
 
 
 

Iterated Function System Models in Data 
Analysis: Detection and Separation 

 
 
 

Zachary Alexander, Elizabeth Bradley, Joshua Garland, and James D. Meiss 
 
 
 

Department of Computer Science 
University of Colorado 

Boulder CO 80309-0430 
 
 

Technical Report CU-CS-1087-11 
October 2011 



Iterated Function System Models in Data Analysis: Detection and Separation

Zachary Alexander,∗ Elizabeth Bradley,† Joshua Garland,‡ and James D. Meiss§

University of Colorado

We investigate the use of iterated function system (IFS) models for data analysis. An IFS is
a discrete dynamical system in which each time step corresponds to the application of one of a
finite collection of maps. The maps, which represent distinct dynamical regimes, may act in some
pre-determined sequence or may be applied in random order. An algorithm is developed to detect
the sequence of regime switches under the assumption of continuity. This method is tested on a
simple IFS and applied to an experimental computer performance data set. This methodology has a
wide range of potential uses: from change-point detection in time-series data, to the field of digital
communications.

I. INTRODUCTION

Any approach to time series analysis begins with the
question: is the data stochastic or deterministic [1, 2]?
Often, the answer may be “both”: the data could be gen-
erated by a deterministic system with a noisy component,
perhaps due to measurement or computer round-off er-
ror. In this article, we propose an alternative possibility:
the data could be generated by a sequence of determin-
istic dynamical systems selected by a switching process
that itself could be deterministic or stochastic, i.e., by an
Iterated Function System (IFS). For a detailed review of
IFS dynamics, see [3]. If this were the case, then a goal is
to identify the times at which switching between regimes
occurs as well as the number and forms of the determin-
istic components themselves. Under the assumption that
each deterministic system is continuous, we use topol-
ogy to detect and separate the components of the IFS
that are present in the output data. The main idea be-
hind this approach is that the nearby state-space points
can evolve in different ways, depending on the dynamical
state of the IFS. Such a model has some relation to the
determination of states in a hidden Markov model; how-
ever, such models are typically discrete and stochastic—
not continuous and deterministic. A primary challenge
in this problem is that overlap between the components
could cause their trajectories to locally coincide. The use
of IFS models for physical systems is not new; for exam-
ple, Broomhead et al [4] used an IFS to model digital
communication channels. In the current paper, we pro-
vide new tools to extract IFS models from experimental
data and to determine the sequence of switching between
regimes in the IFS.

We believe that method proposed here will prove use-
ful in a number of applications. For example, detection
and separation of IFS components is closely related to
the statistical problem of event or change-point detection
[5] where time-series data is assumed to come from a sta-
tistical distribution that changes suddenly. Applications
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where change-point detection plays a role include fraud
detection in cellular systems, intrusion detection in com-
puter networks, irregular-motion detection in computer
vision, and fault detection in engineering systems, among
many others [5]. Our underlying hypothesis is different—
we assume that each regime is deterministic. For exam-
ple, though change-point detection has been successfully
applied to determine brain states from EEG data [6],
EEGs have also been shown to exhibit properties of low-
dimensional chaos [7]. Indeed, low-dimensional dynamics
occurs in diverse areas including physiology, ecology, and
economics [8–10]. We expect that the separation tech-
nique outlined below could be used to produce more ac-
curate models of regime shifts and the effects of rapid pa-
rameter changes that occur, e.g. in the onset of seizures,
natural disasters, or the bursting of economic bubbles.

II. DETECTION AND SEPARATION

Given a time series that corresponds to measurements
of a dynamical system, our goal is to develop a technique
that will detect whether the series is generated by an
Iterated Function System (IFS). Formally, an IFS is a
discrete-time dynamical system that consists of a finite
set of maps {f0, . . . , fn, . . . , fN−1} on a state space X. A
trajectory of the IFS is a sequence of state-space points,
{x0, . . . , xt, xt+1, . . .}, together with a regime sequence
{n0, . . . , nt, nt+1, . . .} with nt ∈ {0, 1, . . . , N − 1}, such
that

xt+1 = fnt(xt) , ∀t ∈ N.

Without loss of generality, we may assume that each map
occurs at least once in the regime sequence, since other-
wise the missing maps could be eliminated.

In the standard study of IFS dynamics, the regime se-
quence is often taken to be a realization of some random
process [11, 12]; however, we only assume that we have
access to a single trajectory that is generated by a partic-
ular realization. Consequently, the selection rule for the
regime sequence is immaterial; indeed, it could just as
well be a discrete, deterministic dynamical system. The
standard theory, in addition, often requires that each fn
is a contraction mapping, in which case the IFS is hyper-
bolic and has a unique attractor A that is invariant in the
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sense that A =
⋃N−1

n=0 fn(A). We do not not need this
assumption, and only assume that the trajectory lies in
some bounded region of X.

We will assume that the time-series corresponds to T
measurements on a particular state-space sequence,

Γ = {x0, x1, . . . , xT−1}; (1)

but that the regime sequence is unmeasurable or hidden.
For example, one may be able to measure the position
of a forced pendulum at a sequence of times, but the
pendulum may have a sealed brake mechanism that sets a
friction coefficient and that is controlled externally to the
experiment. Measurement of Γ also implicitly includes
that of its associated shift map

σ(xt) = xt+1. (2)

It is often the case that a time series corresponds to a
limited measurement, perhaps of one function in multi-
dimensional dynamical system. In this case, the first
step is to use delay-coordinate embedding to construct,
as much as is possible, a topologically faithful image of
the orbit a reconstructed state-space [13]. We suppose
that (1) is this embedded time series.

The fundamental goal in this paper is detection and
separation: to detect if Γ is a trajectory of an IFS and
to separate the regimes by recovering the sequence {nt}.
This problem is relatively straightforward when Γ is a
subset of some non-overlapping region of the IFS, i.e., a
region R such that fi(R)

⋂
fj(R) = ∅ for all i 6= j. In

this paper, we address a more general situation in which
Γ could be sampled from an overlapping region of the
IFS.

A fundamental requirement for our separation method
is that the maps fn are continuous. In particular, the im-
age of a connected set under each fn must be connected.
Since for finite data sets, the notion of connectivity makes
no sense; we will instead use ε-connectivity under the as-
sumption that X is a metric space with distance d(x, y).

Definition (ε-connected [14]). A set Ω ⊂ X is ε-
connected if there exists an ε-chain connecting the points
in Ω, i.e., for each point x ∈ Ω there exists a point y ∈ Ω
such that 0 < d(x, y) ≤ ε.

Let Nk(xt) denote the set consisting of xt and its k-
nearest neighbors in Γ. For each such set there will be a
δ such that Nk(xt) is δ-connected.

The simple idea of our algorithm is as follows. For
each ε that is not too small, there must be a k > 0 such
that such that the image of Nk(xt) under a single map
will be ε-connected. Indeed, continuity implies there is
a δ so that a δ-connected set has an ε-connected image.
For a given ε, the minimal δ, will be determined by the
maximal distortion of the map. For the algorithm to
work, the set Γ must be dense enough so that for this δ,
there are nearest neighbors, i.e., k > 0.

If ε is chosen to reflect this maximal, single-map distor-
tion, then whenever the time-shifted image, σ(Nk(xt)),

consists of a number of ε-connected components, each
component should reflect the action of a different fn.
This idea is expressed visually in Fig. 1. Note that
σ(Nk(xt)) is NOT the same as Nk(xt+1), the set of near-
est neighbors to the image of xt.

To obtain reasonable results the parameter ε must be
selected carefully as it will determine the maximal num-
ber of nearest neighbors, k. The number, N , of regimes
of the IFS is not more than the maximal number of com-
ponents of σ(Nk(xt)). However, since sparsely covered
portions of the data set could result in spurious compo-
nents, we will select N to be the number of components
in the bulk of the images σ(Nk(xt)).

x0

x17

x10x18

x1 σ

σ

ε

N7(x10)

f0(N7(x10))

f1(N7(x10))

FIG. 1. Sketch of the action of the shift map σ on a 7-
nearest neighborhood of a point x10 ⊂ Γ results in two ε-
connected components that can be identified as f0(N7(x10))
and f1(N7(x10)).

Given a time series Γ that we suspect to be gener-
ated by an IFS, the detection and separation algorithm
requires an appropriate value for ε. Here we outline a
possible algorithm.

• (Detection) Determine a value for ε by computing
histograms of the separations between N1(xt) and
σ(N1(xt)). If Γ is sampled from a connected in-
variant set, then each of the nearest neighbor sets
should be δ-connected. If there is more than one
regime, their images should be disconnected for
some choice of ε. The number of regimes N is es-
timated to be the number of components in the
majority of the σ(Nk(xt)) and this should be per-
sistent over a range of ε and k values.

• (Separation) Select a set of K-nearest-
neighborhoods, {Ωj = NK(xtj )|j = 0, 1, . . . J − 1},
that overlap and cover Γ. Points are identified to
be from a common regime if they lie in overlapping
neighborhoods and their images lie in ε-connected
components.

In the next section, we illustrate this method on a sim-
ple example.
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III. EXAMPLE: A HÉNON IFS

As a simple example, consider the IFS generated by
the two quadratic, planar diffeomorphisms

f0 (x, y) =
(
y + 1− 1.4x2, 0.3x

)
,

f1 (x, y) =
(
y + 1− 1.2(x− 0.2)2, −0.2x

)
.

(3)

The map f0 is Hénon’s quadratic map with the canonical
choice of parameter values [15]; the map f1 is conjugate,
via an affine change of coordinates, to Hénon’s map with
parameters (a, b) = (0.912, 0.2). We generate a single
trajectory of this IFS by using a Bernoulli process with
equal probability to generate a sequence nt ∈ {0, 1}. A
trajectory with T = 30, 000 points, shown in Fig. 2, has
the appearance of two overlapping Hénon-like attractors.
Note however, that since most points on Γ are not iter-
ated more than a couple of consecutive steps with the
same map, Γ is not just the union of the attractors of
f0 and f1. Indeed the attractor for f1 is simply a fixed
point at (0.63909,−0.1279).

−1.5 −1 −0.5 0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x

y

FIG. 2. A trajectory of the IFS generated by (3) with
T = 30, 000 points. Here nt ∈ {0, 1} are chosen with equal
probability.

To recover the regime sequence from Γ we must check
for ε-disconnected images of δ-connected components. As
a first step to determine an appropriate value for ε, we
compute the distance between each point in Γ and its
nearest neighbor, i.e., the diameter of N1(xt). This is
shown in panel (a) of Fig. 3 as a histogram. Note that
all but two points in Γ have a nearest neighbor within
0.02; and the vast majority within 0.002. Panel (b) of
Fig. 3 indicates how these distances grow upon iteration:
it shows the distance between the iterates of each of these
nearest neighbors, i.e., the diameter of σ(N1(xt)). There
are now two distinct distributions separated by a gap
[0.02, 0.032]. This suggests that the dynamics underlying
Γ is discontinuous, and that a choice of ε in the gap may
be appropriate.

Suppose that we did not know that the IFS (3) had two
regimes—that only the trajectory Γ of Fig. 2 was avail-
able. To detect the number of regimes, we look at the
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FIG. 3. Distance between each point on Γ of Fig. 2 and its
nearest neighbor (a) and between the images of these two
points (b).

number of ε-components in the image of the sets of five
nearest-neighbors, N5(xt). Histograms of the number of
ε-components of σ(N5(xt)) are shown in Fig. 4 as ε varies
from 0.005 to 0.05. The vast majority of these neighbor-
hoods split into at most two ε-components. When ε is
as small as 0.005 about 3% split into four or more com-
ponents and when ε ≥ 0.02, only 0.3% split into three
or more components. Note that with the equal probabil-
ity rule that we used for (3), the probability that all five
points in N5(xt) will be iterated with the same map is
2
32 , which is confirmed in Fig. 4, since about 6% of the
images have one ε-component.

Thus in the detection phase of the algorithm, we
confirm that the underlying dynamics has two regimes,
N = 2 and obtain a reasonable choice, ε = 0.03.

For the separation phase of the algorithm, we wish
to classify which points on Γ are images of which map.
To do this we choose larger, overlapping neigbhorhoods
that cover Γ so that we can connect the subsets for each
regime. To distribute these neigbhorhoods, more-or-less
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FIG. 4. Detection of the number of components of the im-
ages of sets of K = 5 nearest neighbors for the trajectory Γ
of Fig. 2. The histograms show the number of the images
{σ(N5(xt)) | 0 ≤ t < 29, 999} that have N ε-connected com-
ponents for various ε.

evenly over Γ, we select J points {y0, y2, . . . , yJ−1} by
first choosing y0 ∈ Γ arbitrarily, and subsequently incre-
menting j and selecting yj to be the point of Γ farthest
from the previously selected points. Each selected point
is the nexus of the K-nearest-neighborhood

Ωj = NK(yj).

We choose K = 40 and J = 104, so that most of the
Ωj overlap with other neighborhoods, in the sense that
they share points in Γ. In this case, each of the Ωj is
0.03-connected.

The separation into regimes is accomplished as follows:
whenever two “overlapping” Ωj ’s have ε-connected im-
age components that intersect, we identify them as being
generated by the same fn, see the sketch in Fig. 5. More
specifically, suppose that Ωj,k is the set of points in Ωj

that generate the kth ε-component of σ(Ωj). These are
distinguished by Whenever Ωj1,k1

∩ Ωj2,k2
6= ∅, then the

union of their images σ(Ωj1,k1
) ∪ σ(Ωj2,k2

) will share a
point as well, and thus be ε-connected. In this case, the
points in these images are selected as being generated by
the same regime fn, thus we set k1 = k2 = n.

x0

x17

yj

yi

x18

x1

σ

σ

Ωj

Ωi

f0(Ωi)

f0(Ωj)

f1(Ωi)

f1(Ωj)

ε

FIG. 5. Separation of the time series Γ into regimes. Here Ωi

and Ωj represent the 7-nearest neighborhoods of yi and yj ,
respectively. They overlap, having x17 in common. Each of
the neighborhoods has two ε-connected images under the shift
σ. The pair that share σ(x17) = x18 are identified to be in
the same regime, say n = 0 so the 7 points in this ε-connected
image set (and their preimages) are colored blue to indicate
the common regime.

The Ωj,k can be thought of as nodes on an abstract
graph. Whenever two of these neighborhoods share a
point, an edge linking these nodes is added to the graph.
Using this construction, the connected components of the
resulting graph are selected as images of a fixed regime.
Of course, we do not know which of the fn’s is associ-
ated with which graph component unless we have prior
knowledge of some values of the functions.

For the trajectory of Fig. 2 and using the covering by
the 104 neighborhoods Ωj , this algorithm generates two
large connected graph components, one contains 14, 724
points and the other 14, 815 points. These points are
shown in the panels (a) and (b) of Fig. 6, respectively.
Comparing these results with the known values of nt,
shows that every point in the first graph component has
nt = 0 and every point in the second has nt = 1; that
is, both the separation had no false positives. There are
an additional 465 points of Γ that are not in these two
graph components. These unidentified points represent
sparsely visited regions of the trajectory.

It is no coincidence that the points identified to be im-
ages of f0 in Fig. 6(a) appear to lie close to the attractor
of the standard Hénon map, which is shown in light red
in the figure. Note, however, that though the attractor
for f1 is a fixed point, the intersection of the red cross
in the figure, the strong perturbation due to f0 itera-
tions causes the points in Fig. 6(b) to range far from its
attractor.
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FIG. 6. Panel (a) (panel (b)) shows the 14, 724 (14, 815)
points identified to reflect the action of f0 (f1). These points
can be approximately interpreted as a sampling of f0(Γ)
(f1(Γ)) Also shown, in red, are points on the attractor of
the Hénon map f0, and a cross at the position of the fixed
point of f1.

IV. COMPUTER PERFORMANCE DYNAMICS

In this section, we describe the application of the
regime separation algorithm to a time series obtained
from an experimentally obtained a computer perfor-
mance analysis data set. A critical performance bottle-
neck in modern computer systems occurs in the efficient
management of memory. The cache is the level of mem-
ory closest to the processor; it is preloaded with the data
a program thinks it will need. When the processor looks
for a necessary piece of data in the cache and does not
find it, it must load the data from main memory, result-
ing in a major performance slowdown. Such an event is
called a cache miss.

The experiment to investigate the frequency of cache
misses consists of looping over the simple C program:

f o r ( i = 0 ; i < M; i++)
f o r ( j = i ; j < M; j++)

data [ i ] [ j ] = 0 ;

running on an Intel Core2 R© processor. This code ini-

tializes the upper triangular portion of a matrix in row-
major order. As the program runs, the hardware perfor-
mance monitors built into the processor chip monitor the
memory usage patterns—in particular, the rate of cache
misses. The program is interrupted every 106 instruc-
tions and the number of cache misses that occurred over
that interval is recorded. A segment of the resulting time
series of 3(10)4 points, along with a two-dimensional time
delay embedding, is shown in Fig. 7.
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FIG. 7. (a) Cache misses per 105 instructions observed during
the execution of rowmajor. (b) Two dimensional time delay
embedding of the time series from Fig. 7(a)

This data set has been studied previously and shown
to exhibit chaotic dynamics [16, 17].

The observation of the ghost triangles in Fig. 7(b)—
seemingly reminiscent of three overlapping attractors
from an IFS—prompted us to apply our regime sepa-
ration algorithm to this data. Because the two ghosts
are much more lightly sampled than the main triangle,
our assumption was that the IFS consisted of three func-
tions and that the switching process prioritized one of
the three.

The histograms shown in Fig. 8 confirm that for the
vast majority of points, at most three components are
generated over for ε > 10, thus setting N = 3 is reason-
able.
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FIG. 8. A total of 6(10)5 groups of 5 nearest neighbors were
chosen. Each cluster was iterated forward by the dynamics
and the number of ε-connected components in the image were
counted for various ε. The histogram shows that the number
of clusters with two ε-connected components remains fairly
constant, and for ε > 70, the number of clusters with more
than two ε-connected components levels off. This indicates
that ε = 75 is an appropriate parameter to catch the sec-
ondary dynamics while minimizing the number of false posi-
tives due to noise on the main attractor.

We chose ε = 75 for the analysis, which is roughly 1
3 of

the apparent offset of each ghost. We counted the number
of ε-connected components in the images of clusters of
points for various ε and made a choice that allows us
to identify a ‘jump’ to a ghost triangle, while ignoring
relatively small noise vectors on the main triangle.

Points in the ghost were initially identified by selecting
the component of the image of each ε-connected neigh-
borhood that contained the smallest number of data
points. The points thus identified had a strongly periodic
component with period 215 so we narrowed our search to
find points in a window of length 20 around this period.
The set of points identified by the narrowed window is
shown in Fig. 9(a). These points correspond to the lower
ghost of Fig. 7(b); the second ghost is just an image of

the first—a necessary result of the symmetry inherent in
the time-delay embedding process.
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FIG. 9. (a) The lower ghost triangle separated from the data
of Fig. 7(b). Each of the 277 points was identified as being
ε-disconnected (ε = 75) from the images of an ε-connected set
of points. (b) A two dimensional time delay embedding of
the adjusted time series obtained by adding 200 cache misses
to the time series values corresponding to each of the points
from (a).

This analysis revealed a direct correspondence between
the points on the ghosts and points in the time series that
are periodically spaced by 215 measurements—up to a
very small error tolerance. Moreover, each ghost point
appears to be shifted exactly 200 cache misses from the
main triangle. Indeed, upon adding 200 cache misses to
each of the ghost values, the full time series now has the
embedding shown in Fig. 9(b). Thus, for this case, not
only is the regime identified, but the dynamics of the two
components is shown to be simply related: by just a shift.

There is one issue remaining before we can model this
data as an IFS: we only have access to measurements of
the states of the IFS. That is, if X is the state space of the
computer system and {f0, . . . , fk} is a collection of maps
on X, the observations correspond to the functions {h ◦
f0, . . . , h ◦ fk} with a continuous measurement function
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h : X → R that maps the state of the computer system
to the number of cache misses that occur over the given
time interval. It can be shown that the functions h ◦
fi are sufficient for studying topological and geometric
properties of the fi—a more-detailed treatment of the
function h can be found in [16].

Thus, if h ◦ f0 denotes the dynamics associated with
the main triangle, we define h ◦ f1(x) = h ◦ f0(x)− 200,
and h ◦ f2(x) = h ◦ f0(x+ 200). The IFS consists of the
state space X, the collection {f0, f1, f2} of continuous
maps, and the sequence {nj} ⊂ {0, 1, 2}, where

nj =

 1 if j ≡ 0 mod 215
2 if j − 1 ≡ 0 mod 215
0 otherwise

This model rests on the assumption that f1 and f2 can
be described completely in terms of f0. To verify this
assumption, we tested for determinism in the adjusted
dynamical system of Fig. 9(a). We found that out of
the 277 points so identified, only 17 fail to lie in an ε-
connected image set in the adjusted dynamical system.
Consequently, f0 appears to be a continuous function and
the IFS is an accurate model for this data set.

Much of the usefulness of this model comes from the
fact that we have isolated the continuous function f0. In
light of this fact, it is reasonable to assume f0 is rep-
resentative of some low-dimensional dynamics that are
present in the computer system, while f1 and f2 repre-
sent a secondary piece of dynamics—in this case, perhaps
best described as ‘deterministic additive noise’.

V. CONCLUSION

Many techniques for time-series analysis, such as in
[18], explicitly require the time series to be generated
by a continuous function, and almost all of them implic-
itly require that it be generated by a single function.
For example, in [17], time-series analysis of the data of
Fig. 7(a) showed that it has a positive Lyapunov expo-
nent and fractal correlation dimension. However, our re-
sults show that that time series interleaves trajectories
from different dynamical systems—a property that can
trip up traditional time-series analysis techniques. In the
data studied in [17], this proved not to be an issue be-
cause a single f0 overwhelmingly dominated the dynam-
ics. When that is not the case, problems can arise with
traditional time-series analysis, which is often formulated

assuming the existence of long, uninterrupted determin-
istic trajectories. Some techniques, such as those in [18],
can be reimplemented using “snippets” of a trajectory.
Using our topology-based approach, however, one could
pull apart and study the dynamics of each of the fi in-
dependently from the rest of the system.

In conclusion, we have described an algorithm for
detection and separation of a signal that is generated
by continuous, deterministic dynamics punctuated by
regime shifts. The algorithm handles shifts that result
from stochastic or deterministic processes—whenever the
dynamics are described by an iterated function system.
Time-series data from a computer performance analysis
experiment were shown to fit this model. More gener-
ally, we claim that iterated function systems are a nat-
ural model for complex computer programs, which have
regime shifts as they move from subroutine to subrou-
tine. Furthermore, IFS models provide a natural frame-
work for data analysis in a wide range of fields: whenever
the physical system generating the data is prone to dis-
continuous regime shifts.

Another area in which the regime separation tech-
nique is particularly appropriate is digital communica-
tion channels. Indeed, (hyperbolic) iterated function sys-
tems are known to provide useful models of these chan-
nels [4]. A channel corresponds to an electrical circuit
externally driven by a digital signal, and the discrete in-
put signal corresponds to the regime sequence. Thus, the
behavior of the circuit corresponds to a discrete set of
continuous dynamical systems. A fundamental problem
in this context is channel equalization, the reversal of dis-
tortion incurred by transmission through a channel. This
is precisely the determination of the input signal sequence
from a sequence of output values—i.e., regime separation.
Channel equalization is straightforward for linear dynam-
ics because the IFS attractors in these situations tend to
be non-overlapping. However, more-realistic, nonlinear
IFS models have overlapping attractors. We believe that
our methods can be successfully used for channel equal-
ization in this context.

Challenges that remain to be addressed include finding
an efficient implementation for high-dimensional data,
and dealing with systems that have traditional noise in
addition to regime shifts. Furthermore, we have not ad-
dressed the nature of the switching process itself. Once
the2 on of the regime shifts have been determined, the
next natural question to ask is whether or not there is
determinism present in the switching, and if so, if one
can determine the rule for switching between regimes.
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