
MyShield: Protecting Mobile Device Data via
Security Circles

Rodney Beede, Donald Warbritton, and Richard Han

January 29, 2012

Technical Report
CU-CS-1091-12

January 2012

University of Colorado Boulder
Department of Computer Science

430 UCB
Boulder, Colorado 80309-0430

MyShield: Protecting Mobile Device Data via Security Circles

Rodney Beede, Donald Warbritton, and Richard Han
Department of Computer Science, University of Colorado at Boulder

Contact{rodney.beede or donald.warbritton}@colorado.edu

Abstract
As smartphones and the third party applications they run

become ever more popular, the amount of personal informa-
tion at risk for users continues to increase. To protect the
privacy of mobile user data such as a user’s location, con-
tacts, phone number, etc., mobile applications on the An-
droid and iOS platforms typically request the user who is
installing their application to grant them permission to a va-
riety of data on the phone that they want to run the applica-
tion. The user either approves or rejects the request - there
is no middle ground. Furthermore, there is no guarantee that
the app will respect the privacy of the user by accessing a
minimum amount of information or ensuring that data does
not leave the device unnecessarily. To remedy this situation,
we introduce MyShield, a system that protects user data from
mobile applications by supplying anonymized data when de-
sired by the user, and in a way that is transparent to applica-
tions. MyShield incorporates our concept of Security Circles
- an intuitive way to allow users to control what applications
get access to which data by grouping applications together
with similar trust levels. The applications in a given Security
Circle are then subject to the same anonymization policy. We
present an implementation of MyShield and Security Circles
in the Android operating system.
General Terms

Mobile Privacy, Anonymization, Security Circles
1 Introduction and Motivation

The advent of widespread smart phone usage has lead to a
new communication revolution. Millions of these devices are
in use today and provide many advanced capabilities to their
users. Modern smart phones have large market places with
up to hundreds of thousands of applications (known as apps)
that provide a variety of functionality. These apps range from
games to cameras to maps and route guidance.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

One important consequence of this technological and so-
cial revolution has been the impact on the privacy of the mo-
bile user. Smartphones contain an ever-increasing amount of
personal data. This information is obtained from a variety
of sources - input from the users, readings from various sen-
sors (GPS, accelerometer, etc.), data deposited by third party
applications, as well as video and image data captured from
the camera. Mobile devices also contain unique identifying
information, such as the IMEI or MEID [3] [1], that could be
used to identify and track a user.

The current framework for managing privacy policies on
mobile devices is a take-it-or-leave-it model that leaves sig-
nificant room for improvement. Consider the process for in-
stalling an app from an app store. On both the iOS [2] and
Android [10] platforms, the user is presented with a list of
permissions that an application requires when it is being in-
stalled. If the user desires to grant all the requested permis-
sions, the app may be installed. If not, it is not possible to
install the application. This take-it-or-leave-it model allows
an application developer to request permission for informa-
tion for which the application has no legitimate use for the
end user. The user is faced with the stark choice of either
granting all such permissions, or not installing the applica-
tion at all. Alternatively, the application may request more
detailed information than the user is comfortable revealing;
for instance: an application that suggests restaurants may re-
alistically only need to know where the user is to within a
few city blocks, but actually requests GPS access that reveals
the user’s location to within a few meters. Allowing users to
control the degree to which a given data type is revealed is
not a type of granular data management that is available in
current smartphone OS iterations.

In order to address the issues discussed above, we present
MyShield: a system designed for allowing simple, intuitive,
and granular control over the data an application may access.
As a design requirement for our system, we did not want to
have apps become inoperable due to runtime exceptions. In
other words, everything should behave as before, with the ex-
ception that privacy is maintained. We accomplish this goal
by allowing the user to specify how much trust they have in a
particular application. Our chosen metaphor is that applica-
tions should be placed into a particular circle of trust, similar
to the way that people develop social circles with varying
levels of trust (and inspired by the circle mechanism used in
Google+ [11]). For instance: one’s family circle is likely to

be highly trusted, while the circle of people they work with
may be somewhat less trusted. In the same way, applications
that are placed into a trusted circle are allowed complete ac-
cess to the information for which they’ve requested permis-
sion, while applications in an untrusted circle may be given
false information which does not compromise the users’s pri-
vacy. Applications that do not precisely fit either of these de-
scriptions may be somewhat trusted - data supplied to them
will be based on real data, but anonymized in order to main-
tain some degree of privacy for the user. This paradigm will
become ever more important as the number of malicious ap-
plications continues to rise [7].

Figure 1 shows the interworking between our MyShield
app and the shim layer responsible for implementing the
MyShield privacy policies.

Figure 1: A user can group mobile applications into different
security circles via the MyShield management application.
The MyShield layer will then shield user data like device ID,
contact information, and location from applications using a
unique anonymization policy for each security circle.

Our system enables the user to easily control their privacy
by limiting what applications can actually read data while
also still allowing for those applications to run. This changes
the existing model from install with whatever access permis-
sion the app requests or dont install at all to a model of user
configured trust with control over personal information.

The contributions of the paper are as follows:
• The implementation of a shim layer in the Android op-

erating system capable of controlling access to to sensi-
tive information.

• The implementation of a system for managing the
amount of data applications are capable or accessing.

• The proposal and implementation of strategies for
anonymizing user data.

• The proposal of a system allowing for the extension of
our current solution without having to make any modi-
fications to the actual system.

We next describe related work in Section 2 and our design
goals in Section 3. We introduce the concept of security cir-
cles in Section 4, and our system architecture in Section 5.
We then describe the anonymization strategies for device ID,
location, and contact information in Section 6. Our imple-
mentation of these strategies is discussed in Section 7, and
an evaluation is presented in Section 8. We describe future
directions in Section 9 and conclude in Section 10.

2 Related Work
The state of permission management on Android can be

concerning for anyone. Users want the ability install third-
party applications, but being sure that user’s trust in that ap-
plication is not being abused is difficult. The work done
by Enck et al. [8] showed that the lack of transparency
present in Android allowed many popular apps to misbe-
have when trusted with potentially sensitive user informa-
tion. This should be cause for concern among users - appli-
cations may be actively exploiting a lack of granular permis-
sion control for less than wholesome purposes on a regular
basis.

In some cases, even data that seems quite innocuous may
be used to discern the behavior of the user. The authors of
[16] were able to classify some of the actions of users car-
rying mobile devices using only accelerometer data. In fact
it is the case that access to accelerometer data for Android
applications requires no permission at all. These results in-
dicate that data protection may be important even across data
sources that seem to be of little consequence.

In response to the lack of granular permission manage-
ment present on Android, there have been at least two other
attempts at offering a more comprehensive system. While
these systems are powerful in some ways, we believe our so-
lution provides capabilities offered by neither while simulta-
neously avoiding some of the disadvantages they inherently
contain.

The Android application LBE Privacy Guard [14], avail-
able in the Android market for free, is capable of a high de-
gree of permission management, along with a built in fire-
wall. Privacy Guard intercepts sensitive API calls, and al-
lows the user to decide whether or not they want the applica-
tion making the call access to the data it is requesting. Grant-
ing permission to the application allows it to continue as nor-
mal, while denying permission results in blank data being re-
turned. While this application is very powerful, we believe
there are two ways in which our system can improve upon it.
Firstly, it is only possible to run this application on phones
where the user has root access. To the best of our knowl-
edge, this is not the case with any popular phone out of the
box, and the process of acquiring root access is often quite
daunting, warranty voiding, and not standardized. Further-
more, even users with root access to their device may not be
comfortable installing an application with unrestricted per-
mission. Secondly, decisions about application permission
are strictly binary - an application must either be completely
trusted with access to some data, or not at all. We believe
there should be room for a ”somewhat trusted” metaphor.

The second attempt at a solution comes via the popular
custom Android distribution CyanogenMod [13]. Recent

versions of CyanogenMod include logic for toggling spe-
cific permissions per app using the same system Android
uses internally. While this allows the granular control we
believe is necessary, we don’t believe this solution is suffi-
cient. In CyanogenMod, if an application makes a request
for data for which it does not have permission, the operating
system throws a SecurityException. Because it is not possi-
ble to install an application from the Android market without
granting every permission the application requests, it is very
likely that the application is not designed to catch Securi-
tyExceptions. The result of an uncaught SecurityException
is a crashed application, potentially disabling the function-
ality of the app completely. This type of behavior is likely
to result in allowing the same set of permissions that the ap-
plication originally requested, thereby invalidating the ap-
proach.

In order to allow more granular permission management,
we have elected to implement anonymization techniques ca-
pable of allowing some degree of information through. In ar-
eas such as location anonymization, where significant work
has already been done [12] [15] [18] [17], we have not at-
tempted to present groundbreaking new work. Rather we
have implemented simple methods with the idea that an ex-
tensible system will allow for other techniques to be inserted
in the future.

3 Design Goals
There are several design goals that we believe must be

achieved in order to advertise our system as a significant step
forward over existing attempts. Further, we believe that a
system that meets these goals will be much more attractive
to mobile carriers wishing to promote greater security to their
customers.

Our first concern was that any realistic system should be
completely transparent to applications installed by the user.
Previous work whose solution is to throw SecurityExcep-
tions when applications expect to access data create an en-
vironment where users are much more likely to either give
all permissions to every application (solution invalidated), or
abandon the system entirely. Our system should cause as lit-
tle frustration as possible, and should be completely invisible
much of the time.

This introduces our second design goal - the system
should be seamlessly integrated at a low level. As an intrin-
sic piece of the operating system, the largest degree of power
and configurability is possible. This also helps to ensure that
applications are unable to interfere with the operation of the
system.

The third design goal is that the system should be intu-
itive to the user. We believe that one of the primary prob-
lems with the current permission structure is that it fosters
confusion: users are presented with a (potentially) long list
of permissions the application requires, but little informa-
tion about whether the user should be concerned about their
privacy is given. Our system should remove the user to an
abstraction where they must only decide what level of trust
they have in the application (figure 2). Our solution to this is
discussed in section 4.

Our fourth design goal is that there should be some in-

between for application permission - it does not always make
sense to make a binary decision between allowing or denying
data access. Our system should be able to provide some level
of anonymization of user data such that some applications
are able to continue functioning while not disclosing more
personal data than necessary. There is a large and varied
amount of data that could be protected on a smart phone,
and as such techniques for anonymization of this data are
similarly varied. We discuss our strategies in section 6.

Our fifth design goal was that the system should not re-
quire root level permission to run. Users may be uncomfort-
able installing an application with root access to their device.
If possible, the system should be able to operate based only
on modifications to the operating system, and standard ap-
plication level access where user control is desired.

The sixth and final design goal is that the system should
be extensible. As already mentioned, data anonymization is
a non-trivial field, and we do not claim to have solved the
problems necessary for a perfect system. For this reason, we
believe that our system should be able to be extended by oth-
ers without having to make changes to the system itself. A
method for allowing users to easily drop in new anonymiza-
tion techniques would ensure that the system continues to
grow and remain useful into the future.

4 Security Circles
One of the difficulties in ensuring that users are aware of

the pitfalls of granting a slew of permissions to a particular
application is that there is no indication of the threat posed
by the application when their personal information is con-
sidered. In fact, the behavior of the Android Market is such
that, if an application requests a long list of permissions, not
all of the requested permissions are shown to the user at in-
stall time. It is only if the user elects to access a different
view that the entire list is presented. The user is then forced
to decide if the utility of the application is worth the risk of
the disclosure of potentially private data.

4.1 Motivation
While, from a technical perspective, there is nothing

wrong with this model, we believe that a more intuitive in-
terface is possible. An ideal solution would keep the user
from being overly concerned with what access the applica-
tion is allowed - some other abstraction should be respon-
sible for that. To this end we propose a new paradigm we
call Security Circles. Rather than asking which permissions
should be allowed or denied for a particular application, the
user should only decide how much they trust the application.
Much in the same way that humans develop social circles
with varying levels of trust, we may also develop circles of
trust for applications. By assigning applications to circles
defining different levels of trust, users implicitly grant corre-
sponding levels of permission. Popular apps from reputable
developers are likely to be very trusted, as well as applica-
tions with fundamental requirements for access to sensitive
information, such as route guidance systems. On the other
hand, wallpaper or game apps likely need to be trusted much
less in order to run. This paradigm fulfills both the second
and third design goals - it presents an intuitive interface for
permission management, and it achieves granularity. By al-

Figure 2: MyShield management application implementing
Security Circles, with a few applications in each circle

lowing for several different circles, say: trusted, somewhat
trusted, and untrusted, there is a logical progression from
one level to the next that avoids the binary yes or no decision
imposed by other solutions. Furthermore it creates an archi-
tecture for more circles, and in fact customization of circles,
in the future.
4.2 Definition

At the most concrete level, a Security Circle is a list of
rules concerning what transformations should be applied to
which data. When an application belongs to a particular cir-
cle, every request made through sensitive APIs will be sub-
ject to the regulations of that circle. An example: say a map-
ping application is placed in a circle where access to loca-
tion information is not allowed. Although this application
will still be able to register for and receive location updates,
the information contained in the updates will not be genuine
(a discussion of what might be returned is covered in sec-
tion 6.2). Rules for every type of data may be defined for
each circle, allowing a complete privacy policy with little ef-
fort required by the user. In MyShield, we have limited our-
selves to a reasonable three circles - Trusted, Trust a Little,
and Untrusted. The three circles that we have implemented
are shown in Figure 2, where each circle contains its own
set of applications. The methods for assigning applications
to circles and the consequences of belonging to different cir-
cles will be discussed in greater detail in sections 5.2 and 6

respectively.

5 System Architecture
In order to seamlessly integrate our system at a low level,

we chose to modify code from the Android Open Source
Project [9]. Android is an open source operating system
based on a linux kernel that is designed for mobile devices.
Not only is Android the most popular smartphone OS on the
planet [5], but it is designed so that anyone can download
and build the source code with relative ease. This means
the developing modifications to a popular production system
can be done in a reasonably short amount of time. We chose
to develop on the 2.3.7b1 branch of Android, as it was the
most recent and widely used branch for which source code
was available (since the time we started development, the
source code for 4.0 has become available, although we have
not investigated what changes may be necessary to port our
system).
5.1 Shim Layer

After reviewing where we felt previous work in this area
had both succeeded and failed, along with the design goals
we felt had to be met in order to be successful, we decided
that a combination of the two solutions discussed previously
would be ideal. We wanted to incorporate both the ability to
send altered data back to applications while avoiding the re-
quirement that a third party application operate with elevated
privileges. The only realistic method for meeting this second
goal is that we make modifications to the Android operating
system itself. By creating what amounts to a shim layer that
exists between applications and private data, we can monitor
what applications are making requests for what data. This
shim layer allows a great deal of control over how requests
are handled. It also allows for the desired transparent opera-
tion - applications are not privy to how the operating system
handles their requests, so they are unable to know if the result
of their request has been tampered with along the way.

The use of a shim layer also allows for the sixth design
goal to be met - extensibility. If different techniques for
data tampering are desired in the future, it is only neces-
sary that these techniques conform to some interface, and
that the shim layer knows of their location. The shim layer
is shown in Figure 3, inserted between the applications and
the underlying Android VM. In reality, its implementation
is spread throughout the Android source code, intercepting
calls to sensitive data from applications and replacing the re-
sults with suitably anonymized data as defined by each cir-
cle’s anonymization policy.
5.2 MyShield Management Application

As our proposed system exists at a low level within An-
droid, there is no direct method for configuration of which
apps belong to which circles. In fact, the shim layer has no
knowledge of applications, only the user IDs that the apps
are associated with. To act as an interface to the shim layer
for the user, we created the simple MyShield App (figure
2). This app is responsible for keeping track of what Secu-
rity Circle the applications present on the system belong to,
as well as moving apps between circles. The MyShield app
presents an intuitive interface for users to manage their pri-
vacy preferences. The window is divided into three parts,

Figure 3: Location of Shim Layer in Android

where each part represents a particular security circle. All
applications start in the most trusted circle - in order to move
an app to another circle, the user must only locate that app’s
icon and drag it to another portion of the screen. We believe
this nicely accomplishes our third design goal for intuitive
system configuration.

The interface between the MyShield app and the shim
layer is a configuration file for which only the MyShield app
has write permission (although the file is universally read-
able). Each call to sensitive data that is intercepted by the
shim layer causes MyShield to check the configuration file
for the ID of the calling application to find the appropriate se-
curity circle and anonymization policy for that data call. This
allows a unidirectional flow of information straight from the
user into the system. Changes to the circle of an application
are reflected by new anonymization in the very next call to
sensitive data.

6 Anonymization Strategies
While controlling access to private information is useful,

that usefulness can be inversely proportional to how quickly
applications that rely on that data become handicapped or
completely disabled. For instance: an application designed
for recommending nearby restaurants is likely to continue
working quite well if the user’s location is accurate to within
a couple of city blocks. On the other hand, that same applica-
tion may become unusable if the location data is wildly inac-
curate or completely unavailable. For this reason it is impor-
tant that we make intelligent decisions about how moving an
application from one Security Circle to another will affect its
behavior; furthermore, complicated explanations about how

the system will behave are undesirable for end users - the
system should ”just work”.

Listing 1: Anonymizing the device ID according to the Se-
curity Circle
S t r i n g c i r c l e L e v e l = g e t C i r c l e (u i d) ;
S t r i n g d e v i c e I d = mPhone . g e t D e v i c e I d () ;

i f (”TRUSTED ” . e q u a l s (c i r c l e L e v e l))
r e t u r n d e v i c e I d ;

e l s e i f (” TRUST A LITTLE ” . e q u a l s (c i r c l e L e v e l))
{

S t r i n g s a v e d I d = g e t S a v e d I d (u i d) ;
i f (s a v e d I d != n u l l)

r e t u r n s a v e d I d ;
r e t u r n genera teRandomId () ;

}
e l s e i f (”UNTRUSTED” . e q u a l s (c i r c l e L e v e l))

r e t u r n genera teRandomId () ;
e l s e

r e t u r n d e v i c e I d ;

6.1 Anonymizing Device ID
In considering how unique device identifiers should be

treated, we developed two paradigms corresponding with
the Trust a Little circle and the Untrusted circle respectively
(listing 1). For applications in the Trust a Little circle, the
device should be consistently identifiable to that application
for the time the application is installed. We accomplish this
by generating a random device ID for each application. The
first time an app in the Trust a Little circle makes a request
for a device ID, a random ID is generated and written to a
configuration file. On that and all subsequent requests for

device ID from that application while it is still in the same
circle, this randomly generated ID will be returned. In this
way the application may track the device while it is installed,
but the user has not had to give up any actual data. For ap-
plications consigned to the untrusted circle, we attempt to
avoid supplying any useful information whatsoever. For this
reason, we choose to generate a new random ID each time.
Not only is the user’s actual information protected, but it is
not possible even to generate usage statistics using this data
alone.

6.2 Anonymizing Location Data
Knowing the location of a user can be a powerful tool,

a tool that many popular apps now take advantage of to pro-
vide a wide variety of services. However, accurate data about
where someone is and has been could be considered very per-
sonal, and ensuring that only authorized and trusted parties
have access to this information is extremely important. De-
spite the sensitivity of this information, many apps request
access to it whose purpose is not related to location. We pro-
vide two strategies for anonymizing device location.

Listing 2: Function used to round latitude and longitude val-
ues to one decimal place
p r i v a t e dou b l e anonymizeNumber (do ub l e v a l u e){

l ong foo = (long) (v a l u e ∗ 1 0 0 0 0) ;
r e t u r n ((d ou b l e) foo) / 10000 .0 d ;

}

In the case of the Trust a Little circle, we ”fuzz” the de-
vice’s true location (listing 2) in order to maintain some pri-
vacy while not disabling applications whose functionality is
based on accurate location data. This is reasonably simple
as latitude and longitude are represented as double precision
floating point numbers on Android: the more decimal de-
grees are removed from the actual latitude and longitude co-
ordinates, the less accurate the resultant location becomes.
Our system currently anonymizes the location data for appli-
cations in the Trust a Little circle to what could be considered
city level - we round up to the first decimal place, introducing
an error of roughly 10 kilometers. This allows location based
applications to continue working while disclosing relatively
little information.

For application in the Untrusted circle, we neglect to pro-
vide any location data based in reality. Although one could
imagine a variety of coordinates suitable for falsifying loca-
tion, we choose (0,0) for latitude and longitude. We briefly
considered providing random coordinates, but dismissed this
idea as not being significantly more appropriate than (0,0),
and there is potential for creating bizarre behavior in appli-
cations (instantaneous global transportation may not be a test
case for every developer). Alternatively, coordinates located
in the user’s country could be used if some localization set-
tings are determined by location.

6.3 Anonymizing Contacts
Not all sensitive information on a device is necessarily

private to the device owner - the individuals whose personal
information resides in the device’s list of contacts are also
exposed to privacy disclosures. Even if a user is typically lax

in monitoring their own information, they may not feel com-
fortable exhibiting the same attitude towards their friend’s
privacy. Contact data consists of names, phone numbers, e-
mail addresses, physical addresses, photos, and social net-
work links. Because of this it may be desirable to only allow
bits of the information typically contained in a single contact
entry.

Due to the fact that contact data may be private to peo-
ple besides the user, we believe a strict approach to allow-
ing access should be followed. For applications in the Trust
a Little circle, contact names could be reduced to the con-
tact’s first name and the initial of their last name (alternative
approaches might be to return only initials, only return one
name, etc.) . For other fields, such as phone number and
email address, it makes little sense to attempt anonymiza-
tion. If either of those fields is only partially correct, it is
functionally useless. We believe that these fields, along with
any others (photo, mailing address, etc.), should simply be
returned as empty. This conservative approach protects the
data of other people (potentially a large number of people),
and enforces the idea that it is inappropriate for all but the
most trusted applications to be able to access such a large
and personal dataset.

Applications belonging to the Untrusted circle are simply
disallowed from any information. As retrieving contact data
is a database operation, the appropriate response in this case
is to return zero rows.

6.4 Anonymizing Other Data Sources
Other private information often shared between the user

and other parties are text messages. Strictly speaking, the
API for accessing text messages stored in the user’s inbox is
not public; however, because the system is open, resource-
ful developers have determined the methods by which offi-
cial Google applications access the the user’s inbox. While
not officially supported (and in fact explicitly discouraged
[4]), there are many tutorials on the internet for accessing
this data. A popular reason for accessing this data is for use
in building predictive texting systems based on past trends.
In this case it would not make sense to rearrange or otherwise
mangle the content of the message. However, if only the data
from the owner of the device is required (as in the previous
example), incoming messages could be denied to requesting
applications. For truly untrusted applications, returning no
data is an obvious solution, although in some cases returning
text from other sources could also be appropriate.

7 Implementation
Our system has two distinct components that work to-

gether to achieve our goals: an application installed on the
device that allows the user to assign apps to the desired per-
mission circle, and a shim layer in the Android operating
system capable of intercepting requests for sensitive infor-
mation. This builds on top of the permission management
system already present in Android with more sophisticated
controls. In this way we have avoided replacing any func-
tionality in order to ensure that application and operating
system behavior is modified as little as possible, and only
in very specific ways.

7.1 Android OS
Inserting code to create the shim layer responsible for the

actual implementation of our security circles design proved
to be difficult in ways we did not expect. While the An-
droid project is well documented from the point of view of an
application developer, there is significantly less information
available to those attempting to make fundamental changes
to the operating system. Because of this, we spent a not in-
significant amount of time simply becoming familiar with
the inner workings of Android. Due to the large amount
of information it may be desirable to enforce greater con-
trol over, we decided to prioritize which areas users would
most likely want to see managed by our system. It was our
decision to first focus on the control of location data and the
device’s unique identifier (IMEI for GSM devices, MEID for
CDMA devices). Clearly pairing a unique ID with location
data may be a large privacy disclosure.

This is not simply an imagined danger - this permission
pairing is present in many popular apps: SoundHound, Face-
book, Voxer, Angry Birds, Skype, Fruit Ninja Free - all top
apps in the Android Market - require both location infor-
mation and access to the device’s phone number and serial
number. In some cases, such as with Fruit Ninja Free, the
premium version of the application requires neither of these
permissions. This seems to strongly indicate that the extra
permissions are being used for advertisement based on user
information.

Because public documentation for the application frame-
work is lacking, we had to devise other methods for edu-
cating ourselves. While not especially expedient, the most
reliable method was to first examine the steps an application
must take to obtain privileged data. Using the classes appli-
cations communicated with for this access as a starting point,
we followed the chain of invocations, attempting to deter-
mine where our shim layer should attach. Unix utilities like
find and grep became invaluable tools for examining such a
large codebase. Unfortunately, it is not the case that writ-
ing one piece of the shim layer to manage a particular class
(such as the LocationManagerService) is particularly help-
ful for writing other pieces of the shim layer. Methods for
retrieving one type of data can be wildly different from oth-
ers. Due to these complications, efforts to extend the shim
layer across all components of the application framework are
ongoing.
7.2 Security Circles Management Application

The GUI interface that users use to place applications into
circles was written using the Java language using Android
APIs. It is a regular Android application that runs without
any special permissions or installation. The application/ac-
tivities (an application can have multiple launchable activi-
ties in Android) icons and labels for the installed applications
are retrieved using standard Android APIs and rendered onto
a GridView in a similar fashion as the Android OS system
application launcher works. The configuration of circles is
stored in the GUI application’s internal storage (under the
/data/apps folder on most Android systems) as a world read-
able (not writeable) tab-delimited file. The first entry con-
tains the package name (required so the GUI can load icons
into the correct circle), the UID (used by the shim layer), and

the chosen circle. The shim layer simply reads this text file
each time it sees an application trying to access a protected
sensor or data. No communication between the GUI appli-
cation and shim layer is required. When the user updates an
application’s circle, the configuration file is rewritten.
7.3 Controlling Access to Location Data

The process for obtaining location data in an Android ap-
plication can be broken down into two distinct steps: first the
developer must create a listener class implementing the re-
quired methods for receiving location information (onLoca-
tionChanged(), onProviderDisabled(), onProviderEnabled(),
and onStatusChanged()). Second, the application must make
a request to the operating system to register the listener class
for updated location information (returned by calling the lis-
tener’s onLocationChanged() method). We theorized early
on that the shim layer would have to be involved in the sec-
ond step in order to affect the data the requesting application
received.

Listing 3: Location data is given to location listeners
f i n a l i n t N = r e c o r d s . s i z e () ;
f o r (i n t i =0 ; i<N; i ++) {

UpdateRecord r = r e c o r d s . g e t (i) ;
R e c e i v e r r e c e i v e r = r . mReceiver ;
b o o l e a n r e c e i v e r D e a d = f a l s e ;

L o c a t i o n l a s t L o c = r . m L a s t F i x B r o a d c a s t ;
i f ((l a s t L o c == n u l l)
| | s h o u l d B r o a d c a s t S a f e (l o c a t i o n ,

l a s t L o c , r)) {
i f (l a s t L o c == n u l l) {

l a s t L o c = new L o c a t i o n (l o c a t i o n) ;
r . m L a s t F i x B r o a d c a s t = l a s t L o c ;
} e l s e {

l a s t L o c . s e t (l o c a t i o n) ;
}
i f (! r e c e i v e r .

c a l l L o c a t i o n C h a n g e d L o c k e d (l o c a t i o n)) {
. . .
}
}
. . .

}

The class LocationManagerService is responsible for reg-
istering new listeners, maintaining a list of all registered lis-
teners, and passing updated location information along to the
correct subset of these listeners. The LocationManagerSer-
vice code contains several other classes used for keeping
track of listeners along with data such as what type of Lo-
cationProvider (e.g. GPSLocationProvider) the listener re-
quested. The two classes the shim layer is concerned with are
UpdateRecord and Receiver. An UpdateRecord represents
a particular listener, while a Receiver represents a wrapper
used for receiving location updates.

When a new listener is registered, a new UpdateRecord
is created that contains the listener (the list of listeners men-
tioned is actually a list of UpdateRecords). Each UpdateRe-
cord in turn contains a Receiver responsible for transferring
the location data to the application containing the listener.
Shown in listing 3 is the code snippet responsible for hand-

ing over new location data to the Receiver associated with a
particular listener. This provides a key insight into the way
the shim layer works for location data: if changes are made
to the callLocationChangedLocked() method in the Receiver
class, the location information eventually transferred to the
listening application can be manipulated.

Listing 4: AnonyReceiver is a subclass of Receiver for
anonymizing location data
p r i v a t e c l a s s AnonyReceiver e x t e n d s R e c e i v e r {

p r i v a t e R e c e i v e r o r i g i n a l R e c e i v e r ;
p u b l i c AnonyReceiver (

f i n a l R e c e i v e r o r i g i n a l R e c e i v e r) {
s u p e r (o r i g i n a l R e c e i v e r . m L i s t e n e r) ;
t h i s . o r i g i n a l R e c e i v e r =

o r i g i n a l R e c e i v e r ;
}
@Override
p u b l i c b o o l e a n c a l l L o c a t i o n C h a n g e d L o c k e d (

L o c a t i o n l o c a t i o n) {
/ / Modify l o c a t i o n
L o c a t i o n l = new L o c a t i o n (l o c a t i o n) ;
l . s e t L a t i t u d e (anonymizeNumber (

l . g e t L a t i t u d e ())) ;
l . s e t L o n g i t u d e (anonymizeNumber (

l . g e t L o n g i t u d e ())) ;
l . s e t B e a r i n g (anonymizeNumber (

l . g e t B e a r i n g ())) ;
l . s e t A l t i t u d e (anonymizeNumber (

l . g e t A l t i t u d e ())) ;
l . s e t S p e e d (anonymizeNumber (

l . g e t S p e e d ())) ;
r e t u r n

s u p e r . c a l l L o c a t i o n C h a n g e d L o c k e d (l) ;
}

}

We avoided making any fundamental changes to this
system by creating new classes that extend the Receiver
class. Shown in figure 4 is the entire implementation of
the anonymizing receiver class designed for reducing the
accuracy in the reported location (the anonymizeNumber()
method is shown in listing 2). In doing this, we are able
to override the callLocationChangedLocked() method. As
shown in listings 4 and 5, we are able to make whatever
modifications we desire to the location before it is passed
on to the application. We believe this to be an elegant and
easily extensible solution that allows for novel anonymiza-
tion techniques to be applied little modification to the code
already written.

Listing 5: Location modifications in the FakeReceiver class
@Override
p u b l i c b o o l e a n c a l l L o c a t i o n C h a n g e d L o c k e d (

L o c a t i o n l o c a t i o n) {
/ / Modify l o c a t i o n
L o c a t i o n l = new L o c a t i o n (l o c a t i o n) ;
l . s e t L a t i t u d e (0 . 0 d) ;
l . s e t L o n g i t u d e (0 . 0 d) ;
l . s e t B e a r i n g (0 . 0 f) ;
l . s e t A l t i t u d e (0 . 0 d) ;
l . s e t S p e e d (0 . 0 f) ;
r e t u r n s u p e r . c a l l L o c a t i o n C h a n g e d L o c k e d (l) ;

}

As a simple example, this is sufficient to show that our
shim layer is working correctly for location data, but it does
not account for the Security Circles system. In order to inte-
grate the two pieces, we cross reference the UID of the appli-
cation requesting a listener with the Security Circle parame-
ters - this determines what Receiver class will be associated
with the UpdateRecord for the application (listing 6).

Listing 6: Receiver type is based on Security Circle
S t r i n g c i r c l e L e v e l = g e t C i r c l e (u i d) ;
i f (”TRUSTED ” . e q u a l s (c i r c l e L e v e l))

mReceiver = r e c e i v e r ;
e l s e i f (” TRUST A LITTLE ” . e q u a l s (c i r c l e L e v e l))

mReceiver = new AnonyReceiver (r e c e i v e r) ;
e l s e i f (”UNTRUSTED” . e q u a l s (c i r c l e L e v e l))

mReceiver = new F a k e R e c e i v e r (r e c e i v e r) ;
e l s e

mReceiver = r e c e i v e r ;

7.4 Controlling Access to Device ID
Devices connected to GSM or CDMA networks contain

a serial number called the IMEI or MEID, respectively, that
is used to identify the device on the network. Although this
number is not necessarily directly tied to the subscriber, it
is unlikely that a user would switch devices often enough to
avoid being closely associated with it. Application develop-
ers may use this ID to track users for advertising, determin-
ing what users have purchased a premium version of the app,
or for analytics data. While there may be legitimate uses for
this data, a user may not be comfortable exposing this semi-
permanent identifier to every application. In the same way
that location data can be altered before it is returned accord-
ing to the requesting application, we created the opportunity
for adjusting the device’s ID if a user so desires. In order to
return altered information to the requesting application, we
added the code in listing 1 to the PhoneSubInfo class.

Applications in the trusted Security Circle are privy to the
actual device ID - no changes are made for applications in
this circle. Decisions about what information should be re-
turned for applications in the other two circles is a bit more
tricky than for location data - there is no analogous method
for reducing the accuracy of a unique identifier. Methods
for varying levels of anonymity for this field are discussed in
Section 6.1
7.5 Controlling Access to Contacts

Access to contact data is provided through a Contact-
Provider service on the device. The Android OS has a
SQLite database that contains the information and is re-
stricted based on the process uid to application permissions
in the system. Android’s provided API allows for an appli-
cation to request read and/or write access to the contacts.
The code for determining this access is found in the Android
source at packages/providers/ContactsProvider/src/com/an-
droid/providers/contacts/ContactsDatabaseHelper.java in the
hasAccessToRestrictedData() method. When an Android ap-
plication wishes to access contact data, it calls the query
method on a ContentResolver with the desired contact at-
tributes (name, address, phone number, e-mail, photo). In

return a Cursor object of database results is returned that can
be iterated over. A similar method is used to write contact
data.

Because the hasAccessToRestrictedData() only returns a
boolean code, modification to track which application is re-
questing the contact data and which circle they are in would
have to be determined elsewhere. When the query method
in the ContactsDatabaseHelper is called one would have to
pull the current uid from the Binder instance to make the ap-
propriate anonymization level (security circle) choice. An
emulation of the database Cursor would have to be returned
that returned the anonymized data instead of the underlying
real data in the actual SQLite database.

8 Evaluation
Staying in the vein we have thus far explored, we chose

to evaluate our system by using applications which rely on
location and device ID information to operate. To satisfy
our design requirements, the applications should first con-
tinue to behave as normal, and second only have access to
the information allowed by the Security Circle to which they
are assigned. For consistent results, we used an Android
emulator running our custom build of Android 2.3. Loca-
tion data was supplied to the emulator via a telnet connec-
tion - in this way we were able to supply exact coordinates
time after time. The device ID for our emulator was al-
ways 000000000000000. The coordinates we used for loca-
tion testing were (-105.2641318, 40.0082298), an intersec-
tion nearby the engineering tower at CU.

Of note: the entire implementation of the shim layer to
protect these two components included a total of 130 lines of
code - a modest amount for the level of control obtained. The
total extra memory usage is 1 kilobyte used to store our con-
figuration file, the minimum file size allowed on the system.
The MyShield application responsible for managing applica-
tions and Security Circles is 719 lines, but only 28 kilobytes
of memory and 20 kilobytes of storage.

In order to demonstrate that our system behaves as in-
tended, we placed a copy of Google Maps in each of the
three circles and observed its behavior when supplied with
location coordinates. In figure 4a, the Maps is in the Trusted
circle, and the precise latitude and longitude results in the
marker being placed exactly where we expect - as it would if
the system did not exist. When Maps is placed into the Trust
a Little circle (figure 4b), the marker changes location, de-
spite there being no change in the original input. This is the
result of leaving only the first digit after the decimal intact -
what we consider to be city level anonymity. Finally, in fig-
ure 4c, the location is completely obfuscated and the marker
is placed in the Atlantic Ocean off the coast of Africa.

While it is unrealistic to expect that a user would install
a mapping application and then deny it access to location
data, it serves as an effective demonstration that the system’s
behavior is as intended, and the Maps application has not
ceased to function due to our changes.

We tested the results of altering the device’s ID number
by installing a game available on the Android Market called
Sudoku Puzzles by AndroidDev Team (figure 5). The app
requires the user to allow access to device ID in order to

differentiate between users who have purchased an ad-free
version of the game and those who have not. If the user has
not purchased the premium version of the game, then there is
no need to give an authentic, or even consistent, serial num-
ber to the app. Despite the changing ID produced by placing
the app in the Untrusted circle, the app functions as normal.
If the user desired to purchase and use the ad-free version
of the app, they would first have to place it into either the
Trust a Little or Trusted circles so that a consistent device ID
could be returned to the application. In our current imple-
mentation, if the user were to purchase the ad-free version
while the app was in the Trust a Little circle, and then unin-
stall and reinstall the app, the device ID would change, and
the behavior obtained through the purchase would be lost.
In future implementations, we may allow for recording a de-
vice ID to be used in the event an app is deleted and later
reinstalled.

As a more concrete demonstration of the system behav-
ior, we include a screenshot from an application we built
specifically for reading the device ID and current location
and presenting them in text form. As shown in figure 6, the
device ID is generated randomly in both the Trust a Little
and Untrusted circles, while the location coordinates become
progressively more incorrect moving from the Trusted to Un-
trusted circles.

We were unable to demonstrate a complete implementa-
tion of anonymization of contacts data. The amount of time
and code required to mock a database query and response,
and to intercept the application requests, was greater than
the amount of time available. The Android OS class in ques-
tion has many methods for providing not only string data, but
also binary data for photos. We were able to insert logging
statements that do show where the appropriate intercept in
the Android OS code is needed. One example of a log entry
generated when the default phone dialer system application
was used appears as follows: ”12-15 19:20:26.695: D/Se-
curity Circles - ContactsProvider(199): Checking restricted
raw contacts data access for uid 10004”.

9 Discussion and Future Work
Although we spent most of our time familiarizing our-

selves with the Android source and implementing the pieces
of our shim layer, we believe that some of the most inter-
esting questions to tackle moving forward will be related to
anonymization for various kinds of data and sensors. While
our system relies on predefined methods for anonymizing
data, it is conceivable that a framework could be created
to allow for the insertion of various black box data manip-
ulation subroutines. This would allow other developers to
extend our system without having to develop a deep under-
standing of the operating system, and users could benefit
from the effort of several people without having to com-
mit to any particular solution. We envision these alternate
anonymization strategies could be deployed via applications
available in the Android Market where a system can be taken
advantage of for rating applications.

A production version of our system would necessarily in-
corporate more complete control over data containing and
recording pieces of the system. Although we believe our

(a) Most Trusted circle (b) Trust a Little circle (marker still within
Boulder)

(c) Do Not Trust circle

Figure 4: Google Maps running in each of the three Security Circles

(a) Trusted circle (b) Trust a Little circle (c) Untrusted circle

Figure 6: Demo Application running in each of the three Security Circles

Figure 5: Game in Do Not Trust circle. Even though the ID
used is anonymous, the game continues to work

system can be extended to any part of the operating system
responsible for disclosing personal information, the task is
time consuming and represents diminishing returns from a
research perspective. While continuing to develop the shim
layer for additional sensor and data interfaces, we believe
that we can expedite the process by releasing our changes
as part of an open source Android project and encouraging
other interested developers to contribute. This also makes
more realistic the idea that our system could be kept up to
date as new versions of Android are released. In the future
we hope to extend the idea of Security Circles in a customiz-
able fashion. Depending on the function of the application,
it may be appropriate to restrict access to some data, while
allowing unrestrained access to other data. While it may be
possible to generate a large number of Security Circles an-
ticipating a variety of situations, we believe that a more in-
tuitive interface would allow the user to create new circles
where access can be configured for different data avenues
with varying policies.

As part of our continuing evaluation of the system, we
plan to implement logic for logging the number of calls to
different sensor interfaces. This will allow us to gain a bet-
ter understanding of what applications are attempting to ac-
cess what data, and how often those accesses are being per-
formed. We also plan on automating this evaluation so that
the results may be presented to the user. In this way the user

will be able to have direct insight into the precise behavior
of the applications they have installed.

During development of this system, we wondered why it
is that, to the best of our knowledge, no large smartphone
OS developer has implemented a system similar to the one
presented here. Clearly Google has the funding and knowl-
edge required to surpass our effort, but there is no indica-
tion that anything like that is forthcoming. One motivation
may be that application developers have some basic guaran-
tees about how their application will behave under the cur-
rent permission structure. Our system eliminates many of
these guarantees, and takes a not insignificant amount of con-
trol away from developers. Google has several motivations
for attracting more developers, so it is unsurprising that they
have maintained a simpler system where users are required
to conform to accepting a strict set of permissions defined by
the developer.

Currently, some sensors available to developers, such as
accelerometers, require no permission from the user to be
used, despite possibly revealing information about the user’s
activities [16]. MyShield has the potential to alter this
paradigm, although solutions for anonymizing things like ac-
celerometer data are open questions. We believe this may be
a fruitful area for future research, made easier by the ability
to build on the foundation we have laid with MyShield.

Other sensors of interest for anonymization along with
potential strategies:
• Camera - The possibility that an application could mis-

use the camera to take pictures unknown to the user is
one concern. Some applications need this functionality
such as social network applications that allow the user
to upload pictures to their social network space. One
concern with taking pictures on a phone is that many
phones will embed GPS location coordinates into the
picture file attributes. While this data is useful it may
be desirable to remove that information. Another pos-
sible aspect of anonymization would be to blur faces in
photos. For untrusted applications it may also be appro-
priate to simply provide a fake image.

• Microphone - For applications that are ”trust a little”
one could anonymize the voice of the person speaking
into the microphone by distorting it. For untrusted ap-
plications random tones could be provided instead of
actual microphone input so as to fool the application
into thinking it is getting data. Another solution may
be to provide a more obvious icon or indicator on the
screen when the microphone is activated by an applica-
tion.

• SDCard - Any data stored on the external storage of
an Android device does not have the same permissions
as applications on internal storage. This is because
the common format for external media is FAT which
doesn’t support Linux permissions. While OS solutions
could be provided (virtual file of permissions for ex-
ample) they are not currently available. For applica-
tions that are not trusted one way to anonymize the SD-
Card usage so an application can’t access anything on
the card would be to hook in virtual loopback images

instead. This would give an isolated container filesys-
tem to the application that it simply sees as the external
storage. The disadvantage is that applications wishing
to share data (such as music for example) could not do
so. One possible solution is to allow groups of appli-
cations to share a loopback file system. Additionally a
loop-back file system could be in a format that supports
the native OS permission scheme.

• Compass - For ”trust a little” anonymization one could
restrict the accuracy to simply N, E, S, W. For untrusted
one could provide random changing direction informa-
tion or simply always state N.

• Temperature - One example of a desire to anonymize
this sensor would be if a person was being tracked as
to being inside or outside. For example, if the outside
temperature is known to be below freezing then an ap-
plication could infer that a user was inside or outside
based on the temperature reading of the device. One
way to anonymize this data is to simply fix the temper-
ature at some value.

• Light - Similar to temperature the sensor could be use
to make inferance about where the user is. A similar
method of providing a fixed value or no value would
anonymize the user.

• Time/Date - An application could track a user as they
move from one time zone to another while traveling. In
addition the time of day (day/night) could be used to in-
fer if the user were asleep or not (especially with com-
bination of the accelermator). Anonymizing this data
could be accomplished by returning a time of day that
stays within a fixed range of hours (say daylight hours
only). If the application relied on comparing times-
tamps it could incur eratic behavior. Another option
would be to simply slow time down so that each request
for the current time returns a timestamp incremented by
1 second,minute, etc. instead of the real time.

• Contacts - As described in previous sections provid-
ing an anonymized list of contacts will be very useful.
Future work would involve the full implementation of
such.

MyShield does not address applications developed using
native code and the Android Native Development Kit. In the
interest of developing a working system, we chose to imple-
ment our shim layer code at a level that native code may be
able to bypass.
10 Conclusions

This paper has demonstrated the feasibility and imple-
mentation of managing application permissions through an
intuitive Security Circles interface coupled with a low level
operating system shim layer. This solution improves upon
previous methods by eschewing the requirement for an ap-
plication operating with elevated privileges, and allowing ap-
plications to continue operating through our transparent shim
layer. This paper also discusses methods for anonymization
of personal data in a way that allows applications to continue
to be useful to the user while avoiding disclosure of sensitive
data.

11 References

[1] 3GPP2. 3G Mobile Equipment Identifier.
http://www.3gpp2.org/Public_html/specs/
S.R0048-A_v4.0_050630.pdf, 2005.

[2] Apple. iOS Operating System. http://www.apple.
com/ios, 2007.

[3] GSM Association. IMEI Allocation and Ap-
proval Guidelines. http://www.gsmworld.com/
documents/DG06_v5.pdf, 2010.

[4] Tim Bray. Be Careful With Content Providers. http:
//android-developers.blogspot.com/2010/05/
be-careful-with-content-providers.html.

[5] Canalys. Google’s Android becomes
the world’s leading smart phone plat-
form. http://www.canalys.com/newsroom/
google’s-android-becomes-world’
s-leading-smart-phone-platform, 2011.

[6] Cory Cornelius, Apu Kapadia, David Kotz, Dan Pee-
bles, Minho Shin, and Nikos Triandopoulos. Anony-
sense: Privacyaware people-centric sensing. In In Proc.
ACM 6th Intl Conf. on Mobile Systems, Applications
and Services (MOBISYS 08, 2008.

[7] Elinor Mills. Malicious Android apps
double in six months. http://news.
cnet.com/8301-27080_3-57342661-245/
malicious-android-apps-double-in-six-months,
December 2011.

[8] William Enck, Peter Gilbert, Byung-Gon Chun, Lan-
don P. Cox, Jaeyeon Jung, Patrick McDaniel, and
Anmol N. Sheth. TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on
Smartphones. OSDI.

[9] Google. Android Open Source Project. http://
source.android.com.

[10] Google. Android Operating System. http://www.
android.com, 2007.

[11] Google. Google+ Social Network. http://plus.
google.com, 2011.

[12] Marco Gruteser and Dirk Grunwald. Anonymous usage
of location-based services through spatial and temporal
cloaking. In Proceedings of the 1st international con-
ference on Mobile systems, applications and services,
MobiSys ’03, pages 31–42, New York, NY, USA, 2003.
ACM.

[13] Steve Kondik. CyanogenMod. http://www.
cyanogenmod.com/.

[14] Lamian. LBE Privacy Guard. http://market.
android.com/details?id=com.lbe.security.
lite, November 2011.

[15] Ling Liu. Privacy and location anonymization in
location-based services. SIGSPATIAL Special, 1:15–
22, July 2009.

[16] Emiliano Miluzzo, Nicholas D. Lane, Kristof Fodor,
Ronald Peterson, Hong Lu, Mirco Musolesi, Shane B.
Eisenman, Xiao Zheng, and Andrew T. Campbell.
Sensing Meets Mobile Social Networks: The Design,
Implementation and Evaluation of the CenceMe Appli-
cation. ACM, 2008.

[17] Heechang Shin, Vijayalakshmi Atluri, and Jaideep
Vaidya. A profile anonymization model for privacy in
a personalized location based service environment. In
Proceedings of the The Ninth International Conference
on Mobile Data Management, pages 73–80, Washing-
ton, DC, USA, 2008. IEEE Computer Society.

[18] Akiyoshi Suzuki, Mayu Iwata, Yuki Arase, Takahiro
Hara, Xing Xie, and Shojiro Nishio. A user location
anonymization method for location based services in a
real environment. In Proceedings of the 18th SIGSPA-
TIAL International Conference on Advances in Geo-
graphic Information Systems, GIS ’10, pages 398–401,
New York, NY, USA, 2010. ACM.

