
Description of the Reachability
Set Adaptive Mesh Algorithm

Erik Komendera

Department of Computer Science
University of Colorado
Boulder CO 80309-0430

Technical Report CU-CS-1090-12
February 2012



Description of the Reachability Set Adaptive

Mesh Algorithm

Erik Komendera

February 14, 2012

Abstract

This paper will describe the algorithms that comprise the reachability
set project. First, the parameters will be described. Then, from the
highest level to the lowest level, the algorithms used will be described.
Finally, data from initial tests will be presented.

1 Parameters

The following is a list of parameters used in the reachability set algorithms,
with a brief description of what each does. The parameters are listed in order of
input from a text file. Where there is an indentation, the indented parameters
are only used if the head parameter is used.

• System Type Stype : Only “ThreeBody”.

• Stype = ThreeBody:

– µ : The µ parameter for the three body problem. Body one will be
placed on the x-axis at (1.0-µ ), body two at (-µ ), and neither will
move in the frame of reference.

– R1 : The radius of body one.

– R2 : The radius of body two.

– Impact DT ∆ti : The interval at which samples are taken to see
if a trajectory impacts a planet. If this paramter is too large, a
trajectory may pass through a planet without being caught, creating
a false negative.

– Escape Freeze fe : True causes trajectories to be frozen if they escape
as found by the Kepler Energy condition.

• Vertex Count CV : The initial count of vertices (trajectories).

• Add Vertex Count CAV : At each resampling of points, the number of
new vertices to add.

1



• Delete Old Vertices dov : If true, instead of adding new vertices to the
mesh, the mesh is completely replaced by the CAV new vertices.

• Dimensions D : The number of dimensions for the ∆V sphere. Can range
from 0-6, but only 2 and 3 are used.

– Sphere Indices IS : The D indices of the ∆V sphere. 0,1,2 stands
for X,Y, Z, and 3,4,5 stands for VX , VY , VZ . For example, a 2-
dimensional sphere along the VX and VY axes would have sphere
indices of 3 and 4.

• Initial Center C : A 6D vector containing the starting position and velocity
to be considered. Each chosen point in the ∆V sphere is added to the
initial center for that trajectory.

• Sphere Radius RS : The radius of the ∆V sphere.

• Start Time T0 : A float representing the beginning of the test. 0.0 is only
used in the tests.

• Max Phases Pmax : The number of phases. Each phase is an interval of
time. At the end of a phase, a check is performed to see if more vertices
should be added. The Runge-Kutta algorithm is always run over a single
phase. Each additional phase has the same starting time as the previous
one.

• Phase Length ∆tphase : The time interval for a phase.

• Data Per Phase Nphase : The number of states saved for a trajectory for
the duration of a phase. By limiting this value, memory resouces can be
conserved.

• Subdivision Function fsub() : The name of the heuristic function used to
intelligently resample the mesh. Can be “EndResult”, “Growth”, “Growth-
NoFreeze”, or “Size”.

• fsub() = EndResult:

– Fraction of Subdivided Edges With Different End Results fdiff :
The expected fraction of edges randomly chosen for subdivision that
have different end results. If this value is 1, every edge chosen for
subdivision will have differing end results.

– Bounded Vertices Nbound : The number of initial seed vertices that
are placed on the boundary of the ∆V sphere. If a seed ∆V sphere
has very few vertices, the resultant sphere will not resemble a sphere,
and the addition of new points does not favor rounding out the
sphere, so forcing a round shape is necessary to get the full ∆V
sphere.

• fsub() = Growth: no specific inputs are required.

2



• fsub() = GrowthNoFreeze or Size:

– No Growth If All Have Same End Result gdiff : If all vertices in a
simplex have the same end result, do not allow that simplex’s growth
to be considered for future remeshing.

– Check Impact Without Freezing ikeep set to True (not input): This
prevents trajectories from being terminated (frozen) if they impact.

– Escape Freeze fe set to False (not input): Do not terminate trajec-
tories if they escape.

• Check Freeze ifreeze : If True, this will terminate trajectories if they
impact. Cannot be True if ikeep is also True.

• Check All Simplices Σcheck : If False, then only simplicies that are new
as of the last remeshing are considered for remeshing. All tests set this to
True.

• Random Factor F : The size of the first standard deviation in remeshing.

For edges, this is the size of the semi-major axis of the one-standard-
deviation covariance ellipsoid as a multiple of half of the length of the
edge squared. For example, if the length of the edge is L, the semi-major
axis will be F L2. The semi-minor axes are always half the length of
the semi-major axis. A randomly resampled vertex on this edge has a
68 percent chance of being within the covariance ellipsoid (within one
standard deviation). The smaller the factor, the closer an expected new
vertex will be to the center of the edge.

For other simplices, this represents how close to a simplex a random point
is expected to be. If F = 1, then the chance of a point being within the sim-
plex is one standard deviation. If F = 2, there is a one-standard-deviation
chance of the point being within a doubly-scaled simplex concentric with
the simplex in question. In general, the lower that F is, the more likely
that a new point will be near the center of the simplex.

• Weight Exponent ew : For weighted selection of simplices, the exponent
applied to the previously calculated weight.

• Bounded Factor B : If true, this limits how large and small weights can
become. This is in place to counteract wildly varying weights and to
prevent, for example, one extremely highly weighted simplex from being
subdivided for every single addition to the mesh.

– Low Factor Blow : In the sorted list of weights, the lowest fraction
of weights are set to the weight at the Low Factor entry in the list.

– High Factor Bhigh : In the sorted list of weights, the highest fraction
of weights are set to the weight at the High Factor entry in the list.

3



• No Subdivide Below Length Lmin : If the D th root of the volume of a
D -dimensional simplex is smaller than this, it will not be considered for
future subdivision.

• Mesh Indices IM : A 3D set of indices indicating which of the six dimen-
sions are to be plotted for visualization.

• Max Checks Per Phase Cphase : How many times per phase that a remesh-
ing can be performed. Setting a limit prevents an infinite amount of
remeshing, and allows for the later phases to be simulated.

• Times To Run Nruns : The number of times this particular test is to be
performed.

2 Algorithms

2.1 Reachability Set

This is the top level algorithm. It controls the creation of the reachability set
and its simplices, the execution of the Three Body system of equations, the
adaptive remeshing of the simplices, the removal of erroneous trajectories, and
the addition of new vertices.

1. Make and fill a unit ∆V sphere with an initial set of CV vertices, and
create a Delaunay triangulation of those vertices using the Bowyer-Watson
algorithm. Call the set of vertices VR, and the sets of edges, triangles, and
tetrahedrons S2, S3, S4.

2. Scale the unit ∆V sphere to a radius of RS , and add it to C to find
the initial trajectory starting points. Set their current phase to 0. A
trajectory is considered finished when its current phase is equal to Pmax .

3. While there are still trajectories that have not been fully explored:

(a) Find the minimum phase pmin not yet calculated for some or all of
the trajectories. Because there are new vertices added every loop, the
current phase for any vertex may differ from that of another vertex.

(b) If all trajectories are frozen, quit the loop. A frozen trajectory is
one that has impacted or escaped, and if all are frozen, no further
integration is possible.

(c) If pmin is greater than Pmax , quit the loop. This means that every
phase has been completed for every vertex. This happens when the
algorithm discontinues the addition of vertices.

(d) Find all vertices that need to be updated for the pmin phase. Call
this set VM .

(e) Call Mathematica to run NDSolve on VM over ∆tphase , and collect
the Nphase samples of state data for that phase.

4



i. Send state and system data to Mathematica to be run on its
native Runge-Kutta solver.

ii. If ifreeze or ikeep are true, do a search to find the precise time that
a trajectory impacts a body. Keeping track of impacts allows for
intelligent decisions to be made based on impact data.

iii. If ifreeze is true, remove all states that occur after the impact
time and declare the trajectory “frozen”. This prevents a failed
trajectory from demanding unnecessary computational time.

(f) Update the phase count for the updated vertices. This prevents du-
plication of data.

(g) Check to see if any of VM escape, using the Keplerian Energy re-
quirement: if the positional distance from the origin is greater than
10 units, and the energy of the trajectory is above 0, then the trajec-
tory has escaped. If fe , remove all states that occur after the impact
and declare the trajectory “frozen”.

(h) Check to see if any trajectories in VM blew up. A trajectory is con-
sidered blown up if the positional distance from the origin is higher
than 10000 units. This is a system instability that occurs if a trajec-
tory skims too close to a center of gravity. Call the set of blown up
trajectories Vblown

(i) Delete the Vblown blown up trajectories and recalculate the S2, S3, S4

using the Bowyer-Watson Delaunay triangulation algorithm. Doing
so maintains a ∆V sphere in which every point belongs to a tetrahe-
dron.

(j) Using fsub() (Growth, End Result, or Flatness), define a new set of
vertices equal to CAV +Vblown, call this set VN . These vertices will
be given a starting position in the unit ∆V sphere of D dimensions.
Do not add any new vertices if Cphase has been exceeded for this
particular phase; using an upper limit of Cphase allows future phases
to be executed.

(k) If there are new vertices:

i. If dov is true, VR ← VN .

ii. Using the Bowyer-Watson algorithm, recalculate the Delaunay
triangulation to find S2, S3, S4.

iii. Scale the unit ∆V sphere to RS , and add it to the initial center
to find the initial trajectory starting points for the new vertices.
Set their current phase to 0. This indicates that the new vertices
have to start at the first phase.

4. Return VR, S2, S3, S4.

5. Save both the returned data and the parameter set for future examination.

5



2.2 End Result Heuristic

The intention of the End Result heuristic is to focus subdivision on the bound-
aries between end result conditions. By repeatedly adding new vertices in the
vicinity of boundaries, the end result regions can be identified to a higher pre-
cision. This, in turn, allows a planner to predict with higher accuracy whether
a trajectory will impact, escape, or stay in the system for a time span ∆4. This
heuristic only looks considers edges (S2) for subdivision.

1. Define two empty lists of item-weights for simplices that will be considered
for subdivision, called Different Weights Wd and Same Weights Ws. Two
lists are required because the algorithm requires a fraction fdiff of new
vertices to be selected from the set of edges with different end results.
Allowing subdivision for some edges that have the same end result provides
a non-zero chance that a hidden region may be revealed in a region that
has no obvious boundaries.

2. If Σcheck is false, consider only those edges with at least one vertex just
updated. No tests set Σcheck to false, but the benefit of doing so is that it
forces further examination of regions that were previously updated. The
major problem with Σcheck = false is that regions that were skipped over
will continue to be skipped, resulting in a lesser-quality mesh. Thus, all
tests set Σcheck to true.

3. Define a set of edges, Different Ends Ed, whose end results (impact either
body, escape, or stay in system) are different, and a set of edges, Same
Ends Es, whose end results are the same.

4. For each edge in S2:

(a) If the edge is smaller than Lmin in the ∆V sphere, skip.

(b) Otherwise, place it into either Ed or Es based on whether its vertices’
end results differ.

5. For each of the sets Ed and Es:

(a) Calculate weight: Lew , and place the edge-weight pair in either Wd or
Ws. The weight exponent ew allows for variation of the importance
of long or short edges. For example, if ew > 1, the weight scheme
favors long edges.

6. Sort both Wd and Ws by weight.

7. For each of the sets Wd and Ws:

(a) If B is true, change the range of allowable weights to be a subset in
the middle of either list. This helps eliminate cases with extremely
high or low weights:

6



i. The lower bound of weights is set to Wd[Blow /Length(WD)] or
Ws[Blow /Length(WD)].

ii. The higher bound of weights is set to Wd[Bhigh /Length(WD)]
or Ws[Bhigh /Length(WD)].

iii. For all weights outside the bounds, change the factor to the near-
est bound.

8. Use the Edge Subdivision Random Algorithm with Wd and Ws to get a
set VN of vertices with a count CAV +Vblown.

9. Return VN .

2.3 Growth and Size Heuristics

The intention of the growth and size heuristics is to focus the adaptive meshing
toward regions that grow fast or have a large size. The intuition here is that
large simplices will necessarily have large errors internally due to their scope.
By focusing subdivision on such regions, tests have shown that the overall error
of the mesh is reduced in most cases.

1. Define an empty list of item-weights W for simplices that will be consid-
ered for subdivision.

2. For each simplex in one of S2, S3, S4:

(a) If Σcheck is false, and this simplex has no vertices that were just
updated, skip. Like with the end result heuristic, Σcheck is always
true in the tests.

(b) If the D -dimensional volume of this simplex is less than LDmin, skip.

(c) If gdiff is true and this simplex’s vertices all have the same end result,
skip. This condition incorporates some of the end result heuristic in
that it forces examination at regions with boundaries, but none of
the tests set gdiff to true.

(d) If fsub() = Growth: Find the volume of the simplex in state space at
the beginning Vb and the end Ve of the phase time interval ∆tphase
for the minimum phase pmin. This estimates the rate of growh for
a simplex over ∆tphase . If fsub() = Size: Find the volume of the
simplex in state space at the end of the phase time interval ∆tphase
for the minimum phase pmin.

(e) If the volume at the end of ∆tphase is less than or equal to 0, skip.
This is an indicator that the simplex is degenerate, and should not
be considered.

(f) If fsub() = Growth: The weight is (Ve/Vb)
ew . If Size: The weight is

V ewe . Like the End Result heuristic, the weight exponent ew allows
for the modification of the importance of large volume ratios or large
sizes.

7



(g) Add the simplex-weight pair to W .

3. Sort W by weight.

4. For each item in W :

(a) If B is true, change the range of allowable weights to be a subset in
the middle of either list. This helps eliminate cases with extremely
high or low weights:

i. The lower bound of weights is set to W [Blow /Length(WD)].

ii. The higher bound of weights is set to W [Bhigh /Length(WD)].

iii. For all weights outside the bounds, change the factor to the near-
est bound.

5. Use the Simplex Subdivision Random Algorithm with W to get a set VN
of vertices with a count CAV +Vblown.

6. Return VN .

2.4 Edge Subdivision Random Algorithm

This algorithm randomly chooses an edge from either Ws or Wd repeatedly until
CAV +Vblown new vertices have been added. Since edges can be chosen multiple
times, the Multivariate Vector Random Position algorithm chooses the locations
of new vertices to minimize the issue of degeneracy. The parameter fdiff forces
the selection of edges from Ws or Wd to adhere to a user-specified ratio over the
long run.

1. Define an empty set New Vertices VN .

2. While the length of VN is less than CAV +Vblown:

(a) Choose a random number ρ between 0 and 1. ρ is used to determine
whether to choose an edge from WS or WD.

(b) Define E as the identity of the edge chosen for subdivision.

(c) If the number of edges in WS is zero, call Weighted Random Choice
on WD to choose the subdividing edge. Because WS has no elements,
WD is forced to be chosen regardless of the value of ρ.

(d) Else if the number of edges in WD is zero, call Weighted Random
Choice on WS to choose the subdividing edge.

(e) Else if ρ is less than or equal to fdiff , call Weighted Random Choice
on WD to choose the subdividing edge. The parameter fdiff guaran-
tees over the long run that the number of edges with different weights
chosen for subdivision goes to fdiff .

(f) Else if ρ is greater than fdiff , call Weighted Random Choice on WS

to choose the subdividing edge.

8



(g) Use the Multivariate Vector Random Position function on E to ran-
domly place a new vertex in the vicinity of E.

(h) Add the new vertex to VR and to VN .

3. Return VN .

2.5 Simplex Subdivision Random Algorithm

This algorithm randomly chooses an edge from W repeatedly until CAV +Vblown
new vertices have been added. As in the Edge Subdivision Random Algorithm,
simplices may be chosen several times for the addition of new vertices; therefore
simply placing new vertices at the center of a simplex may result in degeneracy.
Thus, this algorithm calls the Simplex Shell Method to randomly place a new
vertex in the vicinity of a simplex.

1. Define an empty set New Vertices VN .

2. While the length of VN is less than CAV +Vblown:

(a) Choose a simplex S from the set of subdividing simplices using Weighted
Random Choice.

(b) Use the Simplex Shell Method function to randomly place a new
vertex in the vicinity of S.

(c) Add the new vertex to VR and to VN .

3. Return VN .

2.6 Weighted Random Choice

This algorithm allows for the random choice from a list in which each element
has a weight associated with it.

1. Starting from 0 for the first choice, and
∑X−1
i=1 Wi for choice X, calculate

the valid range of values for the choice. Each valid range for a choice X is
[
∑X−1
i=1 Wi,

∑X−1
i=1 Wi +WX ].

2. Pick a uniform random number R between 0 and
∑N
i=1Wi.

3. Find the choice Ch whose range’s lower bound is less than R and whose
range’s upper bound is more than R.

4. Return Ch.

9



2.7 Multivariate Vector Random Position

Adding new points in the area of an edge poses a few problems that this algo-
rithm addresses. Simply putting a new vertex at the midpoint of an edge will
guarantee a degenerate Delaunay triangulation. Likewise, placing multiple new
vertices may also lead to degeneracy if it is not done carefully. Since the choice
of edges is randomized, one edge may be chosen several times in a round. Thus,
this algorithm places new vertex by selecting from a distribution shaped like an
ellipsoid in which the semi-major axis is half the length of the edge, and the
other axes are half the length of the semi-major axis. If F is one, then there is
a one-standard-deviation chance that a new vertex will be inside the ellipsoid
that spans from vertex to vertex.

Conveniently, ellipsoidal distributions can be made with covariance matrices
whose eigenvectors are all normal to each other. Since one eigenvector will be
parallel to the edge, the other eigenvectors can be arbitrarily defined so long
as all eigenvectors are orthogonal. Once the covariance matrix is found, the
Multivariate Normal Distribution can be used to choose a random position for
a new vertex.

1. Create a covariance matrix centered at the midpoint of the chosen edge,
whose distribution resembles an ellipsoid with a one-standard-deviation
semi-major axis of length equal to one half the random factor times the
square of the length of the edge, and two semi-minor axes whose lengths
are one quarter the random factor times the square of the length of the
edge:

(a) Define vector A to be V2 − V1, where Vi refers to an endpoint of the
edge.

(b) Define Magnitude M to be 1/2FL2, where F is the Random Factor,
and L is the length of the edge. If F is one, then the one-standard-
deviation ellipsoid semi-major axis will be exactly half the length of
A. M is the major eigenvalue whose vector is parallel to the edge,
and 1/2M is the value of the other eigenvalues.

(c) If D is 2:

i. Define vector B to be a vector normal to A. This will be the
semi-minor axis.

ii. Define vectors nA, nB to be the normalized versions of A and B.

iii. Define an eigenvector square matrix:

Q =

[
nAx nBx
nAy nBy

]
.

iv. Define an eigenvalue diagonal matrix:

E =

[
M 0
0 1/2M

]
.

10



(d) If D is 3:

i. Define vectors B1, B2 to be two vectors normal to both each
other and to A. These will be the semi-minor axes.

ii. Define vectors nA, nB1 , nB2 to be the normalized versions of
A,B1, B2.

iii. Define an eigenvector square matrix:

Q =

nAx nB1x nB2x

nAy nB1y nB2y

nAz nB1z nB2z


.

iv. Define an eigenvalue diagonal matrix:

E =

M 0 0
0 1/2M 0
0 0 1/2M


.

(e) Define Qi = Q−1.

(f) Calculate the covariance matrix C = Q ∗ E ∗Qi.
(g) Calculate Ci = C−1, DC = Determinant(C). These values are used

for making a new vertex.

2. Calculate Pm, the maximum probability density, which occurs at the mean
of the multivariate Gaussian distribution. This provides an upper bound
for rejection sampling — the probability density will not be higher at any
location. This, in turn, reduces the average number of rejections before
a good point is selected. Use the following equation for calculating the
probability density of the multivariate Gaussian distribution for a vector
x in ∆V space:

F (x1, . . . , xk) =
1

(2π)k/2D
1/2
C

e−1/2(x−µ)
TQi(x−µ)

where µ is the mean vector in ∆V space.

3. Until a random vector is calculated, use Rejection Sampling:

(a) Create a randomized position vector RC subject to the constraints
that the distance is within 3L from the midpoint of the edge, and also
inside the unit ∆V sphere. The 3L constraint is necessary because
the probability density for an edge is low enough throughout the ∆V
sphere that an enormous number of rejections are possible before
a point is chosen. Culling the choices to be within 3L reduces the
number of rejections while modifying the probability density function
only for extreme cases.

11



(b) Calculate a random uniform variable V ∈ [0, Pm]. V will be subject
to rejection sampling. If V is lower than the probability density for
RC , it will be accepted.

(c) Find the probability density P at RC using the multivariate Gaussian
distribution.

(d) If V ≤ P , return RC . Else, V has been rejected: restart loop.

2.8 Simplex Shell Method

The Simplex Shell Method allows for new vertices to be added in the vicinity
of a simplex following a distribution that is shaped like the simplex itself. Like
the Multivariate Vector Random Position method, a Gaussian distribution is
incorporated. In this case, each simplex “shell” (surface) concentric to the
chosen simplex has a specific probability density. The smaller the shell, the
higher the density, with the simplex centroid having the highest density. The
routine chooses a shell of some size, and randomly places a new point somewhere
on the surface of that shell.

Once the shell’s size has been chosen (on a scale in which 1 means the shell
is the same size as the simplex), the next step is to determine which face will
have the point. Each face has the same chance of being chosen, regardless of its
size, and the point will be uniformly distributed on that face.

The facilitate the calculation of positions, barycentric coordinates are used.
For a tetrahedron, a point X can be converted to a set of barycentric coordinates
L1, L2, L3, L4 using the following relation: X = L1X1 +L2X2 +L3X3 +L4X4

where Xi is the ith vertex of the tetrahedron. For triangles, just remove the
fourth term. Barycentric coordinates have the additional constraint that L1 +
L2 + L3 + L4 = 1. For a point X to be on the surface of the tetrahedron, at
least one of L1, L2, L3, L4 must be exactly 0, and the others must fall in the
closed interval [0, 1]. Therefore, generating random points on the surface of the
simplex must create a tuple of Li values such that all these conditions are met.
One index will be chosen to be 0, one index will be set aside for summation, and
the others will be randomly selected from [0, 1]. Once those values are defined,

the summation index will be found as Lj = 1−
∑Nv

i=1,i6=j Li.

1. Calculate the center of the simplex and call it C.

2. Define a scale factor S to be a randomly chosen point on the normal dis-
tribution with mean 0 and standard deviation F , where F is the Random
Factor.

3. Define Nv =D +1 to be the number of vertices in the simplex.

4. Until a random vector is calculated:

(a) Randomly choose an index Ie ∈ [1, Nv] to represent the surface sim-
plex on which to place this point. This is the surface simplex index.

12



(b) Randomly choose an index Is ∈ [1, Nv], Is 6= Ie, to represent the

index reserved for fulfilling the summation Lj = 1−
∑Nv

i=1,i6=j Li for
barycentric coordinates.

(c) Define LC to be a randomized barycentric position where LCi
∈

[0, 1], LCIe
= 0.

(d) Calculate LCIs
= 1−

∑Nv

i=1,i6=Is Li.

(e) If 0 ≤ LCIs
≤ 1, then LC is a barycentric vector on the surface of

the simplex. Else, restart the loop.

(f) Calculate R to be the ∆V space transformation of LC into a position
on the surface of the simplex using R = L1X1+L2X2+L3X3+L4X4.

(g) Transform R onto the surface of the shell by calculating RS = C +
S(R− C).

(h) Finally, if RS is inside the unit ∆V sphere, return RS . Else, restart
the loop.

13


