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Abstract

In this paper we study the simultaneous problems of food waste and hunger in the context of
the possible solution of food (waste) rescue and redistribution. To this end, we develop an empirical
model that can be used in Monte Carlo simulations to study the dynamics of the underlying problem.
Our model’s parameters are derived from a unique data set provided by a large food bank and food
rescue organization in north central Colorado. We find that food supply is a non-parametric heavy-
tailed process that is well-modeled with an extreme value peaks-over-threshold model. Although
the underlying process is stochastic, the basic approach of food rescue and redistribution appears
to be feasible both at small and large scales. The ultimate efficacy of this approach is intimately
tied to the rate at which food expires and hence the ability to preserve and quickly transport and
redistribute food. The cost of the redistribution is tied to the number and density of participating
suppliers, and costs can be reduced (and supply increased) simply by recruiting additional donors
to participate. Our results show that with sufficient funding and manpower, a significant amount of
food can be rescued from the waste stream and used to feed the hungry.

1 Introduction

There is a contradiction present in the United States (US) today: between 27% and 50% of food pro-
duced for consumption is wasted in some stage of production, distribution, or preparation [10, 18, 19].
Meanwhile 14.7% of americans (1 in 7) are having difficulty finding enough to eat, and 5.7% are going
hungry1. The populations most at-risk of hunger include 36.6% of households with children and single
mothers, 27.8% of households with children and single fathers, 26.9% of hispanic households, 24.9% of
black households, 21.3% of households with children, and 7.8% of seniors living alone [21]. Globally,
food prices have reached unprecedented levels in 2011, and we are currently in the midst of a worldwide
hunger epidemic [7]. A clear question arises when studying these statistics: is it possible to recover food
from the waste stream and redistribute it to those who are hungry, thereby reducing both waste and
hunger?

The idea of food rescue and redistribution is not a new one. Non-profit food rescue and gleaning
organizations (e.g., [12, 27, 17]) have been operating on this basic premise for more than 30 years,
and there are dozens of organizations of varying size that currently rescue food in some capacity and
redistribute it. These organizations recover food that would otherwise be wasted from donors (e.g.,
grocery stores, farms, retailers, restaurants) and redestribute it via agencies (e.g. food banks/pantries,
soup kitchens, and shelters) to those in need. Recently, a coalition of major grocers and retailers
organized under the Feeding America project with the goal of large scale food rescue, redistribution,
and documentation [16]. Two popular recent books have studied the problem of systematic food waste
in both the U.S. and Europe [2, 34]. Yet, to our knowledge there has been no prior effort to quantify
the cost and practicality of the food rescue and redistribution model on a large scale.

Identifying sustainable systems for reducing food waste and hunger and understanding their cost, can
have a substantial impact on waste reduction and food distribution on a local, national and even global

1The United States Department of Agriculture (USDA) defines these two classes of hunger as “low food security” and
“very low food security”.
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Figure 1: Overview of modeling and simulation process.

scale. In this paper, we make an important first step in this direction by studying the food rescue and
redistribution dynamics in a pair of neighboring counties in north central Colorado. We investigate the
task of food recovery as a time-sensitive spatial distribution problem involving food supply and demand
and the energy cost of redistribution from donors to agencies. To this end, we build an empirical model
using data from a large food rescue organization in north central Colorado. Although our results are
limited to this region, we contend that it is representative of a large class of similar regions with a mix of
rural, small urban, and urban service areas. Using this model, we present an optimization framework for
finding low cost solutions to food recovery and redistribution, which can be used to determine average,
best case, and worst case bounds on the problem through simulation.

The main contributions of this work are as follows:

• We present the first formal description of the food redistribution problem as a well defined opti-
mization problem.

• We investigate a novel data set of food rescue and distribution from a large food bank and discover
that the food supply process is heavy tailed and can be well modeled with extreme value theory.

• We present initial results on the feasibility of the redistribution approach and find that basic
demand can be easily met with available supply, and that with small changes and optimizations,
a substantial portion of hunger may be mitigated with rescued food.

Figure 1 provides an overview of the modeling and simulation process used in this paper. First, using
food rescue data, we build statistical models for food supply (waste) and food demand (hunger). Next,
Geographical Information Systems (GIS) data is used to locate and cluster nearby donors. We also
measure the square footage of each donor at this point to determine its size, and compute driving routes
between all pairs of donors. Finally, the cluster model, demand model, and supply models are used in a
Monte Carlo style stochastic simulation. At each iteration (day), an optimal schedule is determined that
both meets demand (if possible) and minimizes cost (kilometers driven). The output of the simulation
is then studied to assess feasibility and quantify costs.

In the next section we describe the data collected for this study and the statistical models we derive
from it. In section 3, we discuss the other features of our model, including the optimization framework
and how it fits in with similar problems. Section 4 describes the implementation of our simulation
framework and design decisions. Section 5 discusses our experimental design and section 6 provides the
results of the experiments. Finally, section 7 concludes with a summary and discussion of future work.
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2 Measurements

The data we use in this study was supplied by Community Food Share (CFS), the sole food bank
for Boulder and Broomfield counties in north central Colorado [31]. This data includes the pounds
of food received from each donor on each day for from July 1, 2010 to August 31, 2011. There were
donations from 90 distinct donors, comprising 20,270 donations and 2,328,821 lbs of food23. This food
was distributed to 304 unique agencies, which are predominantly homeless shelters, soup kitchens, smaller
food pantries, and other organizations that serve at-risk populations.

Figure 2 provides an overview of this data, showing the amount of food received each week and
month, as well as the average amount received each week day. We can see some clear annual trends in
this data. There is a trend upwards in the winter months when CFS has the majority of its food drives.
4 The daily donations are approximately the same amount of food, with the exception of the weekend,
when CFS is closed. As a result, donations on Monday and Friday appear to be slightly higher than the
days in the middle of the week.

Figure 3 plots the mean daily food supply (in lbs) from each donor and figure 5 shows the aggregate
distribution of donated food, which appears to be Gaussian with a mean of 5,454 and standard deviation
of 5,051. Although we can use this distribution directly to model the aggregate supply from all donors,
we must characterize the per-donor supply to enable simulation. To this end, we subdivide donors by
category; figure 4 plots a probability distribution function (PDF) of the daily donations where the donors
are divided into: grocers, manufacturers, farms, and individuals. The individuals category contains
donations both from named individuals and anonymous donors, as well as donations from corporations
and organizations that are not in the food-service industry. We have purposely excluded donations from
sister food banks and food drives, which are generally composed of purchased rather than rescued food.
Some donors provide substantially more food than others and the largest grocers provide the most food
on average. We will look at correlations between store size and amount donated in section 2.2. The
PDF hints that the underlying data is heavy-tailed, with zero-supply as a normal case and large supply
events occurring with smaller probability. Although each of the categories has its own shape and scale,
the same basic heavy-tailed distributional shape seems to dominate.

2.1 Characterizing Supply (Waste)

We use the data provided by CFS to statistically charactize the dynamics of the supply and demand
processes. On a given day, the data includes some number of donations, or “food supply events.” For
a given donor, we make the assumption that on days where food is not picked up, there is zero supply.
This data has a distinct heavy tail, where distribution is skewed to the left, indicating that small values
are most common, but that with small probability, large and sometimes extremely large values can be
observed, as seen in figure 4.

This type of distribution is well modeled by a Peaks Over Threshold (POT) approach, using a fit from
a Generalized Pareto Distribution (GPD), which is a power law probability distribution that features a
long heavy tail, i.e., most events are small, but some events can be extremely large. The POT approach
to fitting is common in weather modeling, and particularly in modeling the likelihood of extreme weather
events [6]. In this approach, there is a threshold value (θ) for an event that is selected at some constant
rate (r). In our problem the threshold value is zero, and we are looking to model the probability and size
of food supply events greater than that threshold—where the donor has waste that can be recovered.
Events larger than the threshold are modeled with a heavy tailed distribution described by location (µ),

2Most food rescue organizations weigh their donations so that they can provide documentation to their donors for the
purpose of tax-deduction. CFS uses categories based on USDA food “pyramid” groups: grains, vegetables, fruit, protein,
dairy, fat/sweets, soup/baby food, and non-food.

3Donations are broken up by food category, so an individual pickup may be documented with as many as 7 distinct
donations. Some donations are recorded by case and are not weighed. In this case we have taken a lower-bound estimate
that one case weighs 25 pounds. Although the weight of a case varies by product, we have used 25 because CFS suggested
this was a reasonable average estimate.

4Although we have excluded food drives in our data, the increased exposure they create may cause an increase of food
donations around the same time.
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Figure 3: Mean Daily supply data by donor in pounds.
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Data Threshold (θ) Rate (r) Location (µ) Scale (σ) Shape (ζ) Mean

All 0 0.121 0 275.947 (5.382) 0.439 (0.016) 491.884
Grocers 0 0.302 0 293.139 (6.130) 0.205 (0.016) 368.728
Manufacturers 0 0.038 0 562.549 (42.979) 0.107 (0.051) 629.954
Individuals 0 0.029 0 141.755 (18.374) 0.905 (0.126) 1492.042
Farms 0 0.023 0 918.811 (188.314) 0.867 (0.200) 6908.353

Table 1: GPD fit parameters for daily supply and demand distributions in pounds. Standard Error
values for the fitted parameters are given in parenthases.

scale (σ), and shape (ζ) parameters. These parameters describe the basic shape, width, and location
shift of our fit. The location parameter, which is the mean in the parametric sense (i.e., it is the “center”
of the entire distribution), is zero. The scale parameter describes the uncorrected central tendency of
the tail and the shape parameter describes its spread.

In order to acheive tighter fits, we model the supply data for all donors as well as manufacturers,
grocers, individuals, and farms separately. Figure 6 shows the quality of the fit for all donors combined,
and figure 7 shows the fit for grocers alone. These figures provide the probability plot, quantile-quantile
plot, and return level plot, which visually compare the distribution of the observations and the fitted
model. In these plots, the closer the points are to the diagonal line, the better the model is able to predict
the data. The imagef in the bottom right of figure 6 shows a histogram of supply events greater than
zero and the corresponding linear fit. Table 1 provides the maximum likelihood estimator (MLE) fitted
parameters, and the standard error associated with each fitted parameter. Overall the fits are remarkably
good: the combined data is clearly Pareto, as is the supply of grocers, who are the predominant type of
donor in our data. The fits for manufacturers, individuals, and farms are not as strong, but still seem to
comport to the POT model. This is an exciting result because it means that food supply (waste) events
can be modeled with the same models used to predict and forecast extreme weather events.

The values in table 1 also reveal the distinct donation behavior of each category. Grocers are fairly
consistent donors, with a rate of 0.302 indicating that a typical grocery store donates some food on
about 30% of days, with a mean weight of 369 lbs. Farms, on the other hand, donate infrequently with
a rate of 0.023, which means that they donate on about 2% of days. However, when the donate, the
mean quantity is much larger—around 6,000 lbs.

2.2 Predicting Supply

Using the fit parameters in table 1, Pareto-distributed daily supply values can be generated:

si,t =

{

µ+ σ∗(U(0,1)−ζ
−1)

ζ
U(0, 1) <= r

θ o.w.
(1)

Where U(0, 1) is a uniformly distributed random number in [0, 1]. We use this function in our exper-
iments to generate random, correctly distributed supply values that can be used in Monte Carlo5style
simulations.

In order to use this model to predict the supply of donors for which we do not have data, it is necessary
to understand how other variables contribute to the shape and magnitude of the supply distribution.
To this end, we investigate several other variables that might be correlated with mean daily supply:
store size (building square footage), municipal zoning category, and store distance from the warehouse.
We calculated zoning categories and square footageusing publicly available geographical information
published by the City of Boulder [5]. The distance of each donor from the warehouse was calculated
using drive-distance from the MapQuest Directions API [20].

5Monte Carlo methods are ones that compute or predict the behavior of a (possibly) complex system by releated random
sampling. In the classic approach, random samples are drawn from the appropriate probability distribution and then used
in a deterministic algorithm to simulate the underlying dynamics of the system stochastically.
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We perform a factorial analysis of variance (ANOVA) to see how each of these factors (individually
and in combination) affects the mean daily supply. The GPD mean daily supply6(s̄) for a given supplier
is:

s̄ = µ+
σ

1− ζ
(2)

To obtain this value for each supplier, we perform a GPD fit to determine the GPD parameters and
then calculate the mean. The result of the ANOVA shows that the most important correlating variables
are size and category. The relationship between donor size and mean daily supply appears to follow
a power law. An ANOVA gives F-values7of 69.042 and 27.841 for log10 of store square footage and
donor category respectively, and 29.548 when used together. A Pearson’s product-moment correlation
test helps confirm this relationship by finding a statistically significant correlation between the log of
size and the log of mean daily supply for both grocers alone (p-value = 0.009 and ρ = 0.342), and all
suppliers together (p-value = 0.097 and ρ = 0.413). Given this, we can say that the mean daily supply
(waste) and variability is independently correlated with the size of the donor. This is an important
result because it allows us to predict the supply (waste) distribution for a given donor based simply on
publicly available information: square footage and municipal zoning category.

We perform a linear least squares fit to the log of GPD mean daily supply as a function of the log of
donor square footage. This produces a fit with slope (m) of 0.291, intercept (b) of 1.103, and adjusted
R2 of 0.101. Figure 8 shows this relationship along with the fit line. Clearly this fit is somewhat noisy,
but after excluding outliers, such as phi1, stv1, doo1, hur1, but1, and roc1 that donate much more than
other businesses of their size, and jal, niw1, and cel1, which donate much less than businesses of the
same size, the relationship appears fairly solid.

Using this information we are able to predict the scale of the supply distribution for a new donor
using its square footage (x):

log10(µ+
σ

1− ζ
) = log10(mx+ b) (3)

We know that the most important parameter is scale (σ), which by itself is well correlated with supply.
We focus on predicting it and draw the remaining unknowns (µ, ζ) from the general fits given above.
Solving for σ, and substituting in a constant ζ from table 1, 0 for µ, and the constant fitted m and b

values given above we obtain:

σ = 10log10(x
m(1−ζ))+b (4)

2.3 Characterizing Demand (Hunger)

A final modeling task is to fit demand data. Due to privacy concerns for some agencies, it is not possible
to determine the per-agency demand from any defining characteristics, such as agency size or surrounding
population density. Instead, we fit the aggregate daily demand, which corresponds to the amount of
food delivered by CFS or picked up at the warehouse directly by the agencies.

During the period for which we have data, CFS distributed food on 294 of 427 days, totalling
4,445,071 lbs. This total distribution amount is approximately twice that donated, since CFS purchases
approximately 50% of the food they distribute. Figure 9 shows the kernel-smoothed probability density
of a given daily demand (in lbs) for those 294 days. The distribution on any given day when food is
distributed appears to be Gaussian, as is shown by the Q-Q plot given in figure 9. The assumption
that the underlying distribution is Gaussian seems reasonable given that total demand is likely a strict
function of the number of hungry people, which should not be highly varying in time. Hence, we can

6This same analysis can be performed using well known parametric statistics (somewhat questionably), such as the
arithmetic mean of daily supply. In that case the ANOVA and correlation results presented below still hold, but with
slightly less confident p-values.

7The F-value is a statistic that describes the ratio between explained variance and unexplained variance—or, put
differently, the ratio of between-group variability to within-group variability.
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Figure 9: Daily total distribution data in pounds.

summarize the distribution with the mean (10,410 lbs) and standard deviation (10,041 lbs). We take
this as the demand for food in pounds per day that CFS currently serves.

This empirically derived average value is not a perfect indicator of the actual demand in the CFS
service area. The food required to feed all people with food insecurity could actually be much higher.
Several reports have detailed food insecurity in the US, reaching different conclusions about the extent
of the problem. According to [16], which describes the efforts of the Feeding America program, 5.7
million unique individuals (or 1.661% of the US population8) are served each week by the approximately
37,000 agencies aligned with their program. There are 348,017 individuals in the service area of CFS9,
meaning that, based on national-level statistics, there are approximately 5,781 unique individuals in this
region per week who need food assistance. In [21], Nord et al. show that nationally in 2009, 14.7% of
households were food insecure at some point during the year, 9% had low food security, and 5.7% had
very low food security10. Using the 5.7% figure, that would indicate that 20,490 individuals have very low
food security in the service region of CFS. A local study conducted by Feeding America in conjunction
with CFS found that approximately 10,800 unique individuals seek food assistance per week in the CFS
service region [15]. Using USDA statistics for average consumption of food, a typical American in 2010
consumes approximately 2.85 lbs of food per day, of which the majority is meat and protein (0.41 lbs)
and grain (0.48 lbs) [23]11. Given this, if we assume that each individual who has very low food security
acquires a third of their daily intake via CFS, the mean daily demand would be between 5,491 lbs (using
national Feeding America levels12), 10,260 lbs (using local CFS Feeding America service statistics13),
19,465 lbs (using USDA very low food security percentile), and 48,600 lbs (using USDA low food security

8The US Census Bureau estimates the population of the US as 307,006,550 in 2009.
9The US Census Bureau estimates the population of Boulder and Broomfield counties at 303,482 and 55,990 respectively.

10Low food security is defined by the USDA as “Reports of reduced quality, variety, or desirability of diet. Little or no
indication of reduced food intake” and very low food security is defined as “Reports of multiple indications of disrupted
eating patterns and reduced food intake” [22].

11This assumes that the weight of dairy products is equivalent to the same volume weight of water and the weight of
vegetables and fruit is equivalent to half the weight of the same volume of water. The latest available usage statistics are
from 2008.

12This value is remarkably close to the mean 5,454 lbs currently donated to CFS each day.
13This number is remarkably close to the mean 10,410 lbs already distributed by CFS daily.
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perentile). This is a staggeringly large range that serves to highlight the fact that consensus on hunger
and food demand does not exist.

In the remainder of this paper, we treat the high end estimate of 48,600 lbs per day as the gold
standard—the equivalent of providing one meal to every person in the service area who experiences
some form of food insecurity. Although this would equate to feeding people who, for the most part,
have enough money to feed themselves, it would do a great deal towards helping the poorest Americans
avoid weighing tradeoffs between nutritional value of purchased foods, and other expenses, while at the
same time substantially reducing waste sent to landfills. Similarly, we will treat 10,260 lbs as the low
end goal, which equates to the net demand that CFS and other area agencies already attempt to fulfill
during times of highest demand (i.e., a week when all unique clients come to pick up food). In an average
week, CFS is already distributing this much food (10,410 lbs), but typically only rescues half of it, and
purchases the remainder. It will be the primary aim of our investigation to determine the feasibility,
and quantify the cost, of rescuing all the food necessary to meet this demand goal.

In the next section we describe the remainder of the model, which defines the mechanics of supply
and demand using an optimization framework. In section 4, we tie together that optimization model
and the statistical models in this section into a simulator that can be used to study the dynamics and
feasibility of the food redistribution problem.

3 Model

In this section we develop a model of food supply, demand, and cost of delivery between areas of supply
and areas of demand. The premise of the model is simple: there are some number of potential donors
that generate some amount of recoverable waste each day. Performing a pickup at a given donor incurs a
cost, which is related to how far away that donor is, and optionally how much food is to be transported.
The goal of the model is to determine a schedule for each day that chooses which donors to visit such
that food demand (hunger) is met and minimizes the cost of doing a pickup.

We begin by discussing optimization problems in general and related approaches in order to help
motivate the direction we have chosen. Then, we describe the general model for our problem and two
important extensions to improve its realism that take into account food expiration and food storage at
a central warehouse.

3.1 Background and Related Problems

Optimization is the process of finding the best option from a set of options using a fitness function to
capture the relevant details of the problem [26]. In the food redistribution problem, the relevant details
are the food supply from donors, food demand from agencies, and the cost of picking up food from
donors and delivering it to agencies.

There are several classes of problems that provide context for the food redistribution problem, and
these classes are not mutually exclusive. There are resource allocation problems in which limited re-
sources are allocated to maximize a goal, such as profit, i.e. [14, 30]. There are also minimum cost flow
problems such as shortest-path, transportation, or maximum flow network, i.e. [35, 33]. In shortest-path
problems, the objective is to find the minimum distance, time, or cost for a sequence of activities or travel
through a network. The maximum flow problem expands on shortest-path by adding constraints on the
flow capacity between nodes, which limits the flow to some maximum value. In real-world examples, this
would be equivalent to restricting the number of cars on a road between cities, or the size of pipelines.
In transportation problems, the objective is to determine the minimum cost between centers of supply
and demand.

With food distribution, the objective is to find the minimum distance through a network of donors
that provides enough food to meet demand. In this way, it is a shortest-path problem, where the flow has
to be greater than a constraint, which is the demand. A fitness function can be formulated that is used
in a solution method. One common method for solving these types of problems is linear programming
(LP) [13]. This approach finds the optimal solution on problems where inputs and constraints are linear
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combinations. Mileage, for example, is linear. In food redistribution, the cost per mile is the same
regardless of which path in the network is being travelled. In addition, the decision to visit any given
store on that day is discrete — we either go to the store or we do not. If we visit the store, we get 100%
of the supply available, but we also incur 100% of the cost of travel.

While LP is common for solving minimum flow problems, it is possible for these problems to also be
nonlinear. In food redistribution for example, we can use the LP approach to find the optimal solution
using a daily cost calculation. However, formulating the problem to find a multi-day pickup schedule
introduces non-linearities that make the LP approach less effective. The multi-day solution generates a
pickup schedule based on knowledge of food supply of the current and subsequent days as well as how
the food expires over time. The most cost-effective solution could be to only pickup food once a week
for any given store. However, if the store has perishable items, one week might be too long to wait.
In addition, if a store has a small donation one day, but will have a large donation the next day, the
optimal solution might be to batch the pickups—skipping the pickup on the current day and picking up
both the current and the next day’s supply at one time.

For complex optimization problems that cannot be solved using LP or other simple solving methods,
heuristic and metaheuristics methods are often used to find approximate solutions [13]. These approaches
have been used for minimum flow, i.e. [25, 8] and resource allocation problems in which there is a time
element that requires a multi-day solution, i.e. [4, 9]. Determining whether metaheuristic methods can
be used to find efficient multi-day schedules is an area we expect to investigate in future work.

3.2 Food Redistribution Model

Our model is as follows. We start with N donors with food supply, and M agencies with food demand14.
The aggregate available food supply (ŝ) on a given day (t) is the sum of the supply from each individual
donor:

ŝt =

N
∑

i

si,t (5)

Similarly, aggregate demand (d̂) on a given day (t) is the sum of demand at each individual agency:

d̂t =

M
∑

i

di,t (6)

Picking up food everyday from every donor would retrieve every pound of available food, but it might
not be cost effective. Instead, we establish a schedule where everyday, there is a pickup from a subset of
donors. This multi-day pickup schedule is controlled by a boolean matrix (ri,t), which identifies which
suppliers have pickups scheduled on which days:

ri,t =

{

1 pickup at supplier i on day t

0 o.w.
(7)

Each donor is associated with a constant cost of making a pickup (ci). The total cost (ĉt) on day (t) is
the cost to visit the selected donors on that day:

ĉt =

N
∑

i

ci ∗ ri,t (8)

The total supply for that pickup schedule (q̂t) is then:

q̂t =

N
∑

i

si,t ∗ ri,t (9)

14The units used here are not important, and could be pounds, calories, or any other reasonable metric to quantify food.
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In this formulation, the objective is to minimize ĉt, such that q̂t ≥ d̂t for ∀t. This will minimize cost and
provide enough supply to meet demand:

min

T
∑

t

ĉt s.t. q̂t ≥ d̂t (10)

3.3 Food Expiration

Establishing a multi-day pickup schedule for food involves a unique challenge in that food can go bad.
Some of the food not picked up on day t will expire by day t + 1, but the other food will remain. The
rate of expiration is related to the way the food is stored, the state of the food, and the type of food. In
this model we have made the simplifying assumption that all food expires at the same rate regardless of
these conditions. The food supply available on day t+1 is the new supply for that day, plus the previous
day’s supply that was not picked up and did not expire:

si,t+1 = si,t+1 + ǫ(1) ∗ si,t ∗ (!ri,t) (11)

where ǫ(∆t) ∈ [0, 1] quantifies the fraction of food not expected to expire over ∆t nights. !ri,t is the
inverse of the boolean scheduling matrix (and hence is 1 when a pickup does not occur and 0 otherwise).
Further extensions can consider more complete definitions of ǫ. The recurrence in equation 11 can be
trivially rewritten as a sumation of the previous t days:

s′i,t = si,t +
t−1
∑

a=0

ǫ(1) ∗ si,a ∗ (!ri,a) (12)

3.4 Food Storage

Another important component in the model is a central warehouse where excess food can be stored after
it is picked up. This allows for overages in recovery to be used the following day. In our model, the
warehouse supply on a given day t is the amount picked up on day t minus the day t demand plus the
warehouse supply from the previous day that did not expire:

ŵt = (ŝt − d̂t) + ŵt−1 ∗ ǫ(1) (13)

It should be noted that the assumption of a central warehouse is not universal. For instance, the largest
food rescue organization in the United States, City Harvest in New York City, operates without a central
warehouse and instead delivers goods in the same day they are rescued, often as part of the same tour
[12]. CFS, on the other hand, operates using a central warehouse in Niwot, Colorado. Each day, three
full-time drivers make scheduled pickups at area donors and bring the goods back to the warehouse,
where they are stored for later distribution.

4 Implementation

In this section we tie together the empirical results in section 2 and the model outlined in section 3
to develop a simulation framework that can be implemented and studied in practice. In particular, we
discuss approximations and assumptions that are necessary in order to allow experimental analysis of
the problem in a reasonable amount of time.

4.1 Iterative Multiday Solution

Finding the optimal solution using the model described in section 3 is combinatorial and has a worst-case
complexity of O(2NT ) for N suppliers and T days. For all but the smallest N and T , this problem is
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min : 24 .39 x0 + 56.59 x1 + 35.81 x2 + 46.01 x3 + 24.64 x4 + 29.62 x5 + 36.654 x6 ;
c1 : 177 .99 x0 + 552.06 x1 + 12 .0 x2 + 5 .2 x3 + 2 .1 x4 + 3.02 x5 + 1 .2 x6 ;
bin x0 x1 x2 x3 x4 x5 x6 ;

Figure 10: Example lp solve program formulated in the lp language.

intractable. However, as discussed in section 3.1, the optimal solution for a single day, with constant
costs, can be formulated as a linear program and solved quickly:

ĉ = c1 ∗ r1 + c2 ∗ r2 + · · ·+ cn ∗ rn (14)

min ĉ s.t.

N
∑

i

ri ∗ si ≥

M
∑

i

di (15)

A sub-optimal solution for multiple days can be calculated by applying this linear program iteratively,
once for each day:

C =

T
∑

t

min ĉ s.t.

N
∑

i

ri ∗ si ≥

M
∑

i

di (16)

The main failing of this approach is that it is unable to make multi-day decisions, where a day’s
pickup schedule is based on knowing the supply for the following days. However, in the real world, it is
unlikely this information would be available anyway. In this sense, the iterative solution may be more
realistic than the the general purpose optimal solution.

For each time step (day), an optimal solution is found using a linear program (LP) solver. The
LP searches for a schedule (r) that minimizes the total cost subject to the constraint that the amount
recovered must be greater than or equal to the amount demanded. To solve this equation on a computer
we look to the freely distributed lp solve project, which is able to solve mixed integer linear programs [1].
Because our solution is actually a binary vector, the mixed integer and binary extensions are necessary.
An example problem, presented in the lp language used by lp solve is given in figure 10.

4.2 Determining Costs

Constant costs for each supplier must be calculated in order for this problem to be solved as a linear
program. The data from CFS provides us with the names of 90 suppliers. We first manually determine
the street address of each donor and then calculate the distance of each supplier from the CFS warehouse.

One of our research goals is to understand the supply available at candidate donors that are not
currently working with CFS. Therefore, we have attempted to locate all grocers, bakeries, and manufac-
turers in Boulder and Broomfield counties that might supply donations. The total list of donors is 156.
We cannot claim that this list is exhaustive, but we believe it represents the bulk of grocers, bakeries,
and food manufacturers in the region. In future work we hope to include restuarants and cafes as well,
but have excluded them in the present study because CFS does not pick up at these locations.

To calculate distance, we use the MapQuest Driving API directions [20]. For each supplier in the
CFS data, we retrieve driving directions (which presumably use an optimized shortest path, taking into
account the actual constraints of the roads) and use the total driving length of the first offered route, in
kilometers, as the cost of visiting that supplier.

4.3 Clustering Suppliers

In order to allow for batching pickups at nearby locations, we determine how our 156 suppliers are
clustered together. We use the MapQuest Driving API to calculate shortest-route driving distance
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Figure 11: Hierarchical clustering of suppliers based on distance.

between all pairs of nodes. This requires 12,012 unique queries and takes some time15. Figure 11 shows
a higherarchical dendrogram of all 156 suppliers based on distance to each other. We proceed with a
k-means clustering with a goal of k = 50 clusters when considering all 156 suppliers and k = 30 clusters
when considering the smaller set of 90. Although somewhat arbitrary, this keeps the size of clusters
roughly constant (3 members per cluster on average) in both data sets.

In k-means clustering, observations are partitioned into k clusters so that each observation belongs
to the cluster whose center (mean location) is nearest. To solve this, we use the method of Hartigan
and Wong, as implemented in the R statistics package [11, 29]. The result is 50 points in space that the
156 suppliers are centered around so that the mean distance from any supplier to their cluster point is
minimized.

When using the resulting computed clusters, we make the basic assumption that when a pickup is
done at any cluster member, all the other cluster members should also be visited. In this sense, each
supplier is its own cluster and the supply at that cluster is the sum of all members. To determine the
cost of visiting a cluster we take the average driving distance of all cluster members from the central
warehouse, multiply it by two (to count the return trip), and then add it to the minimum sum of the
distances from one node to each other node. Hence, the cost for visiting a given cluster k is:

ck =
2

Nk

Nk
∑

i

cw,i +minj

Nk
∑

i

ci,j s.t. i, j ∈ clusterk (17)

where Nk is the number of members in cluster k, ci,j is the cost of driving from i to j, and w is the
index of the warehouse.

Although we cannot claim that this is a perfect solution, it is quick to compute, reduces the compu-
tational complexity of the problem, and models the way food rescuers actually do pickups. As we will
see, it also produces cost values that are very close to the average costs incurred by CFS. Hence, we
proceed with this cost function for the remainder of the paper.

15Originally, we made use of the Google Maps API, but eventually abandoned it in favor of MapQuest because of rate
limit restrictions and daily request quotas.
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4.4 Implementation Outline

Algorithm 1 shows the pseudocode implementation of the complete simulation algorithm. For each day,
the total demand (d̂) is a constant based on the expected demand as discussed in Section 2.3. If we are
considering food storage in a warehouse and there is food already available, this total demand is reduced
by that amount to achieve the remaining net demand. Without considering storage, the net and total
demand will always be equal.

Supply values for each participating donor are drawn stochastically from the GPD distribution derived
in Section 2.1. The scale parameter is calcuated for each donor using the square footage, as discussed
in section 2.2. Determining the square footage for each location is a laborious task due to inconsistent
and somtimes unavailable geographic information system (GIS) data. For those suppliers for which it is
possible, we compute the square footage from municipal data for Boulder County [5]. For those suppliers
where this data is unavailable, we use GIS tools and orthoimagery to calculate square footage manually.

Supply accumulates each day at donors if it is not recovered. However, it also expires at a constant
rate of 1 − ǫ. In our implementation, ǫ is a constant between 0 and 1, but in future work we hope to
investigate more realistic epsilon calculation (perhaps by type of food).

In some cases, there is simply not enough supply to meet demand, in which case there is no feasible
solution to the LP. When this occurs, we assume that all suppliers must be visited to get as much as
possible (whatever the cost).

5 Experiments

One contribution of this paper is evaluating the feasibility of the redistribution approach for alleviating
hunger. In this section we describe a study using the model from section 3 and stochastically generated
data from the empirical distributions described in section 2 to create simulations of food redistribution
scenarios.

Our objectives with these experiments are to:

• Demonstrate that the model works in that it reproduces observed food supply from the CFS data.

• Evaluate how model parameters, such as ǫ and warehousing, affect food availability.

• Determine the relationships between food availability, the number of donors, and cost.

The approach we take here is a classic repeated measures approach, where the average behavior
of a complex system is studied through repeated Monte Carlo simulation and ex post facto analysis.
Each simulation is run for one year (365 days) and uses the same random seed (so that results can be
compared). By studying the problem via simulation, we are able to investigate both the average case
and extreme scenarios of food redistribution, which serves to answer whether this approach fills the gap
between demand and current supply.

In this first set of experiments, we only consider pickups from the 90 donors that are already partici-
pating with CFS. The goal here is to reproduce and understand the dynamics of the food redistribution
problem: how much energy (cost) must be expended to meet the worst-case demand, whether demand
can be met reliably, how frequently underruns (supply < demand) and overages (excess pickup) occur,
and how the rate of food expiry limits the amount of recoverable food. We include the warehouse, since
CFS operates with a warehouse. We use an ǫ of 0.5, indicating that 50% of “waste” food is expected to
expire in 24 hours (or, put another way, half of the food will remain on day t + 1, one quarter on day
t+ 2 and so on). Then, using the same set of suppliers, we evaluate how food availability changes as a
function of cost and ǫ. These experiments show that removing cost restrictions affects how much food
could be retrieved, as well as how food expiration contributes to food availability.

Next, we extrapolate the supply that could be available from businesses not currently donating. We
include all 156 donors in the CFS distribution area. We examine how cost changes for a fixed number
of donors by simulating a range of demand goals. We also examine the problem from the other angle —
how supply changes for a fixed cost as the number of donors changes. Presumably, as more potential
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Algorithm 1 Multiday Food Redistribution Simulator

1: D ← constant demand
2: ǫ← constant epsilon value
3: seed← seed for random number generator
4: rate← constant rate from GPD fit for each category
5: shape← constant shape from GPD fit for each category
6: scale← constant shape from GPD fit for each category
7: scale′ ← predicted or categorical scale for each supplier
8: cats← category of each supplier
9: loc← constant location from GPD fit

10: m← constant slope of linear log/log relationship between mean supply and square footage
11: b← constant intercept of libear log/log relationship between mean supply and square footage
12: w ← 0
13: sqft← square footage of each supplier
14: c← constant supplier costs
15: olds← 0
16: for i = 1→ N do

17: if sqfti is available then

18: scale′i ← 10log10(sqft
m
i (1−shapecatsi

))+b

19: else

20: scale′i ← scalecatsi
21: end if

22: end for

23: for t = 1→ T do

24: for i = 1→ N do

25: r1 ← random value in [0, 1]
26: r2 ← random value in [0, 1]
27: if r1 ≤ ratecatsi then

28: si ← loc+ scale′i ∗
r
−shapecatsi
2

−1

shapecatsi

29: else

30: si ← 0
31: end if

32: si ← si + oldsi ∗ ǫ

33: end for

34: w ← w ∗ ǫ

35: d← D − w

36: C, r← lpsolve(c, s, d)

37: S ←
∑N

i ri ∗ si
38: if d− S > 0 then

39: w ← w + (d− S)
40: end if

41: for i = 1→ N do

42: oldsi ← (!ri) ∗ si
43: end for

44: end for
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donors participate, the travel distance between donors decreases, which lowers the cost for pickups. In
all cases, we also evaluate the role of ǫ in food supply by simulating an ǫ of 0 to 1. This includes the
full range of food expiration time scales in our model. In these studies, we use a demand of 10,260 lbs
per day, which is the demand from the CFS Feeding America service statistics and represents the lower
bound on the food required to fully meet the worst case demand in the CFS service area, as described
in section 2.3.

6 Results

Figure 12 provides a first look at the simulation-based results using parameters intended to reproduce
the CFS model. Here, we set the daily demand to 5,454 lbs, the mean received by CFS in our data set.
The top plot shows the supply and demand. The total demand is fixed at 5,454, the net demand is each
day’s demand reduced by the amount present in the warehouse, and the “recovered” line is the amount
recovered for each of 365 days. On the majority of days, the demand is met. The bottom plot shows
the distribution of excess, where a positive excess reflects an overrage and a negative excess reflects a
shortage in food recovered. The excess appears to be normally distributed about the mean of 436.88
lbs, indicating that the recovered food from donors was generally higher than the demand. This amount
is driven up by spikes of food rescue, which occur at three times during the year. These correspond to
extremely large random food rescue events, which are also observed from farms and manufacturers in the
real data. Finally, the middle plot shows the cost on each day, which has a mean of 301.72 (kilometers
driven). CFS estimates their daily driving distance (sum of three vehicles, without optimizing paths) to
be 212 km [32]. The difference here stems from the fact that our model counts the cost of picking up
food at distant farms and manufacturers, which generally deliver food directly to CFS themselves [32].
If we exclude donors farther than 100 km away, the mean cost drops to 198.35 km, which is within 10%
of the value provided by CFS, without producing any more underruns than would be seen otherwise.

Using the goal of 10,260 lbs/day and ǫ = 0.5, underruns are the norm rather than the exception, as
shown in Figure 13. A mean cost of 1,544.13 km is necessary in order to meet this demand, which is
an average 286 lbs shy of the demand each day. If we exclude donors greater than 100 km away, the
mean cost drops to 703.1 km, but the average daily shortage (opposite of excess) decreases to 262.16
lbs. The observation that in some cases excluding the furthest away donors can substantially reduce cost
(by 54% in this case) while obtaining approximately the same amount of food suggests that there may
be some fundamental density of donors required for efficient food rescue—in scenarios where donors are
sparsely distributed relative to recipients, the cost of rescue may be very high for the same amount of
food. On the other hand, in denser environments our model can capitalize on the random supply from
nearby (and clustered) donors to drive down cost. Understanding the effect of spatial distribution of
donors (and density) is an interesting question for future work.

Another important feature of the model is the ǫ parameter. Figure 14 shows the same scenario,
but with ǫ = 0.8, indicating that food expires at a rate of 20%, instead of 50% as above. In this case,
demand is met on most days and the mean excess is 182.15, with an average cost of 215.1 km. This
is nearly an eight-fold reduction in cost for the same amount of food, simply by changing the rate at
which food expires. Figure 16 shows this relationship explicitly by plotting the number of days in a 365
day simulation where supply failed to meet demand as a function of the ǫ value. For small ǫ values, the
number of underruns is very high; as ǫ is increased, meeting the higher demand becomes obtainable and
the shortages are mitigated. Clearly, the effect of ǫ cannot be underestimated. In a practical sense, this
highlights the importance of proper food storage in the recovery process to smooth supply and mitigate
shortages. Those involved in retail food distribution are well aware of the importance of keeping food in
the optimal conditions from farm to shelf, but these results show that it is also an essential consideration
in the viability of a food recovery model. For this reason, many food banks focus on non-perishable
food items during large fundraising events and food drives. This can be understood in the terms of our
model: canned goods have an epsilon near 1.0.

A final consideration of the basic model is intentional overage. Figure 15, shows the same scenario
as above, with ǫ = 0.5, but purposely attempting to retrieve 20% more food each day than is actually
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required. The logic here is that we can capitalize on freak supply “floods” to prepare for potential
“droughts” in supply. We can see that in this case, there is a marginal improvement in mean excess,
and actually a small increase in cost. From this, we are able to say that this strategy is not an effective
one—picking up extra food now cannot protect from shortages in the future. Presumably this stems
from the fact that food expires at the same rate whether it is left at the supplier, or transfered to the
warehouse. In the case where that is not true (for instance, the supplier does not have room to store
expiring “waste” for pickup and discards anything not picked up immediately), then this strategy may
be more effective.

Next, we consider the rest of the suppliers that are not currently donating food, but could be, and
increase the total set of suppliers from 90 to 156. Figure 17 shows the cost vs. food recovery relationship
for both the set of 90 suppliers and the set of 156 suppliers. In both plots, there is a saturation point,
where there is no more recoverable food. For the set of 90 suppliers this maximum is around 13,000 lbs.
For the larger set of suppliers, the maximum is closer to 19,000 lbs. There are two conclusions that can
be drawn from this result. First, despite the complexity of the underlying model, the relationship between
the amount of food available for rescue and the number of donors participating appears to be linear. We
quantify the benefit of increasing donor participation below. Second, and perhaps more importantly,
with sufficient resources, and more participating donors, CFS may be able to comfortably meet their
current worst-case demand without purchasing food. To meet this goal, they would only need to drive
approximately 500 km a day, which is slightly more than two times their current expenditure. This
indicates that provided sufficient funding is available, and a large number of businesses are participating
as donors, the food rescue model can successfully feed the area’s hungry using only food that would
otherwise be wasted. Admittedly, the demand of 10,260 lbs is well below the gold standard of 48,600.
For that to succeed, according to our model, CFS would need to have sufficient resources to drive at
least 3,000 km per day.

The other interesting thing to note about figure 17 is that the shape of the curve appears to be linear
for fewer suppliers, and trend towards exponential as the number of suppliers increases. We hypothesize
that this is because the greater number of suppliers in the 156 case increases the densities of donors
and allows for cost-saving optimizations when the demand goal is small. But, as the demand increases
towards the saturation point, there are simply more donors that must be visited, quickly driving up
cost. Figure 18 helps clarify this relationship. In this figure, the cost is plotted as a function of the
demand goal for each set of suppliers. We can see that up until the crossing point, the larger set of
suppliers is able to satisfy the same demand with a smaller cost. These plots plateau at the point that
they are no longer able to fulfill demand (and hence, have a horizontial asymptote at the cost of visiting
all donors). Figure 19 shows this relationship explicitly. To generate this graph, we take successively
large random samples of the 156 supplier set and run a simulation for a fixed demand goal. In the plot,
each line corresponds to the cost required for some fixed demand. In each line we can see roughly the
same behavior: as the number of suppliers increases the cost goes up until a point is reached when the
suppliers are able to meet demand (and hence we can optimize solutions to avoid some suppliers and
drive down cost). After this point, which is different for each demand goal, the cost required decreases
linearly (or superlinearly in some cases) as a function of the fraction of participating suppliers. This
indicates that the cost of the food redistribution problem can be reduced simply by increasing the number
of particpating donors.

7 Conclusion

In this paper we provide the first formal investigation of food recovery and redistribution problem as an
optimization problem. To this end, we develope a novel model that can be used for Monte Carlo style
simulation using fitted empirical parameters. For our experiments, we make use of data from a large food
bank in northern central Colorado. We show that this model is able to reproduce the dynamics of the
fundamental food redistribution problem faced by CFS. While we believe that this data is representative
of a large class of similar regions with a mix of rural and urban environments, we are careful to remind
the reader that our conclusions may not apply in disparite environments (i.e., dense urban or sparse
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Figure 12: Performance time-series for one year simulation using the existing CFS donors, ǫ = 0.5, a
target demand of 5454 lbs, and using a central warehouse. Excess is the difference between net demand
and recovered. Hence, a positive excess indicates demand has been met.
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Figure 13: Performance time-series for one year simulation using the existing CFS donors, ǫ = 0.5, and
using a central warehouse. The target demand is set at the larger rescue threshold of 10,260. Excess is
the difference between net demand and recovered. Hence, negative excess values indicate a shortage.
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Figure 14: Performance time-series for one year simulation using the existing CFS donors, ǫ = 0.8, and
using a central warehouse. The target demand is set at the larger rescue threshold of 10,260. Excess is
the difference between net demand and recovered. Hence, negative excess values indicate a shortage.
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Performance Time−Series: Demand & Recovery
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Figure 15: Performance time-series for one year simulation using the existing CFS donors, ǫ = 0.5, and
using a central warehouse. The target demand is set at the larger rescue threshold of 10,260. Excess is
the difference between net demand and recovered. Hence, negative excess values indicate a shortage. In
this version, we intentionally collect 20% more food each day than we predict is necessary to attempt to
smooth out underruns on subsequent days.

25



Underruns versus Epsilon
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Figure 16: Number of underruns (for a 365 day simulation) as a function of the epsilon value. Results
are from using the set of 90 suppliers with a central warehouse.
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Cost versus Recovered
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Figure 17: Cost of recovering food for each of two sets of suppliers. The vertical lines indicate demand
reference points: 5,454 lbs and 10,260 lbs.
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Cost versus Demand Goal
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Figure 18: Relationship between cost and demand goal for each of the supplier sets.
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Figure 19: Relationship between cost and percentage of participating donors in the complete supplier
set. Each line corresponds to the cost curve associated with a different demand goal between 2,000 lbs
(bottom-most line) and 48,500 lbs (line along main diagonal).
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rural). In future work, we hope to integrate additional data in order to broaden our conclusions and
perform a more rigorous validation of our model.

Our chief experimental findings in this work are:

• Food supply (waste) events are heavy-tailed and can be well modeled with extreme value theory
“peaks over threshold” models and the generalized Pareto distribution.

• The efficacy of the food redistribution approach hinges on the ability to keep rescued food from
perishing. Hence, refrigerated storage and timely transportation and processing are crucial to the
success overall.

• Despite the underlying heavy-tailed process and complexity of the model, the basic obtainable
supply appears to be a linear function of the number of participating donors. Hence, doubling of
the number of participating donors is likely to double the amount of food available.

• The overall cost of food recovery can be reduced substantially simply by increasing the number
of participating donors (and therefore creating more opportunity for food supply events to occur,
when they are required by demand).

• In the scenario we studied, using the data from CFS, we have shown that the food redistribution
approach is a feasible method of subtantively reducing both waste and hunger. There is room for
growth within the current paradigm, but it requires an increase in available funding.

In future work, we will expand this investigation to address additional questions. In particular we
are interested in the question of whether this model can be scaled up to a state-wide or national level.
It stands to reason that dense urban and sparse rural environments will produce substantially different
cost and supply dynamics. However this is an open question. In 2008, there were approximately 85,200
grocery stores in the US [24], which works out to 0.3 chain supermarkets, 0.22 non-chain supermarkets,
3.04 grocery stores, and 1.8 convenience stores per zip code [28]. In this work, we have not considered
smaller potential donors, such as restaurants. One reason for this is that CFS is a Feeding America
partner, which means that they are unable to accept food donations that are not in their original
packaging [32]. Yet, this is a large potential food supply source.Iin [2], Bloom suggests that the typical
food waste associated with a restuarant is on average 3,000 lbs per employee, per year (or 123 lbs/day
for a 15 employee restaurant). There were approximately 566,020 food service organizations in the US
in 2007 [3]. Clearly, there is no shortage of potential donors; the important question is whether they are
well positioned for recovery and redistribution and whether the cost of rescue is acceptable.

An additional question is one of nutrition. In our current study, we looked at bulk lbs of food without
concern for the type. Clearly, this is a large simplification that has bearing both on the economics of the
problem (supply and demand) as well as the basic expiry of the food. Currently, 88% of grocery stores
donate some dry goods, 51% donate produce, and 31% donate prepped food and meat [2]. Fresh and
healthful foods are hardest for food banks to acquire since they have a limited shelf life (small ǫ), which
is negatively impacted by transportation and stocking time, and pickup limitations (how many pickups
per week are possible). Optimizing pickup strategies, and sufficiently funding food rescue organizations
so that they have the resources to pickup food when it is available might mitigate this problem. Feeding
America’s refrigerated trucks are a good start, but even these cannot captialize on smaller food waste
events, which contribute substantively to the efficacy of the model as a whole. A complete solution may
require rescue and redistribution at multiple scales and with varying technologies.

Although preliminary, our work here is an important first step towards understanding the dynamics
and limitations of the food rescue and redistribution problem. By formulating the problem for opti-
mization and studying it via simulation, we have been able to draw out fundamental aspects of the
underlying problem. In the end, we can present the positive result that this approach to food rescue
and redistribution, despite its underlying complexity, can be considered a stable process where obtaining
additional food is simply a function of having sufficient participating donors and funding to perform
pickups. We hope that this work will help to spur interest in the area, equally among researchers who
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might be able to bring additional insight into the problem, businesses who can agree to donate their
food waste, and policy makers who posess the ability to procure needed funding and resources for food
rescue organizations to succeed.
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