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Abstract

In this paper we describe MPIEcho: a profiling–layer library for repli-
cating MPI ranks independently of application parallelism. This repli-
cation effectively breaks the tight coupling between an application’s un-
derstanding of the parallel topology and that provided by the underlying
MPI implementation, allowing a variety of use cases such as fault detec-
tion, independent parallelization of profiling and analysis tools, etc. We
describe the architecture of MPIEcho, the current implementation status
of the project for the MPI–2 standard, and then use the MPI suite of
the NAS parallel benchmarks to show that MPIEcho correctly preserves
application semantics when rank replication is used. We then discuss a
wide variety of use cases and present a road map for investigating several
of them.

1 Introduction

Understanding the complex and often nondeterministic behavior of massively
parallel applications presents a unique set of challenges to the developer. Un-
fortunately many debugging, profiling, and communication analysis tools are
heavyweight in nature and may affect the application runtime characteristics.
One strategy to address this issue is to parallelize the execution of these tools in-
dependently of the application parallelism, thus minimizing the instrumentation
overhead for an individual task.

A parallel application using the Message Passing Interface (MPI) decomposes
a problem among a collection of tasks (a.k.a. “ranks”), the number and relative
ordering of which is tightly coupled with the logic of most MPI applications.
We break this tight coupling by providing arbitrary replication (cloning) of MPI
tasks on a rank-by-rank basis in a way that is transparent to the application.
Such replication allows parallelization that is orthogonal to existing application
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parallelism, enabling a wide variety of potential uses which we discuss in Section
2.

In implementing this concept we followed some basic design criteria: Each
clone of a particular task should have no understanding at the application level
that it is a clone; only the MPI library and tools written to use MPIEcho should
know of the replication. The per–task replication should also be variable to
accommodate a wide variety of use cases. Several challenges must be overcome
to ensure this preservation, such as ensuring all replicas receive messages in
the same order. This preservation is important because: 1) fixed precision
floating point arithmetic is not commutative, and 2) application control flow is
often dependent on message delivery order. Nonblocking operations represent a
special set of challenges in preserving message ordering and are discussed further
in Section4.3.

MPIEcho can be viewed as the major component of a complete process iso-
lation framework for distributed memory MPI applications. In order to provide
complete process isolation we will need to wrap non–MPI system calls to ensure
only one rank of each clone group performs the operation (socket connections,
non–MPI file and terminal I/O, etc.). However, this work is a significant com-
ponent of such a potential framework, and a surprising number of applications
work well if MPI is the only layer that understands task replication. A selection
of these applications is discussed in Section 5.

The remainder of this paper is organized as follows. Section 2 describes a se-
lection of use cases currently being implemented. This is followed by a discussion
of our architecture in Section 3. We then discuss details of our implementation
and our strategy for the remaining features of the MPI–2 standard in Section
4. With our architecture in place, we demonstrate application correctness using
the full MPI suite of the NAS parallel benchmarks in Section 5.

2 Potential Uses

In this section we discuss a variety of potential use cases for the library. A
companion document to this paper [10] describes the potential use cases in
further detail and provides a performance evaluation of the library.

2.1 Parallelizing Heavyweight Tools

The independent parallelization of MPIEcho is useful if heavyweight tools are
used to investigate anomalous application behavior. For example, the Valgrind
[5] project can be used to detect common memory errors in an application (mem-
ory leaks, buffer overruns, etc.). If such a tool can be configured to monitor only
a small portion of the overall memory space then we can use MPIEcho/Valgrind
to split the monitoring among a collection of clones. Each clone should have
the same memory contents and instruction stream, so we have effectively used
independent parallelization minimized the walltime cost of memory monitoring.
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This approach extends to other heavyweight debugging and profiling tools
that can be parallelized in some way. This provides not only the benefit of faster
analysis time, but also minimizes instrumentation overhead per task. Tools
that rely on source–to–source or binary instrumentation are effectively changing
the application being measured. The most obvious effect is that the caching
behavior and memory layout of an instrumented application is potentially very
different than the original binary, potentially causing errors seen in the original
application to disappear or change.

MPIEcho is useful in this case because it can minimize the per–task in-
strumentation by parallelizing it across a set of clones, thereby ensuring the
instrumented application is as close as possible to the original uninstrumented
binary. MPIEcho is implemented as a shared library which effectively separates
it from instrumentation performed on the application code.

2.2 Hardware Counter Collection

Modern microprocessors include a set of “hardware counters” that track oc-
currences of specific hardware events (cache misses, floating point instructions,
cycles stalled waiting for memory reads, etc.). These counters are useful for
performance analysis and tuning of applications, and the popular PAPI project
[1] provides a standard interface for accessing these hardware counters. One of
the major limitations of application profiling with hardware counters is that it
is difficult to know in advance where a performance bottleneck might be, and so
often a very large set of performance counters must be gathered and analyzed.
Unfortunately only a few of the many counters available for collection can be
collected at the same time due to hardware limitations. MPIEcho can address
this issue by replicating the ranks to be profiled and having each clone collect
a different set of PAPI counters. Using this approach, with a single run the
entire set of possible counters can be collected for all ranks. This would greatly
simplify the initial data collection phase of program analysis (both in terms of
programmer effort and collection time).

2.3 Fault Detection

A natural use for MPIEcho is in detecting transient faults (bit flips in registers,
corruption of unprotected memory structures, etc) occurring from a variety of
sources, from cosmic background radiation and voltage aberrations to subtle
manufacturing defects. MPIEcho can identify and correct silent data corrup-
tions by comparing the data buffers provided as parameters to MPI functions.
Using MPIEcho to replicate each rank would allow data corruptions from such
events to be detected; providing two replicas would allow for data recovery in
a “triple modular redundancy” (TMR) scheme. In effect, MPIEcho transforms
each call to an MPI routine into a consistency checker for the application, trans-
parently identifying and correcting errors.

Note that this is fault tolerance for a very specific fault model: a “fail–
continue” model focused on silent data corruptions rather than hard node fail-
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ures. MPIEcho can also turn a “fail–continue” model into a “fail–stop” model
by terminating the application on error detection. This requires less resources
than the TMR scheme, but still ensures applications that finish have no corrup-
tions in data buffers seen by MPI routines.

2.4 Sensitivity Analysis

In simulation–based science it is important to understand how sensitive an ap-
plication’s output is to variations in input, message ordering, operating system
jitter, or other sources of variation. Using MPIEcho it is possible to slightly per-
mute these values either at initialization time (MPI_Init()) or during program
execution in an MPI call. Each clone can have a slight variation introduced, and
differences in either data or behavior (calculated from a timeline of MPI calls)
can be analyzed. We are exploring the potential applications of MPIEcho to
such sensitivity analysis and the more comprehensive approaches of uncertainty
quantification (UQ).

3 Architecture

An MPI application’s understanding of the parallel topology comes from infor-
mation retrieved from the MPI library at runtime. Fortunately, the MPI stan-
dard provides a profiling interface (PMPI) that can be used to intercept such
calls. MPIEcho is implemented using this profiling layer, providing clear sep-
aration between the application and MPI library parallel configurations. The
profiling layer also allows us integrate MPIEcho with an existing application
without making any changes to the source code; simply change the application
Makefile to include the MPIEcho library and rebuild.

In MPIEcho there is a concept of the “real” rank and size (that seen by the
MPI library) and the “application” rank and size (that seen by the application),
withMPIEcho provides the mapping between the two. This is shown graphically
in Figure 1. We see in the diagram that there are 15 real ranks provided by the
underlying MPI library, but the application thinks there are only 8 ranks. Real
ranks 0-4 all behave as rank 0, and ranks 8-11 behave as application rank 4.
Any additional parallelism or other features can be split across real ranks 1-4
or 9-11 without affecting application behavior.

There are two distinct classifications for tasks in an MPI application with
replication in place: “clones” and “representatives”. The application has no
knowledge of this classification; it is only relevant at the MPIEcho library level.
We refer to the copies of a particular task as clones; each has their own real rank
but all share the same application rank. That is, each one behaves at the appli-
cation level as if they are the only instance of that particular (application) rank.
A single clone from each set is chosen as the representative for that group, and
along with the un–replicated ranks are referred to as “representatives”. Two
different types of internal communicators are created to manage the replica-
tion structure in MPIEcho: a clone communicator for each clone group and a
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Figure 1: Application–level and library–level ranks

“representative” communicator to replace MPI_COMM_WORLD.
We preserve the semantics of collective operations using a two-stage ap-

proach: The first stage consists of performing the collective operation on the
representative communicator. At this point the representative ranks all have the
correct values. In the second stage, the representative for each clone group will
broadcast the results to their clones. This process is depicted for a reduction
operation in Figure 2.

Our two–stage approach preserves message ordering in two ways: First, only
representatives participate in the MPI operation and so normal application–level
message ordering is preserved. Second, the broadcast operation from the repre-
sentatives acts as a synchronization point for the clones, ensuring they all see
the same value at the same time. Using the underlying collectives provided by
the MPI implementation also lowers the overhead of MPIEcho when compared
to re–implementing each operation as sequence of point–to–point operations.

Point-to-point operations are also done using the same approach: send to
the representative, then that representative broadcasts to their clones.

4 Implementation Details and Current Status
for MPI–2

The operations defined in the MPI–2 standard [8] can be generally grouped into
the following categories:

• Derived Communicators and Groups

• Point–to–Point Communication

• Nonblocking Communication

• Collectives
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• One–Sided Communication

• File I/O

• Intercommunicators

• Derived Datatypes

• Error Handlers

• Generalized Requests

• Process Creation and Management

Currently, all categories except one–sided communication have been imple-
mented and tested. Support for Fortran MPI applications has been tested with
the NAS Parallel Benchmarks and is discussed in Section 5. We use wrap [9]
to generate method stubs for MPI routines in both C and Fortran, including
re–entrant guards for MPI implementations that call from the underlying im-
plementation layer back into the profiling layer. This utility proved to be very
useful for generating the large amounts of template code required for a profiling–
layer library, saving us a great deal of time.
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4.1 Derived Communicators and Groups

In the case of MPI_COMM_WORLD, a static mapping between application and real
ranks is created during initialization. Because it is not possible to know a priori
what derived communicators an application might construct, dynamically cre-
ating rank maps at runtime is not feasible. Our approach then is to eliminate
the need for rank mapping in derived communicators by only including repre-
sentative ranks in the new communicator. Thus, MPI_COMM_WORLD becomes the
special case that requires mapping, with derived communicators working with
no special logic. We still have clones for the ranks in the derived communica-
tors, and the two–stage mechanism works as before: non–representatives rely
on their representatives to provide them the necessary results.

As with communicators, MPI_Group construction only includes representa-
tive ranks, with mapping performed only in the case of MPI_COMM_WORLD.

4.2 Point–to–Point Communication

This category consists primarily of the MPI_Send() and MPI_Recv() functions
and their buffered analogues. In the non–buffered case the standard two–stage
approach is used as described in Section 3.

The operation MPI_Bsend() relies on a user–provided buffer for outgoing
messages (specified by MPI_Buffer_attach). In our two–stage approach only
the representatives will call the underlying buffer attachment routine because
only they participate in the send operation that will use the buffer.

4.3 Nonblocking Communication

Nonblocking MPI operations present a unique set of implementation challenges.
In these operations, the initiation and completion are distinct operations. To
use our two–stage approach, we need pointers to the original buffers, types, and
lengths used in an MPI_Irecv() operation so that the results can be broadcast
to the clones. This information is not available in the MPI_Wait()/MPI_Test()
calls, so we maintain it in a linked list that these routines traverse and then
perform the broadcast to the clones as usual.

MPI also provides persistent nonblocking operations (MPI_Send_init(),
etc.) that allow a request handle to be reused. Our context–saving mechanism
is used in conjunction with the two–stage approach as in the non–persistent
case.

4.4 Collective Operations

Support for collective operations is a natural extension of the two–stage ap-
proach described for point–to–point operations. The representative ranks per-
form the operation and the results are broadcast to the clones.

7



4.5 One–Sided Communication

One–sided communication is the last major category of MPI operations to be
implemented. Get operations can be performed using our two–stage approach,
but Put operations require additional logic: because there is no explicit MPI
call on the receive side of a Put operation, it the source must update all clones
of a particular rank. We use our strategy for nonblocking communication in
this case: when MPI_Win_create is called to register a block of memory, this
block and the corresponding blocks for all clones will be maintained in a linked
list. This list will be traversed on the representative and the value put in the
registered memory window for each of the clones. This approach is a straight-
forward extension of our two–stage approach for nonblocking communication
and is in the process of being implemented. The NAS benchmarks do not use
one–sided communication, so this feature is not one we have focused on for our
initial testing.

4.6 File I/O

MPI file I/O is implemented using our two–stage approach: representatives per-
form the operations and broadcast results to clones. Nonblocking I/O operations
follow the semantics of the nonblocking communication: context information is
stored and used in the MPI_Wait() (and related) calls to distribute results to
the clones.

A special category of “split collectives” exists for MPI I/O operations. For
example, the MPI_File_read_all_begin() and MPI_File_read_all_end() op-
erations split a single operation into two collective calls so that file I/O can be
overlapped with computations that do not depend on the data being read. Con-
text information is maintained for these split collectives in a manner similar to
nonblocking communication approach, but with a slightly simpler implemen-
tation due to guarantees made by the MPI standard: no more than one out-
standing split collective can be in progress at a time per file handle, so there
is no need to further disambiguate requests beyond what file handle they are
associated with.

4.7 Intercomunicators

The semantics of intercommunicator construction are a natural extension of
those for intracommunicator construction described in Section 4.1. Represen-
tative ranks are included in the newly created intracommunicator, with clone
ranks receiving the results of operations performed on that intracommunicator
using the broadcast mechanism.

4.8 Derived Datatypes

Construction of derived datatypes does not explicitly perform any communica-
tion (note the lack of communicators as function parameters), and so no special
logic is required.
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4.9 Error Handlers

Error handlers can be specified for communicators, file operations, or one–sided
communication and present a special challenge for MPIEcho. Creation and
assignment of error handlers is supported in MPIEcho for communicators and
file operations (one–sided communication is a work in progress), but with a
caveat: because only the representative ranks participate in MPI operations,
they are also the only ranks that will invoke the error handler. If the error
handler provided by the user alters the application state then it is entirely
possible for the clones to become inconsistent with their representatives. It is
most likely highly application–specific what effect error handlers may have on
correct application behavior.

4.10 Generalized Requests

Generalized requests allow developers to define new nonblocking requests, exe-
cuted in a separate thread to ensure progress independent of primary application
execution. In principle, MPIEcho supports the generalized request mechanism
specified by MPI, but it is operating system dependent whether this mecha-
nism works in practice. The MPI standard does not specify the underlying
mechanism the user application must use to ensure concurrent execution of the
generalized request (threads, etc.), which prevents a priori guarantees of correct-
ness being made for all platforms. If each instance of the generalized request is
independent, then MPIEcho generalized requests will function correctly. If not,
then the behavior of MPIEcho is undefined. As mentioned earlier, a completely
transparent replication mechanism would require all system calls to be wrapped
as well to ensure complete process independence.

4.11 Process Creation and Management

The MPI–2 standard provides applications the ability to create and terminate
processes via the MPI_Comm_spawn() and related routines. This functionality
is supported partially in MPIEcho: the calls to these MPI routines are im-
plemented and the representative ranks will spawn the requested number of
processes, but the semantics of this operation in the context of replication have
yet to be determined. For example: MPI_UNIVERSE_SIZE can be queried to
determine the number of processes that the runtime system will allow to be
spawned, so should this number consider the replication configuration currently
in use? The answer to this question depends on whether the spawned processes
should use the same replication configuration as the “parent” application. A
great variety of replication scenarios are possible with MPIEcho and we are
currently deciding what behavior makes the most sense.
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5 Test Cases

It is important to verify that MPIEcho preserves application behavior under
a variety of replication configurations. Our primary test suite for this is the
NAS Parallel benchmarks[4] (version 3.3) from NASA (in addition to various
internal regression tests). This suite of benchmarks provides good coverage of
the basic MPI operations and includes built–in verification of results. Many of
the benchmarks in the suite are written in Fortran, providing a good test of
the Fortran to C bindings in various MPI implementations, Currently the full
suite of MPI benchmarks in the NAS benchmark suite execute correctly with
MPIEcho under a variety of cloning scenarios. This suite includes:

• EP: “Embarrassingly Parallel” benchmark

• LU: Lower-upper symmetric Gauss-Seidel

• IS: Integer Sorting

• MG: Multigrid

• CG: Conjugate Gradient

• FT: Fast Fourier Transform

• BT: Block Tridiagonal

• SP: Scalar Pentadiagonal

Verification runs were performed with the most current versions of the OpenMPI
and MVAPICH2 MPI libraries on the Atlas system at Lawrence Livermore
National Laboratory. Currently all benchmark tests pass successfully under all
attempted replication scenarios.

6 Related Work

While other projects exist that allow rank replication and are similar in some
respects to MPIEcho, it is important to note that these projects are targeted
exclusively for fault tolerance and not the general independent parallelization
targeted by MPIEcho.

Architecturally, the most closely related project to MPIEcho is the rMPI
project described in [7] which focuses on providing fault tolerance through the
replication of ranks. The replication used in rMPI is fixed, with each application
task having a single redundant copy. All messages are duplicated upon sending,
and an set of algorithms is used to ensure proper message ordering. The high-
order bits of the tag field are used to disambiguate messages intended for the
primary and redundant tasks. Point–to–point operations are used for collectives,
avoiding the problem of needing to perform communicator reconstruction in the
event of a node failure. Unfortunately this (potentially) incurs a performance
penalty because it bypasses the built-in collectives.
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Recovery from hard node failures is currently outside the scope of potential
applications for MPIEcho. The primary reason for this is that recovery from
hard node failures requires the ability to construct a new communicator that
does not include failed node. Communicator construction in MPI is defined
in terms of existing communicators, so an MPI implementation would need to
provide a new MPI_COMM_WORLD as well as information about what MPI tasks
failed. This is unfortunately not a feature provided by current mainstream MPI
implementations. The goals of MPIEcho are to be applicable to a wide variety
of potential uses on any MPI implementation, and so until an update to the
MPI standard provides this feature we restrict ourselves to the fail–continue
fault model.

The rMPI and MPIEcho projects are similar, but have different purposes
and implementation approaches. In contrast to rMPI where the replication
topology is fixed and highly optimized for fault tolerance, the MPIEcho topol-
ogy is arbitrary and can vary on a per-task basis. Currently rMPI is tied to
a particular version of MPICH[2] due to use of internal functions in that MPI
implementation. A design goal for MPIEcho was to work on any MPI imple-
mentation that provides the profiling interface, and it has been tested on both
OpenMPI and MVAPICH[3].

A closely related project to rMPI is the MR–MPI[6] project from Oak Ridge
National Laboratory. This project also focuses on fault tolerance by means
of rank duplication. Messages from a sender are duplicated to each of the
replicated ranks, and varying replication degrees are supposed in contrast to
the fixed replication degree of rMPI project. Another feature of the MR–MPI
project is that it is based on the MPI profiling layer, and as such is not tied to
any particular MPI implementation.

7 Conclusions and Future Work

In this paper we have described MPIEcho, a profiling–layer library we have cre-
ated for transparently replicating MPI ranks in an existing parallel application.
MPIEcho requires no application code changes, requiring only a re–link with the
MPIEcho library. We have described the architecture and implementation chal-
lenges in creating MPIEcho. The MPIEcho library is nearly feature–complete
for the MPI–2 standard, with one–sided communication being the only remain-
ing major feature of MPI–2 to be implemented.

We have demonstrated the correctness of the library using the NAS par-
allel benchmark suite; a companion document provides further information on
the correctness and performance of the library under a variety of replication
scenarios.

Architecturally–related projects are discussed, with a focus on their similar-
ities and differences. Our goal is to provide a more general–purpose framework
for orthogonal parallelism of tools, and our design philosophy is built around
this idea, distinguishing MPIEcho from the existing rank replication projects
focused on fault tolerance. A variety of use cases currently under investigation
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was described, and we are confident that a great many more uses for MPIEcho
will emerge in the near future. We hope to expand on several of these use cases
and demonstrate MPIEcho’s effectiveness in the near future.
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