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Adding Variability to Simulated Annealing Using Chaotic 

Systems 

Frank Di Natale 

University of Colorado at Boulder 

Simulated annealing (SA) is a probabilistic optimization algorithm based on the concept of annealing metals in 

metallurgy [3, 4].  The SA algorithm runs on what is called the cooling schedule, which is typically constructed 

using heuristics based on problem-specific characteristics.  This paper explores the possibility of using the 

Lorenz and Rössler dynamical systems to add variation to the cooling schedule in order to try and provide just a 

basic cooling schedule that can either initially explore the solution space or find the global optimum without 

having to look for heuristics.  The concept of using the differences between points in a single dimension was the 

most explored concept in this study as a way to add variability to the cooling schedule.  Overall, the experiment 

found that using the Rössler chaotic attractor actually caused the reliability of SA to worsen rather than improve. 

Keywords: Annealing, cooling schedule, chaotic, dynamics

Introduction 

 Within the area of optimization problems, there exist 

a number of problems which cannot easily be solved in 

fields including, but not limited to, computer design 

automation, imaging, physics, and biology.  In 1983, 

Kirkpatrick et al. proposed a general algorithm called 

simulated annealing (SA) as a way to solve complex 

problems in a less deterministic way [3].  The algorithm 

makes an analogy to the annealing process used in 

metallurgy to combine two metals and is modeled after 

the statistical mechanics presented by Metroplis et al. in 

1953 [4]. 

Kirkpatrick et al. explain that the simulated annealing 

approach works well with heuristics, or problem-

specific characteristics.  They go on to explain that there 

are two basic approaches to heuristics: “divide-and-

conquer” and iterative improvement.  Both strategies 

produce promising solutions when the larger problem is 

built upon smaller, disjoint, subproblems.  As the 

subproblems are joined or the next iterative step is 

performed, proximity to the global optimum is 

determined by the change in energy ∆E of the new 

solution.  The basic form of the algorithm is as follows 

[2, 3, 5]: 

 

Input: Problem instance, initial temperature T 

Output: A solution (can be sub-optimal) 

1. Generate the initial solution at random. 

2. while (T > 0) and (not at equilibrium) do 

a. Transform current solution into a new 

solution by selecting a transformation 

uniformly at random. 

b. if ∆E ≤ 0, update current state with the 

new state. 

c. if ∆E > 0, update current state with the 

new state with probability, �� ∆���� where �	 

is some constant. 

d. Decrease T according to the annealing 

schedule 
�� = 
�, where � is a ratio. 

3. Output the configuration with the lowest 

energy. 

 

A number of heuristics have been researched for 

various problems [2,3], which begs the question of 

whether or not a general method for initial exploration 

(or better yet, solve) a problem without having to 

explore the solution space of specific problems.  In 

order to produce the variability that’s needed for the 

cooling schedule, we will look towards the potential 

benefits that dynamical systems can provide towards a 

general heuristic to explore the solution space of 

problems. 

For the sake of simplicity, this paper will focus on the 

2D Ising model of magnetic fields.  The model is rather 

simple, as the magnetic field is broken down into a grid 

with each cell containing either a 1 or a -1.  As the 

algorithm iterates, the magnetic cells shift towards a 

lower energy state.  This paper will consider a 50x50 

grid of cells, and assess if the use of chaotic attractors to 

vary the cooling schedule helps to allow the simulated 

annealing algorithm to more frequently capture the 

global optimum (as opposed to becoming stuck in local 

optimums).  Figure 1 shows the difference between a 

local and global optimum with respect to the Ising 

model. 
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Figure 1: Time sequences of the SA algorithm on the 

Ising model resulting in a) global opt. and b) local opt. 

Applying Chaotic Dynamics to SA 

As previously stated, the goal of this paper is to 

explore chaotic attractors as a possible means to a 

general heuristic for SA cooling schedules.  The idea of 

applying dynamical systems to SA is not an entirely 

novel idea.  Previously, Chen and Aihara applied 

transient chaos to a neural networked SA approach to 

promote more dynamic system dynamics [1].  J. 

Mingjun and Tang Huanwen applied the logistic map to 

configuration transformations within SA in order to 

decrease the time needed for the algorithm to converge 

to the optimal solution [5].  Others have since expanded 

or specialized these algorithms by adding more 

constraints, checks for other properties, or different 

formulations [6, 7, 8]. 

The algorithm implemented in this paper remains the 

basic SA algorithm with the main exploration being the 

cooling schedule.  To begin, the cooling schedule is one 

of the key parts of the SA algorithm which controls how 

quickly the system cools.  Firstly, what does it mean to 

cool the system down?  As the temperature T 

approaches zero, the system will accept fewer 

configuration changes.  This characteristic means that 

when the system is “warmer” it is more prone to change 

and is more exploratory in nature.  In the warmer state, 

the system more readily accepts a configuration change 

even if it does not lead the system closer to the global 

optimum.  This state allows the system to accept 

potentially sub-optimal configuration in hopes that they 

will in the long term lead to the global optimum. 

As the system cools, it becomes more set in place or 

is less configurable.  In the cooling state the system will 

only accept moves that reduce the energy of the system, 

and therefore becomes greedier in nature.  In order to 

vary the configurability of the system, another term is 

added to the temperature schedule in order to account 

for the variability added by the chaotic attractor.  The 

next temperature is therefore reflected by Equation 1, 
�� = 
��1 � ��				�1� 
where x is the variability caused by the attractor.  

Retaining � in the equation allows for the cooling 

schedule to still become asymptotically smaller while 

still being varied so that the overall trend is still one of 

being cooled. 

Variability Considerations 

Within the scope of this paper, both the Lorenz and 

Rössler systems were assessed for varying the cooling 

of SA.  The system equations are as follows with their 

respective constants as they were defined through this 

experiment: 

 

Lorenz: 

������� � = 	 � ��� � ���� � � � ���� � �� �												 ����� = 	 �16454 � 
 

Rössler: 

������� � = 	 � ��� # ��� # ��� # ��� � $��														 �
��$� = 	 �. 39824 � 

 

The first thoughts were to map the changes in slope 

between data points (obtained using Runge-Kutta4) 

because the slope is the displacement from the last point 

to the current point.  The x vs. z projection of both 

systems was arbitrarily chosen for this assessment.  

Appendix A contains the graphs showing the change in 

slope with respect to time of both systems. 

The resulting slopes as pictured above have a couple 

of issues which do not allow them to be used as 

variation factors in Equation 1.  Firstly, when the 

trajectories move in just the z direction, discontinuities 

appear in the graph.  While the asymptotic spike is 

possibly favorable, initial tests resulted in the 

temperature rapidly increasing to infinity and never 

making it back down to zero.  This result locked the 

algorithm into the exploration state into an infinite loop 

of accepting the new configuration.  The other issue is 

that the slopes are otherwise extremely close to zero.  

Even if the discontinuities were removed, the resulting 

points would lock the SA algorithm into the greedy 

mode and force the algorithm to choose the nearest 

optimum (whether it were local or global). 

The next thought was to take the difference between 

points on the same axis.  This experiment worked out 

much better because the differences in the same 

direction are always finite and small enough to be able 

to be used as a variation factor on their own.  The 

differences also have another advantage over the slopes 

in that they are much more sensitive to the step size 

used with Runge-Kutta4.  Appendix B shows graphs for 

both systems with color coded plots for different 

timesteps.  In general, to make the difference higher 

using a larger timestep causes a larger gap between 

successive points.  In order to make the difference 

smaller, the timestep is made smaller because the 

difference over a smaller step is smaller. 

While the difference worked much nicer than the 

slopes, the Lorenz attractor was completely ruled out as 
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a possible candidate for variation.  The Lorenz attractor 

has two basins of attraction, resulting in the difference 

between points to constantly shift as the trajectory loops 

around one attractor and then pulled around the other in 

the opposite direction.  The difference graphs for the 

Lorenz system in Appendix B clearly show this fact as 

the difference jumps between extremes so much that the 

fact that the Standard SA line is an exponential is lost 

(as it looks almost like a straight line).  The Rössler 

attractor, on the other hand, is much easier to change the 

characteristics of the differences.  From experimenting 

with the constants in the equations, the timestep is the 

biggest factor in changing the variation of the 

differences.  When the constants are changed, the 

patterns formed by the differences between points do 

change slightly, but not by a significant amount. 

Experiment 

The experiments to test the modifications to the SA 

cooling schedule were rather simple.  Once the basic SA 

algorithm was coded and tested, it became a matter of 

creating functions to substitute the calculated 

differences in for the standard exponential cooling 

schedule.  The only changes that were made to the SA 

algorithm were to let the Runge-Kutta4 algorithm run 

for five million steps (to be sure there were enough 

points for the whole annealing process) and then iterate 

through normally.  The initial conditions for any 

experiments using the attractor were set to *�, �, �, =*1.0, 2.0, 3.0, with timesteps of .0075, .01, and .05 

tested.  Each variation of the SA algorithm was run 

1000 iterations, with the initial configuration 

randomized each iteration and all bookkeeping reset.  A 

stable configuration was considered to be all points to 

be the same color (black or white), but with a threshold 

of 2% of the points allowed to be the minority color.  

This threshold was put in to account for the fact that the 

SA algorithm randomly permutes the current 

configuration which makes it statistically more difficult 

to permute a pixel of the opposite color.  Table 1 shows 

the results of the experiment. 

 

Test Global Found Percentage 

Standard SA 687 68.7% 

h = .0075 630 63.0% 

h = .01 670 67.0% 

h = .05 638 63.8% 

Table 1: Simulated annealing test results over 

1000 iterations. 

 

As Table 1 shows, the addition of the chaotic cooling 

schedule appears to have made it more difficult for the 

SA algorithm to find the global optimum.  At first 

glance, this result may not make sense but after looking 

through the algorithm’s mathematical foundations it is 

reasonable.  The temperature controls to what degree 

the configuration is set.  Using the chaotic variation 

causes the SA algorithm to accept points that may have 

been properly set.  If enough of these points are then set 

incorrectly by the fluctuating temperature, it may just be 

enough to slide the algorithm to a local optimum rather 

than the global optimum. 

Conclusion 

With the analysis of Table 1, it can be safely 

concluded that in the difference between points is not an 

effective way of adding variation to the cooling 

schedule of the simulated annealing.  The percentage of 

times that the chaotic cooling schedule found the global 

optimum was at best 1.8% behind the general SA 

algorithm, and in worst cases a terrible 5.7% off.  In no 

cases was there an improvement over the general 

algorithm. 

Future Work 

This experiment established that the difference 

between points is clearly not an effective way to 

improve simulated annealing.  Other thoughts that may 

be potential concepts to try in the future are using the 

chaotic attractor as a way to set stages for the schedule.  

In this respect, maybe the potential of multiple 

annealing schedules at different points in the iterative 

process can be used.  A simpler extension would be to 

try the Logistic Map with the difference method and see 

if that yields results because it does not have a fixed 

point chaotic attractor.  Using the Logistic Map would 

be a good way to test and see if using an attractor with 

some form of elliptical orbit causes the effects described 

above of the algorithm rejecting and accepting when it 

shouldn’t. 
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Appendix A – Slope vs. Time Graphs 
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Appendix B – Difference Graphs 
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Appendix C – Difference Graphs for Alternative Constants (Lorenz) 
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Appendix D - Difference Graphs for Alternative Constants (Rössler) 
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Abstract

I implemented a traffic simulator according to the car-following model
of traffic flow and used it to explore the effects of pace cars on highway
traffic. I found that this type of model is not ideal for studying the
impact of pace cars. However, to the extent that the model is valid, the
simulations did suggest a safety benefit of pace cars due to the breaking
of traffic into smaller groups of cars, decoupling one group from the next.
Specifically, I found that cars farther back in a group of coupled cars have
wider velocity distributions. Attempts to quantify this effect in terms of
Lyapunov exponents were inconclusive.

1 Introduction

During the 2011–2012 ski season, the Colorado Department of Transportation
(CDOT) used “pace cars” to control the flow of traffic from Summit County to
Denver along I-70 during peak ski traffic. The primary objective of the Rolling
Speed Harmonization program (as CDOT calls it) is to improve travel safety,
although CDOT also claims that it can improve traffic flow[8]. The program
operates by arranging for police vehicles to cap the speeds of groups of vehicles
between 35 mph and 55 mph. CDOT has provided data on its website suggesting
that the pace cars may have a positive effect on traffic flow, but the data is far
too limited to draw any conclusions. The data is shown in Table 1 and pairs
equivalent days from the 2010–2011 and 2011–2012 ski seasons (i.e., closest date
that was the same day of the week). The dates in 2010–2011 had no pace cars,
and the dates in 2011–2012 had pace cars. Travel times and speeds are for 4
pm, the peak travel time.

My goal with this project was to use traffic modeling and dynamical systems
techniques to analyze the effect of pace cars on the dynamics of traffic.

1

11



2010–2011 2011–2012
Traffic Volume Travel Time Speed Traffic Volume Travel Time Speed
20,065 78 min 36 mph 21,349 46 min 61 mph
18,491 87 min 32 mph 22,075 65 min 43 mph
26,875 77 min 37 mph 27,794 76 min 37 mph
31,295 85 min 33 mph 30,772 108 min 26 mph

Table 1: CDOT data on pace cars

2 Traffic Modeling

There is a long history of mathematical traffic modeling. An introduction is the
survey by Bellomo and Dogbe [1]. Bellomo and Dogbe describe three general
strategies for modeling traffic:

1. Microscopic. Analogous to Newtonian mechanics. The position and
velocity of the individual vehicles are modeled by a system of ordinary
differential equations (ODEs).

2. Macroscopic. Analogous to fluid mechanics. The mass density and
linear momentum of the flow are modeled by partial differential equations
(PDEs).

3. Statistical. Analogous to statistical mechanics. The distribution of po-
sitions and velocities is modeled similarly to the Bolzmann equation.

For this project I focused on microscopic modeling. A well-studied group of
microscopic traffic models are car-following models. These models describe the
acceleration of each vehicle as some function of the state of one or more vehicles
ahead of it. The first such model was published by Chandler et al. in 1958[4].

2.1 Car-following

It takes an entire survey paper to cover the history and many variations of car-
following models[3]. This paper only gives a very brief overview of the theory.
The basis of car-following models is the system of differential equations[4]:

ẋn(t+ τ) = vn(t) (1)

v̇n(t+ τ) = α(vn−1(t)− vn(t)) (2)

Where xn(t) is the position of the nth car at time t, vn(t) is the velocity of the
nth car at time t, and α is a parameter of the model. In this simple version, the
motion is constrained to be one-dimensional. Note that these are not ordinary
differential equations (ODEs) but delay differential equations (DDEs). The
implications of this are discussed in section 2.3. This system of equations does
not specify x1(t) and v1(t), which describe the motion of the lead vehicle. This
is addressed in section 4.1.

2
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The physical interpretation of equation (2) is that each car attempts to match
the velocity of the car infront of it. If this velocity difference is positive, car n
will accelarate and if it is negative, car n will decelerate. This linear system of
equations can be solved analytically for certain plausible forms of v1(t).

2.2 Variations

The next variation on the car-following equation is from Gazis et. al in 1959[5].
This version introduces a dependence on the separation between cars:

v̇n(t+ τ) = α
vn−1(t)− vn(t)

(xn−1(t)− xn(t))m
(3)

The logic behind this modification is that the response of a vehicle to the
velocity fluctuations of the vehicle it is following will increase as the distance
between the vehicles decreases. In the case of traffic, this distance xn−1(t)−xn(t)
is frequently referred to as the headway. If the headway is large, a vehicle will
only slow down slightly when it is catching up with the next vehicle. However,
if the headway is small and a vehicle is still gaining on the next vehicle, it will
brake as hard as possible to avoid an accident. In fact, if a vehicle is gaining on
the next vehicle (i.e., vn−1(t)− vn(t) < 0) the acceleration approaches negative
infinity as the headway approaches zero, making collisions impossible if τ = 0.

2.3 Delay Differential Equations

It is important to note that in equations (2) and (3), the time-derivatives ẋn(t)
and v̇n(t) are not given as functions of the current state of the system. Instead
they are functions of the state of the system τ seconds in the past. In the
context of traffic, this is an attempt to model the reaction time of drivers.

Mathematically, this makes the equation a system of delay differential equa-
tions (DDEs). This is of note for (at least) two reasons:

1. As an ODE (i.e., τ = 0), equation (3) does not allow collisions, but for any
value τ > 0, collisions are possible for certain initial conditions. Collisions
do occur in real traffic flows, so in some sense, this is a desirable aspect of
the model.

2. Even very simple non-linear DDEs can exhibit chaotic behavior. For ex-
ample, consider the equation:

ẋ(t+ τ) = sinx(t) (4)

Sprott demonstrates that equation (4) goes through a series of bifurcations
as τ increases and exhibits chaotic behavior for most values τ > 5[10].

Modeling traffic as a DDE also potentially simplifies a computer simulation.
This is because integration methods such as the Euler method inherently calcu-
late based on the state of the system some discrete time-step in the past. Sprott
makes this observation in the context of equation (4)[10].

3
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2.4 Limitations

It is easy to see many limitations of this simplified model, and subsequent vari-
ations of car-following models have attempted to address some of these issues.
Just a few examples of these limitations are:

• The model is one-dimensional and does not account for intersections or
lane changes.

• The model only allows each car to react to the state of the next car,
whereas most drivers try to see farther ahead and react to the state of all
visible cars.

• The model gives all cars the same governing equations, whereas real drivers
have different preferred speeds and following distances, and real cars have
different acceleration and deceleration capabilities.

Invidividual studies have been able to fit equation (3) to empirical data with
reasonable accuracy. Unfortunately, the calibrated values of m and α have
varied widely between studies[3]. The models are at least plausible for studying
general behavior of traffic, since the models seem to be good at demonstrating
qualitatively “traffic-like” behavior. However, they do not have strong predictive
power for any specific, real situation.

3 Implementation

3.1 Equations

For this project, I chose a further modification of equation (3):

v̇n(t+ τ) = α
vn−1(t)− vn(t)

xn−1(t)− xn(t)
+ k(xn−1(t)− xn(t)) (5)

The term k(xn−1(t) − xn(t)) was first introduced in 1963[2]. I chose this
model because it is relatively simple, but had been previously demonstrated to
exhibit chaotic behavior[7].

The simulation uses a sine function to determine the behavior of the lead
vehicle:

v̇1(t) = V +A sin(ωt) (6)

This idea was part of the original paper on car-following[4], and was also used
in the study that found chaotic behavior[7]. Some type of periodic behavior is a
reasonable approximation of a car attempting to maintain its velocity by press-
ing the accelerator when below the target velocity, V , and releasing the accelator
when above the target velocity. This has advantages over other options:

• Constant velocity: I ran simulations with this and was not able to observe
any interesting behavior.

4
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• Constant velocity modulated by random noise: Because I was looking for
chaos, I did not want to confuse the issue with random noise. In the actual
simulations, the simple periodic behavior of the lead car is also easy to
see in the cars farther down the line. This helps give an intuitive picture
of which fluctuations are directly due to the driving behavior of the lead
car, and which fluctuations are potential chaotic behavior.

Another interesting possiblity would be to use the geography of I-70 or another
specific road to provide the fluctuations in velocity of the lead car.

At the start of the simulation, the cars are evenly spaced at distance d0 and
all start with the same velocity V0 (both of which are input parameters to the
simulation).

3.2 Modifications

In order to get plausible simulations, I had to make a few more adjustments:

• Do not allow any vehicle to exceed maximum velocity Vmax. This turned
out not to be very important as long as there was a maximum acceleration.

• Do not allow any vehicle to exceed maximum acceleration of 3.3ms−2.
This was calculated to correspond to constant acceleration from 0ms−1 to
33ms−1 in 10s.

• Do not allow any vehicle to go below a minimum acceleration of−6.6ms−2.
This was calculated to correspond to constant deceleration from 33ms−1

to 0ms−1 in 5s.

• If any vehicle comes within 0.1m of the next vehicle, set its velocity to
0ms−1.

These adjustments add cusps and even discontinuities to the accelaration and
velocity, which is non-physical, but they improve the stability of long simula-
tions.

3.3 Parameters

The model is very sensitive to parameter choices. This section explores the
qualitiative effects of some of the parameters. I first found a set of parameters
which gave the “interesting” behavior I was looking for, then varied the param-
eters one at a time from this baseline to see the effect. The baseline parameters
are given in Table 2. All simulations used a step-size of 0.1s. I tested other step
sizes and they had no noticable effect, possibly due to the observation about
simulating DDEs made in Section 2.3. Note that the velocity 33ms−1 was cho-
sen to correspond roughly to a typical highway velocity of 75 mph and that
20ms−1 was chosen to correspond to a pace car velocity around 45 mph.

Figure 1 shows a plot of headway versus time for the second car (i.e., the
car immediately behind the lead car). This trajectory is discussed more in

5
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α velocity control sensitivity 10ms−1

k propensity to catch up to next vehicle 0.0008s−2

τ reaction time 1s
d0 initial headway 20m
V0 initial velocity 33ms−1

V lead-car target velocity 33ms−1

A amplitude of lead-car sin wave 1ms−1

ω frequency of lead-car sin wave 0.05rads−1

Table 2: Baseline parameters

Section 4. Figure 2 shows the effect of setting k = 0. This appears to remove
the “interesting” behavior. Figure 3 shows the effect of setting τ = 0.1. This
also appears to remove the “interesting” behavior. Figure 4 shows the effect
of setting V0 = V = 20ms−1. This appears to have no qualitative effect on
the behavior. This is discussed further in Section 4.1. Previous papers have
found that varying α led to the onset of chaos[7]. I was not able to recreate this
finding.

Figure 1: Baseline trajectory for car 2

6
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Figure 2: Trajectory for car 2 with k = 0

Figure 3: Trajectory for car 2 with τ = 0.1s

7
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Figure 4: Trajectory for car 2 with V0 = V = 20ms−1

4 Results

In retrospect, car-following models are not the best models to study a change in
dynamics in the presence of a pace car, because the model effectively has a built-
in pace car in the lead car. This prevents analyzing the ‘pace car’ dynamics and
comparing them to the ‘no pace car’ dynamics. Nonetheless, I was able to make
some interesting observations relating to the effect of the pace car, although
attempts to quantify these effects were unsuccessful.

4.1 Lead car velocity

As can be seen in Figure 1 and Figure 4, there does not appear to be any large
effect on the dynamics due to varying the lead car velocity. This is even more
evident in the comparison of state space trajectories in Figure 5.

8
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Figure 5: State space trajectory for car 2 with V0 = 33ms−1 versus V0 = 20ms−1

4.2 Attractor

The state space trajectory of car 2 has an interesting attractor. I experimented
with a wide range of initial values for headway d0 and velocity V0, and all initial
values reach the attractor quickly. The attractor is shown in Figure 6. Figure 7
shows how the structure of the attractor arises out of the periodic behavior with
a series of temporal Poincaré sections at fractions of the lead car’s period.

Figure 6: State space attractor for car 2
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(a) Temporal Poincaré
section at T0

(b) Temporal Poincaré
section at T0

2

(c) Temporal Poincaré
section at T0

4

(d) Temporal Poincaré
section at T0

8

(e) Temporal Poincaré
section at T0

16

(f) Temporal Poincaré
section at T0

32

Figure 7: Temporal Poincaré sections of car 2 attractor

The attractor appears to contain “chaotic fuzz”, but attempts to calculate
the maximal Lyapunov exponent λ were inconclusive. This is shown in Figure 8,
which has fits to the linear scaling region varying embedding dimensionm from 4
to 8. The plots were generated using the Rosenstein algorithm[9] as implemented
in TISEAN[6]. The embedding delay was chosen as the first minimum of mutual
information, and the embedding dimension was initially estimated using false
nearest neightbor (also both using TISEAN). Note that the values printed in
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m λ

4 0.0030
5 0.0025
6 0.0021
7 0.0018
8 0.0015

Table 3: Lyapunov estimation for car 2 attractor

the figure are the different fit slopes, e.g., λ4 refers to the fit for λ with m = 4,
not to the 4th Lyapunov exponent. As Table 3 shows, there is no range of m
values for which the scaling region has constant slope. Attempts to calculate
the correlation dimension were similarly problematic.

Figure 8: Lyapunov estimation for car 2 attractor

4.3 Car position

The previous sections all look at the behavior of only the second car. In fact, the
dynamics begin to change farther back from the lead car. Figures 9, 10 and 11
show the velocity trajectories of cars 2, 10 and 20 respectively, from the simu-
lation with V0 = V = 20ms−1. Unlike car 2, cars 10 and 20 occasionally come
to complete stops. Figure 12 shows the velocity distribution for each car in this
simulation, which shows that the cars farther back in the line systematically
have wider velocity distributions. I attempted Lyapunov exponent calculations
for cars 10 and 20 as described in Section 4.2 but the calculations were similarly
unsuccessful.
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Figure 9: Velocity trajectory of car 2

Figure 10: Velocity trajectory of car 10
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Figure 11: Velocity trajectory of car 20

Figure 12: Velocity distributions of cars 2 through 50. Error bars show standard
deviation.

5 Conclusions

It is a limitation of the design of car-following models that they cannot be used
to compare traffic with a pace car to traffic without a pace car. Furthermore,
this is a very approximate model of real traffic and has calibration issues with
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choosing the model parameters, as described in Sections 2.4 and 3.3. A more
thorough exploration of the parameter space would be an interesting topic for
future research. Nonetheless, to the extent that the model is valid, it does
suggest one safety benefit of pace cars (other than the obvious safety benefit
of lower velocities). Specifically, the cars farther back in a group of coupled
cars experience more erratic behavior and have wider velocity distributions.
From this perspective, pace cars decouple one group of cars from the next,
which according to this car-following model, should result in more predictable
trajectories. However, attempts to quantify the idea that the behavior of the
back cars was “more chaotic” or “less predictable” were unsuccessful.
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This work studies the ways of incorporating self-similarity, found in many 

commonly considered images, in solving the problem of their efficient 

representation. Strengths and weaknesses of general basic fractal image 

compression method with several modifications were analyzed. Finally, the 

compression algorithm based on the sparse approximation by the orthogonolized 

elements of the image-specific dictionary was developed. 

 

Introduction. 

All digital acquisition and display devices treat visual information as a number of points, pixels, 

on a grid. It is the most natural way for humans to interact with computer. However, since subjects of 

almost all of the images possess some sort of structure on larger scales, this representation is not efficient 

and often highly redundant. Therefore, the main task of image compression is to describe the important 

information contained in the image as briefly as possible but such that this description would be sufficient 

to reconstruct the image as close to the original as possible. 

This work focuses on rather unconventional approach to the image compression problem, which, 

however, is based on very natural assumption that a lot of real world objects (and, therefore, their images) 

are almost self-similar, or statistically fractal. Trees, clouds and mountains are just several common 

examples of such objects. Obviously incorporating self-similarity property may simplify their description. 

Methods discussed in this work were tested on the 256  256 pixels grayscale images, however 

obtained results can be generalized for color images of any size as well.  

 

Mathematical background. 

Most of the widely used image compression methods are based on some kind of transform 

(Discrete Cosine Transform, Wavelet Transform, etc.), which is equivalent to changing the representation 
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basis. Finding a sparse description of image in some basis allows ignoring all but the highest coefficients, 

which effectively reduces the amount of information without significant loss of quality. This technique 

gives good results in most cases. Furthermore, existence of fast computational algorithms makes their 

implementation efficient. 

In contrast, the Fractal Image Compression method provides a completely different solution to the 

problem. Notice that the most of natural (photographic) images often have repeated or similar regions 

(Figure 1.a). This feature is even more obvious in the images that contain patterns or textures (Figure 1.b-

c). Obviously, exploiting this fact may lead to more efficient image representation just by describing only 

one such region and then distributing it to the other parts of the image. 

In other words, an image often can often be considered as a fractal, an object, iteratively 

constructed from the transformed parts of itself that has very complicated structure but relatively simple 

mathematical description. Therefore, compression can be achieved by encoding the rule that is used to 

generate the fractal. Notice, that similarity only with the parts not the whole image is assumed. This is one 

of the differences of such representation from true geometrical fractals. Another is the fact that self-

similarity in images is usually not exact. This means that the fractal description of image will inevitably 

introduce some amount of error or lead to information loss in case of compression. 

       

 

Figure 1. – Self-similarity in natural (photographic) images (a), patterns (b) and textures (c). 

 

The encoding procedure, which is essentially the derivation of the fractal description, is 

formalized by the following algorithm [8, 9]. 

1. Partition the whole image I into disjoint set of N range regions Ri, i = 1…N. 

 

 

 

 

 

 

a. b. c. 
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2. In the same image I define M possibly overlapping domain regions Dj, j = 1…M. 

3. Define K transformations on the set of domain regions Tk, k = 1…K. 

4. For each range region Ri find the pair consisting of the domain region Dj and transformation 

Tk such that the Mean Squared Error weighted by the number of pixels and defined as: 

    ‖    (  )      ‖ 
  ⁄      (1) 

is minimized. Moreover, additional parameters b and c that correspond to the offset and 

scaling are used for brightness and contrast adjustment respectively [6]. By solving the least 

squares minimization problem defined by (1), they can be expressed as: 
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where n
2
 is a number of pixels, 1n

2
 is an n

2
  1 vector of ones [1, 1, …, 1]

T
. 

The result of this algorithm is the collection of transforms W : F → F, where              

   denotes the space of nn images: 

       ⋃        
 
   ,      (4) 

             (  )                         (5) 

Equations (4) and (5) assume that each range and domain region can also be represented as a 

vector in  
nn

 by masking corresponding part of the image and setting all the other pixels to 0. 

The obtained collection of transforms (4) is called an Iterated Function System, IFS (or, more 

precisely, Partitioned Iterated Function System, PIFS, since transforms are performed on the parts of the 

original image). It describes the image I as a union of its transformed parts. 

The fundamental property, which the PIFS W should satisfy in order to converge to a fractal 

object, is contractivity. The transformation W : X → X on the metric space (X, d) is said to be contractive 

if there exists a constant 0 ≤ C < 1, called the contractivity factor, such that: 

                     ,      (6) 

where x, y X, d( ∙ , ∙ ) is a metric on X. 

Note, that the space of images F is complete with respect to the supremum metric, which has 

meaning of the maximum pixel-wise difference between two images, and is defined as [1]: 
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                      |             |.     (7) 

Completeness of the space (F, dsup) allows applying the Contractive Mapping Theorem to the 

PIFS W, which means that there is a unique fixed point, I
*
 in the space of images F, such that W(I

*
) = I

*
. 

This fixed point is often called the attractor of PIFS, in terms of the fractal compression theory. The 

important property of this contractive mapping is that starting with any point I0 F and running the 

iterative procedure: I1 = W(I0), I2 = W(I1) = W(W(I0)), In = W(…W(I0)), In will eventually converge to 

the fixed point of W (usually, in practice, in no more than 7-10 iterations): 

               .      (8) 

The contractivity property of PIFS gives the background for the decoding algorithm. The encoded 

image can be reconstructed (up to some tolerance ε) by iteratively computing the attractor of PIFS I
*
. 

Therefore, the problem of fractal image compression can be formulated as finding the PIFS, whose 

attractor would be as close to the original image as possible. 

The reconstruction error is commonly measured by the Man Squared Error, defined as the 

Euclidean norm of the difference between the original I and reconstructed  ̂ images: 

    √∑ (     ̂  )
 

   ,     (9) 

or in logarithmic units as the peak signal-to-noise ratio: 

             (
        

   
).     (10) 

Moreover, the coding rate R is often used to assess the efficiency of compression. It can be 

defined as an average number of bits needed to describe each pixel by using particular coding scheme. 

Uncompressed 256-levels grayscale image has a coding rate of 8 bits per pixel (bpp). The coding rate 

achieved by the fractal image compression method can be estimated as follows: 

  
                   

    .    (11) 

Equation (11) assumes that to store the fractal code for a 256 256 - pixels image up to 7 bits 

would be needed to encode both, horizontal and vertical position for each of N range regions. 

Furthermore, log2M bits are required to store the identifier of chosen domain region, 3 bits (if using only 

affine transformations, or log2K, in general) for the code of applied transformation, and finally 8 bits to 

encode brightness and contrast parameters. 
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Notice that these values are approximate and may not be optimal. Obviously, the number of 

bits used to encode the locations of the range and domain regions would depend on their number and 

partitioning scheme. Furthermore, PIFS information can be stored more compactly using special 

coding methods. For example, since distributions of the contrast and brightness are likely to be non-

uniform, using entropy encoding may reduce the number of bits, needed to store these values, down 

to 7 and 5 bits respectively [1]. However, these techniques were not considered in this project and the 

coding rate parameter defined by (11) is used only to compare the performance of different 

modifications of the basic algorithm. 

Common methods. 

Although running the described basic algorithm is sufficient to construct the PIFS, which will 

eventually converge to the original image, it does not give any specific directions on partitioning the 

image or defining transforms. Choosing these parameters plays a crucial role in the overall performance 

of image compression procedure. Moreover, since the search algorithm is naturally very computationally 

expensive, optimizing its running time is another problem to consider. 

The first and most obvious way of improving the reconstructed image quality is to reduce the size 

of the range regions. This approach, indeed, gives very good results as shown on Figure 3. However, 

besides of rapid MSE decrease, smaller size of the range regions requires storing more information about 

PIFS transforms. This inevitably increases coding rate (see Figure 4). In fact, for the range regions of size 

of 2  2 pixels the coding rate has exceeded 10 bpp, which makes the compression completely 

meaningless (as compared to the original 8 bpp rate). 

        

Figure 3. – Reconstruction results using 16  16 (a.) and 4  4 pixels (b.) range regions. 

a. b. 
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To avoid this effect, image-dependent segmentation (as opposed to image-independent tiling) can 

be used [9]. Even though, the second method is simpler to implement, it does not distinguish the inherent 

structure of the image – one of the fundamental assumptions of the fractal compression. Using larger 

range regions and reducing their size only where it is needed (for the parts of the image with fine detail, 

for example) allows significantly decreasing the coding rate while maintains the quality on acceptable 

level. Most of the image-dependent partitioning algorithms are based on the usual tiling strategy but with 

dynamical splitting criterion, and differ mostly in the shape of produced partitions.  

 

Figure 4. – Reconstruction MSE and coding rate as functions of the range region size. 

 

The simplest most commonly used partitioning algorithm, the Quadtree (QT) Partition, is based 

on the square-shaped tiles. If considered range region can not be approximated by any element of domain 

pool such that the matching error is below some predefined threshold εQT, this result is discarded and 

range region is split into 4 new square regions of smaller size; the matching procedure is then repeated for 

each of them separately. Notice that this does not require adding new domain regions, but only adjusting 

the downsampling parameters for existing ones. 

This algorithm was used in this project; its result (using 2  2 minimum partition size) is shown 

on the Figure 5. Notice that larger tiles were sufficient to represent the wall on the background or the 

shoulder, which are the uniformly filled parts of the picture. However, the feathers on the hat required 

much finer partitioning. Remarkably, even though the MSE increased (39.3 as opposed to 0.55 in the 

MSE                                                                Coding rate 
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uniform partitioning case) reconstruction quality is still very high. In addition, the coding rate was 

reduced more than twice (from 10.25 to 3.93 bpp). 

It’s worth noting that the QT Partitioning scheme is far from optimal. Details of images are not 

restricted to occupy square regions but instead are spread in different shapes and directions. The 

inefficiency of the partitioning is visible along the sharp edges in the image (Figure 5), which tend to be 

represented by unnecessarily large number of small partitions. There exist several modifications of the 

QT algorithm that account for this effect – for example, splitting the square region only in one direction, 

which effectively creates two horizontal or vertical rectangles leads to the HV-partition. This method 

might have solved the problem of approximating sharp edges of the image. To account for the details in 

directions other than horizontal or vertical, the triangular partition can be used. Moreover, Evolutionary 

Partitioning, which is the more elaborate method based on the idea of not only splitting but also merging 

similar neighboring tiles often gives the most natural partitioning that depends on the image content. The 

obvious problem with all these methods is their complexity and the difficulty of implementing an efficient 

searching algorithm in the increasing pool of domain regions. 

 

Figure 5. – QT Partition of the image with minimum tile size of 2  2 pixels: partition 

boundaries (a) and reconstructed image (b). 

 

In fact, finding the match between each range region and the transformed domains is the most 

computationally expensive part of the compression algorithm. As a rule of thumb, the size of the domain 

a. b. 
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regions is usually chosen to be greater than the size of the range region. This requires downsampling in 

addition to the spatial transformation, which ensures the contractivity property of the transform. However, 

this is not a strong requirement [1]. Then considering the n n pixels image and m  m range region, the 

maximum number of possible domains can be estimated as: 

     ∑            
      

 

 
                            .  (12) 

Fortunately, there is no need to search through all of these domains, because some of them are 

likely to be very similar. This assumption underlies the efficient searching algorithms, which first classify 

the members of the domain pool (for example, into those with smooth gradients or sharp edges [2,4]) and 

then perform the search in the appropriate class according to the features of the range region to be 

matched. 

The transforms Tk are usually chosen to be linear, which includes rotations in multiples of 90 

degrees, and reflections with respect to different axes. Although they give the best results for the wide 

variety of images, it should be noticed that there are also non-linear transforms in the form of   

         proposed for use, for example, in the fractal compression of sound signals [4]. These may 

be suitable for compression of certain types of images as well. 

 

Used approach and its results. 

Most of the existing fractal image compression algorithms and of all the previously mentioned 

modifications to the basic algorithm assume that only one transformed domain region is chosen to match 

the particular range region. In contrast, the main conjecture in this work is that better compression 

performance can be achieved by using a linear combination of several domain regions. Similar ideas can 

be found in [1, 5]. 

To implement this approach, given the domain pool {Dj, j = 1…M} and the set of corresponding 

transforms {Tk, k = 1…K}, let us first define the dictionary V as the set, which consists of results of 

applying all the transforms Tk to each of the domains Dj: V = {D} . If each transformed domain 

region Tk(Dj) is viewed as a vector in n  1 dimensional space, the dictionary V can be represented as an 

n  K∙M matrix. Then the approximation to the considered range region Ri is given by: 

  ̂       ,       (13) 
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where α is a K∙M 1 vector of representation coefficients, and b is a brightness adjustment parameter. 

Therefore, the problem is reduced to finding the coefficients α such that the weighted MSE 

‖     ̃‖ 
  ⁄  is minimized. Moreover, in order to obtain efficient compression, vector α should have all 

but a few entries equal to zero (α should be sparse). 

In general, since dictionary V defines a non-orthogonal basis, finding the optimal sparse 

representation of Ri in terms of its elements is an NP-hard problem. However, greedy algorithms, such as 

Matching Pursuit, can find suboptimal sparse solution. Its modification, the Orthogonal Matching Pursuit 

(OMP, also known as the Gramm-Schmidt Orthogonalization) converges in a finite number of iterations, 

and, therefore, gives a more accurate solution faster. The idea of the OMP algorithm is to form an 

orthonormal basis from those elements of overcomplete non-orthogonal dictionary that capture the most 

of the energy of the given approximated vector. 

The following realization of OMP was implemented: 

1. Given the range region vector Ri and non-orthogonal dictionary V, define the remainder to be: 

r = Ri. 

2. Find the element in V (v0, n  1 column vector) that approximates the remainder r with the 

smallest MSE by evaluating the        |〈      〉|, the inner product between those vectors. 

Computation-wise this operation is performed by multiplying the vector r with the matrix V. 

3. Define the orthogonal dictionary as U = {v0}. 

4. Update the remainder:     〈      〉    . 

5. Find the vector v1, similarly to v0, as described by the step 2. 

6. Find the new vector u1, orthogonal to each vector in U:               ; and normalize 

it:    
  

‖  ‖
. Update the matrix U by adding this new vector to it. 

7. Update the remainder:     〈      〉    . 

8. Repeat from step 5 until the norm of the remainder ‖ ‖ is less than some predefined 

threshold εmax, or the number of elements in the dictionary U exceeds Nα. 

Given the orthogonal dictionary (basis) U, the representation coefficients of the vector Ri can be 

obtained by calculating the inner products with the elements of U: 

    
   .      (14) 

Then the coefficients α in the original basis V can be found by the iterative procedure starting 

from the last taken vector (here  ̂  denotes the vector in V taken on the i-th step of the algorithm): 
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〈  ̂     〉
;     (15) 

                 〈  ̂         〉,  for i = NU… 1.  (16) 

Notice that this algorithm has two parameters that eventually affect sparsity of α: maximum 

approximation error εmax and maximum number of non-zero coefficients Nα. In other words, the algorithm 

will add new approximation coefficients until either their number exceeds Nα or acceptable accuracy of 

approximation is achieved, ‖     ̃‖ 
     . Varying these parameters along with the Quadtree 

Partitioning threshold εQT gives more possibilities to optimize the compression performance in terms of 

the MSE and coding rate. Figure 6 represents the fragment of the algorithm flowchart that explains the 

roles of these parameters. 

The following table compares compression results obtained by three different methods: uniform 

range regions partitioning with the smallest partition equal 2  2 pixels, the QT partitioning with the same 

smallest level, and the QT partitioning with the 4  4 pixels smallest partition and the sparse 

approximation in the domain pool. Notice that the sparse approximation approach has improved both the 

MSE of reconstruction and the coding rate. Moreover, the computation speed has increased due to the 

coarser partitioning and using more efficient searching algorithm (computing the inner products via 

matrix multiplications instead of pairwise comparison). 

Table 1. – Comparison of different coding algorithms. 

Method MSE Coding rate 

Uniform 2x2 partition 0.55 10.25 bpp 

Using QT only 

(min level – 2x2 pixels) 
39.3 3.93 bpp 

Sparse Approximation and QT 

(min level is 4x4 pixels) 
26.5 3.54 bpp 

 

In general, more basis vectors are needed to approximate larger range regions. The reason for 

this, besides of the increased dimensionality of the vector space, is that there are fewer ways to define the 

pool of distinct domain regions of larger size. Therefore, it may not be optimal to limit the number of 

approximating coefficients by the same constant Nα on different levels of the QT partition. 
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Figure 6. – Fragment of the compression algorithm flowchart, corresponding to the fitting of the 

range region Ri by the elements of the dictionary V. It is assumed that the range and domain pools have 

been defined already. 

 

As an illustration for this hypothesis, consider the plot of the MSE versus the number of domain 

pool elements of different scales (Figure 7). It can be noticed that there are several ways to obtain the 

same reconstruction quality. For example, uniform 4  4 partitioning with each range region 

approximated by only one domain gives the same MSE ≈ 67, as the uniform 8  8 partitioning with 6 

approximation coefficients, or 16  16 partitioning with 65 approximation coefficients. However, these 

‖𝑅�̃�  𝑅𝑖‖ 
 𝜀𝑚𝑎𝑥 

and n < Nα 

Run the OMP algorithm to select one 

more approximation term. 

n = n + 1. 

‖𝑐  𝑅�̃�  𝑏  𝑅𝑖‖ 
 

 𝜀𝑄𝑇  

Perform the QT partitioning of the 

range region Ri. Update the set of the 

range regions. 

Perform the transforms Tk, k = 1…K 

on the domain regions and create the 

dictionary V. 

Find the best one-term approximation 

𝑅�̃� of the range region Ri by the 

elements of V. n = 1. 

Repeat for other Ri. 
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three schemes differ in the resulting coding rate. Using finer partitioning, as was previously shown, 

increases the number of parameters to be stored (positions of each region). On the other hand, large scale 

regions can be defined by fewer parameters of shorter lengths and, therefore, have more compact 

representation. 

 

Figure 7. – MSE versus the number of approximation coefficients for different sizes of Ri. 

 

Compression results obtained by using the range regions of different sizes (without QT 

partitioning) are summarized in Table 2. The maximum number of coefficients is chosen such that the 

coding rates are approximately equal. The MSE threshold for sparse approximation was set to εmax = 0.5 

to encourage the algorithm to take all Nα representation coefficients. 

 

Table 2. – Compression results using the uniform partitioning and sparse approximation. 

Size of the range 

regions 

Number of 

approximation 

coefficients 

MSE Coding rate 

32  32 145 866.7 2.31 bpp 

16  16 38 179.35 2.45 bpp 

8  8 8 39.19 2.32 bpp 

4  4 1 66.86 2.45 bpp 

2  2 1 0.55 10.25 bpp 

 

32  32 

16  16 

8  8 

4  4 
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Based on these observations, the maximum number of approximation coefficients (parameter Nα) 

was made dependent on the region dimensions, as defined in the Table 3. Now the algorithm first tries to 

approximate the larger range regions and performs quad tree partitioning only if there exist as good 

representation by only one coefficient on the finer scale. The compression results obtained by this 

modified algorithm are: MSE = 36.2, coding rate = 2.15 bpp, i.e. both characteristics were improved. 

 

Table 3. – The maximum number of approximation coefficients (Nα) for regions of different sizes. 

Size of the 

range region, 

pixels 
2  2 4  4 8  8 16  16 32  32 64  64 128  128 

Nα 3 3 8 50 150* 300* 600* 

* - in practice these values are constrained by the number of dictionary elements. 

 

Finally, let us compare performance of the designed fractal image compression algorithm with the 

conventional transform coding. Consider the two types of linear transformations: Discrete Cosine 

Transform, used in the JPEG compression algorithm and Wavelet Transform (with Haar and Daubechies 

bases). The number of representation coefficients produced by each of them is equal to the number of 

pixels (i.e. 256
2
 = 65536, in this case). Therefore, 16 bits are needed to store each coefficient’s location 

and 8 bits to store its value (assuming that 256-level quantization scheme is used). In order to achieve the 

same coding rate as for the fractal compression (2.15 bpp in the best case), only the highest    

           

  
      coefficients should be stored. Table 4 represents the reconstruction MSE values for 

these cases. 

Table 4. –MSE achieved by different compression methods with the same coding rate. 

Type of the transform Achieved MSE 

Discrete cosine transform 51.75 

Wavelet transform (Haar 

wavelets) 

38.08 

Wavelet transform 

(Daubechies-8 wavelets) 

25.56 

Fractal compression 36.2 
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These data show that performance of the fractal compression method is comparable to the most 

popular transform-based compression approaches. Moreover, implemented algorithm can be further 

improved by more sophisticated partitioning and searching schemes. However, from the other side, 

increased complexity of the fractal encoding algorithm is one of the main reasons that prevent it from 

being widely used. 

 

Conclusion. 

 

The main result of this work is design and implementation of an image compression algorithm 

based on the self-similarity properties of images. The basic fractal image compression algorithm is 

defined such that it allows ample number of improvements and modifications. Several possible 

approaches to optimize the partitioning scheme and searching algorithm were analyzed. The final 

implemented version of the algorithm uses Quad Tree partitioning to define the range regions. This 

method effectively determines highly detailed parts of the image that may need more accurate 

approximation. To make searching and fitting procedures more efficient, several domain regions are used 

to approximate each range region. They are drawn from the domain pool by performing the Gramm-

Schmidt orthogonalization. This approach has given results comparable to the usual compression 

methods, which suggests that possibly using hybrid (for example, wavelet-fractal, [7]) methods would 

give further improvement of reconstruction quality. 

Although, because of the complexity and high computational cost of the encoding algorithm, 

fractal image compression methods are unlikely to find a direct implementation in compression of the 

images of photographic quality, they are interesting as a concept itself. Moreover, image representation 

that they produce has several unique useful features. One of them is the resolution independence, also 

known as fractal zoom, which allows increasing image size during the reconstruction. Of course, no new 

information will be added, but, instead of simply deducing the unknown pixels by averaging, fractal based 

reconstruction would try to preserve the same complexity on the finer scales. Therefore, it may be 

beneficial to use such methods to represent the images (or even only their parts) that contain some sorts of 

patterns or textures. Particularly, they may be useful in situations, where the overall pattern structure is 

more important than the particular values of each pixel (for example, patterns formed by sand grains, or 

trees in the forest viewed from the distance). Obviously, another quality metric based on the subjective 

perception instead of the MSE would be needed to estimate the performance in this case.  
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Adam Rose
Chaotic Dynamics Final Paper

Chaotic Dynamics Indicators Applied to EKG Data

Abstract:  Cardiac arrhythmia are characterized by irregularities in the electrical activity of the 
heart.  Many arrhythmia are deadly, and most may be diagnosed from the output of an 
electrocardiogram.  In this paper, EKG data from the MIT-BIH database are analyzed with a variety 
of tools in an effort to ascertain the objective dynamical properties of harmful arrhythmia.  In 
particular, we employ tools from the TISEAN 3.0.1 nonlinear time series analysis toolkit, the 
Grassberger Procaccia algorithm, a heuristic method for identifying chaos from frequency content, 
and observations from a mean squared error histogram method.  The robustness and applicability of 
these methods are compared.

Introduction:  Electrocardiogram (EKG or ECG) is powerful diagnostic tool.  By simply attaching 
electrode to the surface of the skin and recording the output on a device external to the patient, one 
can obtain a reasonable assessment the heart rate and regularity of heart beats.  

        Figure 1

As of 2002 (Owis et. al.), the conventional method of detecting cardiac arrhythmia was by human 
observational of an EKG.  By comparing observed output to the well documented electrical activity 
of a healthy heartbeat, one is able to diagnose potential problems.  However, the inadequacy of such 
a method is clear.  With the plethora of patients with heart disease and the volume of data, it is 
frequent that such irregularities are not caught in a timely fashion.  While not all arrhythmia are life 
threatening (or even harmful), as of 2011 (Gothwal et. al.) cardiac arrhythmia essentially accounted 
for 90% of cases of "sudden death" in which a death occurs within an hour of first symptoms.  80% 
of these cases were due to the arrhythmia ventricular fibrillation, often brought on by ventricular 
tachycardia.  For these reasons, much research was done to develop automated EKG interpreters. 
Most of these methods involve feature classification, in which the EKG data is denoised and the 
component structures of regular wave (see figure1) identified and analyzed.  In this paper, we seek 
to use alternative diagnostic tools; we apply indicators used to test for chaos in dynamical systems 
to detect arrhythmia.

Chaos is defined as the output of a deterministic dynamical system that exhibits sensitivity 
to initial conditions.  As the true equations that dictate the motion of the heart are unknown to us, 
the question of whether the typical motion of the heart is "chaotic" is still under debate.  However, it 
has been shown in previous work (Casaleggio and Braiotta) that the most regular of heartbeats 
(sinus rhythm) tend to evoke more emphatic indicators of chaos than a case of ventricular 
tachycardia.  While this may appear strange, we find it no less effective in deducing the difference 
between such cases.  To the casual observer a chaotic attractor are characterized by neighboring 
trajectories that diverge over a short timescale while being bound within attractors, having patterns 
of data that tend to repeat at irregular intervals, and having highly aperiodic motion.  These 
observations lead us to useful, though sometimes heuristic, metrics of the system.

The first calculation we would like to perform is an approximation of the Lyapunov 
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exponent of the system.  Given a point in a state space x0, and a very nearby point x0+δ0, we define 
the separation between the two points as δn.  The Lyapunov exponent is the constant λ such that |δn| 
≈  |δ0|en λ .  A positive Lyapunov exponent is an indicator of a chaotic system.  We would like to 
estimate such a parameter from the EKG data, so our first step is to attempt to reconstruct the state 
space.

Takens' theorem states that there exists a constant "m" greater than two times the dimension 
of the true state space such that a system constructed from a single variable and "m-1" uniformly 
delayed copies of the same variable is diffeomorphic to the true state space.  This is remarkable, and 
highly useful, as it allows us to attempt to construct a state space diffeomorphic to the true system 
describing cardiac dynamics solely from EKG data.

Methodology:  All data analyzed is found in the MIT-BIH arrhythmia database. 
We utilize the Tisean toolkit to determine the optimal delay choice, "τ",  and the embedding 

dimension, "m" using the functions "mutual" and "false_nearest" respectively.  "Mutual" computes 
the Shannon entropy for a variety of box sizes.  We select the box size where the first minimum of 
the entropy is achieved as our "τ".  "False_nearest" gives useful information about the state space 
from the method of false-nearest-neighbors.  This method is used to simulate the results of many 
experiments from a single trial in an autonomous system.  In this method, trajectories that return 
within an ε-ball of a previously visited point in state space may be viewed as an entirely separate 
trial.  Such a returning point is dubbed as a "false-nearest-neighbor," and the program 
"false_nearest" returns the fraction of false-nearest-neighbors present in the data for a given 
neighborhood size ε.  We choose the embedding dimension “m” such that the fraction of false-
nearest-neighbors is just under ten percent.  If we call the EKG data “x(t)”, at this point we view the 
new state space to be constructed from the following “m” variables: x(t), x(t+ τ),...x(t+(m-1) τ).

While these methods have empirical support, there is no guarantee that the state space 
constructed in this way is truly diffeomorphic to the true state space—our method for calculating 
"m" may have failed us.  However, if we have succeeded, then certain quantities including the 
Lyapunov exponent and correlation dimension will be the same in both the original and 
reconstructed state spaces.  This gives us incentive to calculate these quantities for a variety of 
proposed values for "m," as increasing "m" slightly should not change our results.  Finally, we apply 
the algorithms "lyap_r" and "lyap_k" as designed by Rosenstein et. al. and Kantz respectively to 
approximate the maximum Lyapunov exponents.  Both methods take false-nearest-neighbors within 
a small neighborhood and estimate a spreading factor as the neighbors step forward in time. 
However, the way in which this small neighborhood is determined is different in each algorithm. 
We compare results from both algorithms.

Another parameter of interest is the correlation dimension, which we will reference as “d.” 
This parameter is very close to the true, box-counting dimension the attractor occupies in state 
space.  The Grassberger-Procaccia algorithm finds an unbiased estimator

that approximates

, where "μ" is the distribution of points and "θ" is the heavy-side step function.  C(r) ~ rd as r→0, so 
we can obtain "d" by linear regression on a plot of "log(C(r))."

We now use the work of Eckmann and Ruelle to verify that we meet some basic lower 
bounds on the number of points required to obtain reasonable estimations of Lyapunov exponents 
and fractal dimension.  In particular, we can determine the maximum possible dimension attained 
by the Grassberger-Procaccia algorithm using “N” points of data.  Given that “D” is the diameter of 
the state space and “r” as above, “dmax=2log(N)/log(D/r).”  If we approach “dmax” from a 
simulation with “N” points, our results are to be disbelieved.  In addition, we require at least a few 
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false-nearest-neighbors to effectively calculate the Lyapunov exponent.  Fundamentally, this means 
we need “N>>(D/ε)d .”  If this bound is not met by a decent margin, we must discount our results 
here as well.

We now turn to more heuristic methods.  McDonough et. al. suggest that one could see 
indicators of chaos in their mean squared error histogram (Mesah) method.  Their results with one 
and two dimensional maps show promising results.  This simple algorithm appears to be resistant to 
noise and useful for analyzing more basic attractors with as few as two hundred points of data.  The 
algorithm is quite simple, as stated in Table 1:

After plotting the "value" array in a histogram, one looks for isolated peaks, which are claimed to 
be indicators of chaotic behavior.  The inspiration for this model appears to be a case of the logistic 
map: x(i+1) = 4x(i)(1-x(i)).  In this map, one notices that "x" values near zero tend to be mapped to 
values near one, and vice-verse.  The histogram for this case is below(figure 2); note the isolated 
peak at 0.5.

Figure 2 Figure 3

However, if we plot an identical distribution of data in a random order, we obtain figure 3 in which 
the peaks are much less isolated.  McDonough also extends this model to higher dimensional cases 
like the Lozi map.  In our work, we treat the iterates of embedded EKG data as a map from one 
state to another and construct the MESAH.  We hope to attain qualitative information about the 
repeated patterns seen in such data.  The addition of low levels of noise to the test problems for this 
detector did not detract significantly from it's effectiveness—white noise, for example, 
superimposes a normal distribution—making it an promising option to apply to observed data.

Our final heuristic chaotic indicator can be applied directly to the EKG data without an 
embedding.  In this method, the discrete Fourier transform is applied directly to a subset of the data. 
The energy at various frequencies is then plotted in a spectrogram.  In the case of truly periodic 
data, only a few local maxima will bee seen in this plot (see figure 4a).  However, the addition of 
noise to the data, many additional maxima at a low amplitude (figure 4b).  Alternatively, if the data 
is chaotic in nature, we tend to find many local maxima at large magnitudes(figure 4c).  We can 
characterize the nature of a data set by the number of maxima present in the spectrogram above an 
empirically determined threshold (the dotted red line).  In this way, we obtain a quantitative 
measurement about the system's periodic tendencies.
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Figure 4

While Lyapunov exponents and dimensions have been calculated previously from EKG data, 
our work will differ in a few regards.  Casaleggio and Braiotta applied only Rosenstein's algorithm 
to approximate the exponent, as implemented in "lyap_r," and they calculated only the lyapunov 
dimension as opposed to the correlation dimension.  Owis et. al. applied Wolf's algorithm to 
calculate the Lyapunov exponent and Grassberger Procaccia to find the correlation dimension. 
However, we believe Wolf's algorithm to be less accurate than our methods, and Owis used small 
data sets (fewer than 2,000 points in each trial) which may explain their low "m" values.  While this 
number of points appears acceptable for their dimension calculation, it brings suspicion to their 
exponent.  On the other hand, Casaleggio always uses a data set of 50,000 points, which may be 
overly large in some cases.  While this may allow one to obtain more false-nearest-neighbors, it is 
quite rare for someone to exhibit an arrhythmia of interest over a data set that large.  Therefore it 
seems possible that their results could be contaminated by more regular beats for these trials.  By 
choosing a sample size of 20,000 for our Lyapunov calculations, we hope to hone in more heavily 
on the areas of interest while still preserving credibility.  However, in certain trials, we are unable to 
meet Ekman and Ruelle's recommendations due to a large calculated correlation dimension (it 
recommends hundreds of thousands of points).  We acknowledge that some trials may lack accuracy 
because of this, but the raising the neighborhood size or number of points would reduce accuracy 
and diagnostic power in any event.

In addition, to our knowledge, the Fourier and MESAH methods proposed have not yet been 
applied to EKG data.

Results: We next apply the various methods above to data obtained from the MIT-BIH arrhythmia 
database.  In these data sets, measurements were taken from a variety of patients exhibiting 
different cardiac phenomena.  Voltages were measured at a rate of 360Hz, in integer values 
generally in a range around 890 to 1250.  When the parameter is available, we apply a theiler 
window of 100 iterations in order to avoid using false-nearest-neighbors that are two similar to the 
primary point.  Neighborhoods are determined with several different length scales ranging from 
fifteen to twenty-five units.

We tested our indicators on several 20,000 point subsets of the MIT-BIH arrhythmia data 
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sets as listed in table 2.  
Table 2: Approximate Values of Indicators

dataset tau m Starting 
point

Cor. 
dimensi
on

lyap_r lyap_k Fourier 
peaks

Behavior

100 39 14 1 2.8 0.36 0.35 25 Sinus

103 32 11 1 2.47 0.32 0.35 21 Sinus

105 21 13 67 2.6 0.15p 0.17p 11 Sinus (with a couple 
irregularities)

205 43 12 525782 2.73 0.15 0.16 4 V. Tach/sinus

207 93 11 13868 3.1 0.05 failed 4 V. Tach/Flutter
207 135 13 101185 3.4 0.04 failed 1 Blocked branch but sinus 

rhythm

213 31 12 53845 3.98 0.12 0.2 5 V. Bigeminy/sinus
213 30 12 115686 3.4 0.12 0.2 8 Sinus
213 30 12 167075 3.3 0.11 failed 6 V. Bigeminy/sinus

223 34 13 1 2.6 0.18 0.15 12 Sinus
223 42 13 43517 2.6 0.2p 0.15p 10 V. Tigeminy
223 39 13 298391 2.96 0.2p 0.21 12 V. Bigeminy
223 38 12 519178 2.8 0.3p 0.17p 6 V. Tach.

Note that all of the files had been annotated to indicate when cardiac events of interest occur.  The 
plots from "lyap_r" and "lyak_k" seen below in figures 5 and 6 are typical in quality of the output 
from all files examined.  While we did implement an algorithm to attempt an automatic linear 
regression, if the best fit line did not appear representative of the plotted points, it was disregarded 
and recalculated by hand.  This introduces some measure of uncertainty to our measurements that is 
difficult to quantify.  The algorithms were performed for five values of neighborhood sizes between 
fifteen and twenty-five.  They were also run for two different values of "m"; once at the 
recommended embedding dimension found with "false_nearest" and again at "m+1."  The letter "p" 
was added next to elements in table 2 if these two quantities differed by more than ten percent, 
indicating that they have questionable validity.  It appears that "lyap_r" is a bit more robust than 
"lyap_k", as the latter failed to find sufficient false-nearest-neighbors in several cases.  Output from 
both algorithms had largely nonlinear structure, prompting us to truncate the data set when 
attempting our linear regression.  "Lyap_k" in particular uniformly produced wildly unhelpful 
iterates for well over half of the output.

Despite this, some worthwhile results were obtained; we tend to support Casaleggio and 
Braiotta's conclusion that normal sinus rhythm (as seen in files 100, and 103) tended to produce 
larger Lyapunov exponents than the more irregular files.  In particular, exponents for ventricular 
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bigeminy and trigeminy had larger exponents than ventricular tachycardia and flutter.  Note that 
while files 213 and 223 have entries labelled as sinus rhythm.  These were also patients who 
experienced irregular cardiac behavior in the same thirty minute window, and even if the rhythm is 
considered "normal", the beats frequently weren't.  In addition, the correlation dimension of several 
files exceeded 3.0.  From Eckman and Ruelle, we know this suggests they may require hundreds of 
thousands of points to confidently compute the exponent.

Figure 5

Figure 6

46



We failed to extract any useful information possibly contained from the mean squared error 
histograms.  Figure 7 shows a histogram from (presumably chaotic) regular sinus rhythm on the left

Figure 7a Figure 7b

and a much more complicated pattern on the right.  We saw none of the isolated peaks that would 
indicate chaos in any histograms generated; most appeared to be some variation on a normal bell 
curve.  While the normal curve is the expected output of white noise, I believe that this results is 
more likely due to a failure of the method in this application.

The spectrograms, however, allowed us to compute a very useful metric of chaos that 
strongly supports the Lyapunov exponent results.  A higher number of local maxima above the 
threshold of ten percent were counted in the trials with normal sinus rhthym than those with more 
irregular behavior.  See figure 8 for examples from sinus rhthym and ventricular tachycardia.

Figure 8
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Conclusion:  In this paper, we applied several methods of chaos detection to EKG data.  Choosing 
the appropriate number of points to apply our methods to is a nontrivial task, as we seek to obtain 
accuracy in our calculations while capturing dynamics that occur over a short time.  Clearly some 
rounding has been applied to the measurements, and we should expect our results to indicate this 
fact.  Indeed, the presence of any white noise at all means that the true greatest Lyapunov exponent 
is quite large.  "Lyap_r" more regularly produced results than "lyap_k", but even this algorithm 
failed to be robust across different values of "m" in some cases.  Our reliance on ad hoc linear 
regression methods is also somewhat disconcerting.  Nonetheless, we were able to reproduce most 
of the results seen by Casaleggio and Braiotta; sinus rhythm appears to produce larger Lyapunov 
exponents than ventricular bigeminy and ventricular tachycardia.

The MESAH method revealed little about the system, and I must question its validity 
outside of low dimensional systems in its present form.

The application of spectrograms to the EKG data was quite successful.  In addition to being 
computationally cheap, the metric obtained by counting peaks above a threshold coincided with 
results from Lyapunov exponents, suggesting that sinus rhthym is "more chaotic" than the others.

Future studies could add denoising algorithms, a standardized method of linear regression, 
and perhaps a higher resolution of the lower frequency Fourier modes.  Data obtained at a higher 
frequency could possibly allow one to more accurately assess the Lyapunov exponents of different 
arrythmia, though oversampling may be a problem.
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A Survey of Dynamical Systems Models for

Language Change

Erik Silkensen

CSCI 5446, Spring 2012

Abstract

This report surveys dynamical systems models of language change,
and discusses an attempt at applying one of the models to empirical data.

1 Introduction

Language is dynamic; it is always changing. Historical linguists, of course, have
long been interested in studying and documenting the ways languages change.
However, with the advent of computers, researchers have also recently become
interested in studying the evolution of language from a computational perspec-
tive. Over the last twenty years, several researchers have proposed mathematical
models of language change that are based on dynamical systems. This report
surveys two of these models in particular, and discusses an attempt of the au-
thor’s to apply one of the models to empirical data.

2 Language Change

This section briefly introduces two concrete examples of changes to the English
language, to both its phonology and its morphology; afterwards, the report
focuses on how one might model such changes mathematically.

2.1 Phonological

According to Trask [11], Otto Jespersen first studied the so-called Great Vowel
Shift of the English language, a gradual change in the pronunciation of English
vowels that took place throughout the 15th century. The following notation de-
scribes some of these changes using the International Phonetic Alphabet (IPA).

[i:] → [aI]

[a:] → [eI]

[E:] → [i:]

...
...

1
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The above rules indicate that the two highest, long vowels, [i:] and [a:] (the
marker : means ‘long’), were diphthongized ; meanwhile, the other long, open
vowels, such as [E:], became more closed.

2.2 Morphological

Crowley [1] cites Wilhelm von Humboldt, a 19th century linguist, as the first to
suggest that the morphological type of language would tend to oscillate between
‘isolating’ and ‘synthetic’, or ‘agglutinative’—the cycle of agglutination.

Many languages have completed up to half of the hypothesized cycle. For
example, Old English was a synthetic language: words were often inflected for
their grammatical category. In contrast, Modern English has become a much
more isolating language: word order determines grammatical category more
often than inflection. Consider the following data [12]:

se-cyning ofslog þa-cyningan Old English
nom-king kill-past acc-queen Morphology
‘the king killed the queen’ Modern English

The top line gives an Old English translation of the Modern English in the
bottom line. The middle line annotates some of the morphemes in the Old
English sentence: the se morpheme is a nominative case marker—it indicates
that king is the subject of the sentence; þa is an accusative case marker—it says
that queen is the object. As a result, word order in Old English can be free:

þa-cyningan ofslog se-cyning Old English
acc-queen kill-past nom-king Morphology
‘the king killed the queen’ Modern English

The inflected nouns may appear either before or after the verb in Old English
without changing the meaning of the sentence. Modern English has lost these
case markers through its transformation into a more isolating language.

3 Models of Language Change

Linguists hope to model phonological and morphological (among other) kinds of
language change, such as those in the previous section, in an effort to come up
with both a descriptive and possibly predictive tool for their study of language.
This section presents two recent models based on dynamical systems.

3.1 The Language Dynamical Equation

Nowak et al. [9] propose a model, called the language dynamical equation, in-
spired by the idea that language change can be explained by human learning
error. That is, suppose there is some finite set of languages learnable by the hu-
man brain, the ‘Universal Grammar’ UG = {G1,G2, . . . ,Gn}, where Gi is some
language, or grammar, in the set. Then one can think of language change as

2
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the result of an imperfect learning process in which a child acquires language
Gj after being exposed to sentences from their parent’s language Gi.

Given a population that speaks n different languages, let xi be the fraction
of the population that speaks language Gi such that

∑
i xi = 1. The language

dynamical equation computes ẋi, the change in that fraction of the population,
for each language. Specifically, the equation is

ẋj =
n∑

i=1

FixiQij − φxj

where Fi is the fitness of language Gi, φ is the average fitness across languages,
and Qij is the probability that a child will acquire language Gj given that their
parent speaks Gi. The fitness of a language Gj is computed in the following way,

Fj =
n∑

k=1

Bjkxk

where B is a pay-off matrix that gives the benefit at each Bij to a speaker of Gi

of a meeting with a speaker of Gj .
Mitchener and Nowak [7] analyze instances of their equation that lead to

limit cycles and chaos, and argue that therefore “simple learning errors can lead
to complex, unpredictable, and seeming stochastic changes in languages over
time.” The remainder of this section presents those instances of the model.

Example 3.1. Consider a population of three languages, and let the pay-off
and learning matrices be the following:

B =

0.88 0.2 0.2
0.2 0.88 0.2
0.2 0.2 0.88

 Q =

0.79 0.2 0.01
0.01 0.79 0.2
0.2 0.01 0.79


The diagonally dominant pay-off matrix B signifies that “all languages are

equal” in this scenario; the imperfect learning matrix Q establishes a distinct
first, second, and third best language for each possible pairing. Figure 1 shows
the orbit generated by the language dynamical equation when instantiated with
these matrices. Mitchener and Nowak claim that such a limit cycle is “suggestive
of the morphology type cycle” hypothesized by von Humboldt, taking x1, x2,
and x3 to be different levels of agglutination, for example.

Example 3.2. Next, expand the population to five languages and use these
matrices, with Q now parameterized over µ:

B =


0.88 0.2 0.2 0 0.3
0.2 0.88 0.2 0 0.3
0.2 0.2 0.88 0 0.3
0.3 0.3 0.3 0.88 0
0 0 0 0.3 0.88

Q =


0.75 0.2 0.01 0.04 0
0.01 0.75 0.2 0.04 0
0.2 0.01 0.75 0.04 0
0 0 0 µ 1− µ

1− µ 0 0 0 µ


3
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Figure 1: A limit cycle generated by the language dynamical equation that
resembles the “cycle of agglutination” (see Example 3.1).

Figure 2: A bifurcation diagram of the language dynamical equation exhibiting
chaos, e.g., at µ = 0.735 (see Example 3.2).

4
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In this scenario, µ configures the probabilities for the new fourth and fifth
languages. Mitchener and Nowak carefully construct the matrices so that they
can induce chaos. Figure 2 shows a bifurcation diagram for a range of µ values,
with x1 on the y-axis and µ along the x-axis. The plot features the kind of
period-doubling bifurcations leading to chaos at, e.g., µ = 0.735. Mitchener [6]
gives a thorough bifurcation analysis of the language dynamical equation.

3.2 The G−A−P Model

Niyogi and Berwick [8] derive a parametric model of language change also at the
population level from one of language acquisition at the individual level that
is analogous to the logistic map. The parameters of their system are G, now a
family of grammars, A, a learning algorithm that maps sets of sentences to a
grammar g ∈ G, and P, a set of primary linguistic data presented to the children
acquiring language. The G−A−P model essentially computes the changing
linguistic population dynamics, similar to the language dynamical equation; a
formal presentation of the model is left to the original paper.

Niyogi and Berwick applied their model to data exhibiting the loss of the
verb-second (V2) phenomenon as the Old French language evolved into Modern
French. Later, Sonderegger and Niyogi [10] updated and then applied the model
to more empirical data in an analysis of stress shift in English noun/verb pairs.
That is, they investigated pairs of heteronyms, words that are spelled the same
but are either nouns or verbs depending on which syllable is stressed (e.g.,
‘récord’ [noun] and ‘recórd’ [verb]). They looked at pronunciation guides in
dictionaries throughout history to trace the changing patterns in stress. In the
future, they hope to continue tuning their model’s accuracy with historical data
so that it might be able to generate predictions of change to language over time.

4 Evaluation

This section discusses possible avenues for an empirical evaluation of the lan-
guage dynamical equation, in addition to raising a few questions about the
applicability of the model.

4.1 Sources of Data

More language data is easily available on-line now than ever before. Google
claim to have collected roughly 4% of all books ever printed in their enormous,
freely accessible n-gram database. An n-gram is a sequence of n words; Google
computes a probabilistic model that gives the likelihood of a given n-gram oc-
curring in English text.

Michel et al. [5] describe the construction of the Google database and show
several interesting plots of changes to English vocabulary over the last two
hundred years. However, to apply a model, such as the language dynamical
equation, in hopes of studying some sort of grammatical change to language

5
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(e.g., the loss of English case), to Google’s data is difficult. Even if the data
went far enough back into history, one would need to morphologically analyze
the words, and also be comfortable programming with many gigabytes of data.

The CHILDES project [4] provides a database of child language transcripts,
among several other tools. Although orders of magnitude smaller than Google,
the CHILDES database includes full sentences complete with part-of-speech
tags. While time ran out for this (i.e., this class report) project, it would
be interesting to see how one might use the CHILDES database to study the
dynamics of language change in the future.

4.2 Reflection

Mitchener and Nowak present a clean mathematical model in their language
dynamical equation; however, the examples they chose for the article don’t
necessarily make the best argument for its applicability to real language. For
example, they show how to induce chaos, but don’t suggest what relevance
chaos has to actual language change. They motivate their first example by
citing the morphology type cycle, but there’s no evidence of a language every
completing more than half the cycle—it may not exist. Australian linguist
Dixon1 [2] has said that, should a language ever complete the hypothesized
cycle of morphological type, it may take “probably anything from two or three
thousand years to fifty thousand and more.”

After reflection, it seems as if the language dynamical equation is probably
mostly of theoretical interest. Sharing some of this sentiment, Kello [3] com-
ments that “it is hard to see how future research will provide more specific
evidence on whether real language change is driven by the principles of their
model.”

5 Conclusion

This report surveyed two dynamical systems models of language change. The
first sometimes exhibits limit cycles and chaos. Unfortunately an effort to apply
it to empirical data has so far been unsuccessful, and it’s not certain that the
model is not meant to be only of theoretical value. However, the Google n-
gram and CHILDES databases seem like potentially good sources of data for an
empirical investigation of a dynamical systems language model. The designers
of the second surveyed model have used their model to study phonological and
morphological changes to English and French, respectively.

1Possibly a colleague Dr. Bradley’s at La Trobe University?
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In the past, chaos has been used successfully to produce variations in musical compositions.

The property of sensitive dependence on initial conditions is exploited to make these varia-

tions. In this article, I demonstrate how to make variations in compositions of a percussion

instrument in Indian classical music. My aim is to produce variations that respect the rules

of this style of music. For this purpose, the composition is mapped on two different Lorenz

attractors, which serve as two reference trajectories. A new initial condition is chosen and

the mappings for the new trajectory are found using appropriate distance measure and the

appropriate reference trajectory. These mappings found on the new trajectory correspond

to a variation. The variations formed this way are shown not only to respect rules of Indian

classical music but also to sound good.

I. INTRODUCTION

Chaos has numerous applications in various disciplines [7] such as physics, chemistry, engineer-

ing, etc. Interestingly enough, chaos has also been successfully used in the past to explore different

forms of art such as music [2]. Since Dabby’s work, chaos has been used to make chaotic variations

in dance [1], designing rock-climbing routes [5], etc.

This work is influenced from Dabby’s work on making musical variations using a chaotic Lorenz

attractor. In Dabby’s scheme, a sequence of musical pitches pi are paired with the x components of

a chaotic Lorenz trajectory. The idea is to use this as a reference trajectory. We then drop a new

initial condition to trace out a new trajectory. Using some distance measure, the new trajectory can

be compared with the reference trajectory and musical pitches are assigned to the new trajectory.

Even if the initial condition is chosen close to the reference trajectory, the sensitive dependence

on initial conditions property of chaos gives rise to variations of the original mapped composition.

One important aspect of this work is that depending on the initial condition chosen, we can have

variations that maintain to some extent the same style as the original piece or ones that mutate

the original piece beyond recognition. In either case, this approach forms the basis of this project.

∗Electronic address: yogesh.virkar@colorado.edu

56



2

FIG. 1: Kaida, the basic composition. The phrases or words are written in the English Alphabet but they

are phonetically equivalent. For each phrase, parts on either side of the hyphen indicate strokes used to

make that phrase. They are numbered from 1 to 8 for ease of understanding variations shown latter.

In Indian classical music compositions are played within a fixed number of beats which form a

rhythmic cycle called Taal [4]. Variations are built from a basic composition in any Taal. For a

single variation, the rules of Indian classical music allow variability during the start of this rhythmic

cycle or Taal where the musician improvises but as we progress temporally the rule states that the

basic composition should be played in whole or in part.

Unlike Dabby’s scheme, we use two reference trajectories. One is the chaotic Lorenz attractor

and the second is a fixed point attracting setting of the Lorenz attractor. We switch from the

chaotic map to the fixed point attracting map as we progress temporally. The chaotic attractor

captures the variability during the start of a Taal, while the fixed point attractor captures the

aspect of playing the basic composition in whole or in part. This technique is shown to be effective

and results are provided using a simple basic composition in a Taal of 16 beats. Some variations

sound close to the ones played in actual recitals, while some seem particularly unconventional.

II. INDIAN CLASSICAL MUSIC

The theory and basics of Indian classical music pertaining to percussion, i.e. the Tabla, has

been discussed extensively in [3]. We review some of the basics required for our discussion. I will

also introduce the basic composition that I used for this work.

The Tabla is composed of two drums, the right hand drum which gives sharp sounds and the

left hand drum which gives the bass effects. Different strokes can be played on each of these drums.

The combination of the strokes can be used to produce a rhythmic cycle of some fixed number of

beats called as the Taal. Certain combinations of these strokes can also give rise to words, which

are the building blocks of a basic composition, also called as Kaida (meaning the “rule”). Words

are immutable in the sense that a word cannot be played in part. Each word usually spans 1 beat.

Compositions are played in a specific Taal by making variations of the Kaida.
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The classical style of playing the Tabla allows one to make improvisations or variations on this

predefined “rule”, but enforces the following constraints

1. The improvisations made should fit in the Taal, in the sense that they should start and finish

within fixed number of rhythmic cycles.

2. The improvisations should use permutations or combinations of the different words defining

the Kaida.

3. As one improvises and moves away from the Kaida during the start of the rhythmic cycle,

one must play the Kaida, wholly or in part, towards the end of the rhythmic cycle.

The Taal used in this project is called Tintaal which is composed of 16 beats. The variations

made in this project span two cycles of the Tintaal i.e. 32 beats. The Kaida used in this project

consists of 8 immutable phrases or words each spanning 1 beat in time. These phrases are numbered

from 1 to 8 in the order they appear in the Kaida. This is shown in Figure 1. We will refer to

these phrases using the notation p1, p2, ...., p8 or equivalently pi for the ith phrase in the basic

composition.

III. METHODOLOGY

Rules 1 and 2 described in the previous section are trivial for a computer program. For rule 3

I propose the following methodology. It consists of four main aspects. Section III A deals with

exploring the musical space or making variations during the start of the Taal. Section III B deals

with how mappings are done. Section III C shows how to incorporate the rule 3. Section III D

handles the issue of a same phrase repeated for multiple successive beats.

A. Using Chaos to make variations

Similar to Dabby’s scheme, we form a mapping between the Kaida and the trajectory formed

using fourth-order Runge-Kutta solver (RK4) on a chaotic setting of the Lorenz attractor with

parameters a = 16, r = 45 and b = 4. The Lorenz system is defined by the following ordinary
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differential equations,

ẋ = a(y − x) (1)

ẏ = rx− y − xz (2)

ż = xy − bz (3)

This reference trajectory (shown in black in Figure 3) was formed with initial condition [x0, y0, z0] =

[1, 0, 0]. Each phrase pi is mapped on the projection of the Lorenz attractor on the xz-plane.

Thus each (x, z) in the reference trajectory is associated with one of the elements in pi. Thus

(x1, y1) → p1, (x2, y2) → p2, (x3, y3) → p3 and so on and so forth. Note that (x9, y9) → p1 as the

phrases wrap around. This is slightly different from Dabby’s scheme where only x-coordinates are

used.

B. Using a distance measure to produce mappings

The next step is to select a new initial condition and run RK4 solver with the same chaotic

setting. Let this new trajectory be [x′, z′]. The mapping for this trajectory are found using the

reference trajectory of the previous section. To find mapping for [x′1, z
′
1], we find the point in the

reference trajectory [x, z] that is closest to [x′1, z
′
1]. Thus we find the point [xi, zi] such that,

∀[xi, zi] ∈ [x, z], [xi, zi] : min
i

(√
(xi − x′1)

2 + (zi − z′1)
2

)
(4)

Thus we use the euclidean distance as a distance measure. If the Equation (4) gives [x10, y10] as

the closest point then according to our mapping scheme [x′1, z
′
1]→ p2, i.e., [x′1, z

′
1] maps to phrase

2.

If we use a chaotic map as our reference and use chaotic setting of Lorenz’s equations given by

(1), (2) and (3), then choosing a slightly different initial condition we get variability and impro-

visations of the Kaida. This is due to the sensitive dependence on initial condition property of

chaos.

C. Switching between chaotic and fixed point attractor probabilistically

However, we want to follow the Kaida in whole or in part towards the end of the Taal. For

this we use Lorenz system with parameters a = 16, r = 23 and b = 4. This setting gives us two

fixed point attractors, one at [x, z] = [−9.381, 22] and the other at [x, z] = [9.381, 22]. For this
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attracting reference map we have two reference trajectories (shown in red in Figure 3), one with

initial condition [1, 0, 0] and the other with [−1, 0, 0]. We map the phrases in the same way on both

these trajectories.

Rule 3 states that as we progress temporally we should play the basic composition in whole

or in part. For this we make a probabilistic switch of the reference maps and settings of Lorenz

equations from the chaotic setting of Section III A to the fixed point attracting one mentioned

above. This probability of switching is given as

Pr(chaotic→ fixed pt.) = i/n (5)

where i is the number of the current beat and n denotes the total number of beats. Thus probability

of switching increases smoothly over time. The reason to make the switch probabilistic is so that

it models to some extent the human spontaneity in playing a variation.

D. Avoiding consecutive repetitions of the same phrase

With the scheme mentioned above, a phrase might get repeated for consecutive beats or multiple

successive beats. Though there is no rule which states that consecutive repetitions are not allowed,

if the same phrase is repeated consecutively for 4 or 5 times, the variation does not sound good.

To handle this, we introduce one more probability in our framework. We can call this probability

as the probability of repeating (j − 1)th phrase for jth beat. Empirically, a nice choice of for this

probability came out to be p = 0.05, i.e., we allow consecutive beats to have the same phrase 5%

of the time. However, this is a free parameter in our model that can be adjusted as one sees fit.

IV. RESULTS

With the simple recipe of Section III proposed to make variations, we turn to some of the

results. Using the basic composition of Figure 1 and our reference maps, we select two different

initial conditions. For the first variation, we choose [x0, y0, z0] = [1.02, 0, 0.01]. For the second

variation, [x0, y0, z0] = [26, 0, 30].

The results are shown in Figure 2. For the first variation, we see that the first 16 beats show

variability while the last 16 beats show that basic composition is played entirely as numbers 1− 8

appear in order for the last 16 beats. This shows that the switching scheme indeed works and all

rules of classical music are followed. Variation1.wav shows that the variation sounds good and

pretty conventional as well. Variation 2 is slightly unconventional, but looking at just the numbers
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(a) Variation 1

(b) Variation 2

FIG. 2: The numbers 1 to 32 denote the number of the beat. The numbers in brackets appearing below the

beat number denote the number i of phrase pi mapped to that beat. The numbers in red show that the

basic composition was followed in whole or in part. The actual corresponding phrases appear in the English

Alphabet below these numbers.
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(b) Variation 2

FIG. 3: Shows the variation trajectories in green. The chaotic Lorenz map, i.e., the first reference trajectory

is shown in black. The fixed point attracting Lorenz map, i.e., the second reference trajectory is shown in

red.

we see that from the 19th beat, the basic composition is followed in part. Variation2.wav sounds

good, though different than what one hears in a recital.

Figure 3 shows the two reference maps (chaotic in black and fixed pt. one in red) and the

variation trajectory in green. From Figure 3(b) we can see how the switching takes place and we

move from chaos to order as we return to the basic composition. This is less clear from Figure 3(a).

While these are good examples of variations, there are some variations with different ICs which

are not good. Typically we might switch to the fixed point map late and depending on our IC we

might not play the basic composition. A good prescription for an IC to avoid this is to start close

to the IC of the reference trajectories.

But with certain combinations of ICs and the time of switching, we may not end up on p8, i.e.,

the 8th phrase for the 32nd beat and such variations may not sound good. This is the problem

of misaligned phrases. In this case, one option is force the last few beats to have phrases exactly

in order so that play p8 for the 32nd beat. However, this kills the spontaneity and our model has

more things to remember and hence we do not use such a scheme.
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V. CONCLUSIONS

The primary aim of this project was to produce variations in Tabla that follow all the rules of

Indian Classical music. While some of the rules are trivial and easy for a computer program to

follow, others are not. The most important rule in playing variations of a composition was that the

variation can explore the possibilities during initial beats of a Taal but as we progress temporally,

the basic composition should be played in whole or in part. We used chaos to for exploring these

possibilities initially and switched to a fixed point attractor setting to play the basic composition.

This idea is inspired from the way musicians play this kind of music.

However there are some potential issues such as misalignment of phrases. One of the ways in

which this can be handled is to force an alignment when the map is switched. However this does

not model the spontaneity of a musical. Another viable option is to have a unstable periodic orbit

and target the variation trajectory [6] towards it as we switch from the chaotic map. Thus instead

of a fixed point attracting map, we would have a UPO as a reference trajectory. These are potential

avenues for future research which could be worth exploring.
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ANALYSIS OF CHAOTIC CELLULAR AUTOMATA

FOR USE WITH SYMMETRIC KEY CRYPTOGRAPHY

Sean Wiese

April 30, 2012

1 Introduction

Over the past few decades the field of cryptography has become an increasingly important part

of modern life. Tools that were once only employed by governments to protect state secrets

are now used to protect everything from personal financial data to email logins. In the field

of cryptography old encryptions systems are broken as new code breaking techniques are de-

veloped and computer performance increases. Consequently, Cryptographers are continuously

looking for new algorithms to use in encryption systems.

One of the backbones of many major cryptography systems is a pseudorandom number

generator (PRNG). These functions work to create a deterministic output that appears random

based on a specific seed. A good PRNG is a deterministic mathematical function with high

sensitivity to initial conditions, through key dependence, and an output that appears random.

The field of Chaos Theory stresses a high sensitivity to initial conditions with outputs that can

appear to be random, making chaotic functions an excellent candidate for a PRNG. A popular

chaotic function, the logistic equation, has already been shown to be an effective PRNG[5]. A

set of discrete dynamical systems called Cellular Automata (CA) have also been shown to be an

effective PRGN for use in encryption systems [3][4]. Although the use of CAs in cryptography

is not new, this paper seeks to compare the effectiveness of elementary cellular automata and

life like cellular automata for use in encryption, as well as, the difference between a CA based

stream cipher and CA based block cipher.

In Section 2, we will discuss the various types of cellular automata used in our encryption

systems. In Section 3, a stream cipher based on an elementary cellular automaton will be

described and analyzed. In Section 4, a stream cipher based on a 2 dimensional life like cellular

automaton will be described and analyzed. In Section 5, a block cipher encryption system

1
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based on a 2 dimensional life like cellular automaton will be proposed and tested in detail.

Finally, in Section 6, the paper will end with a comparison of the advantages and disadvantages

of the three encryption systems, possible weaknesses of CA based encryption, and potential

future extensions.
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2 Cellular Automata

In this section we will provide a definition of a cellular automaton and describe the two different

types of CAs that will be used in this paper.

2.1 CA Definition

A cellular automaton is a discrete model studied in computability theory, mathematics, physics,

complexity science, theoretical biology and microstructure modeling. It consists of a regular

grid of cells, each in one of a finite number of states, such as ”On” and ”Off”. The grid can

be in any finite number of dimensions. For each cell we will refer to the surrounding cells

in the grid as neighbor cells. These neighbor cells can be defined to be any discrete distance

away from the center cell. An initial state is selected by assigning a state for each cell. A new

generation is created, according to some fixed rule that determines the new state of each cell in

terms of the current state of the cell and the states of the cells in its neighborhood. Typically,

the rule for updating the state of cells is the same for each cell and does not change over time.

2.2 Elementary 1D CA

Elementary 1D CAs are the simplest form of cellular automata. They exist in only two states,

On or Off, and the rules that govern the system only depend on the nearest neighbor values.

This gives a possible 23 possibly binary states, thus, producing 28 possibly 1D elementary CAs

each of which can be represented by an 8-bit binary number. These cellular automata were

extensively studied and classified by Stephen Wolfram. Stephen classified elementary cellular

automata into four different classifications. [8]

• class 1: Nearly all initial patterns evolve quickly into a stable, homogeneous state. Any

randomness in the initial pattern disappears.

• class 2: Nearly all initial patterns evolve quickly into stable or oscillating structures.

Some of the randomness in the initial pattern may filter out, but some remains. Local

changes to the initial pattern tend to remain local.

• class 3 : Nearly all initial patterns evolve in a pseudo-random or chaotic manner. Any sta-

ble structures that appear are quickly destroyed by the surrounding noise. Local changes

to the initial pattern tend to spread indefinitely.

• class 4 : Nearly all initial patterns evolve into structures that interact in complex and

interesting ways. Class 2 type stable or oscillating structures may be the eventual out-
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come, but the number of steps required to reach this state may be very large, even when

the initial pattern is relatively simple. Local changes to the initial pattern may spread

indefinitely.

For purpose of this paper we will only focus on class 3 CAs.

2.3 2D Life Like Cellular Automata

A 2D life like CA differs from elementary cellular automata in that it exists in a 2 dimensional

grid and must meet the following criteria:

• The array of cells of the automaton has two dimensions.

• Each cell of the automaton has two states (conventionally referred to as ”alive” and

”dead”, or alternatively ”on” and ”off”)

• The neighborhood of each cell consists of the eight adjacent cells and (possibly) the cell

itself.

• In each time step of the automaton, the new state of a cell can be expressed as a function

of the number of adjacent cells that are in the alive state and of the cell’s own state.

This class of cellular automata is named for the Conways Game of Life, the most famous

cellular automaton, which meets all of these criteria.

Throughout this paper we will be using B/S notation to define CAs. This notation system

indicates the number of neighbors that can result in a Birth, a change of a dead cell to an alive

cell, and the number of neighbors that can result in a Survival, an alive cell remaining alive.

For example, Conways Game of Life is denoted by (B3,S23) indicating that 3 neighbors allows

a cell to be born and 2 or 3 neighboring cells allows the cell to survive.
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3 1D CA Stream Cipher

In this section the development of an encryption system using a chaotic elementary CA will be

discussed.

3.1 Stream Cipher

In cryptography, a stream cipher is a symmetric key cipher where plaintext bits are combined

with a pseudorandom cipher bits. In a stream cipher each plaintext bit is encrypted one at a

time with the corresponding bit of the cipher stream, to give a bit of the ciphertext stream. The

XOR operation is used to combine a plaintext bit and a cipher bit into the ciphertext bit.

3.2 Choice of 1 Dimensional CA

A good stream cipher will have the following characteristics.

1. Apparent Randomness : The stream must appear to be random. If a psudoranom stream

is XORed with a non-random stream the output will appear random.

2. Diffusion : A small change in the key used to generate the stream should provide a

completely different result, i.e. half of the bits should be flipped.

A chaotic system satisfies the first condition. Therefore, we will look to select one of the

chaotic elementary cellular automata identified by Wolfram. Wolfram identified rules 22, 30,

126, 150, and 182 as chaotic cellular automata [8]. For this paper we will use Rule 30 as the

basis of our stream cipher. This rule was chosen for having the unique characteristic that the

center column of the rule produces a statistically random stream of bits with a high sensitivity

to initial conditions. Furthermore, this CA is currently used in the computational software

program Mathematica as a large number random number generator [7].

3.3 Algorithm

To encrypt a data stream using this method the following technique can be employed.

1. Set the key as the initial condition of the CA.

2. Run the CA for n iterations where n is the number of bits in the key. The goal of this

step is to increase diffusion for bit flip in an edge bit of the key. For example, if the

initial condition starts with the 16 bit key 10000000100000001 and then changes to

00000000100000001 the first 8 bits of the center column will be the same.
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Figure 1: A image of rule 30 run for 15 iterations. The highlighted center column is chaotic and will

be used for our stream cipher. Image courtesy of [7].

3. Run the CA m iterations where m is the number of bits in the data source. The bit of the

center column of the CA is saved for use in the stream cipher.

4. Take the resulting center column bits and xor with data.

To decrypt the ciphertext, the stream is generated using the same method and XORed with the

encrypted data the result is the original plaintext. Figure 2 shows how the XOR operator can

be used to encrypt and decrypt data.

Figure 2: Sample encryption and decryption of data using a stream composed of the repeated binary

sequence 11110011
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3.4 Results

Several tests can be run to evaluate the effectiveness of the proposed encryption system. These

tests include the entropy, % of bits that are 1, Matlab randomness test, key diffusion rate, and

plaintext diffusion rate [4]. Each of these focuses on detecting the weakness of the encryption

system against different types of attacks.

Original Image Encrypted Image

Entropy (10 is perfectly random) 7.717 9.813

% of bits that are 1 52.3% 50.5%

Matlab runs test Fail Pass

1 bit flip key diffusion rate NA 49.92%

NPCR (1 bit flip plaintext) NA 0.00003%

Table 1: Results of Rule 30 1 Dimensional Stream Cipher Encryption. The final two tests are only valid

for an encryption system since they measure how effective the system is key and input text diffusion.

Therefore there are no results for the original image.

Figure 3: Original 32x32 png on the left. Encrypted png on the right.

3.4.1 Brute Force Key Search

The most basic form of attack is a brute force key search. In this type of attack an attacker

will systematically try to decrypt the ciphertext by checking permutations of the key until the

correct key is found.

The security of this encryption system against such an attack is based on the length of the

key. For the tests run in this section a key of length 256 bits was used. To brute force a 256 bit

key would require an attacker to check 2256 different keys. This key space is too large for an

exhaustive key search using even the most powerful modern day supercomputers.
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3.4.2 Cipher Only Attacks

In cryptography, a ciphertext-only attack (COA) or known ciphertext attack is an attack model

for cryptanalysis where the attacker is assumed to have access only to a set of ciphertexts. Over

the years cryptographers have developed statistical techniques for attacking ciphertext, such as

frequency analysis. These attacks attempt to identify an underlying pattern in the data and

exploit that pattern in order to reduce the number of attempts a brute force attack must make

before decrypting the data. In order to protect against these attacks the cipher text should appear

to be a random distribution of bits. This ability to generate an apparently random ciphertext is

a property of the encryption system referred to as confusion.

One indication of random data is a uniform distribution of values. This can be checked by

viewing a histogram of the distribution of red, green, blue, and alpha values of the pixels in the

encrypted vs. original image. From figures 10 and 11 it is clearly shown that the distribution

of rgba values is relatively uniform and differs from the original image.

A random dataset of 1s and 0s should have an approximately equal number of each type of

bit in the set. A larger value of either indicates that the PRNG favors one bit over the other. This

behavior decreases the encryption systems resistance to frequency attacks. The value for our

encryption system is with one half a percent of 50%, indicating a pseudorandom distribution.

Another indication of randomness is image entropy. Image entropy is a statistical measure

of randomness that can be used to characterize the texture of the input image. Entropy is

defined as

E = −
∑
i

(p. ∗ log2(pi))

where p contains the histogram counts. A higher value of E is indicative of higher randomness

in the image. From the results in table 1 we can see that entropy of the encrypted image is far

greater than that of the plaintext image.

A more advanced test for randomness is the runs test used by Matlab. This test performs a

runs test on the sequence of observations in the vector x. This is a test of the null hypothesis

that the values in x come in random order, against the alternative that they do not. The test is

based on the number of runs of consecutive values above or below the mean of x. Too few runs

indicate a tendency for high and low values to cluster. Too many runs indicate a tendency for

high and low values to alternate. The test returns the logical value h = 1 if it rejects the null

hypothesis at the 5% significance level, and h = 0 if it cannot. From table 1 it is shown that the

encrypted image passes the runs test while the original image fails the test.
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3.4.3 Differential Attacks

Differential cryptanalysis is a general form of cryptanalysis applicable primarily to block ci-

phers, but also to stream ciphers and cryptographic hash functions. In the broadest sense, it

is the study of how differences in an input can affect the resultant difference at the output. In

the case of a block cipher, it refers to a set of techniques for tracing differences through the

network of transformations, discovering where the cipher exhibits non-random behavior, and

exploiting such properties to recover the secret key.

One indication of resilience to differential attacks is if an encryption system to has good

diffusion. Diffusion means that a change a bit in the plaintext leads to several changes in the

encrypted image. Ideally one would have a diffusion rate of approximately 50%, meaning that

any change in the original plaintext appears to produce a completely different ciphertext.

When encrypting images the NPCR test can be used to test diffusion. NPCR rate is the %

of bits that change when a single input bit is changed.

NPCR =

∑
i F (i)

N
× 100

where F(i) is the the bit value, 0 or 1, at the i index and N is the number of bits in the data set.

From table 1 it is clear that our cipher has an extremely poor NPCR rate. This is due to the fact

that the encryption systems cipher stream is generated solely based on the key with no regard

the plain text. Thus, if one bit is flipped in the plain text, only one bit will be flipped in the

ciphertext.

3.4.4 Key dependence analysis

Further attacks look at how the encryption system changes based on a change in the key. A

good encryption system should produce a different output for different keys even if only one

bit is flipped in the key.

To measure the key dependence of the encryption system a test was run where only one bit

was flipped in the key and the number of flipped bits in the output was summed. From table 1

it is clear that even a small change in the initial key produces a completely different output.

3.4.5 Overview of Results

From table 1 and figure 3 the proposed encryption method was effective and producing a cipher

image that differs from the original image and appears to be random noise.

Despite the success of this encryption method, there still exist some major drawbacks. The

computation time of this encryption system is relatively large. This is due to the face that only
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one column of each CA iteration is used. This restriction forces the system to run at least one

iteration for every bit in the plaintext. This is extremely inefficient and could never be used for

any large dataset.
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4 2D Life Like CA Stream Cipher

In this section the development of an encryption system using a chaotic life like CA will be

discussed.

4.1 Choosing Life Like Chaotic CA

Several papers have looked at how effective various life like cellular automata behave as

PRNGs. In [3] an encryption system was designed uses life like cellular automata. [3] studied

several life like CAs for use as a PRNG and found that a Fredkin (B4357/02468) and Amoeba

(B357, S1358) performed the best in a Diehard and Ent randomness tests. In the next section

we will examine both CAs for use in our stream cipher.

4.1.1 Testing Chaos of CA

As a test to ensure that the Fredkin and Amoeba CA acts as a PRNG and is chaotic, the Lya-

punov Exponent of the CA can be estimated in addition to running randomness tests on the

output of the CA. A positive Lyapunov exponent is indicative of chaos.

The nondirectional maximum Lyapunov exponent (MLE) of an elementary cellular au-

tomaton (CA) may be interpreted as the natural logarithm of the time averaged number of

cells cj in a cell’s neighborhood N(ci) that is affected during each consecutive time step if the

state of cj is perturbed. Results of testing Fredkin (B4357/02468) and Amoeba (B357, S1358)

against the known chaotic rule 30 can be found in table 2.[1]

Matlab Runs Test Lyapunov Exponent Lyapunov Exponent [3]

rule 30 Pass 0.653 NA

Fredkin (B4357/02468) Pass 0.999 0.999

Amoeba (B357, S1358) Pass 0.821 0.8604

Table 2: Comparison of calculated MLE values for different chaotic CAs. For this paper the MLE

value was determined from the average of 5 runs and the MLE calculation between the 200th and 201st

iteration with different initial conditions

The Fredkin CA outperformed the Amoeba CA in the tests from table 2 and the Diehard

randomness test from [3]. Consequently, for our stream cipher we will use the Fredkin CA.

4.2 Proposed Algorithm

To encrypt a data set the following algorithm can be used.
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1. Set the key as the initial condition of the CA by looping the key over a grid the size of

the data set.

2. Run the CA for a number of iterations n.

3. Take the resulting array of bits and xor with data.

To decrypt the ciphertext, the stream is generated using the same method and XORed with the

encrypted data, the result is the original plaintext.

4.3 Results

Testing of the effectiveness of a CA was discussed in section 3.4. In this section we will only

summarize the results of using the life like CA.

Original Image Encrypted Image

Entropy (10 is perfectly random) 6.343 9.989

% of bits that are 1 47.05% 50.15%

Matlab runs test Fail Pass

1 bit flip key diffusion rate NA 50.04%

NPCR (1 bit flip plaintext) NA 0.000002%

Table 3: Results of Rule 30 1 Dimensional Stream Cipher Encryption. The final two tests are only valid

for an encryption system since they measure how effective the system is key and input text diffusion.

Therefore there are no results for the original image.

Figure 4: Original image on the left. Encrypted image 10 iterations in the center. Encrypted image

1000 iterations on the right.

The results displayed in table 3 are comparable to those generated by the 1 dimensional

rule 30 stream cipher. However, the 2D cellular automaton was able to overcome many of
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the problems presented by the rule 30 stream ciphers. Most notably this algorithm allows all

the bits of the final cellular automata to be used. Additionally, less iteration are required to

generate a usable data stream.

From testing 100 to 1000 iterations appears sufficient to generate a pseudorandom stream.

However, there is a danger that insufficient iterations will be used and remnants of the initial

data will still be visible. Figure 4 shows an image after only 10 iterations. The outline of the

earth is still visible indicating that there was not enough randomness in the CA after only 10

runs. As a rule of thumb the PRNG should be run a minimum of 100 iterations and until 99%

of the rgba frequency values are within 10% to 15% of the mean frequency.

There still remains a major drawback in the design of this algorithm. The encryption sys-

tems NPCR remains low remains low leaving the ciphertext vulnerable to differential attacks.
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5 Block Cipher

In order to produce an encryption system that has diffusion, a block cipher can be used. In

cryptography, a block cipher is a deterministic algorithm operating on fixed-length groups of

bits, called blocks, with an unvarying transformation that is specified by a symmetric key.

The modern design of block ciphers is based on the concept of an iterated product cipher.

In cryptography, a product cipher combines two or more transformations in a manner intending

that the resulting cipher is more secure than the individual components to make it resistant to

cryptanalysis. Iterated product ciphers carry out encryption in multiple rounds, each which

uses a different subkey derived from the original key.

One of the main advantages of block ciphers is diffusion. In our two previous encryptions

systems, the encrypted data was still vulnerable to a differential attack. Due to the use of S and

P boxes, to be explained later, block ciphers are able to have a high sensitivity to the input text.

5.1 Block Cipher Algorithm

The proposed block cipher algorithm can be broken into several parts.

1. Generation of keys.

2. Generation of P and S Boxes

3. Block Cipher Encryption Algorithm

4. Block Cipher Chaining

An overview of the block cipher encryption system without chaining can be viewed in figure

5. This particular block cipher is a substitution permutation network. Each part of the system

servers a particular focus.

S-Box In cryptography, an S-Box (Substitution-box) is a basic component of symmetric key

algorithms which performs substitution. They are typically used to obscure the relation-

ship between the key and the ciphertext.

P-Box In cryptography, a permutation box (or P-box) is a method of bit-shuffling used to

permute or transpose bits across S-boxes inputs, retaining diffusion while transposing.

Sub Key In a block cipher, a rounding function is used to derive several keys from the original

key that can be XORed with the input to each round of S-Boxes. In figure 5 K0,1,2,3 are

the result of the rounding function. These keys will be referred to as sub keys.
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Figure 5: A sketch of a Substitution-Permutation Network with 3 rounds, encrypting a plaintext block

of 16 bits into a ciphertext block of 16 bits. The S-boxes are the Sis, the P-boxes are the same P , and

the round keys are the Kis.

5.1.1 Generation of keys

In order generate the sub keys used in the substitution-permutation network the Fredkin (B4357/02468)

CA can be used. A n x m grid can be initialized where n is the size of the key and m is number

of keys that are needed. For this algorithm the number of keys needed is 4. The n x m grid is

initially filled with the repeating value of the key. The system is then run for several iterations

to produce a number of psudorandom keys. The small grid size allows a random pattern to

appear in less iteration. After only 10 iterations the pattern from the original key was destroyed

by the chaotic nature of the CA. To make the computation easier a 32 x 32 array is used to

represent the 256 x 4 array of keys. The output after only 10 iterations can be viewed in figure

6.

5.1.2 S-Boxes

S-boxes are a key part of an effective block cipher. One of the simplest forms of a S-box is

where a n bit number is input into the s box and is transformed into another n bit number via
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Figure 6: An array of subkeys generated by the Fredkin CA after 10 iterations

a lookup. An example of a 16 bit s box can be seen in table 4. S-boxes where multiple inputs

map to the same output are forbidden since such a box would make the system non reversible.

32 32 bit S-boxes were used in this block cipher encryption system.

input output

0 6

1 15

2 2

3 12

4 11

5 1

6 9

7 8

8 13

9 7

10 4

11 14

12 3

13 10

14 5

15 0

Table 4: A S-Box input output map
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5.1.3 P-Box

P-boxes ensure that our block cipher has good diffusion. An example of how a p box functions

can be seen in figure 5. For the p boxes used in our algorithm we generated 2 random P-boxes

ensuring that at least one bit from each S-box was mapped to one of the 8 S-boxes in the

following row.

5.1.4 Mode of Operation

In cryptography, mode of operation is the procedure of enabling the repeated and secure use of

a block cipher under a single key, also referred to as chaining. A block cipher by itself allows

encryption only of a single data block of the cipher’s block length. When targeting a variable-

length message, the data must first be partitioned into separate cipher blocks. Typically, the

last block must also be extended to match the cipher’s block length using a suitable padding

scheme. A mode of operation describes the process, type of chaining, of encrypting each of

these blocks, and generally uses randomization based on an additional input value, often called

an initialization vector, to allow doing so safely.

One of the advantages of chaining is to avoid the same input production the same ciphertext.

Figure 7 shows the result of a block cipher encryption system without chaining.

Figure 7: The image on the left shows the original image. The image on the right is encrypted using a

block cipher without chaining.

For this block cipher algorithm a Propagating Cipher Block Chaining (PCBC) mode of
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encryption will be used. The encryption and decryption process is described in figure 8.

Figure 8: A sketch of the propagating cipher block chaining mode of operation used in this block cipher

encryption system. The initialization vector is a randomly generated binary vector of length 256 bits.

5.2 Results

Testing of the effectiveness of a CA was discussed in section 3.4. In this section we will only

summarize the results of using the Frekin CA as basis for the block cipher described in the

previous subsections.

The results displayed in table 5 and figures 9, 14, and 15 are comparable to those generated

by the first two encryption methods. However, the major difference in the results is the increase

in the NPCR value. This result indicates that the block cipher method is more resilient to

differential attacks then the stream cipher methods.
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Figure 9: Results of encryption of 512x512 png using the block cipher method described in this section.

The original image is on the left. The encrypted image is on the right. Just in case you couldnt tell.

Original Image Encrypted Image

Entropy (10 is perfectly random) 7.325 9.9993

% of bits that are 1 58.68% 49.98%

Matlab runs test Fail Pass

1 bit flip key diffusion rate NA 49.93%

NPCR (1 bit flip plaintext) NA 48.01%

Table 5: Results of block cipher encryption based on the Fredkin CA. The final two tests are only valid

for an encryption system since they measure how effective the system is key and input text diffusion.

Therefore there are no results for the original image.
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6 Conclusion

To conclude, we will expand on the joint results of all three encryptions systems, closely ex-

amine their strengths and weaknesses, and propose extensions.

6.1 Overall Results

One of the most valuable results is that all three chaotic cellular automata encryption systems

had excellent confusion. All of the systems exhibited high entropy, high key diffusion, and

good bit frequency as well as passing the Matlab runs test. Despite this common characteristic

the stream ciphers failed to exhibit diffusion while the block cipher demonstrated excellent

diffusion due to the S and P boxes.

The encryptions systems were further separated by their computational requirements. The

1D rule 30 stream cipher proved unrealistic due to its exorbitant memory and computational

costs when dealing a data stream of larger than a few thousand bits. The 2D Fredkin stream

cipher fared better by limiting the memory usage to the size of the data stream being encrypted.

This limited data size kept the computational requirements for each iteration constant leading

to a significant improvement over the 1D rule 30 encryption system. However, the best perfor-

mance was the block cipher. Combining multiple permutations together with a small size CA

grid composed of the sub keys significantly reduced the computational requirements.

While the block cipher was able to outperform the stream ciphers under normal conditions,

it lacks the parallelism that is available in the stream ciphers. Table 6 shows how calculating

CAs using a Nvidia CUDA program can reduce computation time by several fold. It would

also be possible to further increase performance with a hardware implementation such as the

one suggested in [6].

CA Grid Size Iterations Python C CUDA

Rule 30 128 to 8320 bits 4096 323s 0.205s 0.046s

2D Fredkin 512 x 512 bits 1000 954s 2.156s 0.049s

Table 6: Results of running rule 30 and Fredkin CA using python, C, and CUDA. Pythons slow per-

formance was due to the use of lists instead of python arrays. Additionally, 0.035s of the CUDA code

was spent sending data to and from the GPU. For larger iterations or grid sizes CUDA would increase

its lead over c and python
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6.2 Strengths, Weaknesses, and Extensions

As mentioned above all of the encryptions systems performed extremely well when basic crypt-

analysis tests were performed. However, to ensure that the output of the encryption system

produces an excellent pseudorandom ciphertext more advanced randomness tests could be run.

In [3] the diehard and ent tests were used to test the randomness of the life like CAs. These ran-

domness tests could be used on the output of our encryption systems to ensure that the output

is pseudorandom.

One weakness with using CAs for cryptography is the danger of weak keys. In cryptogra-

phy, a weak key is a key, which, used with a specific cipher, makes the cipher behave in some

undesirable way. Weak keys usually represent a very small fraction of the overall keyspace,

which usually means that, if one generates a random key to encrypt a message, weak keys are

very unlikely to give rise to a security problem. Nevertheless, it is considered desirable for a

cipher to have no weak keys. A cipher with no weak keys is said to have a flat, or linear, key

space. Testing for weak keys is a difficult task, however, there is one week key for all of the

encryption systems in this paper. A key of all 0s would produce a grid of all zeros in the stream

ciphers and all of the sub keys in the block cipher would be comprised of only zeros. To avoid

this problem a key of all zeros could be forbidden for use with these encryption systems.

One weakness of the block cipher encryption system is the possibility of weak S boxes. For

example the DES encryption system was originally designed with weakens S boxes. However,

the NSA mysteriously changed the S boxes when the government was reviewing the DES

system. The 8 S-boxes of DES were the subject of intense study for many years out of a

concern that a backdoor might have been planted in the cipher. The S-box design criteria

were eventually published [2] after the public rediscovery of differential cryptanalysis, showing

that they had been carefully tuned to increase resistance against this specific attack. Other

research had already indicated that even small modifications to S-boxes could significantly

weaken encryption systems.
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7 Appendix
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Figure 10: This histogram shows the distribution of rgba values in the original test image in figure 3
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Figure 11: This histogram shows the distribution of rgba values in the encryption image in figure 3
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Figure 12: This histogram shows the distribution of rgba values in the original test image in figure 4
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Figure 13: This histogram shows the distribution of rgba values in the original test image in figure 4
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Figure 14: This histogram shows the distribution of rgba values in the original test image in figure 9
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Figure 15: This histogram shows the distribution of rgba values in the original test image in figure 9
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Abstract

I propose integrating the use of chaotic trajectories in reinforcement learning tasks
to regulate agent exploration. Reinforcement learning [11] has shown itself to be a
powerful optimization tool with broad applications across disciplines. Reinforcement
learning, similar to much of human and animal learning, relies on the process of trial
and error to shape the agent’s interaction with its environment. The method used to
mitigate the tension between exploitation and exploration during these trial and error
interactions has significant impact on the performance of the reinforcement learning
algorithm. In most reinforcement learning algorithms, the process of exploration ulti-
mately relies on a pseudo-random number generator. By integrating chaotic mappings
into the exploration policy in place of pseudo-random number generators, we see sig-
nificant improvement in performance on a series of simple maze tasks when compared
to similar algorithms using pseudo-random number generators.

1 Introduction

Reinforcement learning theory originated in the field of psychology as a model for human
learning. In the last couple of decades it has been embraced by the machine learning com-
munity as an effective method for optimization and a theoretical tool for understanding
learning in artificial agents. Similar to a human learner, the virtual agent learns thorough
experience with its environment. As the agent navigates its environment, it is given feedback
in the form of numerical rewards, which it uses to form judgments about the value of its
actions. Because the agent’s learning is experiential, it must mediate the conflict between
exploitation and exploration. To artfully maintain the balance between these two conflicting
impulses, the learning agent requires a structured and directive policy, but one with enough
flexibility to allow for novelty. This paper presents the use of chaotic trajectories to guide
the agent’s course of action between exploitation and exploration.

1
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2 Reinforcement Learning

2.1 Context

Machine learning is grossly divided into supervised and unsupervised learning. In supervised
learning, the agent’s learning is directed by training data, which has been labeled by a human
expert. Feedback provided to the agent in supervised learning is direct and informative. The
labeled training data provides feedback not only on the correctness of the choice the agent
made, but instructs the agent about the proper choice if the agent chooses in error. A classic
example of supervised learning is a classifier - for example, an email spam filter.

In unsupervised learning, in contrast, the agent must learn without the benefit of a
objective truth metric. Most unsupervised learning is concerned with inferring structure in
unlabeled data sets. A classic example of unsupervised learning is a clustering algorithm,
for example, a recommender system or topic modeler. Although reinforcement learning is
sometimes placed under unsupervised learning algorithms, it is more commonly given its own
class. Similar to unsupervised learning algorithms, reinforcement learning distinguishes itself
from supervised learning by operating without labeled training data or directive feedback.
However, it also differs from other unsupervised learning algorithms because of its focus on
interactions with an environment.

Reinforcement Learning algorithms learn through experience with an environment using
the process of trial and error. The agent is not told which actions to pursue, but instead
must search through the environment and discover which action choices yield the greatest
cumulative return. This process of search and trial and error decision making distinguish
reinforcement learning from other forms of machine learning. Reinforcement learning models
represent their environment with a set of states, s ∈ S, and actions, a ∈ A, available from
those states. The goal of reinforcement learning is to establish a policy, denoted πt, which
maps perceived states to actions at time, t, to maximize a cumulative return function. The
policy is developed probabilistically as the agent navigates the environment. When an agent
takes an action, a, from state, s, it receives feedback about its choice in the form of a single
numeric value, called the reward, rt. This reward is used to adjust the policy values and the
probability, πt(s, a), of taking action a from state s, in the future.

2.2 Popular Algorithms

There are three broad classes popularly applied to reinforcement learning [11]: dynamic
programming, Monte Carlo methods, and temporal difference learning. Dynamic program-
ming refers to a set of model-based algorithms used for optimization. Similar to divide and
conquer algorithms, dynamic programming works by breaking a problem down into sub-
problems, solving these subproblems, and recombining their solutions [1]. In reinforcement
learning applications, dynamic programming uses a perfect model of the environment as a
Markov decision process and divides the updating process recursively. Although dynamic
programming is an effective optimization technique, and useful for reinforcement learning
theoretically, it is rarely implemented in practice because of the requirement of a perfect

2
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model for the environment and its computational cost.
Monte Carlo methods, in contrast to dynamic programming, can operate effectively in

the absence of a complete model of the environment. Monte Carlo methods use the average
of sampled data and therefore are effective with only partial experience of the possible envi-
ronmental states. Monte Carlo methods can be applied to reinforcement learning either in an
on-line or simulated context. Although a model is required for the simulated application, in
which simulated experience is used for policy development, it requires only a partial model
of the environment. Monte Carlo methods have the disadvantage that they are episodic
in nature and are unable to bootstrap. Although their episodic nature gives Monte Carlo
methods some protection against violations of the Markov property, it also leads to slower
convergence times.

Temporal difference learning combines ideas from dynamic programming and Monte
Carlo methods. Like dynamic programming, temporal difference learning operates in an
on-line fashion. Temporal difference learning algorithms update value estimates incremen-
tally without waiting for the final outcome, i.e. they bootstrap. Like Monte Carlo methods,
they are experienced based and do not assume a complete model of the environment. Tem-
poral difference learning algorithms epitomize the process of reinforcement learning [11].

2.3 Temporal Difference Learning

There are a number of temporal difference learning paradigms, but the most popular are the
temporal difference control algorithms, Sarsa [9, 11] and Q-learning [7,8, 11,13]. I examined
two versions of Sarsa and three versions of Q-learning. The first version of Sarsa and Q-
learning I worked with were both one-step methods in which updates are made to the current
state only, denoted Sarsa(0) and Q(0). In both cases, the value of the state action pair
Q(s, a), is updated based on a weighted temporal difference, or error (δ), between the current
estimated value of Q(s, a) and the sum of the reward received when taking action a plus
the discounted value of the state-action pair resulting from taking action a, Qt(s

′, a′). The
difference between Sarsa(0), which is an on-policy control algorithm, and Q(0), which is an
off-policy control algorithm, is in how the value of the next state-action pair is computed. In
Sarsa(0), the value of Qt(s

′, a′) is determined from following the current exploration policy to
generate a′. In Q(0) the value of Qt(s

′, a′) is determined from following a greedy exploration
policy at state s′ to generate a′. In Q(0) the action a′ will always be the max-value over all
possible choices, denoted a∗. The two algorithms are shown below.
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Sarsa(0):

Qt+1(s, a) = Qt(s, a) + αδ

δ = r + γQt(s
′, a′)−Qt(s, a) (1)

Q(0):

Qt+1(s, a) = Qt(s, a) + αδ

δ = r + γQt(s
′, a∗)−Qt(s, a), (2)

a∗ = maxa′ Qt(s
′, a′)

In both cases the learning rate (α), 0 < α ≤ 1, is the weight given to new information.
When α = 0 the agent does not learn from experience. As α → 1, the weight given to new
experience increases. The other parameter, the discount rate (γ), 0 ≤ γ ≤ 1, indicates the
importance of future rewards. When γ = 0, the update of Qt(s, a) ignores the value of the
next state, s′. As γ → 1, the importance of the value of Qt(s

′, a′) increases in the update of
the current state-action pair Qt(s, a).

The other three reinforcement learning implementations incorporated eligibility traces.
An eligibility trace is a method for assigning credit to previous states when a reward is
received. In the one-step methods described above, credit is only assigned to the state
immediately preceding the rewarded state. In a two-step method, credit for the reward
would be passed back two states and similarly with n-step methods. A popular n-step
eligibility trace, called the λ-return [11], is defined by (3) below in which R(n)

t is the n-step
return at time t.

Rλ
t = (1− λ)

∞∑
n=1

λn−1R(n)
t , 0 ≤ λ ≤ 1 (3)

The λ-return is a particular way of averaging n-step backups in which the weight given
to a preceding state fades by λ at each step. The (1− λ) coefficient is a normalizing factor
that ensures the weights sum to one. When λ = 0, the λ-return reduces to the one-step
backup, e.g. Sarsa(0) and Q(0), and when λ = 1, the λ-return is the same as the full Monte
Carlo algorithm. Figure 1 below gives a pictorial representation of eligibility traces. In this
example, a non-zero reward is received at the cell marked with a star (*) and the size of the
arrow in the second and third frame denote the amount of credit assigned to each preceding
cell. We can see from the third frame that the use of λ-returns can greatly increase the speed
of learning since the effect of the reward echoes back through the path taken.
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Figure 1: Shows the benefit to learning that eligibility traces can offer. Image taken from [11].

The three following algorithms, Sarsa(λ), Watkin’s Q(λ), and Peng’s Q(λ), are similar
to the Sarsa(0) and Q(0) algorithms presented in (1) and (2), but they also incorporate
λ-return backups. The difference between Watkin’s Q(λ) and Peng’s Q(λ) is subtle. In
Watkin’s Q(λ), eligibility traces are only updated if the action taken, a′, equals the greedy
action, a∗. Otherwise the eligibility trace is set to zero. In Peng’s Q(λ), eligibility traces are
updated on exploratory as well as greedy actions. The concern with only updating eligibility
traces for greedy actions is that cutting off traces every time an exploratory step is taken,
loses much of the advantage of using eligibility traces. Peng’s implementation of Q(λ) aims
to address this concern and maintain learning speed in the face of exploration.

Sarsa(λ):

Qt+1(s, a) = Qt(s, a) + αδe(s, a)

δ = r + γQt(s
′, a′)−Qt(s, a) (4)

et(s) =

{
γλet−1(s) if s 6= st

γλet−1(s) + 1 if s = st

Watkin’s Q(λ):
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Qt+1(s, a) = Qt(s, a) + αδe(s, a)

δ = r + γQt(s
′, a∗)−Qt(s, a) (5)

a∗ = maxa′ Qt(s
′, a′)

et(s) =

{
γλet−1(s) + 1 if s = st and a′ = a∗

0 otherwise

Peng’s Q(λ):

Qt+1(s, a) = Qt(s, a) + αδ′e(s, a), for all Qt(s, a)

Qt+1(s, a) = Qt(s, a) + αδ, for current Qt(s, a)

δ = r + γQt(s
′, a∗)−Qt(s, a) (6)

δ′ = r + γQt(s
′, a∗)−Qt(s, maxaQt(s, a))

a∗ = maxa′ Qt(s
′, a′)

et(s) =

{
γλet−1(s) if s 6= st

γλet−1(s) + 1 if s = st

Here again the learning rate (α), 0 < α ≤ 1, is the weight given to new information.
The discount rate (γ), 0 ≤ γ ≤ 1, indicates the importance of future rewards. The two
new parameters, et(s) and λ, both relate to the incorporation of the eligibility trace. The
eligibility trace, et(s), is the distribution of credit for a reward and λ, 0 ≤ λ ≤ 1, is the
weight given to the trace.

2.4 Exploration

The five temporal difference equations presented above dictate how the value functions are
updated when an action is taken, but it is the policy itself that determines which action
is taken. The action selection algorithm in many ways is the most important part of rein-
forcement learning. It is the process that determines to which states in the environment the
agent has access and is ultimately responsible for all the information the agent receives. Al-
though there are numerous exploration algorithms, I used two standard ones for comparison,
ε-greedy and softmax.

There is a natural tension in reinforcement learning between exploitation and exploration.
Exploitive policies are greedy and choose the best action at any given time, where “best” is
defined as the action with the highest perceived reward. Policies which allow for exploration,
in contrast, will allow for a sub-optimal action in the short term in hope of achieving a greater
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ultimate return in the long run. Policies at one extreme or the other do not perform well.
Policies that are too exploitive run the risk of getting stuck in local optima, whereas policies
that are too exploratory continually deviate from the chosen path, even when they find a
global optimum, and may fail to converge.

An ε-greedy exploration policy mediates the conflict between exploitation and exploration
by choosing a greedy or exploratory step with a preset probability. The parameter ε controls
the probability for exploration as shown in (7) below. For most of this project I set ε = 0.05,
a value used in [11] and one which showed good results empirically when compared with
other values for ε.

πt(s, a) =

{
1− ε+ ε

|A(s)| for exploitive steps

ε for exploratory steps
(7)

A softmax exploration policy chooses actions with probabilities based on the relative val-
ues of Qt(s, a). I used the Boltzmann or Gibbs distribution as shown below. The probability
of each action a, πt(s, a), is weighted by a temperature parameter, τ , and then normalized
over all possible action choices from the current state, s. As τ → 0 the policy becomes
increasingly greedy and as τ →∞ the policy becomes increasingly random. The value for τ
is often static, although it can be adjusted dynamically as I demonstrate in section (3).

πt(s, a) =
eQt(s, a)/τ∑
b

eQt(s, b)/τ
(8)

2.5 Comparison of Reinforcement Learning Algorithms

To establish a baseline, I ran the five algorithms above on two simple map environments.
Map 1 is the more pathological of the two, in which the optimal path is buried under four
low-value choices. All agents start at Node 1 and the probability of randomly finding the
optimal path is already only 0.016. However, every time the agent encounters the -2 reward
on its way to the optimal path, it becomes increasingly less likely to choose that path again.
Map 2 is a little more friendly and the optimal path is easier for agents to find. Agents
in Map 2 start in Node A and it only takes one sub-optimal step to put the agent on the
optimal path.
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Figure 2: The left frame shows Map 1 and the right frame shows Map 2

In the experiments I ran each agent through 1,000 trials, called an episode. To evaluate
the progress of the agent’s learning, I examined the agent’s Qt(s, a) values after each trial.
The Qt(s, a) values are a measure of how much the agent has learned about the environment
at any point in time. To evaluate the fitness of the agent’s learning, I used a greedy policy
and ran it on the Qt(s, a) values for an entire episode (1,000 trials) and calculated the
expected return. By running this process, I had a measure of learning at each trial number
that I could plot. However, before I plotted the results, I ran 100 episodes and averaged
the returns to help eliminate noisy runs. The parameters α, γ, andλ were optimized using
a simple grid search on the interval [0, 1] separately for each algorithm to ensure optimal
performance. The values used are given in parentheses after the algorithm’s name in each
figure.

Figure 3 shows the algorithms’ performance on Map 1 using ε-greedy exploration, and
(Fig. 4) shows the algorithms’ performance on Map 2 using ε-greedy exploration. In both
(Fig. 3) and (Fig. 4), the horizontal red dashed line represents the optimal reward for the
environment. The lines are colored according to the algorithm. We can see that on Map 1
all the algorithms get stuck in a sub-optimal policy, with two of the Q-learning algorithms
performing only slightly better. In Map 2 we can see that all algorithms perform better
than on Map 1 and again the Q-learning algorithms outperform the Sarsa algorithms. For
the remainder of the project I focus only on Q-learning algorithms since they perform better
than the Sarsa algorithms in these environments.
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Figure 3: Performance comparison on Map 1

Figure 4: Performance comparison on Map 2

9

100



3 Chaotic Exploration

Traditionally reinforcement policies, such as ε-greedy and softmax, relay on uniformly ran-
dom pseudo-random number generators when deciding whether to take an exploratory or
exploitative step. However, similar “random” behavior has been shown to result from the
use of deterministic chaotic trajectories [6]. This section outlines some ways in which chaotic
systems can be exploited to increase the performance of traditional reinforcement learning
algorithms.

3.1 Logistic Map vs ε-greedy

Recently, the idea of applying chaotic systems to reinforcement learning has gained attention.
The logistic map, xt+1 = 4.0xt(1−xt), has been used in combination with an ε-greedy policy
by [4,5]. I replicated their results using the same coefficient value and starting with x0 = 0.2.
The results are shown in (Fig. 5). The algorithms using a built-in pseudo-random number
generator are shown with a square marker and the algorithms using the logistic map as their
number generator are shown with a circular marker. In the Map 1 environment, there was a
slight increase in the performance of Q(λ), although it was not significant. On Map 2 we see
a significant increase in the speed of convergence from all three algorithms using the logistic
map as a number generator. For the remainder of the project I focus only on Map 1 since it
appears to be the harder of the two environments to learn.

Figure 5: Performance comparison on Map 1 between a pseudo-random number generator
and the logistic map
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Figure 6: Performance comparison on Map 2 between a pseudo-random number generator
and the logistic map

Both map environments favor exploration since agents need to pass through at least one
sub-optimal choice from where they are started to find the optimal path. With closer exam-
ination, we see that this is exactly what the logistic map based number generator provides
to the agent. Whereas the built-in Python pseudo-random number generator provides an
essentially uniform distribution, the logistic map is heavily weighted near zero and one. Fig-
ure 7 shows the two distributions over one million iterations. I believe it is the increased
opportunity to explore which allows the algorithms based on the logistic map to perform
well in environments that encourage exploration or in stochastic environments [4, 5].
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Figure 7: The left frame shows the distribution of numbers from Python’s built-in pseudo-
random number generator and the right frame shows the distribution from the logistic map,
xt+1 = 4.0xt(1− xt), x0 = 0.2.

3.2 Chaos in Softmax

Another alternative to the ε-greedy exploration policy, is the softmax policy described in (8).
The probabilities given by the softmax policy are determined by the value of Qt(s, a) and
the value of τ , the temperature parameter. The value of τ is often held constant throughout
the learning process, but can also be annealed over an episode. Higher values of τ equalize
the probabilities of the choice options and lead to more exploration. Lower values of τ lead
to greedy action selection. Intuitively, we want an annealing schedule that provides higher
values of τ initially to facilitate exploration and lower values for τ near the end of the episode
to facilitate convergence. I used a mapping onto the Lorenz system, inspired by [2, 3], to
generate the τ -value at each step.

Initially, following the values for the Lorenz system given by [2,3], I produced two trajec-
tories with slightly different initial conditions using a Runge Kutta 4 integrator. I mapped
the second trajectory onto the first and used the differences in the x-value to generate (Fig. 8)
below. Unfortunately, because of the Lorenz system’s sensitivity to initial conditions, the
resulting plot was the inverse of the desired policy. It had small differences initially and
increasingly large and unpredictable values as time progressed. Instead, I altered the Lorenz
system parameters to create a two-cycle attractor1 and a single-point attractor. A mapping,
as described above, on these two parameterizations of the Lorenz system, yields the the
plots in (Fig. 9) below. The rate of convergence can be controlled by changing the initial
conditions and/or the system parameters.

1Thank you to Yogesh Virkar for suggesting the parameters to accomplish this in his class presentation
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Figure 8: The difference in x-coordinates from the initial conditions (1,1,1) and (0.999,1,1)
when mapped onto the Lorenz system defined by a=10, r=28, b=8/3

Figure 9: The left frame shows the x-differences of the initial conditions (1,1,1) and (-1,1,1)
when mapped onto the Lorenz system defined by a=16, r=23, b=4. The right frame shows
differences from the initial conditions (15,1,1) and (-15,1,1) mapped onto the Lorenz system
defined by a=0.5, r=0.9, b=4

This method, which I denoted τ -mapping, provides significant improvement over the
logistic mapping on Map 1. Figure 10 shows a comparison using the two-cycle attractor. All
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three algorithms are able to break away from the sub-optimal path and converge very near
the optimal path. The speed of convergence of the Q(0) and Q(λ) is especially noteworthy.
A mapping using the single-point attractor, (Fig. 11), likewise shows improvement over the
logistic mapping, but falls short of the first τ -mapping.

Figure 10: Perfomance comparison between the logistic mapping technique of [4, 5] and my
τ -mapping method using the two-cycle Lorenz attractor

Figure 11: Perfomance comparison between the logistic mapping technique of [4, 5] and my
τ -mapping method using the single-point Lorenz attractor
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4 Discussion

Although initial results show promise for integrating chaotic systems into existing reinforce-
ment paradigms, the more I push on my results, the less convinced I am. Algorithms based
on the logistic map were shown to improve performance in stationary maps, for example on
my Map 2 environment and in experiments by [4,5]. This increase in performance was even
more pronounced in non-stationary learning environments [4, 5]. However, by my analysis,
it appears that this increase in performance is due simply to an increased predilection for
exploration provided by the non-uniform distribution of the logistic mapping. Looking at
the distributions in (Fig. 7), the logistic map is roughly three times more likely to explore
than the standard ε-greedy algorithm based on the pseudo-random number generator. I
increased the ε-value of the standard algorithm to ε = 0.15 and compared its performance
to the algorithm based on the logistic map with an ε-value of ε = 0.05 to test my conjecture.
The result is shown in (Fig. 12). We can see that by simply increasing the ε parameter we
can match the performance of the chaotic-based exploration policy.

Figure 12: Perfomance comparison between the logistic mapping technique of [4, 5] and a
standard ε-greedy algorithm with a higher ε-value, 0.15 compared with 0.05

Unfortunately, I saw the same pattern with my method using the τ -mapping. I compared
my results, which had seemed quite significant when compared to the logistic map algorithms,
with standard softmax exploration policies. I experimented with different initial values for τ
and a constant and exponential decay model for the annealing schedule. I found that a very
high initial value for τ paired with a constant annealing schedule showed performance on
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par with my τ -mapping algorithm. The results on the Q(0) and Q(λ) were almost identical,
although the performance of my τ -mapping on Peng’s Q(λ) continued to show significant
performance benefits over the standard algorithm. The results are shown below in (Fig. 13).
Admittedly, I started τ at an “unnaturally” high value, viz. 1,000, but nonetheless the
standard algorithm could match the performance of the chaotic mapping in two out of the
three cases with a simpler implementation. Although these results do not discourage me
from the belief that incorporating chaotic trajectories into the exploration poilicy is fruitful,
the results make me cautious about tauting the benefit of chaotic-based methods without
first aggressively pushing on the existing algorithms.

Figure 13: Perfomance comparison between my τ -mapping technique and a standard softmax
algorithm with a very high initial τ -value, τ = 1, 000, and a constant annealing schedule

5 Conclusion

The distinction between randomness and chaos is compelling. Individual trajectories are
unpredictable in both random and chaotic systems [6], yet chaotic attractors are magnificent
in their structure when viewed from a macro-perspective. Learning appears to follow a
similar trajectory. When viewed on an individual level, it is impossible to predict what
a single person will learn or struggle with in the future, yet viewed more globally, there
are distinct patterns of development for all typically-developing children. Human learning
appears to benefit from an underlying structure and it is appealing to expect that artificial
learning will similarly benefit from such a structure.
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Introduction	  
Sleep	  is	  an	  interesting	  phenomenon	  that	  is	  just	  shrugged	  off	  by	  people	  as	  a	  totally	  
normal	  process.	  	  However,	  if	  you	  think	  about	  it	  critically,	  a	  person	  is	  willfully	  going	  
unconscious	  for	  several	  hours,	  hallucinating	  during	  the	  process,	  and	  potentially	  
talking/moving	  while	  unconscious.	  	  This	  has	  always	  fascinated	  me,	  and	  because	  
other	  areas	  of	  the	  human	  body,	  like	  heart	  rhythms,	  have	  been	  shown	  to	  have	  chaotic	  
patterns,	  this	  natural	  process	  also	  seems	  ripe	  for	  analysis	  based	  on	  the	  
fundamentals	  of	  chaos.	  	  In	  this	  paper	  we	  will	  be	  focusing	  specifically	  on	  trying	  to	  
calculate	  a	  Lyapunov	  exponent	  for	  a	  person’s	  movement	  frequencies	  while	  asleep.	  

Background	  
Some	  additional	  background	  on	  sleep	  patterns	  are	  required	  in	  order	  to	  understand	  
exactly	  what	  is	  going	  on	  while	  someone	  sleeps.	  	  All	  humans	  (indeed,	  all	  land	  
mammals)	  require	  at	  least	  some	  minimal	  amount	  of	  sleep	  to	  continue	  functioning,	  
and	  this	  sleep	  serves	  various	  functions.	  	  One	  extremely	  important	  aspect	  of	  sleep	  is	  
the	  cycle	  between	  REM	  and	  NREM	  sleep.	  	  	  This	  pattern	  was	  first	  discovered	  in	  1937	  
using	  EEG,	  and	  is	  very	  important	  to	  understanding	  of	  movement	  during	  sleep.	  
	  

	  
Figure	  0:	  Normal	  sleep	  Hypnogram.	  

	  
REM	  sleep	  has	  been	  shown	  (again	  via	  EEG)	  to	  line	  up	  with	  dreaming.	  	  Additionally,	  
being	  denied	  REM	  sleep	  will	  lead	  to	  people	  being	  not	  very	  mentally	  refreshed	  and	  
eventually	  falling	  right	  into	  REM	  sleep.	  	  However,	  it	  is	  not	  quite	  understood	  exactly	  
what	  happens	  during	  REM	  sleep	  that	  causes	  it	  to	  be	  so	  important.	  	  For	  the	  purposes	  
of	  this	  paper,	  however,	  REM	  sleep	  has	  been	  observed	  to	  be	  the	  time	  when	  most	  
movement	  occurs	  while	  someone	  is	  sleeping.	  	  Because	  of	  this,	  we	  can	  expect	  our	  
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data	  to	  follow	  some	  sort	  of	  pattern	  similar	  to	  Figure	  0.	  	  The	  major	  complicating	  
factor	  for	  this	  study	  is	  the	  number	  of	  things	  that	  can	  influence	  a	  person’s	  sleep	  cycle.	  	  
Caffeine,	  alcohol,	  jet	  lag,	  anxiety,	  and	  stress	  are	  just	  a	  few	  of	  the	  factors	  that	  can	  
cause	  variation	  from	  a	  person’s	  baseline	  sleep	  pattern.	  	  	  

Data	  
In	  order	  to	  study	  a	  person’s	  movement	  while	  sleeping,	  we	  need	  some	  sort	  of	  cheap,	  
easy-‐to-‐use,	  low	  impact	  sensor	  in	  order	  to	  detect	  when	  people	  are	  moving.	  	  The	  
approach	  used	  in	  this	  study	  is	  a	  smartphone’s	  accelerometer.	  	  Leveraging	  the	  
Android	  application	  “Sleep	  as	  Android,”	  data	  was	  able	  to	  be	  collected	  across	  3	  
subjects	  over	  about	  3	  months.	  	  The	  application	  works	  very	  simply.	  	  Start	  it	  up	  when	  
you’re	  ready	  to	  go	  to	  sleep,	  place	  it	  on	  your	  mattress	  near	  your	  body,	  and	  go	  to	  
sleep.	  	  When	  you	  wake	  up,	  you	  disable	  the	  app,	  and	  it	  creates	  a	  record	  for	  that	  
night’s	  movement	  activities.	  
	  

Collection	  Method	  Advantages	  
The	  benefits	  to	  using	  this	  application	  were	  numerous.	  	  Firstly,	  it	  was	  cheap,	  at	  only	  
$3.00	  past	  30	  days	  of	  use.	  	  Additionally,	  it	  uses	  a	  platform	  that	  most	  people	  already	  
have	  on	  their	  nightstand,	  so	  no	  additional	  hardware	  needs	  to	  be	  added	  (purchased)	  
to	  someone’s	  room.	  	  Collection	  in	  a	  person’s	  room	  with	  no	  new	  hardware	  involved	  
has	  a	  secondary	  benefit	  of	  keeping	  a	  person	  relaxed.	  	  They	  may	  even	  forget	  entirely	  
that	  their	  cell	  phone	  is	  on	  their	  bed,	  which	  means	  that	  there	  will	  be	  no	  affect	  by	  the	  
device	  on	  their	  sleep	  patterns.	  	  If	  we	  were	  to	  study	  these	  movement	  patterns	  with	  
something	  like	  EEG,	  which	  is	  only	  used	  in	  a	  hospital,	  we	  would	  have	  to	  find	  some	  
way	  to	  correct	  for	  the	  fact	  that	  the	  person	  is	  likely	  to	  be	  more	  stressed	  due	  to	  not	  
being	  in	  their	  home	  environment	  with	  an	  obtrusive	  device	  on	  their	  head.	  
	  

Collection	  Method	  Disadvantages	  
Like	  all	  closed	  source	  off-‐the-‐shelf	  solutions,	  this	  one	  has	  problems.	  	  To	  date,	  the	  
author	  has	  not	  published	  an	  interface	  document	  describing	  the	  application’s	  output.	  	  
The	  data	  we	  are	  using	  are	  defined	  as	  a	  “level”	  associated	  with	  a	  period	  of	  time.	  	  
Testing	  and	  generic	  information	  from	  the	  author	  has	  led	  me	  to	  deduce	  that	  this	  is	  an	  
accelerometer	  magnitude	  averaged	  out	  over	  5	  minutes.	  	  Noise	  also	  seems	  to	  be	  
removed	  from	  the	  average.	  	  Unfortunately,	  there	  is	  no	  documentation	  or	  source	  
code	  to	  back	  up	  this	  assertion,	  but	  testing	  with	  the	  application	  leads	  me	  to	  relatively	  
high	  confidence	  with	  this	  conclusion.	  	  Additionally,	  not	  only	  is	  the	  data	  averaged,	  but	  
also	  the	  time	  spacing	  is	  extremely	  high	  between	  averages.	  	  This	  is	  far	  less	  than	  ideal	  
for	  our	  delay	  coordinate	  embedding	  techniques.	  This	  fact	  alone	  will	  make	  getting	  a	  
solid,	  trustworthy	  estimate	  for	  the	  system’s	  dimension,	  let	  alone	  a	  Lyapunov	  
exponent,	  out	  of	  our	  data	  very	  difficult.	  
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Results	  
For	  this	  study	  we	  had	  a	  total	  of	  3	  subjects.	  	  First	  to	  be	  presented	  will	  be	  the	  cross-‐
subject	  aggregate	  results.	  	  Secondly	  will	  be	  the	  subject	  comparison	  results.	  	  One	  
important	  note	  is	  that	  each	  “data	  set”	  that	  I	  refer	  to	  has	  a	  1:1	  relationship	  to	  one	  
sleep	  movement	  recording	  by	  the	  application	  for	  one	  night,	  by	  one	  person.	  	  
	  
	  

	  
Figure	  1:	  All	  raw	  reading	  data,	  across	  subjects.	  

Cross-‐Subject	  Results	  
First	  we	  needed	  to	  estimate	  a	  τ	  for	  our	  delay-‐coordinate	  embedding.	  	  Using	  Tisean’s	  
mutual	  function,	  we	  came	  up	  with	  a	  first	  minimum	  at	  about	  τ=3,	  globally	  across	  all	  
of	  our	  data	  sets	  (see	  Fig	  3.)	  
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Figure	  2:	  	  Mutual	  information	  across	  all	  datasets.	  

	  
Next,	  we	  had	  to	  come	  up	  with	  some	  sort	  of	  dimensional	  analysis	  for	  our	  data	  sets.	  	  In	  
this	  case,	  we	  are	  using	  Tisean’s	  false_nearest	  tool.	  	  Our	  results	  were	  not	  nearly	  as	  
clean	  in	  this	  case,	  as	  the	  shortness	  of	  the	  datasets	  really	  impacted	  our	  ability	  to	  
check	  high	  dimensions	  before	  we	  ran	  out	  of	  points.	  	  Only	  about	  25%	  of	  our	  datasets	  
were	  able	  to	  find	  a	  ratio	  below	  0.1	  at	  any	  dimension	  (our	  criteria	  for	  calling	  it	  a	  
“good”	  dimension	  estimate).	  	  Of	  these	  25%,	  the	  average	  dimension	  was	  at	  about	  7.	  	  
This	  is	  the	  m	  value	  that	  I	  used	  for	  all	  the	  entire	  set	  of	  delay	  coordinate	  embedding	  
from	  here	  on.	  
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Figure	  3:	  	  FNN	  by	  dimension.	  	  Goes	  to	  1	  if	  the	  dataset	  is	  no	  longer	  long	  enough	  to	  give	  a	  valid	  result.	  

	  
Figure	  4:	  	  Embedding	  of	  all	  datasets,	  on	  an	  example	  projection.	  
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All	  of	  this	  will	  allow	  me	  to	  create	  a	  plot	  of	  the	  local	  Lyapunov	  explonents	  in	  an	  
attempt	  to	  find	  a	  scaling	  region	  where	  I	  can	  calculate	  a	  global	  Lyapunov	  exponent	  
for	  the	  system.	  	  This	  plot	  is	  shown	  in	  Figure	  5,	  and	  at	  least,	  we	  have	  something	  
interesting.	  
	  

	  
Figure	  5:	  	  Lyapunov	  Exponent	  calculation	  on	  all	  datasets.	  

Subject	  Contrasts	  
Figures	  6	  and	  7	  show	  some	  lyap_r	  base	  plot	  differences	  between	  two	  different	  
subjects.	  	  We	  see	  there	  is	  a	  high	  degree	  of	  similarity	  between	  two	  different	  people	  
for	  what	  kind	  of	  local	  Lyapunov	  exponents	  we’re	  getting.	  
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Figure	  6:	  Subject	  2	  lyap_r	  output	  

	  
Figure	  7:	  Subject	  0	  lyap_r	  output	  
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While	  means	  between	  subjects	  seem	  relatively	  similar,	  I	  also	  explored	  potential	  
causes	  for	  the	  outliers	  we	  see.	  	  For	  example,	  in	  Figure	  7	  there	  are	  two	  meandering	  
lines	  that	  are	  well	  below	  the	  mean,	  as	  well	  as	  one	  trajectory	  with	  a	  massive	  negative	  
spike.	  	  In	  Figure	  6,	  we	  see	  a	  line	  that	  trends	  well	  above	  the	  mean.	  	  Figures	  8	  and	  9	  
show	  some	  representative	  samples	  of	  the	  raw	  data	  from	  these	  outliers.	  

	  
Figure	  8:	  Below	  mean	  trending	  line	  on	  lyap_r's	  raw	  data.	  
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Figure	  9:	  Above	  mean	  trending	  line	  on	  lyap_r's	  raw	  data.	  

Most	  of	  the	  outliers	  similar	  to	  Figure	  8	  are	  explainable	  as	  some	  form	  of	  bad	  data,	  like	  
the	  phone	  falling	  off	  the	  bed,	  getting	  kicked	  in	  the	  night	  into	  a	  poor	  placement,	  or	  
lying	  on	  the	  phone.	  	  Additionally,	  a	  night	  heavy	  with	  NREM	  sleep	  instead	  of	  REM	  
sleep	  may	  also	  be	  responsible	  for	  some	  more	  moderate	  deviation	  below	  the	  mean.	  	  
Lines	  like	  Figure	  9,	  which	  are	  much	  less	  common,	  are	  considerably	  more	  interesting.	  	  
These	  seem	  to	  show	  nights	  with	  high	  frequencies	  of	  REM	  sleep,	  or	  waking	  up	  
frequently	  through	  the	  night.	  	  This	  could	  also	  be	  an	  indicator	  of	  REM	  Rebound,	  but	  I	  
hesitate	  to	  draw	  any	  major	  conclusions	  due	  to	  lack	  of	  data.	  

Conclusions	  
With	  some	  of	  these	  outliers	  removed,	  we	  end	  up	  with	  a	  very	  nice	  figure	  in	  Figure	  10,	  
which	  shows	  what	  looks	  like	  the	  beginning	  of	  a	  scaling	  region,	  similar	  to	  what	  we’ve	  
seen	  with	  data	  collected	  from	  a	  dampened	  pendulum.	  	  When	  I	  fit	  a	  line	  to	  this	  data,	  I	  
was	  able	  to	  get	  Figure	  11,	  with	  an	  equation	  of:	  y=0.004272x+(-‐1.010136).	  	  This	  
slope	  shows	  a	  positive	  Lyapunov	  exponent,	  hinting	  at	  a	  chaotic	  attractor!	  	  However,	  
I	  have	  a	  hard	  time	  putting	  a	  lot	  of	  faith	  in	  these	  numbers	  for	  a	  few	  reasons.	  	  Most	  
importantly,	  our	  data	  is	  simply	  not	  very	  good.	  	  This	  study	  really	  requires	  
considerably	  smaller	  delta	  t	  readings	  in	  order	  to	  be	  able	  to	  draw	  more	  believable	  
conclusions.	  	  Secondly,	  the	  scaling	  region	  is	  not	  very	  well	  defined.	  	  If	  the	  data	  were	  
longer,	  as	  well	  as	  more	  frequent,	  we	  may	  have	  been	  able	  to	  run	  more	  cycles,	  and	  
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perhaps	  draw	  a	  better-‐defined	  scaling	  region.	  	  Overall,	  I	  believe	  this	  is	  a	  good	  
introductory	  study	  into	  a	  poorly	  understood	  part	  of	  people’s	  every	  day	  lives.	  

	  
Figure	  10:	  	  All	  subjects	  with	  most	  outliers	  removed.	  

	  
Figure	  11:	  	  Line	  fit	  to	  Figure	  10's	  data.	  
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Further	  Work	  
A	  good	  continuation	  of	  this	  research	  would	  be	  to	  improve	  the	  data	  quality	  
immensely.	  	  This	  can	  be	  done	  fairly	  easily	  by	  writing	  an	  open	  source	  application	  that	  
does	  a	  better	  job	  of	  reading	  and	  understanding	  the	  individual	  accelerometers	  on	  
people’s	  cell	  phones.	  	  A	  repeat	  of	  this	  same	  analysis	  with	  better	  data	  would	  be	  a	  
good	  next	  step.	  
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