B 7470A/7471A E200.7 E245.1			ö
Con	Received By: Signature	Con	Printe	Sign	0	\times			_		\times		Dissolved Metals (ICP) or Hg			(a) (a)		Ś
npan 🗳	eivec hature	Company	ed N	Kelinquisn Signature			-			- 1			Total Metals (ICP-MS)		SW6020A E200.8	pinoiti	<u>ः स्ट</u>	
	ame		Printed Name	Signature								_	Dissolved Metals (ICP-MS)		SW6020A E200.8		N	
A's	2	X		BY.		\downarrow			_				Hexavalent Chromium		SW7196A Alkaline Digestion? Y / N	Standard	3	
	28	1	Ċ			_		_	_	\leq			Inorganic Anions		SW9056 E300.0	lard	100	
Time						_	_	_					Solids		TDS: E160.1 TSS: E160.2 Total: E160.3	°r	3	
	05	1	P 17	N.		_	_						pH		SW9040B SW9045C E150.1	Due	Page	
	Notes 1			N.	┢	_	_			-			Perchlorate	4	SW6850 by LC/MS/MS_E314.0	1	5	
	E (1)		ľ) (I)	ŀ	-		×			_		Actinides	+-			9 90	
Date			فت ذ ا		-	-+-							Gamma Isotopes	$\frac{1}{2}$	Circle: Am / Cm / Pu / Th / U	#	<u> </u>	
Date Company	Received , Signature Printed Na	Company	rintec	Relinquisi Signature	┢	+	+		_	+			Gross Alpha / Beta		E901.1	olsio	Ê	
ny _	Received By: Signature Printed Name	Iny	Printed Name	Relinquished Signature	F	╉	-			-+		-	Total Alpha-Emitting Radium		SW9310 E900.0 SW9315 E903.0	Disposal	Diste	
	ē .		าย 	id By:	Γ	5	\leq	1					Radium 226		E903.1	Carlon S	6	
							i de la composition de la comp					Ì	Radium 228	Analytical	SW9320 E904.0	By Cab		4
<u>=</u> !			1										Strontium 90 (Total RadioSr)	Method	D5811	9	1 .	1
Time _		ime			L							ſ	Tritium	d Ab	E906.0	Return		
												Ī	Radon 222	ÖVe	SM7500Rn	urn to		
				_	L	>	K,				*	<u> </u>	Sinder & america			o Client		
	2			(2)	L)	N.			į	Sector A Hester			ž		1

Originator: Retain pink page or a photocopy!		see south		For metals or anions, please detail analyte list below.			Contra lis neo and heres		I SAULT-UR THE THE CORD STUDIE 1	Sample D Dare Dare Two Lab ID Matcis Preservative Proster and No. of Equivariant as	monor as needed in		Project Namel Non (LS Laboratory Group 225 Commerce Drive, Fort Collins, CO 80524 TF: 800-443-1511 PH: 970-490-1511 FX: 970-490-1522
				iolid W = water L = liquid E = extract						TPH VOCs BTEX + MtBE SVOCs OC Pesticides PCBs		SW8015B GRO DRO Other SW8260C SW8270D SW8081A SW8082	Sauce Contraction	Chain
Da Form 202r7 (5/19/09) Cc	- Re Si Pr	C D		F ≃ filter	· · · · ·					Herbicides Explosives TCLP Organics SW1311 TCLP Metals SW1311 Total Metals (ICP) or Hg Dissolved Metals (ICP) or Hg	Circle Analytical Method	SW8260C SW8270D SW8081A SW8151A SW6010B SW7470A SW6010B 7470A/7471A E200.7 E245.1		Chain- <i>∟i</i> -Custody
- C.	Received By: Signature ////////////////////////////////////	Date <u>Acceleran</u> Time <u>arc</u> Company <u>Colore</u>	Printed Name	Relinquished By:		X			X	Total Metals (ICP-MS) Dissolved Metals (ICP-MS) Hexavalent Chromium Inorganic Anions Solids pH Perchlorate	od Above	SW6020A E200.8 SW6020A E200.8 SW7196A Alkaline Digestion? Y / N SW9056 E300.0 TDS: E160.1 TSS: E160.2 Total: E160.3 SW9040B SW9045C E150.1 SW6850 by LC/MS/MS E314.0	ind Standard or Due	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Date Time Company	(1) Received By: (2) Signature Printed Name	Company Time	Arrinted Name	(1) Relinquished By: (2) Signature	X		×××			Actinides Gamma Isotopes Gross Alpha / Beta Total Alpha-Emitting Radium Radium 226 Radium 228 Strontium 90 (Total RadioSr) Tritium Radon 222	Circle Analytical Method Above	Circle: Am / Cm / Pu / Th / U E901.1 SW9310 E900.0 SW9315 E903.0 E903.1 SW9320 E904.0 D5811 E906.0 SM7500Rn	Disposal By Lab or Return to Client	

pink page or a p	Zone (Circle): EST CST 1/67 PST Matrix: 0 = oil S = soil NS = non-soil solid		CONTING THERE WAY	De Containing		PHONE FAX E-MAN E-MAN COSPAN COSPAN ADDORESS ADDORESS ADDORESS Provide addi%onal information as needed in Comments below.	REPORT TO:	LS Laboratory Group 225 Commerce Drive, Fort Collins, CO 80524 17: 800-443-1511 PH: 970-490-1511 FX: 970-490-1522
				TPH VOCs BTEX + MtBE SVOCs OC Pesticides		SW8015B GRO DRO Other SW8260C SW8270D SW8081A		C
Form 202r7 (5/19/09)	n			PCBs Herbicides Explosives TCLP Organics SW1311 TCLP Metals SW1311			aloch y to	Chain Jf-Custody
Reinquished By Signature Date Company Received By Signature Printed Name Date Company		×		Total Metals (ICP) or Hg Dissolved Metals (ICP) or Hg Total Metals (ICP-MS) Dissolved Metals (ICP-MS) Hexavalent Chromium	al Method Above		punna	
Time 12 (Inorganic Anions Solids pH Perchlorate		SW9056 E300.0 TDS: E160.1 TSS: E160.2 Total: E160.3 SW9040B SW9045C E150.1 SW6850 by LC/MS/MS E314.0	Standard or Due	C Prage Sof
 (1) Relinquished By: Signature Date Date Company (1) Received By: Signature Printed Name Date Company 				Actinides Gamma Isotopes Gross Alpha / Beta Total Alpha-Emitting Radium Radium 226		Circle: Am / Cm / Pu / Th / U E901.1 SW9310 E900.0 SW9315 E903.0 E903.1	Disposal	
Time (2)				Radium 228 Strontium 90 (Total RadioSr) Tritium Radon 222	Method Abov	SW9320 E904.0 D5811 E906.0 SM7500Rn	By Laber Return to Client	200-376-7762007

Originator: Retain pink page or a photocopy!							For inetals or anions, please detail analyte list below.	= oil S = soil NS = non-soil solid W = water L = liquid E = extract	- V		11175 Nove 1				For part Pl, Kapelanco and Naco 1	Sample Sample	Provide additional information as needed in Comments below.	SW8015B GRO DRO Other SW8260C SW8260C SW8260C SW8081A SW8082 SW8082 SW8151A SW8081 SW8081		LS Laboratory Group 225 Commerce Drive, Fort Collins, CO 80524 TF: 800-443-1511 PH: 970-490-1511 FX: 970-490-1522
Form 202r7 (5/19/09)								F = filter								Explosives TCLP Organics SW1311 TCLP Metals SW1311	Circle Analytical Met	SW8330 SW8330B SW8321 by LC/MS/MS SW8260C SW8270D SW8081A SW8151A SW6010B SW7470A		f-Custo
	Date	Printe	Signature	Company	Date	Printe	Signature	Reling		Y					×	Total Metals (ICP) or Hg Dissolved Metals(ICP) or Hg	I Method Above	SW6010B 7470A/7471A E200.7 E245.1		ody
any 1	3	auve 1	By	any <u>ra</u> v		Printed Name	ture	Relinguished By:								Total Metals (ICP-MS) Dissolved Metals (ICP-MS) Hexavalent Chromium	ve	SW6020A E200.8 SW6020A E200.8 SW7196A Alkaline Digestion? Y / N	atind Standard	. look
	<u>n</u> Time		10/0	the por	<u>Co</u> Time	11. 5.			\times					X		Inorganic Anions Solids pH		SW9056 E300.0 TDS: E160.1 TSS: E160.2 Total: E160.3 SW9040B SW9045C E150.1	ø	Page
		<u>~ 1470</u>	E (1.7	states, 6		()				Х				Perchlorate ⇒∠		SW6850 by LC/MS/MS E314.0	Due	9 OF
Company	Date	Printed Name		-	Date	Printed Name	Signature	(1) Relinquished								Actinides Gamma Isotopes Gross Alpha / Beta	Circle	Circle: Am / Cm / Pu / Th / U E901.1 SW9310 E900.0	_ Disposal	Lab
		ame	' By:			ame		hed By:			\times $>$					Total Alpha-Emitting Radium Radium 226 Radium 228	Analytical	SW9315 E903.0 E903.1 SW9320 E904.0	и ву-габу	•
	Time				- Time											Strontium 90 (Total RadioSr) Tritium Radon 222	Method Above	D5811 E906.0 SM7500Rn	ך Return to	
			(2)					(2)			X		\times			Sector Comment			to Client	

Originator: Retain pink page or a photocopy!		1 shart and	vetals or anions, j vments:				1 4.4 a 1 1 1 1 2 - 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Sample II Date Date Lab ID Matrix Preservative Angel State No. of Contampts		PHONE ENAL ENAL COMPANY ADDRESS ADDRESS	REPORTIO	225 Commerce Drive, Fort Collins, CO 80524 TF: 800-443-1511 PH: 970-490-1511 FX: 970-490-1522
			l solid W ≂ water L = liquid E = extract					TPH VOCs BTEX + MtBE SVOCs OC Pesticides PCBs Herbicides		SW8015B GRO DRO Other SW8260C SW8260C SW8270D SW8081A SW8082 SW8151A		Chain-
Form 202r7 (5/19/09) Com	Rec. Sign Print	Date	F=filter Refi Sign					Explosives TCLP Organics SW1311 TCLP Metals SW1311 Total Metals (ICP) or Hg Dissolved Metals (ICP) or Hg	CIICIE Analytical Method A	SW8330 SW8330B SW8321 by LC/MS/MS SW8260C SW8270D SW8081A SW8151A SW6010B SW7470A SW6010B SW7470A SW6010B 7470A/7471A E200.7 E245.1 SW6010B 7470A/7471A E200.7 E245.1	`	Custo
$\frac{1}{2} \frac{1}{2} \frac{1}$	р I	to the Time	1 to the start			~		Total Metals (ICP-MS) Dissolved Metals (ICP-MS) Hexavalent Chromium Inorganic Anions Solids pH Perchlorate	Above	SW6020A E200.8 SW6020A E200.8 SW7196A Alkaline Digestion? Y / SW9056 E300.0 TDS: E160.1 TSS: E160.2 Total: E160.3 SW9040B SW9045C E150.1 SW6850 by LC/MS/MS E314.0	Standard or Due	allaleg Page 10 of
Date Tir Company Tir	(1) Received By: Signature Printed Name	Date Company	<u>5</u> <u>7</u>				-+	Actinides Gamma Isotopes Gross Alpha / Beta Total Alpha-Emitting Radium Radium 226 Radium 228	Circle Analytical Method	Circle: Am / Cm / Pu / Th / U E901.1 SW9310 E900.0 SW9315 E903.0 E903.1 SW9320 E904.0 D5811	Disposal (By Lab or	Lab-ID
Time	(2)	Time	(2)					Tritium Radon 222	od Above	E906.0 SM7500Rn	Return to Client	

	Sampler ID	0				
dy Becory	Tempera	Temperature on Receip		SIAN	esiAmerica	
TAL-4124-280 (0508)	Drinking	Drinking Water? Yes 🗆	No 🗆 THE	EADER IN ENVI	LEADER IN ENVIRONMENTAL TESTING	
Client	Project Manager	nager			Date , /	Chain of Custody Number
Address Steller		Robert Hill			alentia	126584
105 Technology Dr # 190	Telephone	Number (Area Code)/Fax	de)/Fax Number V/U/C		Lab Number	Pane of +2
	Site Contact		Con	Ana	Analysis (Attach list if more space is needed)	
lame and Location (State)	Carrier/Wa	Carrier/Waybill Number	Lica Artonere K			
Cuseles of Mars Crellin Co				VO3 Fe		Special Instructions/
		Matrix	Containers & Preservatives	21/ (25 1 F		Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line) Date	Time _{Air}	Aqueous Sed. Soil	Unpres. H2SO4 HNO3 HCI VaOH VaOH	NC. Ferr		
CSCURTUL alpula	1020	×		×		
		×	×	×		
t	4	×	~	X		
11-22-12	1510	×.	×	*		
		×	×	×		
4	4-	×	<	X		1
(5 M B T - 5	15115	×		\prec		
		×	×	X		
4	4	<	<			
2512J. 8	1155	×	×	×		
		×	×	$\boldsymbol{\prec}$		
Possible Havard I leastfication	4		×	X		
mable Skin Irritant Poison B	Unknown	Return To Client	Disposal By Lab	Archive For	(A fee may be asses — Months longer than 1 month	(A fee may be assessed if samples are retained longer than 1 month)
UTI Around Time Required	Other_	1 techors	Spe	0		
1. Relinquished By		Time ISIN	1. Received By			
2: Relinquished By	Date	Time				Date
3. Relinquished By	Date	Time	3. Received By			Date
Comments		-				
DISTRIBUTION: MAUTE Data and the second second						

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

	Sampler ID			oct A morioa		
Custody Record	Temperature on Receip	on Receip				
TAL-4124-280 (0506)	Drinking Water?	Yes 🗆	No 🗆 THE	THE LEADER IN ENVIRONMENTAL TESTING		
Client Stoft	Project Manager	1 11		Date / Date	Chain of Custody Number	y Number ロババク
	Telephone Numl	Telephone Number (Area Code)/Fax Number	ax Number		,	
City Chirology Vr 170	site Contant	01212-9125	0/2		Page	or
C 0	one Contact		Las Contact	Analysis (Attach list if more space is needed)]	
Project Name and Location (State)	Carrier/Waybill Number					
Contractions advantante Mines Ciplifing CU				/03 	Specia	al Instructions/
vontractir Functiase Orden Quote No.		Matrix	Containers & Preservatives	-	Conditi	Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Time Air Aqueous	Sed. Soil Unpres.	H2SO4 HNO3 HCI NaOH ZnAc/ NaOH	10		
0 60/12/1 D - 2 0 1/20/09	09410 X			×		
1 6 - 29 427	X 0221		×	× .		
	1070 X	×		×.		
510.2 40	CENT X					
						· •
					,	
Identification		Sample Disposal		(A fee may be as:	essed if samples at	'e retained
mmable Skin Irrifant Poison B	Unknown Re	Return To Client	Disposal By Lab	Archive For Months	longer than 1 month)	
24 Hours 48 Hours 7 Days 14 Days 21 Days	Other (Roders	Spec	ify)		
1. Relinquished By	6	™e ,⊘/∂	1. Received By	Ki	Date Q. Z. Y. L.X	
2. Relinquished By	Date	Time	2. Received By		Date	Time
3. Relinquisned By	Date	Time	3. Received By		Date	Time
Comments	- -	-				

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

		SEVEI	VERN OTT	
Custody Record		T R E N T	4 -	
STL-4124 (0901)			ון כווג במטיו מנטיו וכפ, זווט.	
Client	Project, Manager		Date	Chain of Custody Number ステクススク
*	Number (Area	x Number	imber	
1 - Tocknolog Or - 170	2116 A12			Page of
	Site Contact	а 	Analysis (Attach list if more space is needed)	
Project Name and Location (State)	Carrier/Waybill Number	the second s	> 	
ContractPurchase Circletoninte No				Special Instructions/
	Matrix	Containers &		Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line) Date	Air Aqueous Sed. Soil Unpres.	H2SO4 HNO3 HCI NaOH ZnAc/ NaOH		
Equipart State abolig		×		
611-100 · · · · · · · · · · · · · · · · · ·	CARE X Y			
CLART ALC	CONT X V	X		
Cara a Land 2	Vico X X	X		
Identification	Sample Disposal		(A fee may be asse	(A fee may be assessed if samples are retained
Time Required		OC Requirements (Specify)	Monins	(II)
1 Belinnuished By	ni rei			
r. Heininguissied By	12/20		and the second sec	Date Time
2. Reinquished By	Date	2. Received By		Date Time
3. Relinquished By	Date	3. Received By		Date Time
Comments				

DISTRIBUTION: WHITE Returned to Client with Report: CANARY - Stays with the Sample: PINK - Field Copy

Appendix G Historical Summary Tables

 Table G-1

 Historical Summary of Radioisotopes in Groundwater (Stoller)

	1 1			listorical Summary (1	1	
Sample Station	Sample Date	Ra-226 (pCi/l)	Ra-228 (pCi/l)	Th-228 (pCi/l)	Th-230 (pCi/l)	Th-232 (pCi/l)	U-234 (pCi/l)	U-235 (pCi/l)	U-238 (pCi/l)	Total U (μg/l)
	2/25/05	-0.11	0.81	0.007	0.07	0.01	0.77	0.043	0.53	1.61
	6/14/05	0.16	0.44	0.018	-0.021	0.012	0.43	0.011	0.217	0.64
	9/7/05	0.1	0.63	0.068	0.167	0.114	0.85	0.053	0.43	1.3
	12/20/05	-0.19	0.59	-0.045	0.32	0.014	0.94	0.073	0.46	1.41
	3/15/06	-0.15	0.58	0.025	0.032	-0.004	1.76	0.11	0.92	2.8
	6/14/06	0.42	0.05	0.15	-0.06	0.062	0.18	0.18	0.08	0.31
	9/13/06	0.25	0.34	0.11	-0.079	0.027	0.45	0.051	0.25	0.77
	3/1/07	0.32	0.78	0.052	-0.031	0.012	NT	NT	NT	1.2
CSMRI-1	6/27/07	0.51	0.91	0.17	0.064	-0.005	NT	NT	NT	0.88
	9/11/07	-0.3	0.53	-0.031	0.019	0.001	NT	NT	NT	0.72
	11/27/07	-0.2	0.72	0.71	0.101	0.02	NT	NT	NT	1.2
	2/27/08	0.2	0.85	0.035	0.032	0.011	NT	NT	NT	1.5
	4/18/08	-0.02	0.66	-0.03	-0.004	0.01	NT	NT	NT	1.9
	9/25/08	0.26	0.88	NT	NT	NT	NT	NT	NT	0.96
	12/3/08	0.32	1.39	NT	NT	NT	NT	NT	NT	1.5
	3/17/09	0.09	0.96	NT	NT	NT	NT	NT	NT	2
	6/24/09	0.19	0.16 J	NT	NT	NT	NT	NT	NT	1.6
	3/8/07	0.13	1.19	-0.03	-0.09	0.02	NT	NT	NT	2.7
	6/26/07	0.09	0.3	0.001	0.002	0.012	NT	NT	NT	5
	9/11/07	-0.13	0.65	0.019	0.012	0.001	NT	NT	NT	6.3
	11/27/07	0.11	1.16	0.004	0.06	0.016	NT	NT	NT	6.9
CSMRI-1B	2/28/08	0.32	0.61	0.01	0.058	0.033	NT	NT	NT	6.5
CONKI-ID	4/18/08	0.03	0.72	-0.004	-0.046	0	NT	NT	NT	6
	9/24/08	0.05	0.3	NT	NT	NT	NT	NT	NT	4
	12/5/08	0.02	0.88	NT	NT	NT	NT	NT	NT	4.6
	3/18/09	0.2	1.15	NT	NT	NT	NT	NT	NT	8.1
	6/24/09	0.05	0.69 J	NT	NT	NT	NT	NT	NT	15
CSMRI-2	2/25/05	0.8	1.85	0.07	-0.02	0.01	0.6	0.05	0.16	0.53
	6/14/05	1.47	3.0	0.14	0.003	0.026	0.68	0.025	0.299	0.89
	9/7/05	1.78	2.71	0.162	0.108	0.049	0.65	0.050	0.31	0.94
	12/20/05	1.35	1.62	0.108	0.285	0.024	0.83	0.002	0.35	1.06
	3/15/06	1.25	2.53	0.03	0.204	0.012	0.83	0.066	0.45	1.36
	6/14/06	0.99	1.79	0.25	0.22	0.049	0.69	0.04	0.25	0.76
	9/13/06	1.01	2.35	0.088	-0.039	-0.008	0.46	0.014	0.28	0.85
	3/8/07	0.76	2.15	0.022	-0.01	0.011	NT	NT	NT	0.72
	6/28/07	1.4	3.2	-0.075	-0.01	-0.007	NT	NT	NT	2
	9/11/07	0.78	3.2	0.016	0.101	0.014	NT	NT	NT	0.98
	11/27/07	0.45	2.05	0.037	0.035	0.006	NT	NT	NT	1
	2/28/08	1.37	2.26	0.043	0.085	0.044	NT	NT	NT	0.68
	4/17/08	1.08	1.89	0.041	-0.021	0.008	NT	NT	NT	0.89
	9/24/08	0.97	1.41	NT	NT	NT	NT	NT	NT	0.69

 Table G-1

 Historical Summary of Radioisotopes in Groundwater (Stoller)

					of Radioisotopes in			i		
Sample Station	Sample Date	Ra-226 (pCi/l)	Ra-228 (pCi/l)	Th-228 (pCi/l)	Th-230 (pCi/l)	Th-232 (pCi/l)	U-234 (pCi/l)	U-235 (pCi/l)	U-238 (pCi/l)	Total U (μg/l)
	12/5/08	1.1	1.88	NT	NT	NT	NT	NT	NT	0.83
	3/18/09	2.37	2.68	NT	NT	NT	NT	NT	NT	0.77
	6/24/09	0.78	2.64 J	NT	NT	NT	NT	NT	NT	0.66
	2/25/05	-0.03	0.16	0.019	-0.009	0.013	9.7	0.53	8.2	24.7
	6/14/05	0.26	0.34	0.013	0.014	0.005	11.4	0.49	10.6	31.4
	9/7/05	0.17	0.78	-0.013	0.164	0.086	6.4	0.33	6.4	19.3
	12/20/05	0.13	0.1	0.033	0.311	0.012	11.5	0.61	11.4	34.3
	3/15/06	0	0.38	0.004	0.174	0.007	9	0.43	9	27.1
	6/15/06	0.41	0.39	0.11	0.17	0.061	9.2	0.4	8.9	26.8
	9/13/06	-0.05	0.79	0.056	-0.015	0.007	6.5	0.35	6	17.9
	3/8/07	0.09	0.37	-0.034	-0.037	0.013	NT	NT	NT	48
CSMRI-4	6/27/07	0.07	0.87	0.011	0.035	0.004	NT	NT	NT	66
	9/11/07	0.99	1.12	0.024	0.112	0.021	NT	NT	NT	49
	11/26/07	0.33	0.73	0.029	0.149	0.016	NT	NT	NT	48
	2/27/08	0.24	0.78	0.011	0.038	0.014	NT	NT	NT	58
	4/17/08	0.11	0.71	0.017	-0.019	0.002	NT	NT	NT	62
	9/25/08	0.32	0.8	NT	NT	NT	NT	NT	NT	43
	12/5/08	0.09	0.97	NT	NT	NT	NT	NT	NT	61
	3/17/09	0.54	0.56	NT	NT	NT	NT	NT	NT	80
	6/23/09	0.21	0.89 J	NT	NT	NT	NT	NT	NT	110
	2/25/05	1.06	0.53	0.009	0.007	0.034	1.22	0.056	0.93	2.8
	6/14/05	2.51	0.44	-0.018	0.039	0.011	1.51	0.086	1.2	3.57
	9/7/05	2.50	0.76	0.06	1.25	0.051	1.85	0.051	1.47	4.4
	12/20/05	1.97	0.52	0.032	0.126	0.01	1.45	0.066	1.21	3.63
	3/15/06	0.57	0.45	0.038	0.144	0.019	1.81	0.058	1.38	4.1
	6/15/06	2.13	0.87	0.145	0.08	0.043	1.03	0.13	0.92	2.8
	9/13/06	2.29	0.56	0.053	-0.053	0.005	3.18	0.17	2.32	7
	3/8/07	1.78	0.39	-0.012	-0.061	0	NT	NT	NT	5.8
CSMRI-5	6/27/07	2.22	0.86	0.008	-0.023	0.013	NT	NT	NT	10
	9/11/07	1.91	1.2	0.091	0.003	0.006	NT	NT	NT	11
	11/26/07	1.52	0.49	0.004	-0.008	0.01	NT	NT	NT	6.6
	2/27/08	1.05	0.17	-0.011	0.02	0.051	NT	NT	NT	6.6
	4/17/08	1.37	0.64	0.068	0.029	0.017	NT	NT	NT	6.7
	9/25/08	2.87	0.47	NT	NT	NT	NT	NT	NT	10
	12/4/08	0.78	0.68	NT	NT	NT	NT	NT	NT	10
	3/17/09	0.29	1.24	NT	NT	NT	NT	NT	NT	11
	6/23/09	1.96	1.15 J	NT	NT	NT	NT	NT	NT	12
CSMRI-6B	2/27/07	NT	NT	NT	NT	NT	NT	NT	NT	NT
	6/26/07	0.46	0.63	-0.009	-0.006	0.024	NT	NT	NT	17
	9/10/07	0.15	0.91	0.046	0.025	0.023	NT	NT	NT	11
	11/27/07	-0.02	0.77	-0.002	0.069	0.004	NT	NT	NT	8.2

 Table G-1

 Historical Summary of Radioisotopes in Groundwater (Stoller)

		Ra-226	Ra-228	Th-228	Th-230	Th-232	U-234	U-235	U-238	Total U
Sample Station	Sample Date	(pCi/l)	(µg/l)							
	2/28/08	0.26	1	-0.009	0.022	0.022	NT	NT	NT	4.7
	4/18/08	0.36	0.88	-0.005	-0.022	0.021	NT	NT	NT	5
	7/11/08 (DRY)	NT								
	12/3/08 (DRY)	NT								
CSMRI-6C	3/16/09 (DRY)	NT								
	6/24/09	-0.11	1.81 J	NT	NT	NT	NT	NT	NT	19
	2/27/07	NT								
	6/26/07	0.65	0.22	0.036	0.054	0.027	NT	NT	NT	68
	9/10/07	NT								
	11/26/07	NT								
CSMRI-7B	2/26/08	NT								
CONKI-1D	4/15/08 (DRY)	NT								
	9/24/08 (DRY)	NT								
	12/3/08 (DRY)	NT								
	3/16/09 (DRY)	NT								
	6/24/09 (DRY)	NT								
	3/8/07	0.7	1.06	0.072	-0.031	0.016	NT	NT	NT	1,100
	6/27/07	0.8	0.4	0.039	0.046	0.008	NT	NT	NT	810
	9/10/07	1.31	0.9	0.031	0.05	0.009	NT	NT	NT	630
	11/27/07	1.27	1.2	-0.02	0.074	-0.003	NT	NT	NT	1,300
CSMRI-8	2/27/08	1.19	1.38	0.089	0.1	0.043	NT	NT	NT	1,200
oomini o	4/17/08	0.39	0.71	-0.015	-0.053	0.009	NT	NT	NT	770
	9/25/08	1.5	1.02	NT	NT	NT	NT	NT	NT	890
	12/5/08	1.55	1.44	NT	NT	NT	NT	NT	NT	1,900
	3/18/09	0.31	0.69	NT	NT	NT	NT	NT	NT	980
	6/23/09	-0.28	0.73 J	NT	NT	NT	NT	NT	NT	700
	2/27/07	0.12	0.53	-0.017	0.04	0.027	NT	NT	NT	7.9
	6/26/07	0.22	0.37	0.018	0.004	-0.015	NT	NT	NT	32
	9/10/07	0.5	1.01	0.04	-0.043	0.012	NT	NT	NT	35
	11/26/07	0.25	0.27	0.023	0.003	0.003	NT	NT	NT	28
CSMRI-9	2/27/08	0.11	0.24	0.047	0.037	0.041	NT	NT	NT	24
	4/15/08	0.27	0.65	-0.004	0.015	0.022	NT	NT	NT	22
	9/24/08	0.11	0.48	NT	NT	NT	NT	NT	NT	28
	12/5/08	0.13	0.65	NT	NT	NT	NT	NT	NT	26
	3/16/09	0.17	0.45	NT	NT	NT	NT	NT	NT	34
	6/22/09	0	0.88 J	NT	NT	NT	NT	NT	NT	99
CSMRI-10	3/1/07	0.19	0.63	0.014	-0.004	0.018	NT	NT	NT	7.8
	6/26/07	0.26	0.43	-0.008	0.03	-0.005	NT	NT	NT	8.8
	9/10/07	-0.04	0.48	0.103	0.05	0.005	NT	NT	NT	9.9
	11/26/07	-0.05	0.57	0.068	0.141	0.031	NT	NT	NT	10

Table G-1 Historical Summary of Radioisotopes in Groundwater (Stoller)

	I I I I I I I I I I I I I I I I I I I			istorical Summary o	· · · · ·	i	1 1	1		
Sample Station	Sample Date	Ra-226	Ra-228	Th-228	Th-230	Th-232	U-234	U-235	U-238	Total U
	-	(pCi/l)	(pCi/l)	(pCi/l)	(pCi/l)	(pCi/l)	(pCi/l)	(pCi/l)	(pCi/l)	(µg/l)
	2/26/08	0.12	0.44	0.094	0.011	0.019	NT	NT	NT	9.2
	4/15/08	0.03	0.56	-0.006	-0.05	0.005	NT	NT	NT	8.7
	9/24/08	0.21	0.48	NT	NT	NT	NT	NT	NT	11
	12/4/08	0.11	0.92	NT	NT	NT	NT	NT	NT	19
	3/16/09	0.15	1.01	NT	NT	NT	NT	NT	NT	16
	6/22/09	0.35	0.48 J	NT	NT	NT	NT	NT	NT	12
	3/1/07	0.16	0.46	0.051	0.085	0.007	NT	NT	NT	4.8
	6/26/07	0.37	0.43	0.084	0	0.008	NT	NT	NT	8.4
CSMRI-11	9/10/07	-0.26	0.52	0.012	0.006	0.016	NT	NT	NT	10
COMIN-11	11/26/07	0.16	0.87	0.089	0.099	-0.012	NT	NT	NT	11
	2/26/08	0.28	-0.03	0.044	0.044	0.074	NT	NT	NT	8.7
	4/15/08	0.35	0.75	-0.032	0.004	0.016	NT	NT	NT	7.6
	12/3/08 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT
CSMRI-11B	3/16/09 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT
	6/24/09	0.52	NT	NT	NT	NT	NT	NT	NT	12
MC	L*	Total	Ra = 5	NE	Th 230 + 1	h 232 = 60**	NE	NE	NE	30

*Maximum Contaminant Level – National Primary Drinking Water Regulations **5 CCR 1002-41 Reg 41 – Colorado Groundwater Standards

pCi/l - picocuries per liter J - Estimated

NE - Not Established

NT - not tested

 $\mu g/l$ – micrograms per liter

Table G-2
Historical Summary of Metals in Groundwater (Stoller)
(All results in milligrams per liter)

Sample								uits in ningrains		,						
Station	Sample Date	Ag	As	Ва	Ca	Cd	Cr	Hg	к	Mg	Мо	Na	Pb	Se	v	Zn
	2/25/05	ND	ND	ND	28	ND	ND	ND	2.8	9.4	ND	29	ND	ND	ND	0.032
	6/14/05	ND	ND	ND	17	ND	ND	ND	2.3	5.1	ND	16	ND	ND	ND	0.032
	9/7/05	ND	ND	0.055 (B)	21	ND	ND	ND	2.9	6.3	0.0021 (B)	25	ND	0.0041 (B)	ND	.034
	12/20/05	ND	ND	0.067 (B)	32	ND	ND	0.000034 (B)	2.9	10	ND	26	ND	ND	ND	0.052
	3/15/06	ND	ND	0.064 (B)	33	ND	ND	0.00002 (B)	2.6	10	0.0013 (B)	24	ND	ND	ND	0.049
	6/14/06	ND	ND	0.031 (B)	10	ND	ND	ND	1.9	3	0.0051 (B)	9.2	ND	0.0035 (B)	ND	0.015 (B)
	9/13/06	ND	ND	0.061 (B)	20	ND	0.041 (B)	ND	2.7	6	0.0038 (B)	14	ND	ND	ND	0.03
	3/1/07	ND	ND	0.081 (B)	39	0.00045 (B)	0.00063 (B)	0.000017 (B)	3	12	0.0059 (B)	26	ND	0.0066	ND	0.048
CSMRI-1	6/27/07	ND	ND	0.063 (B)	23	ND	ND	0.0000073 (B)	2.4	9	ND	21	ND	ND	ND	0.017 (B)
	9/11/07	ND	ND	0.065 (B)	23	ND	0.00061 (B)	0.000011 (B)	2.5	7.2	0.002 (B)	14	ND	ND	ND	0.038
	11/27/07	ND	ND	0.075 (B)	31	ND	ND	0.000029 (B)	2.5	9.7	0.0014 (B)	18	ND	ND	ND	0.049
	2/27/08	ND	ND	0.08 (B)	36	ND	ND	ND	2.5	12	0.0013 (B)	22	ND	ND	ND	0.048
	4/18/08	ND	ND	0.081 (B)	36	ND	ND	ND	2.7	11	0.0015 (B)	22	ND	ND	ND	0.057
	9/25/08	NT	NT	NT	30	NT	NT	NT	3	9	NT	18	NT	NT	NT	NT
	12/3/08	NT	NT	NT	39	NT	NT	NT	3.5	12	NT	25	NT	NT	NT	NT
	3/17/09	NT	NT	NT	46	NT	NT	NT	3	14	NT	27	NT	NT	NT	NT
	6/24/2009	0.00078	0.0032	0.097	36	0.00016	0.00041	0.00002	3.3	13	32	0.0019	0.00035	NT	NT	NT
	3/1/07	ND	ND	0.098 (B)	130	ND	0.00014 (B)	0.000017 (B)	52	47	0.17	91	ND	0.0058	0.0009 (B)	ND
	6/26/07	ND	ND	0.071 (B)	83	ND	ND	0.0000072 (B)	10	38	0.029	35	ND	ND	ND	ND
	9/11/07	ND	ND	0.1	93	ND	ND	0.0000094 (B)	8.4	43	0.031	36	ND	ND	ND	0.0012 (B)
	11/27/07	ND	ND	0.11	100	ND	ND	0.000029 (B)	9.4	46	0.024	42	ND	ND	0.00073 (B)	0.0039 (B)
CSMRI-1B	2/28/08	ND	ND	0.11	97	ND	0.0015 (B)	ND	9.3	45	0.029	41	ND	0.0039 (B)	ND	0.0033 (B)
CONTRETE	4/18/08	ND	ND	0.11	93	ND	ND	ND	9.1	43	0.027	39	ND	ND	0.00065 (B)	ND
	9/24/08	NT	NT	NT	92	NT	NT	NT	7.3	39	NT	38	NT	NT	NT	NT
	12/5/08	NT	NT	NT	95	NT	NT	NT	7.6	39	NT	40	NT	NT	NT	NT
	3/18/09	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	6/24/2009	0.00078	0.0032	0.14	140	0.00016	0.00041	0.000022	7.2	61	59	0.0019	0.00035	NT	NT	NT
CSMRI-2	2/25/05	ND	ND	0.11	72	ND	ND	ND	7.1	32	ND	19	ND	ND	ND	0.02
	6/14/05	ND	ND	0.1	76	ND	ND	ND	6.3	32	ND	18	ND	ND	ND	ND
	9/7/05	ND	ND	0.11	81	ND	ND	ND	7.1	35	ND	19	ND	ND	ND	0.011 (B)
	12/20/05	ND	ND	0.098 (B)	76	ND	ND	0.000031 (B)	6.7	33	ND	18	ND	ND	ND	0.0043 (B)
	3/15/06	ND	ND	0.09 (B)	74	ND	ND	0.000023 (B)	6.1	31	ND	17	ND	ND	ND	0.0059 (B)
	6/14/06	ND	ND	0.093 (B)	70	ND	ND	ND	6.3	31	0.0048 (B)	17	ND	0.0031 (B)	ND	0.0092 (B)
	9/13/06	ND	ND	0.11	81	ND	ND	ND	6.7	35	0.0014 (B)	19	ND	ND	ND	0.0092 (B)
	3/8/07	ND	0.0058 (B)	0.12	88	ND	ND	ND	8.3	39	ND	21	ND	0.03	ND	0.0011 (B)
	6/28/07	ND	ND	0.11	97	ND	ND	0.0000056 (B)	7.9	49	ND	26	ND	ND	0.002 (B)	0.0041 (B)
	9/11/07	ND	ND	0.1	91	ND	ND	0.000016 (B)	7.2	43	ND	23	ND	ND	0.00086 (B)	0.0082 (B)
	11/27/07	ND	ND	0.093 (B)	83	ND	ND	0.000023 (B)	7	38	ND	22	ND	ND	0.001 (B)	0.0075 (B)
	2/28/08	ND	ND	0.094 (B)	81	ND	0.0018 (B)	ND	6.6	38	ND	21	ND	ND	0.0017 (B)	0.0073 (B)
	4/17/08	ND	ND	0.092 (B)	78	ND	ND	ND	6.6	36	ND	20	ND	ND	0.0014 (B)	0.0055 (B)
	9/24/08	NT	NT	NT	74	NT	NT	NT	6.4	34	NT	19	NT	NT	NT	NT

Sample							(All res	ults in milligrams	per mer)						
Station	Sample Date	Ag	As	Ва	Ca	Cd	Cr	Hg	к	Mg	Мо	Na	Pb	Se	v	Zn
	12/5/08	NT	NT	NT	75	NT	NT	NT	6.6	33	NT	20	NT	NT	NT	NT
	3/18/09	NT	NT	NT	76	NT	NT	NT	6.4	34	NT	19	NT	NT	NT	NT
	6/23/2009	0.00078	0.0032	0.096	77	0.00016	0.00041	0.000024	6.6	35	20	0.0019	0.00035	NT	NT	NT
	2/25/05	ND	ND	ND	72	ND	ND	ND	5.1	31	0.017	29	ND	ND	ND	0.12
	6/14/05	ND	ND	ND	86	ND	ND	ND	6.6	34	0.038	34	ND	0.0063	ND	0.068
	9/7/05	ND	0.0035 (B)	0.055 (B)	82	ND	ND	ND	7.6	33	0.035	31	ND	0.0049 (B)	ND	0.097
	12/20/05	ND	ND	0.056 (B)	100	ND	ND	0.000045 (B)	6.8	43	0.024	34	ND	ND	ND	0.18
	3/15/06	ND	ND	0.042 (B)	81	ND	ND	0.000034 (B)	5	35	0.021	29	ND	ND	0.00056 (B)	0.21
	6/15/06	ND	0.0031 (B)	0.055 (B)	89	0.00085 (B)	ND	0.0000049 (B)	8.3	37	0.03	31	ND	ND	0.0011 (B)	0.11
	9/13/06	ND	ND	0.043 (B)	66	ND	ND	0.000016 (B)	8.3	27	0.038	30	ND	ND	ND	0.082
	3/8/07	ND	0.0057 (B)	0.072 (B)	120	0.00023 (B)	ND	0.000018 (B)	11	49	0.015	47	ND	0.019	ND	0.088
CSMRI-4	6/27/07	ND	ND	0.067 (B)	110	ND	ND	0.000022 (B)	11	46	0.04	47	ND	ND	0.00073 (B)	0.14
	9/11/07	ND	0.0045 (B)	0.089 (B)	120	0.0011 (B)	0.0014 (B)	0.000037 (B)	12	49	0.05	41	ND	ND	0.0012 (B)	0.17
	11/26/07	ND	ND	0.081 (B)	110	0.00049 (B)	ND	0.000035 (B)	10	50	0.024	43	ND	ND	0.0011 (B)	0.1
	2/27/08	ND	ND	0.073 (B)	130	ND	ND	0.000016 (B)	8.2	58	0.015	45	ND	0.0034 (B)	ND	0.069
	4/17/08	ND	0.0063 (B)	0.089 (B)	150	0.00047 (B)	ND	0.000016 (B)	10	66	0.014	53	ND	ND	0.00078 (B)	0.087
	9/25/08	NT	NT	NT	130	NT	NT	NT	13	55	NT	50	NT	NT	NT	NT
	12/5/08	NT	NT	NT	130	NT	NT	NT	11	54	NT	48	NT	NT	NT	NT
	3/17/09	NT	NT	NT	100	NT	NT	NT	9.3	45	NT	63	NT	NT	NT	NT
	6/23/2009	0.00078	0.0032	0.084	89	0.00016	0.00041	0.00013	12	38	70	0.0019	0.00068	NT	NT	NT
	2/25/05	ND	ND	ND	54	ND	ND	ND	3.4	22	ND	27	ND	ND	ND	0.067
	6/14/05	ND	ND	ND	63	ND	ND	ND	3.3	23	ND	28	ND	ND	ND	0.047
	9/7/05	ND	ND	0.085 (B)	85	ND	ND	ND	4.2	31	0.0042 (B)	35	ND	0.0037 (B)	0.0018 (B)	0.089
	12/20/05	ND	ND	0.072 (B)	79	0.00071 (B)	ND	0.000048 (B)	4.1	30	0.002 (B)	31	ND	ND	0.0012 (B)	0.17
	3/15/06	ND	ND	0.058 (B)	70	0.00037 (B)	ND	0.000029 (B)	3.5	26	0.0031 (B)	29	ND	0.0035 (B)	0.00067 (B)	0.11
	6/15/06	ND	ND	0.052 (B)	51	ND	ND	0.000012 (B)	3.6	19	0.0028 (B)	26	ND	ND	ND	0.055
	9/13/06	ND	ND	0.087 (B)	110	ND	0.0022 (B)	ND	4.5	41	0.0027 (B)	50	ND	ND	0.001 (B)	0.11
	3/8/07	ND	0.0037 (B)	0.063 (B)	80	ND	ND	ND	4.5	31	0.0019 (B)	34	ND	0.015	ND	0.083
CSMRI-5	6/27/07	ND	ND	0.066 (B)	98	ND	ND	0.0000091 (B)	4.5	40	0.006 (B)	40	ND	ND	0.0017 (B)	0.025
	9/11/07	ND	ND	0.13	110	ND	0.00082 (B)	0.000023 (B)	4.9	44	0.0042 (B)	47	ND	ND	0.0015 (B)	0.054
	11/26/07	ND	ND	0.087 (B)	110	ND	0.00089 (B)	0.000032 (B)	4.5	42	ND	47	ND	ND	0.0012 (B)	0.12
	2/27/08	ND	ND	0.073 (B)	100	ND	ND	ND	4.3	40	ND	42	ND	ND	ND	0.094
	4/17/08	ND	ND	0.078 (B)	100	ND	ND	0.000018 (B)	4.6	40	0.0011 (B)	41	ND	ND	0.0011 (B)	0.093
	9/25/08	NT	NT	NT	160	NT	NT	NT	5.5	61	NT	59	NT	NT	NT	NT
	12/4/08	NT	NT	NT	110	NT	NT	NT	4.8	40	NT	47	NT	NT	NT	NT
	3/17/09	NT	NT	NT	110	NT	NT	NT	4.4	40	NT	44	NT	NT	NT	NT
	6/23/2009	0.00078	0.0032	0.12	130	0.00016	0.00041	0.000026	5.8	50	51	0.0019	0.00049	NT	NT	NT
CSMRI-6B	2/27/08	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	6/26/07	ND	ND	0.12	100	ND	ND	0.0000059 (B)	5.9	56	0.004 (B)	41	ND	ND	ND	ND
	9/10/07	ND	0.0046 (B)	0.15	110	ND	0.00088 (B)	0.000013 (B)	4.8	48	0.0022 (B)	46	ND	ND	0.00081 (B)	0.0051 (B)
	11/27/07	ND	0.0048 (B)	0.17	110	ND	ND	0.000025 (B)	6	49	0.0028 (B)	57	ND	0.0051	0.00066 (B)	ND

 Table G-2

 Historical Summary of Metals in Groundwater (Stoller) (All results in milligrams per liter)

		Table G-2			
Histo	orical Summa	ry of Metals in Gr	oundw	ater (Stoller))
	(All res	ults in milligrams	per lite	er)	

Sample																
Station	Sample Date	Ag	As	Ва	Ca	Cd	Cr	Hg	к	Mg	Мо	Na	Pb	Se	v	Zn
	2/28/08	ND	ND	0.17	100	ND	ND	ND	5.8	43	0.004 (B)	49	ND	ND	ND	0.0048
	4/18/08	ND	ND	0.17	96	ND	ND	ND	6.1	40	0.0059 (B)	45	ND	ND	0.0013 (B)	0.0099 (B)
	12/3/08 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
CSMRI-6C	3/16/09 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	6/24/2009	0.00078	0.0032	0.24	120	0.00016	0.00041	0.000027	18	63	46	0.0019	0.0006	NT	NT	NT
	2/27/07	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	6/26/07	ND	ND	0.056 (B)	70	ND	ND	0.000006 (B)	5.5	37	0.024	53	ND	ND	0.00061 (B)	0.0041 (B)
	9/10/07	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	11/26/08 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
CSMRI-7B	2/27/08	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
CSIVIN-7D	4/15/08 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	9/24/08 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	12/3/08 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	3/16/09 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Dry	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	3/807	ND	0.0053 (B)	0.068 (B)	230	ND	ND	ND	23	72	0.094	74	ND	0.034	ND	0.0024 (B)
CSMRI-8	6/27/07	ND	ND	0.053 (B)	190	ND	ND	0.0000099 (B)	19	55	0.043	52	ND	ND	ND	0.069
	9/10/07	ND	0.0069 (B)	0.076 (B)	160	ND	0.00074 (B)	0.000027 (B)	15	49	0.034	54	0.0018 (B)	ND	ND	0.025
	11/27/07	ND	ND	0.091 (B)	230	ND	ND	0.000024 (B)	15	67	0.026	70	ND	0.0046 (B)	0.001 (B)	0.011 (B)
	2/27/08	ND	0.036 (B)	0.07 (B)	270	ND	ND	ND	15	82	0.019	100	ND	ND	ND	0.038
	4/17/08	ND	ND	0.046 (B)	210	ND	0.0011 (B)	ND	13	63	0.016	73	ND	ND	ND	0.032
	9/25/08	NT	NT	NT	230	NT	NT	NT	17	68	NT	70	NT	NT	NT	NT
	12/5/08	NT	NT	NT	400	NT	NT	NT	18	95	NT	84	NT	NT	NT	NT
	3/18/09	NT	NT	NT	250	NT	NT	NT	13	74	NT	97	NT	NT	NT	NT
	6/23/2009	0.00078	0.0032	0.038	170	0.00095	0.00041	0.00003	14	48	60	0.0019	0.00035	NT	NT	NT
	2/27/07	ND	ND	0.08 (B)	69	ND	0.0011 (B)	0.000024 (B)	12	31	0.045	33	ND	0.011	0.001 (B)	ND
	6/26/07	ND	ND	0.049 (B)	160	ND	ND	0.000002 (B)	8.5	77	0.0028	150	ND	0.0049 (B)	0.00096 (B)	0.0096 (B)
	9/10/07	ND	0.004 (B)	0.059 (B)	100	ND	0.0009 (B)	0.000016 (B)	6	51	0.0037 (B)	49	ND	ND	0.00071 (B)	0.0097 (B)
	11/26/07	ND	ND	0.078 (B)	110	0.00051 (B)	0.0011 (B)	0.000031 (B)	5.9	56	0.0023 (B)	52	ND	0.0054	0.0012 (B)	0.015 (B)
CSMRI-9	2/27/08	ND	ND	0.079 (B)	110	ND	ND	ND	5.4	56	ND	49	ND	0.0033 (B)	ND	0.011
	4/15/08	ND	ND	0.077 (B)	100	ND	ND	0.000013 (B)	5	52	0.0017 (B)	46	ND	ND	0.00077 (B)	0.0079 (B)
	9/24/08	NT	NT	NT	110	NT	NT	NT	5.8	54	NT	50	NT	NT	NT	NT
	12/5/08	NT	NT	NT	100	NT	NT	NT	5.3	48	NT	46	NT	NT	NT	NT
	3/16/09	NT	NT	NT	100	NT	NT	NT	4.7	49	NT	45	NT	NT	NT	NT
	6/22/2009	0.00078	0.0032	0.054	250	0.00079	0.00041	0.000026	12	100	120	0.0019	0.00035	NT	NT	NT
CSMRI-10	3/1/07	0.00051 (B)	ND	0.064 (B)	79	ND	0.0013 (B)	0.000024 (B)	7.3	33	0.01	36	ND	0.01	0.0011 (B)	ND
	6/26/07	ND	ND	0.079 (B)	100	ND	ND	0.0000063 (B)	4.7	44	ND	37	ND	0.0044 (B)	0.00055 (B)	ND
	9/10/07	ND	0.0039 (B)	0.071 (B)	89	ND	0.0012 (B)	0.00002 (B)	4.2	38	0.0014 (B)	36	ND	ND	0.00099 (B)	0.0042 (B)
	11/26/07	ND	ND	0.085 (B)	110	ND	ND	0.000026 (B)	4.7	43	ND	41	ND	ND	ND	ND
	2/26/08	ND	ND	0.09 (B)	110	ND	ND	ND	4.6	46	ND	41	ND	ND	ND	0.0052

			I				(All res	ults in milligrams	per mei)						
Sample Station	Sample Date	Ag	As	Ва	Ca	Cd	Cr	Hg	к	Mg	Мо	Na	Pb	Se	v	Zn
	4/15/08	ND	ND	0.088 (B)	100	ND	0.0044 (B)	ND	4.5	44	ND	40	ND	ND	0.00059 (B)	0.0018 (B)
	9/24/08	NT	NT	NT	100	NT	NT	NT	4.6	42	NT	41	NT	NT	NT	NT
	12/4/08	NT	NT	NT	100	NT	NT	NT	4.8	41	NT	43	NT	NT	NT	NT
	3/16/09	NT	NT	NT	110	NT	NT	NT	4.5	43	NT	43	NT	NT	NT	NT
	6/22/2009	0.00078	0.0032	0.09	100	0.00016	0.00041	0.00002	4.5	41	40	0.0019	0.00035	NT	NT	NT
	2/27/07	ND	ND	0.073 (B)	75	ND	0.00013 (B)	0.000023 (B)	9.7	29	0.033	33	ND	0.013	0.00073 (B)	0.0023 (B)
	6/26/07	ND	ND	0.096 (B)	110	ND	0.0012 (B)	0.0000071 (B)	5.4	44	0.0014 (B)	39	ND	0.0064	0.00059 (B)	ND
CSMRI-11	9/10/07	ND	0.004 (B)	0.071 (B)	96	ND	0.00083 (B)	0.000016 (B)	4.5	39	0.0016 (B)	44	ND	ND	0.00078(B)	0.0033 (B)
CSIMICI-TT	11/26/07	ND	ND	0.11	110	ND	ND	0.000028 (B)	4.9	44	0.0012 (B)	40	ND	ND	0.0013 (B)	ND
	2/26/08	ND	ND	0.11	110	ND	ND	ND	4.6	42	ND	44	ND	ND	ND	0.0048
	4/15/08	ND	ND	0.12	100	ND	ND	ND	4.7	41	ND	44	ND	ND	ND	ND
	12/3/08 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
CSMRI-11B	3/16/09 (DRY)	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	6/24/2009	0.00078	0.0032	0.22	89	0.00043	0.00041	0.000027	19	43	48	0.0019	0.00066	NT	NT	NT
Detection Limits	5	0.01	0.01	0.1	1	0.005	0.01	0.0002	1	1	0.01	1	0.003	0.005	0.01	0.02
MCL*		NE	0.01	2	NE	0.005	0.1	0.002	NE	NE	NE	NE	0.015	0.05	NE	NE

 Table G-2

 Historical Summary of Metals in Groundwater (Stoller)

 (All results in milligrams per liter)

*Maximum Contaminant Level – National Primary Drinking Water Regulations

ND – non detect

NE-not established

NT – not tested

(B) – Detected above Instrument Detection Level but below Reported Detection Level

Table G-3 Historical Summary of Radioisotopes in Surface Water (Stoller)

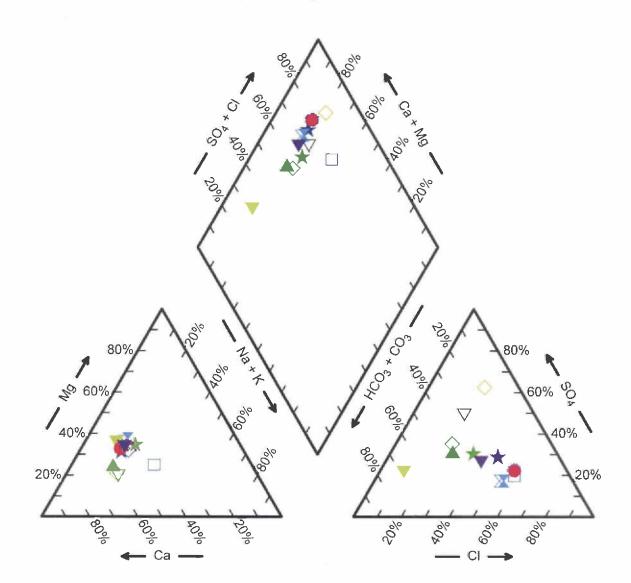
		Ra-226	Ra-228	Th-228	Th-230	Th-232	U-234	U-235	U-238	Total U
Sample Station	Sample Date	(pCi/l)	(pCi/l)	(pCi/l)	(pCi/l)	(pCi/l)	(pCi/l)	(pCi/l)	(pCi/l)	(µg/l)
	2/25/05	0	0.58	0.018	-0.026	-0.001	0.89	0.083	0.65	1.97
	6/14/05	0.14	0.05	0.05	-0.025	0.016	0.246	0.021	0.251	0.75
	9/7/05	0.18	0.42	0.041	0.25	0.102	0.35	0.031	0.35	1.04
	12/20/05	-0.31	0.47	0.028	0.197	-0.005	0.64	0.041	0.7	2.11
	3/15/06	-0.16	0.35	0.059	0.125	0.005	0.6	0.029	0.53	1.59
	6/14/06	0.13	0.45	0.16	0.53	0.062	0.11	0.08	0.19	0.61
	9/13/06	-0.03	0.25	-0.019	-0.035	0.01	0.37	-0.005	0.34	1
	3/1/07	-0.1	0.25	-0.038	0.15	0.026	NT	NT	NT	1.7
SW-1	6/27/07	0.13	0.77	0.006	0.016	0.014	NT	NT	NT	0.6
	9/11/07	0.15	0.74	0.063	0.088	0.012	NT	NT	NT	0.94
	11/27/07	0.2	0.24	0.026	0.049	0.025	NT	NT	NT	1.8
	2/27/08	0.1	0.48	0.014	0.002	0.024	NT	NT	NT	2
	4/18/08	0.06	-0.07	-0.023	-0.026	0.012	NT	NT	NT	1.9
	9/25/08	0.18	-0.01	NT	NT	NT	NT	NT	NT	1.1
	12/3/08	-0.06	0.34	NT	NT	NT	NT	NT	NT	1.6
	3/16/09	0.14	0.73	NT	NT	NT	NT	NT	NT	1.9
	6/24/09	0.33	1.228 J	NT	NT	NT	NT	NT	NT	0.55
	2/25/05	0.45	0.06	0.011	-0.016	0.033	0.8	0.066	0.42	1.29
	6/14/05	0.04	0.29	0.071	-0.028	0.007	0.259	0.032	0.23	0.69
	9/7/05	-0.08	0.24	-0.013	0.107	0.051	0.54	0.014	0.54	1.62
	12/20/05	0.09	0.07	-0.003	0.126	0	0.71	0.067	0.49	1.5
	3/15/06	-0.04	-0.15	0.009	0.184	0.01	0.79	0.004	0.51	1.52
	6/14/06	0.03	0.04	0.172	0.24	0.1	0.39	0	0.48	1.44
	9/13/06	0.11	0.35	0.009	-0.03	0.01	0.43	-0.006	0.3	0.89
	3/8/07	0.12	0.73	0.047	-0.055	0	NT	NT	NT	1.7
SW-2	6/28/07	0.02	0.78	0.028	0.014	0	NT	NT	NT	0.57
	9/11/07	0.1	0.27	0.066	0.068	0.002	NT	NT	NT	0.97
	11/26/07	0.11	0.36	0.007	0	0.012	NT	NT	NT	1.7
	2/26/08	0.1	0	-0.01	0.113	0.011	NT	NT	NT	2
	4/18/08	0.13	0.58	0.015	0.24	0.024	NT	NT	NT	1.8
	9/24/08	-0.16	-0.02	NT	NT	NT	NT	NT	NT	0.99
	12/3/08	0.1	0.46	NT	NT	NT	NT	NT	NT	1.5
	3/16/09	0.2	0.29	NT	NT	NT	NT	NT	NT	1.9
	6/24/09	0.03	0.47 J	NT	NT	NT	NT	NT	NT	.059
MC)L*	Total	Ra = 5	NE	Th 230 + T	h 232 = 60**	NE	NE	NE	30

*Maximum Contaminant Level – National Primary Drinking Water Regulations **5 CCR 1002-31 Reg 31 – Colorado Surface Water Standards pCi/l - picoCuries per liter

µg/l – micrograms per liter

Sample Station	Sample	Ag	As	Ва	Са	Cd	Cr	milligrams pe	K K	Mg	Мо	Na	Pb	Se	V	Zn
Sample Station	Date									-					•	
	2/25/05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.2
-	6/14/05	ND	ND	ND	11	ND	ND	ND	1.1	2.8	ND	5.2	ND	ND	ND	0.09
	9/7/05	ND	0.0037 (B)	0.029 (B)	20	ND	ND	ND	2.2	4.4	0.0044 (B)	8.5	ND	0.0045 (B)	ND	0.063
	12/20/05	ND	ND	0.042 (B)	35	0.00057 (B)	ND	0.000034 (B)	3.7	7.6	0.004 (B)	19	ND	ND	ND	0.22
	3/15/06	ND	ND	0.04 (B)	37	0.00084 (B)	0.00047 (B)	0.000024 (B)	3.7	8.5	0.0048 (B)	23	ND	ND	0.00067 (B)	0.19
	6/14/06	0.0012 (B)	0.0032 (B)	0.011 (B)	8.2	ND	ND	ND	1	1.9	0.0042 (B)	3.1	ND	ND	ND	0.029
	9/13/06	ND	ND	0.03 (B)	21	ND	ND	ND	2.1	4.4	0.0049 (B)	8.6	ND	ND	ND	0.053
	3/1/07	ND	ND	0.049 (B)	44	0.0011 (B)	0.00092 (B)	0.000023 (B)	4.3	11	0.0046 (B)	26	ND	ND	ND	0.22
SW-1	6/27/07	ND	ND	0.018 (B)	10	ND	ND	0.0000068 (B)	0.93 (B)	2.5	0.0017 (B)	3.2	ND	ND	ND	0.067
	9/11/07	ND	ND	0.032 (B)	21	ND	ND	0.000019	1.7	5	0.0029 (B)	7.4	ND	ND	ND	0.078
-	11/27/07	ND	ND	0.042 (B)	33	0.00076 (B)	ND	0.00027 (B)	2.8	8.2	0.0032 (B)	15	ND	ND	ND	0.18
-	2/27/08	ND	ND	0.042 (B)	36	ND	ND	ND	3.3	9.6	0.0022 (B)	19	ND	ND	ND	0.15
-	4/18/08	ND	ND	0.044 (B)	35	0.00044 (B)	ND	ND	3.4	9	0.0034 (B)	23	ND	ND	ND	0.13
-	9/25/08	NT	NT	NT	23	NT	NT	NT	1.9	5.1	NT	9	NT	NT	NT	NT
-	12/3/08	NT	NT	NT	32	NT	NT	NT	3	7.1	NT	15	NT	NT	NT	NT
-	3/16/09	NT	NT	NT	35	NT	NT	NT	3.1	8.9	NT	17	NT	NT	NT	NT
	6/24/09	0.00078	0.0032	0.017	8.7	0.00016	0.00041	0.000024	0.92	2.1	3.3	0.0019	0.00035	NT	NT	NT
-	2/25/05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.17
	6/14/05	ND	ND	ND	11	`ND	ND	ND	1.1	2.8	ND	4.8	ND	ND	ND	0.085
	9/7/05	ND	ND	0.028 (B)	20	ND	ND	ND	2.1	4.4	0.0037 (B)	8.7	ND	0.0037 (B)	ND	0.051
-	12/20/05	ND	ND	0.042 (B)	35	0.00043 (B)	ND	0.000034 (B)	3.8	8	0.0038 (B)	19	ND	ND	ND	0.21
-	3/15/06	ND	ND	0.042 (B)	39	0.00053 (B)	0.00055 (B)	0.000022 (B)	3.8	8.9	0.0046 (B)	25	ND	ND	0.00053 (B)	0.2
	6/14/06	ND	0.0022 (B)	0.011 (B)	8.4	ND	ND	ND	1	1.9	0.0045 (B)	3	ND	ND	ND	0.031
	9/13/06	ND	ND	0.03 (B)	21	ND	ND	ND	2.1	4.4	0.0048 (B)	8.5	ND	ND	ND	0.04
	3/8/07	ND	0.0053 (B)	0.049 (B)	39	0.00064 (B)	ND	ND	4.2	9.8	0.0014 (B)	22	ND	ND	ND	0.17
SW-2	6/28/07	ND	ND	0.019 (B)	10	ND	ND	0.0000056 (B)	0.93 (B)	2.6	ND	3.3	ND	ND	ND	0.075
	9/11/07	ND	ND	0.033 (B)	21	ND	ND	0.00001	1.7	5.1	0.0035 (B)	7.5	ND	ND	ND	0.084
	11/26/07	ND	ND	0.044 (B)	35	0.0005 (B)	ND	0.00027 (B)	2.9	8.6	0.0027 (B)	15	ND	ND	ND	0.19
	2/26/08	ND	ND	0.051	35	0.0005 (B)	ND	ND	3.1	9.2	0.0023 (B)	21	ND	ND	ND	0.15
	4/18/08	ND	ND	0.045 (B)	35	0.0005 (B)	ND	ND	3.4	9.1	0.0031 (B)	23	ND	ND	ND	0.14
	9/24/08	NT	NT	NT	23	NT	NT	NT	1.9	5.1	NT	9	NT	NT	NT	NT
	12/3/08	NT	NT	NT	31	NT	NT	NT	3	7.5	NT	15	NT	NT	NT	NT
	3/16/09	NT	NT	NT	37	NT	NT	NT	3.5	9.7	NT	19	NT	NT	NT	NT
	6/24/09	0.00078	0.0032	0.016	8.7	0.00016	0.00041	0.000027	0.9	2.2	3.3	0.0019	0.00035			
Detection	Limits	0.01	0.01	0.1	1	0.005	0.01	0.0002	1	1	0.01	1	0.003	0.005	0.01	0.02
	*	0.01	0.01			0.005			NE		NE		1		NE	NE

Table G-4 Historical Summary of Metals in Surface Water (Stoller) (All results in milligrams per liter)


*Maximum Contaminant Level – National Primary Drinking Water Regulations ND – Non Detect

NE – Not Established

(B) – Detected above Instrument Detection Level but below Reported Detection Level

Appendix H Anion and Cation Balances and Piper Diagram

Piper Diagram CSMRI 2009 Quarter 3

			CSMRI-1
Water Type Dissolved Solids Density Conductivity Hardness (as CaCO	Ca-Cl 388.54 mg/kg 0.99732 g/cm ³ 684 µmho/cm 9 ₃)	387.5 mg/L	Calculated Calculated Measured
Total Carbonate Non-Carbonate	194.5 mg/kg 158.03 36.467	193.98 mg/L 157.61 36.369	Calculated

Primary Tests		
Anion-Cation Balance		
Anions	5.94	
Cations	5.92	
% Difference	0.237	OK
Measured TDS = Calculated TDS	5	
Measured	N/A	
Calculated	388.540	
Ratio	N/A	
Measured EC = Calculated EC		
Measured	684.000	
Calculated	610.559	
Ratio	1.120	Not within range 0.9 to 1.1
Secondary Tests		
Measured EC and Ion Sums:		
Anions	0.868997	Not within preferred range (0.9-1.1)
Cations	0.864885	Not within preferred range (0.9-1.1)
Calculated TDS to EC ratio	0.568	OK
Measured TDS to EC ratio		
Measured TDS unavailable		
Organic Mass Balance		
$DOC \ge Sum of Organics$		
Dissolved Organic Carbon	1.000 mg/L	
Sum of Organics		OV
Sum of Organics	0.000 mg/L	OK

	CSMRI-1B					
Water Type Dissolved Solids Density Conductivity Hardness (as CaCO	Ca-Cl 807.71 mg/kg 0.99764 g/cm ³ 1320 µmho/cm	805.8 mg/L	Calculated Calculated Measured			
Total Carbonate Non-Carbonate	527.37 mg/kg 477.38 49.997	526.13 mg/L 476.25 49.879	Calculated			

CSMRI-1B

Primary Tests		
Anion-Cation Balance		
Anions	10.8	
Cations	12.5	
% Difference	7.184	Not within \pm 5%
Measured TDS = Calculated TDS		
Measured	N/A	
Calculated	807.706	
Ratio	N/A	
Measured EC = Calculated EC		
Measured	1320.000	
Calculated	1096.691	
Ratio	1.204	Not within range 0.9 to 1.1
Secondary Tests		
Measured EC and Ion Sums:		
Anions	0.821360	Not within preferred range (0.9-1.1)
Cations	0.948508	Within preferred range (0.9-1.1)
Calculated TDS to EC ratio	0.612	OK
Measured TDS to EC ratio		
Measured TDS unavailable		
Organic Mass Balance		
$DOC \ge Sum of Organics$		
Dissolved Organic Carbon	2.800 mg/L	
Sum of Organics	0.000 mg/L	OK

Aq•QA®

Water Type	Ca-HCO ₃		
Dissolved Solids	551.61 mg/kg	550.2 mg/L	Calculated
Density	0.99745 g/cm ³		Calculated
Conductivity	617 µmho/cm		Measured
Hardness (as CaCC) ₃)		
Total	330.63 mg/kg	329.78 mg/L	Calculated
Carbonate	330.63	329.78	
Non-Carbonate	0.0	0.0	

.

Primary Tests		
Anion-Cation Balance		
Anions	6.7	
Cations	7.55	
% Difference	5.953	Not within $\pm 2\%$
Measured TDS = Calculated TDS		
Measured	N/A	
Calculated	551.608	
Ratio	N/A	
Measured EC = Calculated EC		
Measured	617.000	
Calculated	642.345	
Ratio	0.961	OK
Secondary Tests		
Measured EC and Ion Sums:		
Anions	1.086139	Within preferred range (0.9-1.1)
Cations	1.223649	Not within preferred range (0.9-1.1)
Calculated TDS to EC ratio	0.894	Not within preferred range (0.55-0.7)
Measured TDS to EC ratio		
Measured TDS unavailable		
Organic Mass Balance		
$DOC \ge Sum of Organics$	the provide that	
Dissolved Organic Carbon	1.000 mg/L	19239
Sum of Organics	0.000 mg/L	OK

CSMRI-4 Water Type Ca-HCO₃ 1130.4 mg/kg 0.99788 g/cm³ **Dissolved Solids** 1128 mg/L Calculated Density Calculated Conductivity 170 µmho/cm Measured Hardness (as CaCO₃) Total 667.19 mg/L 667.19 668.6 mg/kg Calculated Carbonate 668.6 Non-Carbonate 0.0 0.0

Primary Tests		
Anion-Cation Balance		
Anions	14.7	
Cations	16.7	
% Difference	6.419	Not within ± 5%
Measured TDS = Calculated TDS		
Measured	N/A	
Calculated	1130.392	
Ratio	N/A	
Measured EC = Calculated EC		
Measured	170,000	
Calculated	1385.547	
Ratio	0.123	Not within range 0.9 to 1.1
Secondary Tests		
Measured EC and Ion Sums:		
Anions	8.634574	Not within preferred range (0.9-1.1)
Cations	9.819202	Not within preferred range (0.9-1.1)
Calculated TDS to EC ratio	6.649	Not within preferred range (0.55-0.7)
Measured TDS to EC ratio		
Measured TDS unavailable		
Organic Mass Balance		
$DOC \ge Sum of Organics$		
Dissolved Organic Carbon	5.700 mg/L	
Sum of Organics	0.000 mg/L	OK

CSMRI-5						
Water Type Dissolved Solids Density Conductivity Hardness (as CaCC	Ca-Cl 952.14 mg/kg 0.99775 g/cm ³ 164 μmho/cm 9 ₃)	950 mg/L	Calculated Calculated Measured			
Total Carbonate Non-Carbonate	606.52 mg/kg 411.56 194.96	605.16 mg/L 410.64 194.52	Calculated			

Primary Tests Anion-Cation Balance		
Anions	14.4	
Cations	14.7	
% Difference	0.969	ОК
Measured TDS = Calculated TDS		
Measured	N/A	
Calculated	952.143	
Ratio	N/A	
Measured EC = Calculated EC		
Measured	164.000	
Calculated	1355.477	
Ratio	0.121	Not within range 0.9 to 1.1
Secondary Tests		
Measured EC and Ion Sums:		
Anions	8.779552	Not within preferred range (0.9-1.1)
Cations	8.951433	Not within preferred range (0.9-1.1)
Calculated TDS to EC ratio	5.806	Not within preferred range (0.55-0.7)
Measured TDS to EC ratio		
Measured TDS unavailable		
Organic Mass Balance		
$DOC \ge Sum of Organics$		
Dissolved Organic Carbon	1.500 mg/L	
Sum of Organics	0.000 mg/L	ОК

Aq•QA®

CSMRI-6C

Water Type	Ca-Cl		
Dissolved Solids	851.58 mg/kg	849.6 mg/L	Calculated
Density	0.99767 g/cm ³		Calculated
Conductivity	151 µmho/cm		Measured
Hardness (as CaCO	93)		
Total	547.99 mg/kg	546.72 mg/L	Calculated
Carbonate	460.92	459.85	
Non-Carbonate	87.075	86.872	

and a

÷

		CSMRI-6C	
Primary Tests			
Anion-Cation Balance			
Anions	12.1		
Cations	13.2		
% Difference	4.214	OK	
Measured TDS = Calculated T	DS		
Measured	N/A		
Calculated	851.581		
Ratio	N/A		
Measured EC = Calculated EC			
Measured	151.000		
Calculated	1184.138		
Ratio	0.128	Not within range 0.9 to 1.1	
Secondary Tests			
Measured EC and Ion Sums:			
Anions	8.027186	Not within preferred range (0.9-1.1)	
Cations	8.733491	Not within preferred range (0.9-1.1)	
Calculated TDS to EC ratio	5,640	Not within preferred range (0.55-0.7)	
Measured TDS to EC ratio			
Measured TDS unavailable			
Organic Mass Balance			
$DOC \ge Sum of Organics$			
Dissolved Organic Carbon	1.400 mg/L		
Sum of Organics	0.000 mg/L	ОК	
	_		

Aq•QA®

CSMRI-8					
Water Type Dissolved Solids Density Conductivity Hardness (as CaCO	Ca-HCO ₃ 1376.7 mg/kg 0.99807 g/cm ³ 202 µmho/cm	1374 mg/L	Calculated Calculated Measured		
Total Carbonate Non-Carbonate	885.39 mg/kg 885.39 0.0	883.68 mg/L 883.68 0.0	Calculated		

Primary Tests		
Anion-Cation Balance		
Anions	17.6	
Cations	21.4	
% Difference	9.678	Not within \pm 5%
Measured TDS = Calculated TDS		
Measured	N/A	
Calculated	1376.658	
Ratio	N/A	
Measured EC = Calculated EC		
Measured	202.000	
Calculated	1668.500	
Ratio	0.121	Not within range 0.9 to 1.1
Secondary Tests		_
Measured EC and Ion Sums:		
Anions	8.718324	Not within preferred range (0.9-1.1)
Cations	10.586729	Not within preferred range (0.9-1.1)
Calculated TDS to EC ratio	6.815	Not within preferred range (0.55-0.7)
Measured TDS to EC ratio		,
Measured TDS unavailable		
Organic Mass Balance		
$DOC \ge Sum of Organics$		
Dissolved Organic Carbon	5.900 mg/L	
Sum of Organics	0.000 mg/L	OK

CSMRI-9				
Water Type Dissolved Solids Density Conductivity Hardness (as CaCO	Ca-HCO ₃ 928.31 mg/kg 0.99773 g/cm ³ 152 µmho/cm	926.2 mg/L	Calculated Calculated Measured	
Total Carbonate Non-Carbonate	539.71 mg/kg 526.66 13.052	538.48 mg/L 525.46 13.022	Calculated	

. 8

2

		CSMRI-9	
Primary Tests			
Anion-Cation Balance			
Anions	13.2		
Cations	13.7		
% Difference	1.992	OK	
Measured TDS = Calculated	TDS		
Measured	N/A		
Calculated	928.306		
Ratio	N/A		
Measured EC = Calculated	EC		
Measured	152.000		
Calculated	1229.965		
Ratio	0.124	Not within range 0.9 to 1.1	
Secondary Tests			
Measured EC and Ion Sums			
Anions	8.653679	Not within preferred range (0.9-1.1)	
Cations	9.005367	Not within preferred range (0.9-1.1)	
Calculated TDS to EC ratio	6.107	Not within preferred range (0.55-0.7)	
Measured TDS to EC ratio			
Measured TDS unavailable	3		
Organic Mass Balance			
$DOC \ge Sum of Organics$			
Dissolved Organic Carbon	1.800 mg/L		
Sum of Organics	0.000 mg/L	OK	

ŝ

			CSMR-10	
Water Type Dissolved Solids Density Conductivity Hardness (as CaCO	Ca-Cl 770.94 mg/kg 0.99761 g/cm ³ 1350 µmho/cm ² 3)	769.1 mg/L	Calculated Calculated Measured	
Total Carbonate Non-Carbonate	494.37 mg/kg 395.18 99.189	493.19 mg/L 394.23 98.952	Calculated	

Primary Tests		
Anion-Cation Balance		
Anions	10.2	
Cations	11.8	
% Difference	7.180	Not within \pm 5%
Measured TDS = Calculated TDS		
Measured	N/A	
Calculated	770.940	
Ratio	N/A	
Measured EC = Calculated EC		
Measured	1350.000	
Calculated	1064.196	
Ratio	1.269	Not within range 0.9 to 1.1
Secondary Tests		5
Measured EC and Ion Sums:		
Anions	0.758501	Not within preferred range (0.9-1.1)
Cations	0.875839	Not within preferred range (0.9-1.1)
Calculated TDS to EC ratio	0.571	OK
Measured TDS to EC ratio		
Measured TDS unavailable		
Organic Mass Balance		
DOC \geq Sum of Organics		
Dissolved Organic Carbon	1.200 mg/L	
Sum of Organics	0.000 mg/L	ОК

SW-1				
Water Type	Ca-SO ₄			
Dissolved Solids	158.05 mg/kg	157.6 mg/L	Calculated	
Density	0.99715 g/cm ³	~	Calculated	
Conductivity	268 µmho/cm		Measured	
Hardness (as CaCC)3)			
Total	85.317 mg/kg	85.074 mg/L	Calculated	
Carbonate	70.875	70.673		
Non-Carbonate	14.443	14.401		

SW-1

Primary Tests		
Anion-Cation Balance		
Anions	2.31	
Cations	2,16	
% Difference	3.501	OK
Measured TDS = Calculated TDS	5	
Measured	N/A	
Calculated	158.050	
Ratio	N/A	
Measured EC = Calculated EC		
Measured	268.000	
Calculated	247.166	
Ratio	1.084	ОК
Secondary Tests		
Measured EC and Ion Sums:		
Anions	0.863617	Not within preferred range (0.9-1.1)
Cations	0.805190	Not within preferred range (0.9-1.1)
Calculated TDS to EC ratio	0.590	OK
Measured TDS to EC ratio		
Measured TDS unavailable		
Organic Mass Balance		
$DOC \ge Sum of Organics$		
Dissolved Organic Carbon	1.100 mg/L	
Sum of Organics	0.000 mg/L	ОК

SW-2				
Water Type Dissolved Solids Density Conductivity Hardness (as CaCO	Ca-SO ₄ 160.76 mg/kg 0.99715 g/cm ³ 338 µmho/c ⁻ n	160.3 mg/L	Calculated Calculated Measured	
Total Carbonate Non-Carbonate	85.317 mg/kg 74.165 11.152	85.074 mg/L 73.953 11.121	Calculated	

SW-2

Primary Tests		
Anion-Cation Balance		
Anions	1.93	
Cations	2.15	
% Difference	5.179	Not within ± 0.2 meq/L
Measured TDS = Calculated TDS		
Measured	N/A	
Calculated	160.758	
Ratio	N/A	
Measured EC = Calculated EC		
Measured	338.000	
Calculated	233.069	
Ratio	1.450	Not within range 0.9 to 1.1
Secondary Tests		
Measured EC and Ion Sums:		
Anions	0.572285	Not within preferred range (0.9-1.1)
Cations	0.634798	Not within preferred range (0.9-1.1)
Calculated TDS to EC ratio	0.476	Not within preferred range (0.55-0.7)
Measured TDS to EC ratio		
Measured TDS unavailable		
Organic Mass Balance		
$DOC \ge Sum of Organics$		
Dissolved Organic Carbon	1.100 mg/L	
Sum of Organics	0.000 mg/L	OK

CSMRI-11B

Water Type	Ca-Cl		
Dissolved Solids	869.71 mg/kg	867.7 mg/L	Calculated
Density	0.99769 g/cm ³		Calculated
Conductivity	1330 µmho/cm		Measured
Hardness (as CaCO	³)		
Total	560.63 mg/kg	559.34 mg/L	Calculated
Carbonate	510.24	509.06	
Non-Carbonate	50.394	50.278	

CSMRI-11B

Primary Tests		
Anion-Cation Balance		
Anions	11.5	
Cations	13.5	
% Difference	7.815	Not within \pm 5%
Measured TDS = Calculated TDS	5	
Measured	N/A	
Calculated	869.711	
Ratio	N/A	
Measured EC = Calculated EC		
Measured	1330.000	
Calculated	1154.682	
Ratio	1.152	Not within range 0.9 to 1.1
Secondary Tests		
Measured EC and Ion Sums:		
Anions	0.865816	Not within preferred range (0.9-1.1)
Cations	1.012622	Within preferred range (0.9-1.1)
Calculated TDS to EC ratio	0.654	ОК
Measured TDS to EC ratio		
Measured TDS unavailable		
Organic Mass Balance		
$DOC \ge Sum of Organics$		
Dissolved Organic Carbon	1.300 mg/L	
Sum of Organics	0.000 mg/L	OK

Aq•QA®