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Allison Brown
May 10, 2011

A “Knead” For Chaos: The Culinary Kneading Process as an Ex-
planatory Metaphor in Chaotic Systems

Introduction

Kneading is frequently used as a metaphor in chaotic texts. Authors make various claims about
how kneading demonstrates different chaotic behaviors, most particularly sensitive dependence on
initial conditions , but those claims do not appear to have not been verified. My project examines
the various claims authors make, as well as their validity. I will explain the experiments I performed
with regard to these claims, and provide analysis of their results. I will also briefly discuss kneading
theory, and how it can be used to gain information about bifurcation of unimodal mappings (among
many other uses and applications). I will finish by outlining conclusions and possible future work.

Kneading as Metaphor in Dynamical Systems

(a)                                                        (b)

(1)

(2)

(3)

(4)

(1)

(2)

(3)

(4)

Figure 1: (a) A diagram depicting the steps for the stretch and fold method of kneading; (b) A
similar diagram for the stretch, cut, and paste method.

Those who use kneading to illustrate chaotic concepts have two definitions of the steps that
are repeated to make up the kneading process. These methods can be simply described as the
“stretch and fold” and “stretch, cut, and paste” techniques. In the first method, a blob of dough is
stretched in one dimension until it has doubled in length, then folded in half and compressed. This
process is repeated as necessary. The second method also stretches the dough to twice its length in
one dimension, but then cuts that piece of dough in half and stacks one piece on top of the other.
Diagrams of both of these methods can be found in figure 1.

Steven Strogatz asserts that if a drop of food dye is added to a mass of dough, the dye will
evenly color that mass after the dough has been kneaded using the stretch and fold method[5].
Peitgen et al. state in [4] that kneading with the stretch and fold method will guarantee a that
“pocket of spices” added in one spot will be evenly distributed throughout the doughs mass. The
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dye and the cluster of spices each represent nearby initial conditions, and the even distribution of
each demonstrates sensitive dependence on initial conditions.

Peitgen et al. describe the second (stretch, cut, and paste) method of kneading and state that,
while in theory the methods should have different and distinct “iteration behaviors,” the respective
dynamic behaviors of the two methods are actually quite similar[4]. They continue by describing
an idealized situation that neglects dough thickness and describes how the two methods can be
used interchangeably.

Experiments

To test the claims made by Strogatz, Peitgen et al., and others in the field, I designed a two
experiments. In the first, I tested whether a drop of dye added to dough would evenly color the
dough after many iterations of kneading. In the second, if the first proved successful, I added
clusters of beads to the dough, and carefully tracked where each bead ended up. Since it is not
possible to ignore dough thickness, I did not test the interchangeability of the two methods as
described in Peitgen et al.’s idealized kneading process.

Experiment 1: Dye Diffusion

For this experiment I added a drop of dye to two different batches of dough. I kneaded each batch
about 13 times1 with one of methods described in the previous section. The experiment’s purpose
was to determine if, after a period of time, both methods of kneading would have evenly dispersed
the dye throughout the dough mass.

Method 1: Stretch and Fold

The progress of the dye throughout the kneading process can be seen in figure 2. It seems fairly
clear that Strogatz is right, and that after several iterations of kneading, a drop of dye will be
evenly distributed through the entire volume of dough.

Method 2: Stretch, Cut, and Paste

The progress of the dye throughout this second kneading process can be seen in figure 3. It again
seems fairly clear that after several iterations, the drop of dye will be evenly distributed.2 It appears
that Peitgen et al. may be right, and that the two methods are dynamically equivalent.

Experiment 2: Bead Trajectories

Since both parts of the previous experiment indicated that kneading does create sensitive depen-
dence on initial conditions, I moved on to create a second experiment that tracked the dynamics in
the bulk. This time, I added a cluster of differently colored beads to two batches of dough. In order
to measure how different initial conditions progressed through the dough mass, I designed a “dough
squisher,” depicted in figures 4 and 5. The purpose of the squisher is twofold. First, I wanted to
be able to flatten the dough as uniformly as possible. Traditional, culinary kneading’s stretching

1I used a homemade play dough for my experiments. (See the final section of this paper for an explanation of why
I made this choice.) This type of dough requires no kneading, so I kneaded until dye was evenly distributed, which
took approximately 13 “kneads” in both cases. Bread dough might require more kneading, see [2] for more.

2The color is somewhat washed out in the lower two pictures. In reality, the doughs were similarly dark in pigment
by the end of the kneading processes.
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Figure 2: A drop of dye progressing through a mass of dough using the stretch and fold method;
shown at the “stretch” phase of the process. Clockwise from upper left: just after dye was added,
after 1 iteration, after about 7 iterations, and after kneading was complete and dye was fully
distributed (about 13 iterations).

Figure 3: As in figure 2, pictures showing a drop of dye progressing through a mass of dough;
though this time using the stretch, cut, and paste method, again shown at the “stretch” phase of
the process. Clockwise from upper left: just after dye was added, after 1 iteration, after about 7
iterations, and after kneading was complete and dye was fully distributed(about 13 iterations).

phase is not necessarily uniform but is a more organic and variable process. The stretching phase
described in metaphors for chaos is usually described more rigidly. Since adding an element of
consistency in that phase would not change the end result of culinary kneading3, it seemed best to
try to replicate the kneading processes described by the authors. Second, I needed to track the bead
positions as accurately as possible. Each side of the squisher has a grid to make this process easier
(see again figure 5). The kneading processes for this experiment were identical to those previously
described, except that the stretching phase of each was performed in the squisher.

3Tested by the author in the kitchen.
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Figure 4: The “dough squisher” from the side.

Figure 5: Top view of the “dough squisher.”

Method 1: Stretch and Fold

The pictures of individual bead progress through the dough using this kneading method can be seen
in figure 14. As can be seen in those images, the beads begin in a close cluster of starting positions
but take different paths through the dough mass, which again demonstrates sensitive dependence
on initial conditions . An image with all positions of all beads, found in figure 6, further confirms
Strogatz’s statement that closely clustered initial conditions will travel throughout the dough mass.
This is more clearly demonstrated by the experiment with dye.

Method 2: Stretch, Cut, and Paste

The pictures of individual bead progress through the dough can be seen in figure 15. As shown in
those figures, the beads start with close initial conditions but follow different trajectories through
the dough, which demonstrates sensitive dependence on initial conditions in this system. As with
the stretch and fold method, an image (figure 7) that shows every position of every bead over time
shows that Strogatz’s potentially previously untested statement holds for this kneading method.
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Figure 6: Each bead position at each stretch and fold kneading iteration superimposed on one
figure; dotted black circle represents edge of dough.

Figure 7: Each bead position at each stretch, cut, and paste kneading iteration superimposed on
one figure; dotted black circle represents edge of dough..

Bead Positions as Poincaré Sections

Initially, I had thought to somehow record the full trajectories of beads as they traveled through
the dough mass, but time and resource constraints made such an endeavor out of the scope of this
project. Instead, as described above, I opted to track bead positions at the stretching phase of
kneading using the dough squisher. Bead positions were recorded at this regular interval, which
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is arguably the natural period of both kneading methods, so it is appropriate to consider those
positions as temporal Poincaré sections of the flow. The image in figure 8 shows the positions of
a single bead over ten iterations of stretch-fold kneading. There is no evidence of limit cycles or
periodicity here, just the sensitive dependence on initial conditions described previously.

Figure 8: Positions of a single bead over each iteration of the stretch and fold kneading method;
dotted black circle represents edge of dough. Such information can be treated as a temporal
Poincaré section for the stretch and fold kneading method, and appears to indicate characteristics
of chaotic behavior.

We can see similar behavior in figure 9, which shows the positions of a single bead over ten
iterations of stretch-cut-paste kneading. Again, there is no evidence of limit cycles or periodicity,
so this method also appears to exhibit chaotic behavior. In both cases it is possible that the system
settles down to some form of non-chaotic behavior, but it seems unlikely.

Problems Encountered

I encountered one significant as I performed my experiments. The stretching described for both
kneading methods indicates the dough should double in length, but maintain the same width
(shown on the left in figure 10). The dough squisher “stretches” the dough equally in all directions
(right side of the same figure). Even in traditional kneading, a baker will experience some sideways
expansion as he/she kneads the dough (see figure 11). It is impossible to stretch the dough in one
direction without experiencing some increase in other directions. Bakers deal with this inevitability
by periodically rotating the dough mass ninety degrees. In my case, however, performing such a
rotation would not fully solve the problem. I could manually re-form the dough into a ball, but
this would introduce additional dynamics and obscure some of the very dynamics I was trying to
observe. I decided it would be best to perform the folding (or cutting and pasting) steps twice. So,
my actual kneading processes were most accurately described as stretch, fold, and fold (figure 12)
and stretch, cut and paste, and cut and paste(figure 13). This slight alteration seemed more likely
to preserve most of the dynamics than re-forming the dough ball, and solved the problem of dough
expanding in several directions.
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Figure 9: Positions of a single bead over each iteration of the stretch, cut, and paste kneading
method; dotted black circle represents edge of dough. As with figure 8, such information can be
treated as a temporal Poincaré section for the kneading method, and appears to indicate charac-
teristics of chaotic behavior.

Figure 10: Left side, ideal stretching behavior; right side, actual behavior from “dough squisher.”

Figure 11: Extra expansion as dough is kneaded in traditional manner; a progressive widening.

Milnor-Thurston Kneading Theory

Since my project is focused on how kneading is used in non-culinary fields, I chose to also examine
kneading theory, a rough formalization of kneading as a mathematical model. Kneading theory

7
Page 7



fold

fo
ld

Figure 12: The altered procedure for the stretch and fold method of kneading to avoid the problems
of extra expansion in all directions: stretch, fold, and fold.

paste
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Figure 13: The altered procedure for the stretch, cut, and paste method of kneading to avoid the
problems of extra expansion in all directions: stretch, cut and paste, and cut and paste.

provides tools to qualitatively examine functions that map an interval to itself, which is analogous
to culinary kneading. That is to say, just as dough is stretched and folded (or cut and pasted) onto
itself and its original surface area, the functions studied by kneading theory map a closed interval
onto itself. Formally, kneading theory is a calculus used to describe the “qualitative behavior of
the successive iterates of a piecewise monotone mapping.” Somewhat more simply put, kneading
theory is a set of tools that allows us to describe the qualitative details from sequential results from
a mapping on a closed interval, where that mapping is strictly increasing or strictly decreasing on
subintervals of the initial interval[3].

Kneading theory works by creating several different invariants that make use of characteristics
of a given piecewise monotone function (henceforth called f). The cutting and lap invariants are
variations on power series. Finding the limit of the cutting invariant provides information about the
topological entropy of f . The more-interesting and important invariant is the kneading invariant,
which in turn relies on a kneading matrix. The matrix contains information about the combinatorial
and topological invariants of f .

Kneading theory and symbolic dynamics can be combined to explain the details of bifurcation
diagrams for unimodal maps.[6] First, we define a partition of the interval on which the map is
defined. If we use the quadratic map (xn = αxn−1(1− xn−1), 0 ≤ α ≤ 4), we set up the partition
as: I0 = [0, 0.5), C = 0.5, and I1 = (0.5, 1], then define sn as follows:

sn =


0 if xn ∈ I0
C if xn = C
1 if xn = I1

We define the symbol sequence (or itinerary) of a given starting point x0 as S(x0) = {s0, s1, s2, . . . }.
We also define an ordering (≺) on symbol sequences that preserves their ordering on the interval,
so if S(x) ≺ S(y) then x < y, and define the order of the symbols as 0 < C < 1. We can call a
symbol sequence s valid if for some point a on the interval S(a) = s. The kneading sequence K(f)
of a unimodal mapping f is the itinerary of f(C), so that K(f) = S(f(C)).
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We can obtain two theorems from this setup. First, given a symbol sequence s, if K(f) is not
periodic, and the sequence obtained by shifting the elements of s to the left (and discarding the first
element) ≺ K(f) for any number of shifts larger than zero, then s is valid itinerary for f . Second,
given two sequences s and t and that t represents a valid itinerary, then if we can shift t left some
number of times m, where m ≥ 0, so that it will always hold that s ≺ t, no matter how many
times s is shifted, then s is a valid sequence. These theorems show us that the kneading sequence
of a mapping indicates which period orbits exist for that mapping. In the case of the quadratic
mapping, the kneading sequence increases on the ordering ≺ as α increases. Kneading theory can
be combined with other properties of that mapping to obtain a more detailed description of how
periodic orbits emerge as α increases.[6]

This explanation (and the example with symbolic dynamics of unimodal maps) have been rather
coarse. More detail on kneading theory and how it is used can be found in the original paper by
Milnor and Thurston ([3]), an article by one of their colleagues on Scholarpedia ([1]), and this
helpful set of notes from a talk given at the University of Minnesota ([6]).

Future Work and Conclusions

My original experiment plan was to map the diffusion of dye and trajectory of beads through bread
dough. Bakers knead dough to form chains of gluten within the dough mass. Kneading the dough
orients the gluten chains in orderly arrays and encourages weak, side-by-side bonds to form. Both
of these things contribute to gluten strength, and strong gluten helps bread to rise.[2] Underknead
the dough, and the chains will be underdeveloped. Conversely, overwork the dough, and the chains
will begin to break down again. Bread dough’s gluten chains most likely have some impact on the
dynamics as dye and beads travel through the dough; to eliminate that state variable, I chose to
use homemade play dough4. The artificial dough’s dynamics change as the dough heats up, but
this can be controlled by pre-chilling the dough in the refrigerator, so that the experiment can be
completed before the dough heats up.

It might be interesting, though probably not necessary and certainly difficult, to repeat the
experiments with bread dough. Strogatz, Peitgen et al., and others make their assertions about the
kneading processes they describe, not about the specific process of kneading bread dough. Strogatz
actually specifically mentions a type of pastry dough, but his interest there is the layers of dough
that are maintained, not in the other dynamics of that dough. Because that dough is particularly
difficult to create, due to its delicate nature, it seems unlikely that kneading that dough would create
the “culinary fractal attractor” Strogatz describes, but it would take a more talented baker than I
to test that particular theory. Suffice it to say that, since most authors are really more concerned
with the generic process of kneading non-specific dough, the experiments I have performed seem
sufficient to test their claims. The process of kneading dough definitely demonstrates sensitive
dependence on initial conditions , and also seems to demonstrate other behavior characteristic of
chaotic systems.
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Figure 14: Beads progressing through a dough mass with the stretch and fold method, iterations
1-5 in the first column, 6-10 in the second.
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Figure 15: Beads progressing through a dough mass with the stretch, cut, and paste method,
iterations 1-5 in the first column, 6-10 in the second.
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Abstract 

 

Before the advent of modern computers, mathematicians used analog circuits to 

model non-integrable differential equations. This paper investigates the feasibility, 

functionality, and accuracy of several systems including the solar system, three-body 

system, and Lorenz attractor. Due to their highly nonlinear nature and circuit limitations, 

the solar system and three-body systems are not practical to build, with component costs 

as high as $50,000 and $4,300 respectively. However, the Lorenz attractor can be built 

and analyzed; even using “economy” components, its output covers the correct attractor. 

An error analysis concludes that while the Lorenz circuit’s output may have the correct 

shape, high accuracy components are required for the system to follow the correct 

trajectory for even just a short period of time. Given these challenges, only a few 

practical applications of chaotic circuits exist, mainly those that leverage error such as 

random number generators. Unfortunately, in most other functions, digital computing 

drastically outperforms analog circuits. 

1 Introduction 

Mathematicians have studied differential equations for centuries. However, only recently has progress 

been made in solving systems of non-integrable equations. In the past few decades, computers have 

allowed researchers to implement discrete approaches, such as the 4
th
-order Rungé-Kutta solver. Before 

the age of computers however, researchers discovered they could build controllable physical systems with 

the same differential equations as those they were studying. One such method is the use of electronic 

circuits; utilizing integrator designs and feedback, nearly any first order differential equation can 

theoretically be simulated.  

This paper explores the validity and accuracy of those circuits. The initial thought was to model 

the solar system using these techniques; however, for reasons discussed in section 2, a more linear system 

called the Lorenz attractor is the topic of much of the analysis. The purpose of this paper is to determine if 
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there any benefit to using electronic circuits; is the digital environment superior in every way, or are there 

still applications for the analog domain?  

2 Initial Project & Design Challenges 

The original conception for this paper was to model the solar system using a nonlinear analog circuit. 

Through the many challenges encountered in the process, a new project emerged whose purpose was to 

describe the difficulties, error, and validity of a circuit model. 

2.1 N-body gravitation 

To understand the overall design of the solar system model, the interaction between two bodies, described 

by Newton’s law of universal gravitation, should be examined. 
 

 

 
𝐹 12 =

𝐺𝑚1𝑚2 𝑟2    −  𝑟1     

 𝑟  3
 

 (Equation 1) 

 

 

The two-body problem, derived from the forces in Equation 1 is fairly straightforward. There are few 

enough state variables that chaos is not possible; the bodies orbit each other or one crashes into the other. 

A more interesting problem is that of the interaction of three bodies; the motion of just one of the bodies 

is as follows (1): 

 

𝑟 1
 =  −𝐺  𝑚2

𝑟1    −  𝑟2    

 𝑟1    −  𝑟2     
3

+  𝑚3

𝑟1    −  𝑟3    

 𝑟1    −  𝑟3     
3  

 (Equation 2)

2.2 Calculation of magnitude 

Notice that the positions in Equation 2 are actually vectors. Approximating space as a two dimensional 

plane yields two coordinates for each body’s position for a total of 6 overall in the 3-body problem. The 

difficult portion of Equation 2 is the magnitude cubed in the denominator; the first of the two terms in 

Equation 2 can be found expanded in Equation 3. This equation can also be described in block diagram 

form, as seen in Figure 1.  

 

 

 

1

  𝑥2 −  𝑥1 
2 +  𝑦2 −  𝑦1 

2 
3

2 
 

 

 (Equation 3) 
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Figure 1: Computing magnitude in block diagram form 

 

2.3 Computing magnitude in circuits 

Perhaps the most significant challenge in designing circuits to model differential equations is the 

difficulty in relatively simple, nonlinear mathematical operations such as multiplication, division, and 

logarithms. These operations cannot be performed with passive components; they require premade 

integrated circuits (ICs). Consider the block diagram in Figure 1. Each of the four nonlinear operations 

requires a separate IC; these components range in cost from $30 to $210 each (2). The magnitude sub-

circuit, depending on the component accuracy, would cost between $160 and $600 each. In order to 

implement the three-body problem with a circuit, three magnitude sub-circuits and an additional 12 

multipliers are required, a total cost in the range $840 and $4,300. Expanding this to the nine bodies of the 

solar system requires 36 magnitude sub-circuits and 144 multipliers; even using the lowest quality 

components, this circuit would cost over $10,000.    

2.4 Challenges of chaos in a circuit 

Sections 2.1 through 2.3 detail the size and expense challenges of chaos in a circuit. Though the solar 

system and three-body problem were both a bit too expensive to explore, there are many more chaotic 

systems with fewer nonlinear terms that are much easier to model with circuits. One such system is the 

Lorenz attractor, the topic of section 3.  

3 The Lorenz Attractor 

In 1960, Edward Lorenz sought to model the convection rolls in the atmosphere in order to understand 

and predict weather. His solution is comprised of three first order non-linear differential equations with 

three free parameters a, r, and b. The equations are as follows: 

 

𝑥 = 𝑎 𝑦 − 𝑥  

𝑦 = 𝑟𝑥 − 𝑥𝑧 − 𝑦 

𝑧 = 𝑥𝑦 − 𝑏𝑧 
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Under the correct conditions, the system becomes chaotic; a small perturbation to the initial conditions 

yields a significant difference in the long-term results. 

3.1 Design of the Lorenz Circuit 

Using the Lorenz equations, the first step in the circuit design is a simple block diagram, shown in Figure 

2. The variables x, y, and z are fed through summing nodes, multipliers, and gains to form the first order 

differential equations; they are then integrated to provide the output, which is fed back to the beginning. 

 

 

 
Figure 2: Block diagram for the Lorenz attractor circuit 

 

With the general circuit flow, the exact circuit diagram can be laid out using a design and simulation 

program such as Orcad. Integration is fairly straightforward; an op-amp with capacitive feedback will 

integrate the sum of the input voltages. It is important to note that this does invert (change the sign) of the 

signal and that the multiplier chips also have the option of inverting the signal depending on which input 

is tied to ground. For the ideal design, it is desired that the output of the first integrator be –x instead of x, 

which avoids using an additional inverter. The circuit design is shown in Figure 3.  
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Figure 3: Schematic for the Lorenz Attractor Circuit 

 

The three sub-circuits on the left are the integrators for –x, y, and z. The two ICs in the middle are the 

multiplier chips, and the two sub-circuits on the right are the speakers, attached to –x and z variables. The 

capacitance of the integrators affects the frequency the circuit oscillates at (3); as capacitance increases, 

the natural frequency decreases. Though a few different values were tried experimentally, C1,2,3 = .05μF 

was the most practical in terms of oscillation frequency and components available. The resistor values are 

chosen based off of the parameters a = 16, r = 45, and b = 4 as follows: 

 

𝑅1 =  𝑅2 =  
1

10

1

𝑎𝐶1
= 125𝑘𝛺 

𝑅3 =  
1

10

1

𝐶2
= 2𝑀𝛺 

𝑅4 =  
1

10

1

𝑟𝐶2
= 44.4𝑘𝛺 

𝑅5 =  
1

1000

1

𝐶2
= 20𝑘𝛺 

𝑅6 =  
1

10

1

𝑏𝐶3
= 500k𝛺 

𝑅7 =
1

1000

1

𝐶3
= 20𝑘𝛺

Note that the terms have a 1 10  coefficient, which comes from the normalization of voltages to 0.1v. The 

voltage supplied to each integrated circuit is only ±15v, which is therefore the maximum value for any 

variable. Since the Lorenz attractor usually lies in values above 15 in magnitude, the voltage measured 

will be 1 10  of the actual value of the variable in the Lorenz attractor. The 1 1000  terms, which appear 
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on the resistance values of the nonlinear terms, are a combination of the 1
102  from the two normalized 

variables multiplied together as well as the multiplier circuit’s output specification, which is the product 

of the two input voltages divided by 10. 

Another notable feature of the circuit is that the resistors are actually potentiometers; their 

resistance was adjustable. In section 3.3, the implications of error are discussed. As normal resistors carry 

a ±5% error, the potentiometers allowed an adjustment to bring the actual value to less than ±10
-2

% error.  

3.2 Results and Analysis 

With a circuit build, all that is left is to measure is the output. Theoretically, turning the circuit on would 

yield initial conditions of  𝑥0 ,𝑦0 , 𝑧0 = (0, 0, 0), which is an unstable fixed point. However, due to error 

discussed in section 3.3, the system ends up on a trajectory diverging from the fixed point and eventually 

finds the attractor. There are three levels of questions that describe how well the circuit models the Lorenz 

equations. First, is the output chaotic? Second, does the chaos resemble the Lorenz attractor with the same 

parameters? Finally, given exact initial conditions, can the circuit give an accurate long-term solution? 

Unless otherwise stated, all plots are of −𝑥 10  on the horizontal axis and 𝑧 10  on the vertical axis. 

The first question is easily answered based on Figure 4, the oscilloscope output of the circuit. The 

graph clearly resembles the Lorenz attraction, but by how much? This moves the focus to the second 

question, how accurately the circuit’s attractor’s shape matches that of the theory. In order to calculate 

this, a simulation utilizing the 4
th
-order Rungé-Kutta solver with the same system and similar initial 

conditions is implemented using MATLAB. This graph (thin black line) is then scaled to size of the 

oscilloscope output (gray background) and overlaid in Figure 5 to show how well the two matched. The 

two cover roughly the same attractor; the main difference spawns from the incorrect initial condition in 

the MATLAB simulation, which causes an overshoot in the upper-left-hand side of the graph and fills in 

the right hole more than the oscilloscope’s output. 

 

 

 
Figure 4: Oscilloscope output, z vs. –x 

  
Figure 5: Oscilloscope output with RK4 overlay 

Page 18



7 

3.3 Sources of error in a chaotic circuit 

The output of the circuit is chaotic and matches the general shape of the Lorenz attractor. However given 

an exact initial condition, how accurately will the circuit traverse the true trajectory? This is rather 

difficult to do with the circuit itself, but can be done using a MATLAB model. First, the sources of error 

in a circuit must be considered. Three main sources of error exist in chaotic circuits: passive component 

tolerance, integrated circuit accuracy, and electromagnetic effects. 

All passive circuit components, such as resistors and capacitors, have a set tolerance in a range of 

around 0.1% to 10%. The components used to build the Lorenz attractor in section 3.2 were accurate to 

±5% of their stated value. For this reason, variable resistors were used and adjusted within approximately 

±10
-2

% of the required resistances. However, variable capacitors were not available at the time of the 

circuit’s construction, yielding a ±5% capacitance error. One method for further fine tuning the 

parameters, though not used, would be to calculate the decay time of an RC circuit. Take, for example, 

the calculation for R1 in section 3.1; a cross-multiplication yields the value of the equation parameter a. 

 

𝑎 =  
1

10

1

𝑅1𝐶1
 

 

The inverse of product of resistance and capacitance is simply a time constant. By supplying the series 

variable resistor and capacitor with a low frequency square wave and measuring the voltage output 

between the two components on an oscilloscope, the rise time and RC time constant can be calculated. 

The resistance can be adjusted until the time constant is proportionally close to the parameter a within a 

satisfactory error range. Using this method, the error can be reduced to the limit of the oscilloscope’s 

accuracy, potentiometer’s sensitivity, or operator’s patience.  

The error in integrated circuits is slightly more difficult to deal with. Four types of error 

contribute to the inaccuracy of a multiplier, including input and output offset as well as a scale factor (2). 

This error can be mitigated, but at great cost. The multiplier used in the Lorenz circuit of section 3.1 is 

Analog Devices AD532J; the accuracy of this IC is at worst ±2% and is typically around ±1.5% (4). As of 

1973, Analog Devices produced a high accuracy multiplier whose error was guaranteed less than ±0.2%. 

However, the price of accuracy is quite steep; the “economy” AD532J multiplier costs around $30 per 

chip while a single high accuracy AD427J multiplier costs seven times that: $210 (2).  

The final type of error mentioned is difficult to account for, especially in bread-boarded circuits. 

The electric and magnetic fields established in a circuit allow it to work properly and predictably. 

However, they can also work in unexpected ways. For example, the capacitance between two typical 

wires 4cm long and 1cm apart is on the order of .05pF. Even if all other error were absent, this still 

amounts to approximately an additional 10
-4

% to the capacitors attached to the integrators. The physics of 

transistors must also be taken into account in integrated circuits. The current across the transistor is 

temperature dependent; therefore, as the circuit runs and dissipates heat, its behavior may change slightly. 

Most integrate circuit’s datasheets discuss the output variations based on temperature. For example, the 
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multipliers used in the Lorenz circuit in section 3.2 lists the maximum temperature error as ±0.04% per 

°C (4). 

3.4 Effects of error in a chaotic circuit 

To better understand the effects of the sources of error presented in section 3.3, three MATLAB 

simulations compare the unaltered Lorenz equation to the results when the parameters a, r, and b have 

been given a certain level of inaccuracy. The output plot details the magnitude of the difference between 

the points in the two systems at a given time. The figures shown will demonstrate the difference in 

outcomes of the theoretical and physical systems if the initial conditions are completely accurate. 

The first error tested is the easiest to achieve in the circuit, 2%; this could come from only 

slightly corrected resistors and capacitors or the “economy” multiplier IC described in section 3.3. This 

error is still an understatement of the Lorenz circuit built in section 3.2, as it assumes capacitive accuracy 

is smaller than that of those used in the circuit. Figure 6 clearly illustrates how the new system produces 

slightly different results from the very beginning. This disparity grows as time progresses, and by around 

4 seconds in, the two systems are on different trajectories. 

 

 
Figure 6: Resulting error from a 2.0% perturbation in the Lorenz attractor parameters 

 

The next error examined, 0.2%, would result from more finely tuned resistor and capacitor values, as well 

as much more expensive, high accuracy multipliers. Unlike the previous simulation, Figure 7 

demonstrates how the two systems are very closely in synchronization for the first few seconds. After 

around two seconds, the error grows to noticeably above zero and the trajectories quickly diverge. 
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Figure 7: Resulting error from a 0.2% perturbation in the Lorenz attractor parameters 

 

The final error examined is 10
-4

%; this represents only small electromagnetic effects of capacitance 

between wires and assumes that by some miracle, the passive circuit components and integrated circuits 

have been adjusted to perfection in a temperature controlled environment. Even with this, Figure 8 shows 

the systems still diverge after around 8 seconds. However, it would be possible to follow the exact 

behavior for at least a small time period. 

 

 
Figure 8: Resulting error from a 10-4% perturbation in the Lorenz attractor parameters 
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In error around and below 0.2%, it seems very likely that given accurate initial conditions, the system 

would maintain the correct trajectory for a short period of time.  

4 Conclusion 

Non-linear circuits have been used for decades to model systems of equations; however, as discussed in 

this paper, the accuracy of such systems is limited.  

4.1 Implications of error 

Sections 3.3 and 3.4 explain the sources of error in a circuit model and the resulting differences in the 

theoretical versus physical systems. In order to achieve an accurate model, even for a brief second, high 

precision multipliers are necessary; the two multipliers ICs for the Lorenz circuit would cost over $400 in 

total. This is likely just as expensive as a microprocessor with 4
th
-order Rungé-Kutta solver 

implementation embedded. An application such as the magnitude for a 3-body problem could cost 

upwards of $600 each. This implies a high accuracy three-body circuit could total over $4,000, certainly 

more expensive than modern desktop computer with high computing capacity. Additionally, a 0.2% error 

does not begin to compare to machine epsilon limitations, which are on the order of 10
-16

% of the 

common Lorenz variable values. 

4.2 Potential applications 

Though there are many difficulties in implementing chaotic systems with circuits, these can be leveraged 

and utilized for certain applications. Consider a random number generator; often, it is simply an algorithm 

that provides a difficult to predict yet uniform distribution of values. For that reason, many random 

number generators are often referred to as pseudo-random. If a chaotic system with uniform distribution 

could be modeled in a high frequency circuit, it could quite effectively generate a random number without 

the possibility of prediction. All the challenges of reducing error, discussed in sections 3.3 and 3.4, would 

not be necessary. In fact, the error would magnify the random behavior, as sensitive initial conditions 

mean a slight change to the system would result in dramatic overall outcome differences. One such 

random number generator implementation is the logistic map in circuit form, driven by a discrete clock 

cycle. This requires a single multiplier and has relatively uniform distribution (5). 

One might ask: would a chaotic system qualify as truly random, or is it pseudo-random? The 

Oxford English Dictionary defines random as “not sent or guided in a particular direction; … without 

method or conscious choice” (6). Though a perfect model chaotic system is unpredictable, it is not 

necessarily random. However, with the introduction of physical error to a system, especially that of 

transistor behavior at the electron level, the system is no longer guided; though a method would be in 

place to ensure fairly uniform distribution, the error could nullify the conscious choice portion of the 

definition as well. Using this method, a true random number generator could be placed in the processor 

hardware itself. 
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One final benefit of analog circuits is their ability to oscillate at high frequencies. Though the 

Lorenz circuit from section 3 has a relatively low frequency, it can be increased by reducing the value of 

the capacitors in the integrators (3). A MATLAB simulation with a small time-step can take longer to 

compute the trajectory than the value of the total trajectory time. Though it might be less accurate than a 

computer simulation, the analog circuit has the speed advantage. 

4.3 Final thoughts 

Analog circuits were a popular method for studying chaos before the advent of modern computing. 

However, as seen in this paper, they have many drawbacks. In section 2, the n-body problem was 

explored and deemed infeasible due to the complexities in designing a circuit to compute a relatively 

simple vector magnitude. Section 3 introduced the Lorenz circuit and sources of error in it. Section 3.4 

determined that to get on the correct trajectory, even for a brief second, an error less than approximately 

0.2% is required. In order to meet this specification, the Lorenz attractor circuit must use high accuracy 

integrated circuits.  

Tying this back into the gravitation problems from section 2 would imply the cost of the three-

body circuit at over $4,000 and the solar system at over $50,000. Note that similar accuracy can be easily 

and quickly achieved with a low-end processor on the range of $500. The only feasible applications for 

chaotic circuits seem to be those such as random number generators, which can actually leverage the error 

and uncertainty in their functionality. Despite these few purposes, it seems modern computers have 

overtaken their analog predecessors in accurate modeling of chaos. 
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1 Abstract
Fractal art is found in numerous domains, from video games to movies to impres-
sionistic art galleries. Typically fractals impact art in three ways: as the algo-
rithmic basis for efficiently mimicking naturally occurring fractals such as trees,
clouds and mountains, as a component in an artist’s overall composition, or (on the
merits of the fractals inherent beauty) as a stand-alone image. This work presents
a variation on the second and third themes. Instead of seeking inspiration from,
or randomly searching for impressionistic fractals by hand, I propose iMath (Im-
pressionistic Math) a framework for generating fractal images that are “inspired”
by input imagery.

2 Introduction
Fractals are everywhere! Since their popularization by Benoit Mandelbrot and
others in the late 1970s and 1980s the value of fractals to both art and science
has become increasingly apparent. Far more than an intriguing occurrence of
the natural world, the mathematical and aesthetic properties of fractals have been
successfully applied to problems as quantitative as image compression [7] and
as qualitative as impressionistic art [8, 9, 10]. It is the aesthetic and qualitative
properties of fractals that have inspired this project.

This paper presents the basis for iMath, a tool for generating impressionistic
fractal artwork using existing images as a guide. The novelty of this work is that
it represents an attempt to automate a process that appears to be strictly human.
Understanding the concepts presented here requires at least a cursory knowledge
of fractals and their application/utilization in artistic domains. The following sec-
tions present a high-level introduction to such information. Following this intro-
ductory material the iMath application is discussed and some preliminary results
are presented. Finally I present my observations and conclusions drawn from the
project in its current state, including proposals for possible future work.

2.1 Fractals
A fractal is a pattern or shape that exhibits self-similarity within its structure. Nu-
merous examples of fractals exist in nature. Clouds, mountain ranges, streams,
and even the universe exhibit the characteristics of a fractal. As an example, con-
sider a galaxy (see figure 1.

2
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Figure 1: The fractal nature of the universe

Hydrogen AtomPlanet and moonPlanetary System
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From a distance an observer would perceive numerous masses orbiting around
a concentrated central region. As the scene is magnified it becomes apparent that
the individual masses are in fact planetary systems; many with multiple planets
orbiting a concentrated region of mass called a star. Further magnification reveals
that it is common for such planets to be orbited by one or more moons. Contin-
ued magnification of these moons will eventually reveal the structure of the atom
- clouds of electrons orbiting concentrated regions of mass. . . and so on. Math-
ematically fractals can be constructed that exhibit such self-similarity infinitely.
That is - a person can zoom in on the fractal’s structure indefinitely with no loss
of complexity.

A fractal’s structure arises from the fact that it does not occupy the entirety of
the region it is bounded by. In other words, the structure of a fractal is defined
as much by the regions that it does NOT occupy as the regions that it does. This
gives rise to one of the signature characteristics of fractals; they do not occupy
integer dimensions. Rather than being 1,2, or 3 dimensional objects fractals may
be .5, 1.3 or 2.666 dimensional etc.. As will be explained below, iMath utilizes
dimensionality as an approximation of complexity.

Numerous well known techniques exist for approximating the dimensionality
of an object. iMath employs a technique for calculating what is known as the box
dimension. Fractal dimension, as well as several techniques for approximating
it, is explained in [11]; only a cursory introduction to box dimension is provided
here.

2.1.1 Box Dimension

To calculate box dimension the object of interest is first circumscribed within a
hyper-cube of the required dimensionality. In the context of imagery, the hyper-
cube is simply a bounding square around the image or region of interest. In suc-

3
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cessive steps, the box is subdivided into smaller and smaller boxes, and at each
step the number of boxes that contain part of the image are counted. The box
dimension is defined as a ratio between the size of the boxes (ε) and the number
of such boxes occupied by the image as the size of ε approaches 0.

d = lim
lnN(ε)

ln(1
ε
)
, as ε → 0 (1)

Obviously it is impractical in most cases (and impossible in the case of a dig-
itized image) to meaningfully subdivide the object of interest beyond some finite
point. Thus except in cases where the box dimension has a close formed analyti-
cal solution an approximation is obtained by plotting ln(1

ε
) vs. lnN(ε) and using

linear regression to determine the slope of the transient in the curve1. iMath uti-
lizes this approximation to calculate the box dimension of individual regions of
the input image. The regions are defined by partitioning the input image into an
N X M grid of equally sized squares. Further details concerning this process are
provided in section 3.2.1.

2.1.2 The Mandelbrot Set

One of the most famous fractals is the well known Mandelbrot set, which was dis-
covered by Benoit Mandelbrot while studying the behavior of the iterative equa-
tion:

z = z2 + c (2)

where z begins at zero and c is a complex value.
The Mandelbrot set is defined as the set of points for which this equation does

NOT diverge as the number of iterations approaches infinity. Rather than formally
proving that a point doesn’t diverge, artists and scientists generally approximate
such a proof by simply iterating the equation up to some predetermined number
of iterations at which point if the value of z has not diverged then the point is
classified as being part of the set, otherwise it is not. The Mandelbrot equation
can be visualized by representing the real and imaginary components of the values
of c in the complex plane as the X and Y coordinates in a two-dimensional image.

1iMath assumes that all values of ε sampled are in the transient, though this is not strictly
correct. Fortunately, since the value is used in a relative sense (i.e. compared to other values
computed in the same way) the desired effect is still achieved)
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By coloring all of the points in the set black and those outside the set white, an
image similar to figure 2 is generated.

Figure 2: The Mandelbrot set

Though complex, the image displayed in figure 2 is not particularly impres-
sive. Further detail (and beauty) can be added to this plot by implementing a
mapping between the behavior of the points outside of the Mandelbrot set with
values in a color map. A common approach is to establish a correlation between
the colors and the rate at which the points diverges from 0. The rate of divergence
is commonly approximated by simply marking the iteration at which the value
of z exceeds a certain threshold. A low count would suggest rapid divergence
and a high count slower divergence. Using this information, more-intricate plots
can be created by assigning different colors to the pixels in accordance with their
divergence rates. Figure 3 demonstrates the result of this technique.

Countless coloring formulas have been proposed. Some attempt to smooth
transitions between colors (see [12]) while others attempt to introduce 3-dimensional
elements to the fractal, as in [6]. iMath employs a coloring formula driven by the
input image itself. This technique is introduced in section 3.2.2.
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Figure 3: A colorized Mandelbrot set

2.2 Fractal Art
The beauty of fractals has not been lost on the world of artists. One need only
“google” the term “fractal art” to discover that in the few decades since their intro-
duction, countless fractals have found their way into computer wallpapers, picture
frames, and even art galleries, purely on the merit of their intrinsic mathematical
beauty.

The complexity and diversity of fractals that can be generated from relatively
simple mathematical equations such as the Mandelbrot set has resulted in an ex-
plosion of fractal generating computer applications such as Apophys, Ultra Frac-
tal, XaoS and countless “home-grown” software systems. These programs sim-
plify the process of generating fractal images by performing the math behind the
scenes. The user need merely set and adjust a set of simplified parameters and the
resulting fractal is generated.

2.2.1 Impressionistic Art

Beyond the realm of “pure fractals” the world of impressionistic artists has also
learned to exploit the complexity and structure of fractals. Artists such as Renata
Spiazzi, Terry Wright, and Rogert McGregor utilize fractals in various forms and
stages of their artistic process. These artists may use fractals as a source of inspi-
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ration or include them in a piece in such an obscured form that such that only the
artist would recognize its presence or influence explicitly [8, 9, 10].

2.2.2 Computer graphics and animation

Beyond their artistic beauty, the fact that complex fractals can be generated from
simple equations and initial conditions makes them an ideal method of storying
and generating complex imagery - on the fly if necessary. Fractal landscape gener-
ation in particular has become a widely accepted method for generating beautiful,
varied and realistic looking terrain for digital imagery, video-game graphics, and
even full length movies. The role of fractals in generating such content is dis-
cussed in [1] and [5]

3 iMath
In preceding sections I presented methods in which fractals are incorporated into
artwork, serving either as components of the art themselves, or as a source of in-
spiration for the final piece. In the previous case the generalized approach involves
an iterative three step process in which:

1. A human enters parameters into a computer program.

2. The software generates a fractal based on the input parameters.

3. A human evaluates the fractal and adjusts the input parameters.

This process iterates until a noteworthy image is discovered. This fractal, or
collection of fractals, is subsequently named and a work of art is officially born.
Often such pieces have impressionistic qualities that are reflected in the names
they bear.

Rather than simply generate fractals to be perused by humans, iMath attempts
to automatically generate impressionistic art by creating fractal images influenced
by the characteristics of a “seed” image provided by the user.
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3.1 Architectural Model
Figure 4 presents the high-level architecture of iMath.

Figure 4: High level architecture of iMath
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As can be seen in the figure, a three step process is employed.

1. Characterize the input image

2. Search for parameters that result in fractals that approximate the input image
attributes

3. Output the fractal

The following sections discuss in greater detail how these steps are accom-
plished.

3.2 Conceptual Considerations
As the end goal of iMath is to produce impressionistic fractals, it is necessary to
quantify characteristics of an image that contribute to the impressions left on a
viewer. This work investigates the effectiveness of utilizing fractal dimension and
color distribution for this purpose. The fact that techniques exist for quantifying
these attributes adds to their appeal as starting points.
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Aside from the sample images presented below, no attempt is made in this
work to validate the impressionistic value of these metrics. It is probable that
better characteristics and/or combinations of characteristics exist; however, per-
forming an assay to determine such a feature set is beyond the current scope of
this work. Rather, iMath represents a first attempt at establishing a foundation
upon which (among other things) such a study might be constructed.

3.2.1 Complexity

One of the assumptions underlying this work is that complexity is an important
factor in human processing of imagery. More specifically, the assumption utilized
by iMath is that the difference in complexity between one region and another
within an image conveys impressionistic information. For example a bowl of
popcorn with its many edges and shadows produces a vastly different effect than
that of a flat wall painted with the same component colors.

Edges play an important role in conveying both complexity and information
in human vision. Often it is the edges of an image that convey the majority of
the meaningful information. Consider for example the fact that numerous draw-
ings, technical and otherwise, rely exclusively upon edges (lines) to convey the
requisite information. iMath leverages the connection between visual information
and edges to quantify the complexity of regions in an input image. This metric is
computed using a two-stage process.

First a simple Gaussian edge detect filter is applied to the input image. The
resulting image is then thresholded to produce a black and white “line drawing”
of the original image (see figure 4). Next, the filtered image is divided into M X
N square regions of equal size and the box dimension of each region is calculated.
Region sizes experimented with in this work were typically 8, 16, or 32 pixels
square 2. The collection of dimensions for all of the regions constitutes a “com-
plexity profile”. This profile is used to guide iMath’s efforts to generate an image
with “similar” qualities.

3.2.2 Color Distribution

The second attribute of an image characterized by iMath is its distribution of color.
Multiple techniques for quantifying the color attributes of an input image were
attempted in the development of iMath. For the sake of brevity only the most

2There appears to be no “silver bullet” regarding the optimal size of this window; the window
size that generates the most pleasing results for one image may perform poorly on another

9

Page 32



effective method observed is presented in this work. Understanding it requires a
basic understanding of the modern application of wave theory to digital imaging.

Images As Waves Digital images can be interpreted as a waveform. To under-
stand this interpretation, consider how intensity is represented in an 8-bit grayscale
image. Each row of the image is represented as a set of intensity values (one for
each pixel) on the range [0 - 255] with 0 representing full black and 255 full white.
These values can be interpreted as discrete samples taken of some type of wave,
such as a sound wave, with the values representing measurement samples, such
as air pressure values, taken at fixed intervals. By extending this concept along
the columns the entire image can be considered a single 2-dimensional waveform.
The usefulness of this interpretation will become apparent shortly.

In the 19th century, French mathematicianJean Baptiste Fourier theorized that
any given waveform, no matter how complex, could be constructed through the
summation of simple sines and cosines of various frequencies, amplitudes and
modulations. This sum is known as a Fourier series. The Fourier Transform and
its derivatives such as the Fast Fourier Transform (FFT) and the Discrete Fourier
Transform (DFT), perform the decomposition of a waveform into its constituent
frequencies, providing their amplitude and modulation coefficients.[2]

By applying the aforementioned interpretation of an image as a waveform,
Fourier Transforms can be used to analyze and manipulate images, originally rep-
resented in the spacial domain, in the frequency domain. Numerous benefits arise
from the ability to do this and the technique is commonly used in digital imag-
ing applications. The reader is referred to [2] for more in-depth coverage of both
Fourier transforms and their application to digital imaging.

iMap utilizes the DFT of the input image in a manner similar to the complexity
profile introduced in section 3.2.2. The input image is first separated into its red,
green and blue (RGB) color planes. Each of these planes is an array of intensity
values identical in size to the original image. The Fourier series (FS) of each of the
three planes is calculated and stored as the first part of the image’s color profile.
The FS is a good fit for this task as it provides a quantifiable baseline by which
two images can be compared and the quantities involved contribute to the image
as a whole (i.e., each constituent frequency is applied to the entire image vs. being
localized to an individual pixel).

Color Mapping The second component of the input image’s color profile is a
set of sorted lists of the pixels in each of the images RGB color planes. In section
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2.1.2 I mentioned the need to assign colors to the divergence rate values gener-
ated by iMath’s fractal generator; these three lists are the method by which this is
accomplished. The pixels of the fractal image are sorted according to their diver-
gence rates and a simple one-to-one one mapping against the seed image’s lists
is then used to assign intensities to RGB color planes of the fractal. The fractal
is now a 24-bit RGB color image. Figure 5 illustrates how this color mapping is
done.

Figure 5: Color mapping technique

0 0 5 4

1 0 5 5

2 1 5 6

3 5 7 9

.

.

.

NM 255 126 15

0 5 0 0

1 5 0 1

2 6 1 2

3 7 1 3

.

.

.

NM 255 33 56

5

Sorted Fractal 
Pixels

Sorted Image 
Pixels

coordinatesdivergence 
rate

coordinatesintensity

Fractal Image Color 
Plane

With the RGB values of the fractal image established, the same techniques uti-
lized to generate the complexity and color profiles of the input image are applied
to the fractal. These values are then used to evaluate how well the fractal mimics
the complexity and color profiles of the input image.

3.3 Search
Utilizing the concepts mentioned thus far iMath is able to mimic the three-step
process that humans often employ when searching for impressionistic fractals. In
short: generate, evaluate, adjust. Because color mapping is managed in a fixed
manner, as described in section 3.2.2, and the equation generating the divergence
values is currently fixed, only four parameters can be adjusted: the coordinates
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of the upper-left and lower-right corners of the bounding box within which the
Mandelbrot equation is to be evaluated. The nonlinear behavior of the Mandel-
brot equation makes the task of “tuning” these parameters extremely non-trivial.
Unlike a human, iMath does not have the benefit of intuition or any such “sense”
of how to modify these coordinates and clearly an exhaustive search is out of the
question. iMath employs particle swarm optimization (PSO) to search for good
coordinates3. The reader is referred to [3, 4, ?] if they are unfamiliar with PSO.

iMath utilizes the ring topology and inertia variant of PSO. Every 10 iterations
the best parameters discovered by the swarm thus far are used to re-initialize all
of the particles in the swarm, with the exception of the current swarm leader, to
new locations within the window defined by these coordinates. I will refer to these
10 iteration intervals as generations. The intended effect of this re-initialization
is that the swarm is more inclined to “zoom-in” on the Mandelbrot set within the
regions where progress is being made. This modification to simple PSO resulted
in qualitative improvements in the output images.

The fitness of the fractal images represented by particles during PSO is em-
bodied in two error values:

• The complexity profile error = the sum of squared errors over the values in
the fractal’s complexity profile relative to the input image’s profile.

• The color profile error = the sum of squared errors over the DFT values of
the RGB color planes of the fractal relative to those of the input image.

The lower the error the better the fitness; in this case, optimization amounts to
minimizing these error values. The complexity and color errors are given equal
weight in determining the fitness of a particle relative to the rest of the swarm.
When two particles are compared it is possible for a tie to occur due to one particle
being superior relative to complexity error and the other being superior relative to
color error. Such a tie is broken by comparing the ratios of the corresponding
scores between the two particles. For instance if particle A has a complexity
profile error value that is half as large as particle B’s, and particle B has a color
profile error that is one third as large as particle A’s, then particle B is deemed to
be superior.

The swarm size and number of generations the PSO algorithm is to perform
are selected by the user when iMath is invoked.

3Numerous nonlinear optimization/search algorithms such as a genetic algorithm might just as
easily have been applied.
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4 Results
Here I present samples of iMath’s performance on 4 input images. These images
were take from multiple sources on the web as follows.

1. “Before The Storm”:
http://www.spacewallpapers.net/wallpapers/albums/CG/

before_the_storm_1600.jpg

2. “Cataclysm” :
http://browse.deviantart.com/fractals/?q=cataclysm#/d12dm22

3. “e7a16-7321”:
http://www.wallpaper4computer.com/wallpaper/?autumn/1024/

e7a16-7321

4. “Bridge004”:
http://www.fwallpaper.net/buildings-bridge_004.html

The images are arranged as pairs with the seed image on the left, the impres-
sionistic fractal generated by iMath on the right.

Figure 6: Input Image “Before The Storm”
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Figure 7: Input Image “Cataclysm”

Figure 8: Input Image “e7a16-7321”

Figure 9: Input Image “Bridge004”
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5 Conclusions and Future Work
This work has presented iMath, an application for generating impressionistic frac-
tal art based upon a user-provided seed image and two user-tuned parameters. I
have shown that iMath succeeds in automatically generating fractals that convey
attributes of color and complexity that are influenced by the seed image. Some of
these images are impressive in their beauty and (in my opinion) qualify as impres-
sionistic renderings of the input images.

Several weaknesses with the approaches taken in iMath are apparent. For cer-
tain types of images the techniques employed work well but for others they fail
miserably. Using box dimension as a means of quantifying complexity prevents
excessive oversimplification in the final results but generally fails to capture any
meaningful structure such as arcs or lines etc. Though the final images typically
have a color distribution that is similar to that of the input image at times sig-
nificant elements such as the presence of a singular but significant detail in the
input image is not always preserved in the output image. A method of identifying
such outliers (which our eyes consider important) and weighting the fitness of a
candidate image accordingly is needed.

The fact that iMath’s fractal generator is fixed (i.e. the parameters of the equa-
tion cannot be changed) limits the type of geometry that can be produced. Addi-
tionally, the fact that the entire image is generated from a single fractal is at odds
with the fact that the individual components of a scene are typically fundamentally
varied, even if they are fractals (or instance clouds vs. trees). A logical next step
would be to segment the input image and attempt to generate fractals for these
segments and conjoin them in the final output image.

These and other issues, such as experimenting with alternative search methods,
are the focus of future work on this project.
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Poincaré Tomography

Ron Kneusel, CSCI 5446, April 2011

Abstract
A Poincaré section of a three dimensional state-space trajectory is a plane showing the

location of the places where the trajectory crosses the plane. In Poincaré tomography, true pro-

jections are made of the state space by assigning an attenuation coefficient (µ) to the trajectory

points and calculating line integrals along specified directions. For any fixed angle, the output is

a projection image. With a complete 360◦ set of projection images and filtered backprojection,

it is possible to reconstruct the original state-space trajectory, with possibly modified emphasis

of points due to the attenuation coefficient. This paper explores some of the possibilities of this

technique.

1 Introduction

Computed tomography (CT) is a common process in medical imaging [7]. The most common
version of computed tomography is x-ray transmission tomography where a beam of x-rays is
passed through the patient’s body producing a projection detected on the other side. If many such
projections are acquired, it is possible to reconstruct the x-ray absorption map of the interior of
the body. There are several possible ways to do this reconstruction, with the most prominent being
filtered backprojection (FB) which is described in detail below.

This report presents an application of FB to the visualization of 3D state-space trajectories of
chaotic systems. Section 2 describes the application and algorithms developed for visualizing the
trajectories. Section 3 presents the projections and volumes generated. Section 4 concludes the
report with a discussion of the results and possible future work.

Filtered Backprojection

If a beam of x-rays is transmitted through an object and the resulting shadow image is collected, a
projection is produced. A single projection is equivalent to a classical x-ray image with overlapping
structures within the object piled on top of each other and with an x-ray density related to the
type and thickness of material through which the x-rays pass. From a classical physics perspective,
the x-ray beam is attenuated according to Beer’s Law,

dI

ds
= −µ(x)I

where I is the intensity, x the material thickness, ds in the direction of x, and µ is the attenuation
coefficient, specific to the type of material [1]. The attenuation is also a function of x-ray energy,
µ = µ(E), where E = hν. The integration of Beer’s Law leads to

log
I

I0
= −

∫
l

µdx
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Figure 1: Parallel-beam projections built from a set number of x-ray sources (or a single source
scanned along the projection direction). This work used a parallel-beam approach with the number
of x-ray sources equal to the desired reconstructed volume length.

where dx is along the direction of the x-ray beam and I0 is the incident x-ray intensity. The line
integral along a particular direction can be determined by measuring the incident and remaining
intensity. This relationship, in a simplified form, will be used below to generated projection images
from state space trajectories.

Modern CT systems use point x-ray sources and fan-beam or cone-beam geometry, which com-
plicates reconstruction. In this work, the classical first-generation CT strategy of parallel-beam
projection is used, as shown in Figure 1.

The figure shows a 2D image with a 1D projection. A volume in 3D projects to a 2D image made
up of a stack of 1D projections, i.e., the 2D projection (xy plane) is repeated for each slice (z). The
object or x-ray source is then rotated by a fixed angle and a new projection image is made. The
number of projections and the rotation angle are explored below.

A collection of projections for a full 360◦ rotation can be reconstructed via filtered backprojection.
In backprojection, a projection is “smeared” back across the output image (or slice in 3D) at
the angle at which it was acquired. The “smearing” adds the projection value along that line
to any existing image value. This process is then repeated for all projections. While simple
backprojection is sufficient to recover some insight about the internal structure of the x-rayed
object, the backprojection process introduces a point-spread function which is convolved with the
object and introduces blurring. The blurring can be corrected by first filtering the projections with
a high-pass filter. This, in effect, adds negative regions to the edges of the projections thereby
cancelling out the blurring when summed over all projections. The filter is best applied in Fourier
space as a multiplication of the projection by a ramp filter (ideal case, suitable here). This was
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1. for each 2D projection:

2. proj = empty array (2D)

3. for each slice:

4. generate an array representing the slice

5. rotate the slice array by the proper angle (2D)

6. calculate the projection along the x direction (1D)

7. store the 1D projection in the output array (proj)

8. write the projection array, proj, to disk

Figure 2: The projection algorithm.

done for all the volume reconstructions in this paper.

The projection and reconstruction steps described above are essentially those of the Radon trans-
form [9]. However, in this work, no pre-existing Radon transform, or its inverse, were used; all
steps were coded directly from the algorithm.

Related Work

As of this writing, no literature specific to the application of tomographic reconstruction of 3D state
space trajectories has been found. The application below includes utilities for generating known
data sets from the Lorenz [8] and Rössler [10] systems, as well as applying principal component
analysis (PCA) to reduce the dimensionality of the input data. These are well-known techniques
and not novel. Other authors have investigated other techniques for presenting high-dimensional
chaotic data [4] [5] [2] [3].

2 Methods

This work consisted of three main parts: the generation of projection images with desired charac-
teristics through the manipulation of the attenuation coefficient, µ, the reconstruction of projection
images for volume rendering, and the construction of a helper application to load and process in-
put data for the first two steps. All code for this work was written using IDL (Interactive Data
Language, ITT Visual Information Solution, Boulder, CO).

Projection

As shown in Figure 1, simulation of a projection image is accomplished through a line integral
passing through the state space. For the case here, projection proceeded as in Figure 2 , as
rotating the slice array is equivalent to rotating the object itself. The rotation code used bicubic
interpolation. This is likely the source of some of the rendering error that will be seen below.

The slice array is built from the actual trajectory points and the discretization of the volume encom-
passing the trajectory points. The box containing each point in the trajectory is first calculated. If
that box is in the slice currently being processed, the attenuation value, µ, for that point is added
to any value already present in the slice array for that box. The box size is determined by the
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Figure 3: Slice reconstruction via summation of projections. The projection is replicated to produce
a projection array. The array is rotated by the appropriate angle and summed to the slice array.
This process is repeated for each projection.

number of slices and is such that the largest extent of the trajectory will be covered by the desired
number of boxes.

The attenuation value for each point is the key in determining the appearance of the reconstructed
slices and rendered volumes. In the simplest, case a constant value was used (µ = 1) thereby
making the shading of each output projection “image” directly related to the number of trajectory
points along the projection line. Varying µ by position or some other attribute might enhance
regions of the reconstruction where a larger value was present and diminish regions with smaller µ.
This is directly analogous to the increased absorption of x-rays by dense tissue (bone) versus less
dense tissue (organs) in CT imaging of the human body.

The projection along x̂ is then simply the summation of the pixel values for the rotated slice array
along that direction. This produces the final 1D projection vector that is added to the output
projection array. The process is identical, for a given slice, to that shown in Figure 1, where θ is
always zero.

Reconstruction

Reconstruction of slices from projections are accomplished using filtered backprojection. The spe-
cific algorithm followed is in Figure 4. The 1D projections for the slice being reconstructed are
backprojected by replication producing an array of the same size as the output slice. This array is
rotated by the necessary angle and added to the existing output slice. This is process is repeated
for each projection and the resulting slice is written to disk. See Figure 3.
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1. for each slice:

2. for each projection, angle in that slice:

3. fp = Filter(projection)

4. slice += Backproject(fp, angle)

where Filter is,

1. fp = FFT of projection zero-padded to 4x original length

2. ramp = 45-degree ramp for positive and negative frequencies

3. p = inverse FFT of (fp*ramp)

and Backproject is,

1. t = 1D projection replicated across columns

2. t = rotation of t by given angle

3. slice += t

Figure 4: Slice reconstruction from projections.

Application

The helper application consists of a small window with several tabs and makes uses of the pre-
existing visualization tools available in IDL. The relevant screens of the application are shown in
Figure 5.

Projections are specified by number of slices, which controls the 2D projection size, and by the
number and step size of the projection angles. A full 360◦ rotation with 1◦ steps was used for most
of the volumes rendered for this paper. In some cases a step size of 0.5◦ was used instead. Each
projection image was stored on disk as an image file for display and as raw data.

Reconstruction requires only the source directory containing the projection data and the angular
step size used. The resulting reconstructed slices are then stored on disk in a separate directory.
These can be loaded into IDL and quickly assembled into a volume which is always a cube of size
n where n is the number of slices. For rendering, the data cube is scaled to bytes.

High-dimensional (> 3) data in TISEAN-compatible format [6] can be loaded through the ‘File’
menu. If the application detects more than three dimensions, the dimensionality reduction dialog
is presented. The user can then select specific dimension numbers (zero-based) to load, or apply
principal component analysis (PCA) to select the three directions that describe the largest amount
of variation in the data.

As a convenience, the application allows the user to directly calculate data sets using the Lorenz
or Rössler systems. The initial condition and parameter values can be entered and run for a given
number of points using either fourth order Runge-Kutta (RK4) or adaptive RK4. The resulting
trajectory can be viewed in 3D and written to disk for use in other applications.
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Figure 5: The helper application for Poincare Tomography. (Clockwise from the upper left) The
projections are specified by the number slices (projection image size, square), the number of projec-
tion angles, and the step between the projections (degrees). Reconstruction is from projections to
slices given a directory of projection images and the angular step between them. Higher-dimensional
data is reduced to 3D via selection or specific dimensions or the application of PCA. Lastly, prede-
fined data can be generated for the Lorenz and Rössler systems internally.

3 Results

The projection/reconstruction process described above was used in a series of experiments to de-
termine the usefulness the process for the trajectories of chaotic systems. First, the 2D projections
themselves are presented. Second, volume renderings of the reconstructed slices are presented.
Both of these will be discussed in Section 4.

Projections

A sample projection of the Lorenz attractor is shown in Figure 6. A color table is applied to
show the effect of the attenuation. The number of slices was 800 which results in an 800x800
projection image. The attenuation coefficient of each point was fixed at µ = 1.0 so that the shading
is representative of the density of trajectory points along the projection direction. The color table
is provided in the figure. The projection data was scaled to the range [0, 255] before application
of the color table. It is clear that the most point-dense region is near the center of one of the
“butterfly” wings, as expected.
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Figure 6: A projection with constant µ = 1.0 for all points. Lorenz attractor (A = 16, R = 45, B =
4), 800 slices, 150,000 points (RK4), first 1000 discarded. The color table (low to high, left to right)
shows the shading.

Figure 7 shows a projection for the Rössler system where the attenuation coefficient is a function
of the distance from the origin: the larger the distance, the larger the value of µ.

Volume Rendering

The full set of projection images, covering all 360◦ in 1◦ or 0.5◦ increments, were reconstructed to
produce a set of output slices along ẑ. This set of slices was then loaded into IDL for display as a
rendered 3D volume. A data filter was applied to remove low value pixels from the volume in order
to reduce the diffuse background artifacts.

The volume reconstruction itself uses alpha blending for the composite function. Volume rendering
requires passing a ray through the object in 3D to create the pixel as seen on the computer screen.
When passing through the volume, there are choices as to how the final pixel value is calculated.
In alpha blending, the following recursive equation is used,

dn+1 = αs+ dn(1 − α)

where s is the source pixel in the volume along the ray, d is the previous output pixel, and α is the
blending factor with a default of 0.5. It is important to distinguish between a volume rendering
and plotting in 3D of a set of points.

First, consider Figure 8. In this figure, the right volume represents the Lorenz system (parameters
in the figure) when a constant µ value is used. On the left, the same trajectory is reconstructed
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Figure 7: The Rössler system (A = 0.398, B = 2, C = 4), 800 slices, µ constant, 600,000 points
(RK4), first 1000 discarded.

but this time the µ value changes with the position along x̂. It is clear that the smaller attenuation
results in a smaller, hence dimmer, volume reconstruction, as expected.

In Figure 9 a larger reconstruction of the Lorenz system is presented. In this case, an 800x800x800
volume is rendered. It is filtered to remove volume elements less than 2 (after byte scaling to
[0, 255]) which reduces the diffuse background seen in the 200x200x200 volumes.

A color table can be applied to the rendered image, i.e., the image displayed after alpha blending;
this is shown in Figure 10. The color table makes for a cleaner image but it is important to
remember that the colors show the effect of the alpha blending as well as the effect of any change
in µ value.
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Figure 8: Volume reconstructions of the Lorenz system. For both, 30,000 points, (A = 16, R =
45, B = 4), 200 slices resulting in a 200x200x200 volume. On the left, µ = 0.25 for x > 0 and µ = 1
otherwise. On the right, µ = 1 always. The effect of the µ value is easily seen. The volumes are
somewhat small and reconstruction effects have not been removed by filtering.
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Figure 9: The Lorenz system with the same parameters as in Figure 8 but reconstructed to
800x800x800 and filtered to remove volume values less than 2.0. The filtering removes much of
the diffuse cloud of points and the larger reconstruction volume shows sharper discrimination be-
tween points.
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Figure 10: The same as Figure 9 but applying a color table to the rendering. This produces a
cleaner looking image but may obscure the shading due to any changes in the µ value as the color
selection is based on the alpha blending result.
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4 Discussion

The projections shown in Section 3 are useful on their own. Instead of a truly flat projection, as
is found by ignoring some dimensions while plotting others, the projections show some essence of
the original structure of the trajectory, in much the same way that a classic chest x-ray shows the
internal structure of the body. The ability to make such projections in any orientation through the
trajectory, which is not fully explored here, could add insight to the state space structure. The
addition of color to the projections, either through a color table as shown here, or through the
application of a more sophisticated color assignment scheme. This is a possible future direction to
add still more to what can be gained through visual inspection.

The exact projection implementation outlined in this paper cannot be considered state-of-the-
art, however. The reconstructed volumes show artifacts, as do virtually all image reconstruction
techniques, that could perhaps be mitigated by refining the projections. Of necessity, the projections
are only approximations of the trajectory, as the state space must be discretized. Because of this,
two or more trajectory points will appear in the same location in the projection image. This
overlapping is not all negative, perhaps. One could imagine a scenario where the projection image
size, combined with the pixel values (which need not be integer), might scale in a way that is related
to the capacity dimension of the chaotic system. A single projection may not be sufficient for this
purpose, but a small set of projections, perhaps along the orthogonal directions, might allow such
a calculation. This is also a topic for future work.

Reconstruction of projections into a volume for visualization was also demonstrated in this paper.
It is clear that there are artifacts in the reconstructions, however. In part, some error is expected
as filtered backprojections is only completely accurate in the limit that the number of projections
goes to infinity. Also, as mentioned above, the size of the projection images also greatly affects the
results. In reconstruction, one is attempting to build a volume representing what is in reality a
mathematical ideal, a cloud of points. After reconstruction, the points have an existence in three
dimensions through the voxel size of the volume.

Visually, the larger the projection image, the cleaner the rendered volume. From a comparison of
Figure 8 to Figure 9, it is clear that some volume artifacts are due to the size of the projection
images. Also, in the smaller volumes, on the edges of the attractor, there are streaks which are
likely due to a combination of finite number of projections (and angular separation of projections)
and the size of the boxes the state space is broken into.

The exact cause of the diffuse haze in the reconstructed volumes is unclear. Imperfections in the
choice of the ramp filter shape will lead to imperfect cancellation of the blurring introduced in the
backprojection process. If this is the case, residual information will be left in places in the volume
where there should be none. A curious artifact is also seen in some volume renderings. This is
the appearance of two light colored spokes starting near the center of the Lorenz attractor running
radially outward.

It is known that iterative tomographic reconstruction [7] produces superior results to filtered back-
projection. However, until recently, the computational cost of iterative reconstruction has prevented
its acceptance in commercial tomographic systems. It is possible that many of the artifacts seen in
this paper would be greatly reduced or eliminated by using iterative reconstruction; still another
area for possible future work.

The visualization of high-dimensional data often makes use of interactive techniques [4]. Future
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work will look at the introduction of such a system applied to the techniques described here. For
example, one might be able, with a mouse and a 3D region of interest, to select a particular
part of state space and generate shaded projections or reconstruct the a small region in 3D. The
combination of user selection of locations, assignment of attenuation coefficients, projections (2D),
reconstructions (3D) and color could perhaps greatly assist the researcher interested in gaining
insight into the structure of a complex system.

This paper concerns the application of tomographic principles to the 3D state space of a chaotic
system. It was shown that it is possible to create projections of the points in the trajectory by
simulation of the x-ray transmission process and the assigning of attenuation values to the points.
In this sense, the technique was successful. Yet, in another sense, this is a technique in search
of a specific use. Perhaps further investigation of the items mentioned above will reveal an ideal
situation in which to use Poincaré tomography.
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Abstract

This paper introduces a new technique for intelli-
gently exploring the reachability sets of spacecraft in
arbitrary systems. A reachability set for ∆t is the set
of trajectories in state space that result from a set of
perturbations on a set of trajectories. The chaotic na-
ture of most gravitational systems makes it difficult
to quickly characterize regions in the reachability set.
Artificial intelligence routines can assist in exploring
regions of interest. With a search function and a fit-
ness function, certain regions of the reachability can
be explored quickly and in greater detail, allowing
an on-board spacecraft to determine its own course
without input from Earth-based controllers. In this
paper, I report on initial explorations with a sim-
ple search function and two fitness functions, analyze
the reachability set of an arbitrary starting point in
the reduced three-body problem, and discuss future
work.

1 Introduction

In space mission planning, the reachability set for
∆t is the set of all possible positions and velocities
obtainable through the consumption of fuel at any
times between the t0 and t0 + ∆t. This determines
the entire region of space that can be reached in a
finite amount of time, and is incredibly important in
determining impact and escape scenarios. The state
space for gravitational systems has 6 dimension, 3 for

the position vector and 3 for the velocity vector. In
state space, a ∆V fuel burn corresponds to a jump
along the velocity coordinates of magnitude ∆V . The
reachability set for a single burn is therefore the set
of points reachable in ∆t from the trajectories that
are within the ∆V sphere at the time of the burn.
In space missions, ∆t might represent the extent of
certainty in future planning, or the lifetime of the
spacecraft.

Starting from an initial position and velocity, a
naive simulation method for exploring the reacha-
bility set is to apply ∆V on evenly-spaced intervals
along a subset of a sphere of radius ∆V . Evenly-
spaced test trajectories may miss complicated regions
of space while over-sampling uncomplicated regions.
Humans can scan data and identify interesting fea-
tures of the reachability set, such as a high level of de-
formation and variability, and use that information to
refine the search. In the absence of humans, artificial
intelligence techniques may stand in proxy and make
high-level decisions on which regions of the reacha-
bility set deserve more attention. This can be used
to plan a complicated trajectory in a short amount
of time. A spacecraft in orbit has a small window of
opportunity to plan ahead, and Earth may be too far
for fast communication. For example, a spacecraft
without contact with Earth may need to quickly de-
termine a course of action that does not result in an
impact or an escape.

Some trajectories with close starting conditions in
chaotic space may diverge wildly after a short amount
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of time, or they may have similar fates. Thus, an in-
telligent search algorithm must be able to distinguish
between regions that have a high level of divergence
and regions that share similar trajectories and fates.
A large region of impacts on a body, for example,
may not require exhaustive exploration. However,
“holes” may exist in such regions, so an intelligent
search algorithm must be able to find holes. Finally,
the search algorithm must be fast enough to be prac-
tical.

Several researchers have devised methods to par-
tition state space into such regions. They include
Feng Zhao’s ([12]) algorithm for partitioning a state
space into flowpipes characterizing regions of similar
behavior, separated by boundaries. This work de-
veloped into the Spatial Aggregation Language ([1],
[9], [11]), which can autonomously aggregate a set of
data into a set of clusters. The work of Robins et
al., ([5], [6], [7]) examines the topology of data points
and uses this information to accurately group related
data. These methods share with my approach the de-
sire to accurately classify high-dimensional sets from
a finite number of data points.

This paper describes a simple kd-tree search al-
gorithm that selectively increases search resolution
along subsets of the space of starting conditions. The
kd-tree search algorithm is a selective search algo-
rithm used to explore only those regions that are
deemed “interesting”. This paper also describes two
fitness functions that define whether a region is worth
exploring. One looks for the boundaries between re-
gions with differing end conditions (impact, escape,
unknown); the other looks to see if the count of
close passes to bodies exceeds a threshold. The fit-
ness function is used by the kd-tree algorithm to se-
lectively explore regions. Combined, they represent
the first iteration of the intelligent search algorithm.
These algorithms are applied to a single case in a re-
stricted three-body system, and the resulting space
partition is examined in detail. I then discuss pos-
sible variations of the search and fitness functions,
and how these initial explorations will affect future
research.

Algorithm 1 kd-tree search algorithm

levels← ∅
sc← Grid of starting positions and velocities
for i = level→ maxlevels do

for all s ∈ sc do
s← 〈s, Trajectory(s)〉

end for
newsc← ∅
for all s ∈ sc do
nei← NeighborsOf(s)
if Fitness(s, nei)→ True then
newsc = newsc ∪ SubdivisionOf(s, nei)

end if
end for
levels← levels ∪ sc
sc← newsc

end for
return levels

2 Algorithm Descriptions

This section will describe in detail the search algo-
rithm that selectively explores the reachability set,
and the two fitness functions used by the search al-
gorithm to determine which regions require more ex-
ploration.

2.1 Kd-tree Search Algorithm

I devised a kd-tree search algorithm [2] to effi-
ciently explore reachability sets. This algorithm was
easy to code, and thus was able to give me early feed-
back on the intelligent exploration approach.

The algorithm currently assumes a grid layout of
starting trajectories is used. The grid provides an
easy and consistent way to check groups of neighbor-
ing trajectories by looking at their indices. Subdivi-
sion of the grid is also simple and allows subdivided
points to share the same indexing notation for fu-
ture neighbor groupings. The grid corresponds to
∆V along the velocity axes.

A high-level description of the algorithm is in Algo-
rithm 1. The algorithm runs passes on an several sets
of starting points. Each pass creates a new “level”,
in which all the points have the same resolution and
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share the same indexing notation. No levels share
points. The interesting regions from current level
are used to define the points examined in the next
level. The algorithm terminates after a defined num-
ber of levels have been explored, and returns the set
of levels explored by the algorithm.

The variable sc refers to the current level (set of
trajectories), and s refers to a single trajectory in sc.
nei is a set of points in sc that are neighbors to s,
and newsc is a temporary variable for the next level.
Trajectory runs a single starting condition and re-

turns the full trajectory. It implements a Runge-
Kutta 4th-order integrator of this system, with a
timestep size of 0.001s. The trajectory terminates
either upon impact, escape, or after a set amount of
time.

The NeighborsOf function returns the points in
sc that, together with s, constitute a 2x2x...x2 hy-
percube with s having the minimal index. In 2D
space, the neighbers are a 2x2 square with s in the
lower left corner.

The Fitness function returns true if a set of trajec-
tories warrants more investigation on the next level.
Currently, this is either the end result or minima
function.
SubdivisionOf returns a 2x2x...x2 grid of points

for each point in s and nei. The SubdivisionOf func-
tion implements the kd-tree, in which the subdivided
points are the children of a point (either s or a point
in nei). Each point in the subdivided space has one
of its vector elements varied by ±d/4, in which d is
the distance between adjacent points on the parent
level.

I modularized the algorithm implementation to
allow for the easy swapping of subroutines. The
functions Trajectory, NeighborsOf , Fitness, and
SubdivisionOf can be modified without altering the
search algorithm.

2.2 End Result Fitness Function

The End Result fitness function looks for differ-
ences in end conditions between groups. These dif-
ferences point to a boundary between regions that
impact a body, escape, or terminate without resolu-
tion. For any trajectory that impacts a body of finite

Algorithm 2 End result fitness function

sq ← s ∪ nei
if ∃s1, s2 ∈ sq | EndResult(s1) 6= EndResult(s2)
then

return True
else

return False
end if

size, there is a set of nearby trajectories that also hit
the body in different places. By looking for bound-
aries, large regions with similar end results (such as
all impacting a single body) will not be explored in
more detail than necessary.

Algorithm 2 provides a high-level description of the
end result fitness function. This function looks for
boundaries between end results. An end result can
be an impact with any body in the system, an escape,
or an undecided result for a finite time. The bound-
ary indicates regions of interest by excluding regions
that share similar results. This algorithm mimics an
edge-detect algorithm found in many image-editing
software packages.

The EndResult function determines impacts by
checking to see if the trajectory is within the radius
of either body. The trajectory is considered escaped
if the Keplerian energy E = (v + w × r) · (v + w ×
r)/2 − 1/|r| > 0. The check approximates a single
point mass at the origin, in which v is the velocity,
w is the rotational velocity of the frame, and r is the
distance to the origin. The escape check is performed
at greater than 10 units; at this distance and further,
the approximation is valid.

My hypothesis is that in chaotic gravitational sys-
tems, the boundary between end result regions is a
fractal. If so, there exist regions in the state space
in which arbitrarily small perturbations in the appli-
cation of ∆V may produce differing end results. I
explore this in Section 5.

2.3 Minima Count Fitness Function

The Minima Count fitness function identifies
highly-curved trajectories as regions of interest. A
signature of curved trajectories is the number of times
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Algorithm 3 Minima count fitness function

sq ← s ∪ nei
for all pt ∈ sq do
m ← Count of all minima of trajectory of pt
relative to each body.
if m ≥ threshold then
return True

else
return False

end if
end for

the trajectory has a distance minimum with respect
to a body. The minima count is a simple metric that
measures the curvature of space. This fitness func-
tion eliminates regions of space in which trajectories
are straight and/or terminate quickly.

Algorithm 3 provides a high-level description of the
minima count fitness function. In this function, min-
ima can be considered synonymous with periapses.

I hypothesize that this function is useful in locating
stable trajectories that do not impact a body.

3 System Description

As a test case for this approach, I used the well-known
2D Circular Restricted Three-Body System [8]. This
system uses a frame of reference positioned at the
center of mass of the system, rotating at the angular
velocity at which the two major bodies orbit one an-
other. The mass of the third body (the spacecraft)
has negligible influence on the other two bodies. The
system is represented by Equations 1-4. The vari-
ables are non-dimensionalized; the distance between
bodies is 1, and the sum of the masses is 1. Although I
use seconds to denote time, it too is non-dimensional.

x′ = vx (1)

y′ = vy (2)

v′x=− µ(µ+ x− 1)

((µ+x−1)2+y2)
3/2
− (1−µ)(µ+x)

((µ+x)2+y2)
3/2

+2vy+x

(3)

v′y=− µy

((µ+x−1)2+y2)
3/2
− (1− µ)y

((µ+x)2+y2)
3/2
−2vx+y

(4)

µ =
m1

m1 +m1
(5)

For all experiments, I set the mass of the smaller
body µ = 0.2. Smaller µ values reduce the smaller
body’s influence, asymptotically approaching the in-
tegrable Kepler equations of motion.

Because the reachability set is complete set of lo-
cations that can be reached by burning fuel from a
starting point, it was appropriate to use a single start-
ing position for all tests. I chose a point between the
two bodies and on the axis: x0 = 0.5, y0 = 0. For
determining impacts, I set the radius of each body to
be 0.1 unit.

I varied only vx0 and vy0. As initial speed increases
to ∞, gravitational influence on the trajectory curve
goes to 0 in the time the body remains in the system,
and thus the trajectory will either impact one of the
two bodies on a straight line (outer edges of Figure
1), or will escape the system. Thus, the focus of the
algorithm should be in a bounded region of initial
velocity space.

4 Experiments

Starting with the initial position given in Section 3,
I examined the initial velocity space to locate the ex-
pected fractal region. I set the initial grid to be a
10x10 grid of points in (vx, vy) space, ranging from
−2.5 to 2.5 on both axes. This region of starting
velocities contains in its entirety a complicated set
of boundaries. Using the end result fitness function,
the starting level of 10x10 points can be seen in the
left panel of Figure 1. This produced a grid of 100
points, which are colored as squares according to the
end result fitness function (Algorithm 2). All 2x2
squares with differing end results were subdivided
into 4 points per point until seven levels were pro-
duced. The kd-tree search algorithm examined 77028
points in total. If every point on every one of the
seven levels were examined, it would total 546100.
Thus, the kd-tree search algorithm and the end re-
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Figure 1: The initial velocity end result space after one pass (left) and seven passes (right) at 20 seconds
each, ranging from -2.5 to 2.5 on both the X-axis (vx) and the Y-axis (vy). Blue indicates an escaped
trajectory, green indicates an impact on the more massive left body, and red indicates an impact on the
less massive right body. The intensity of the color represents the time taken to record an end result. White
indicates that after 20 seconds, the trajectory did not impact or escape. The large green-black region on the
left is the left body impact zone; likewise, the large red-black region on the right is the right body impact
zone.

sult fitness function only examined 14.1 percent of the
possible search space. The selective nature of the al-
gorithm can be seen in Figure 1 on the outside edges;
several contiguous escape (blue) regions were not ex-
amined in further detail on future passes. Thus, the
algorithm focused only on the border regions near
the center of the image. While I did not examine the
same region with the minima count fitness function,
I used this overall image to determine regions that I
could then explore in more detail with both fitness
functions.

4.1 Closer Examinations

The overall characterization of the initial velocity
space revealed regions of interest. I chose to examine
two regions in Figure 1.

One such exploration focused on a large contigu-
ous white region centered around the starting veloc-
ity (0, 1.15) units/s. Figure 2 zooms in on this re-
gion. The white region indicates that the trajectories
did not impact or escape, and thus are likely highly-
curved. Thus, I chose to explore with the minima
count fitness function, deciding that a minimum total
of 40 minima required more exploration. I felt 40 was
a good number to isolate this region from surround-
ing areas. This choice is reflected in the granularity
of the images. The lower center region has a multi-
tude of minima for both bodies, as indicated by the
yellow hue.

The other exploration focused on the spiral region
near the starting velocity of (0.56,−0.84) units/s, as
shown in Figure 3. This region warranted more in-
terest because it contains a spiral. A never-ending
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Figure 2: A region in the vicinity of (0, 1.151) units/s,
with each point simulated for 200 seconds. The left
panel has the same end result coloring scheme de-
scribed in Figure 1. The right panel uses the fol-
lowing color scheme: the green intensity is the ratio
of left-body minima to 100, and the red intensity is
the ratio of right-body minima to 100. Nearly equal
combinations of red and green are shown as yellow.
Lower left corner at (−0.34, 0.96), upper left corner
at (0.34, 1.64)

spiral is indicative of fractal structure. Here, I chose
to zoom in to the spiral twice to see if the spiral ex-
isted at small levels.

I also sampled single trajectories from each of the
interesting regions to have a visual representation of
the trajectory in addition to its end result or minima
count. The descriptions of these, along with com-
ments on the patterns found within the fractal, can
be found in Section 5.

5 Results

5.1 Boundary Description

Contiguous impact regions are a projection of the sur-
face of the body to the velocity space. A trajectory
that impacts a planet is surrounded in the initial state
space by arbitrarily close trajectories that impact ar-
bitrarily closely to the original impact point. The
boundary of this region is formed when a trajectory
barely misses a planet, and thus its fate is not easily
determined without further simulating the trajectory.
The boundary is similar for escapes; the boundary is

Figure 3: Top left: a close look at the spiral, with the
end result coloring scheme. Top right: the minima
colorization. Bottom left: a closer look at the spiral,
with the end result coloring scheme. Bottom right:
the minima colorization. Top row: lower left corner
at (0.37,−1.02), upper right corner at (0.83,−0.57).
Bottom row: lower left corner at (0.5487,−0.8564),
upper right corner at (0.5713,−0.8335).

defined by trajectories that have a Keplerian Energy
of 0. If each body were a point mass without vol-
ume, nearly every starting state would either escape
or travel in a never-ending orbit of some sort. The
probability of a trajectory falling exactly on a point
mass is (likely) zero. Thus, I conjecture that non-
point bodies are required for impact boundaries to
exist in the state space. I further conjecture that the
boundary between trajectories that have an arbitrar-
ily long path, in which the end result may differ for
arbitrarily small distances between starting points on
nearby trajectories, is fractal.
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5.2 Smooth and Fractal-like Regions

Figure 1 shows a compelling fractal-like structure of
end result regions. As expected, large starting veloc-
ities tend to escape or impact quickly. However, the
right panel reveals highly detailed structures. Visi-
ble within the image are swirling spirals, contiguous
colored regions folded upon themselves, and interest-
ing boundaries between colored regions. The image
is not symmetric because neither the system nor the
placement of the starting position is symmetric (ex-
cept that the starting position is on the line between
centers of mass). However, symmetry is hinted at
in many places. Two major spirals can be found,
roughly symmetric to the velocity origin (the lower
right one is shown in Figure 3). Spirals are indicative
of regions in which sensitivity on initial conditions is
a major influence on the end result. A large green
curved band stems from the right impact zone and
tends to the upper left spiral; a red curved band simi-
larly stems from the left impact zone and goes toward
the lower left spiral. Also, large white regions exist
both directly above the origin (as shown in Figure 2),
and below the origin.

Several smooth boundaries can be found between
end result regions, especially regions that border the
major impact zones. I hypothesize that these smooth
boundaries are the regions in which a spacecraft
barely avoids impacting one planet, but soon impacts
the other. The smoothness indicates that, at least in
these areas, the end-result region boundaries are not
fractal.

The major spirals in Figures 1 and 3 do seem to
be fractal in nature. The successive zoomed images
provided in Figure 3 show remarkable self-similarity.
This spiral contains large contiguous bands, sepa-
rated by white bands dotted with all three end re-
sults. I suspect that as I let the simulation time
run to ∞, the white bands would shrink and be re-
placed by ever-smaller contiguous colored regions. I
believe that these bands in the spiral contain an infi-
nite number of projected images of each planet. For
the purposes of space mission planning, fractal re-
gions should be avoided if the spacecraft has a de-
fined goal; the uncertainty in the starting position
and the applied ∆V are more than enough to ensure

an unpredictable fate.

5.3 Boundary Fractal Dimension

D = lim
ε→0

logN(ε)

log 1
ε

(6)

The fractal dimension of the boundary can be es-
timated by counting the number of grid points that
share a boundary. If the boundary is truly a frac-
tal, the fractal dimension should be in the set (1, 2)
in the 2D space of starting velocities. The bound-
ary does not fall conveniently on single points, how-
ever, so the boundary may exist on any or all of the
points from each subdivided parent point that con-
tains the boundary. The seventh pass of the full frac-
tal image contains 49864 points, each a square of side
length ε = 5/(9 ∗ 26) = 0.00868. The full grid has a
length of 5.5̄ when considering the outer edges of the
squares. Normalizing the length by this factor results
in ε = 0.0015625. Because 49864 points assumes each
of the four points of a subdivided sixth-level point
has a boundary, I divide by four to provide the lower
bound. Following Equation 6, the fractal dimension
is therefore likely in the set [1.460, 1.674]. Because
I performed only seven subdivisions, and the white
spaces are included, this range only gives a broad
idea of the true value. However, if the dimension
is shown to be non-integer on very small scales, the
boundary is likely a fractal.

5.4 Spiral Sample Trajectories

Sensitive dependence on initial conditions is very im-
portant in the spiral regions. A sampling of points
from around the spiral reveal that highly precise
starting velocities lead to divergent end conditions
after a short amount of time (under 20 seconds). Fig-
ure 4 shows a sampling of points taken from multi-
colored points embedded in one of the white bands
on the spiral. Long and complicated paths end up di-
verging significantly after a certain amount of time.
I conjecture that as trajectories close in on the spiral
center, the paths taken by nearby trajectories remain
similar for very large time spans, orbiting both plan-
ets in a large circular orbit for that entire time, but
must eventually diverge in their end condition.
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Figure 4: Left: a trajectory near the center of the spiral region in Figure 3, with starting velocity equal to
(0.5573,−0.8446), impacts the right planet. Middle: the trajectory that results when vx0 is increased by
0.00015, which appears to escape. Right: another increase in vx0 of 0.00015 results in an impact on the left
body.

5.5 Stable Orbits

The region in Figure 2 is anomalous; it is not deter-
mined entirely by the flow of the swirling boundaries
around it, so in a sense it stands out. The large
amount of yellow indicates that the orbits in this re-
gion are stable over the time frame, with multiple
minima with respect to both bodies. A random sam-
pling of a point in this region shows an apparently
stable orbit (Figure 5). It may be a limit cycle or a
quasi-periodic orbit, which may eventually impact or
escape after an extended amount of time, or it may be
a periodic orbit that is poorly approximated by the
Runge-Kutta integrator. I expect that any starting
velocity in the region is quasi-stable. This indicates
that regions like the one in Figure 2 are desirable for
a high level of stability in an orbit around one body.
Determining if this region is dense in stable orbits re-
mains to be done. If true, then spacecraft are able to
enter a stable orbit without requiring infinite preci-
sion on their thrusters, and such velocity regions can
be quickly found.

Figure 5: The trajectory with a starting velocity of
(0, 1.151). This point was embedded in the lower cen-
tral yellow region shown in Figure 2.

6 Future Work

The results generated by the kd-tree search algorithm
and the fitness functions reveal complicated behavior
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and interesting features in the starting velocity space
of a reduced three body system. However, there are
multiple avenues for improving this approach.

Dimensionality could be increased at the cost of
speed. All results included in this document refer-
enced only a single starting position. Other starting
points may resemble the included fractals, or may
be completely different. Efficient AI techniques are
required to examine higher-dimensional spaces in a
practical amount of time. The 14.1 percent efficiency
of the kd-tree search algorithm is good, but can be
improved. Candidate approaches include swarm in-
telligence [3], in which each data point is a member of
the swarm. Genetic algorithms [4] may also be used
to evolve a group of points to boundaries. On the
other hand, these approachs may not be well-suited
for fractal spaces, so a new approach based on these
ideas may be necessary.

The methods of Zhao, et al. ([1], [9], [11], [12]),
and Robins, et al. ([5], [6], [7]), are advanced cluster-
ing techniques that could improve the performance of
the search algorithm. These algorithms could be im-
plemented with a fitness function to determine which
boundaries should be explored, which regions include
stable orbits, and which regions a spacecraft should
avoid. For example, for a spacecraft to avoid hitting a
body, it could cluster all impact trajectories together
and remove them from the valid set of trajectories.

Additional fitness functions may lead to better
qualitative analysis of regions. In addition to end
result and minima, functions could examine:

• Lyapunov exponents along the length of a tra-
jectory. This may lead to a better analysis of
chaotic behavior at the expense of more compu-
tations.

• The curvature of a trajectory. This could be a
better indicator of curvature than the minima
count. Perhaps the curvature calculation could
be used in conjunction with minima count.

• The time to impact or escape. This might be
important for fast decisions on which regions to
avoid.

• Periodicity. This can locate stable orbits in
space. Stable orbits can affod spacecraft more

time to plan ahead, in addition to being useful
for studying a single body.

• Close passes to specific bodies. This could be
useful in locating regions in which to perform a
gravity slingshot maneuver.

Finally, a suitable integrator is required to give ac-
curate results; the Runge-Kutta integrator does not
maintain invariance of total energy. I will use a sym-
plectic integrator [10] for future work.

7 Conclusion

I have defined a simple algorithm that can locate
boundaries between regions with different properties
(end results and minima included here). I used my al-
gorithm to characterize the velocity space of a single
position relative to a restricted three-body system,
and has revealed interesting trends in the regions.
While I did not prove it, I show that the region has
fractal qualities. I also determined that specific re-
gions of the velocity space lead to more unpredictable
behavior than other regions. Finally, I described fu-
ture approaches that will improve the method in nu-
merous ways. I believe this research has the potential
to give autonomous spacecraft the quick and accurate
means to plot their own missions.
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Applications of Chaos in Cyptography

Donny Warbritton

May 12, 2011

1 Chaos in Cryptography

For years [2] researchers have attempted to combine chaotic dynamics with cryptography in

such a way that the resulting system is on par with modern cryptographic implementations.

The characteristics of chaotic systems (sensitive dependence on initial conditions and similar-

ity to random behavior, in particular) seem to make them a prime candidate for obfuscating

information in such a way that the result appears random, and similar input data bears little

ultimate relation. Despite what appear to be distinguishing advantages of applying chaos

to cryptography, we yet await a system that is both sufficiently secure and aptly brisk to

compete with current systems [4]. Nonetheless, clever systems that integrate cryptography

and chaos exist [2], and their complexity make for interesting analysis.

Chaotic dynamics and cryptography have been historically mismatched, oftentimes due to

their unrelated research goals. Because of this, many chaos-based cryptographic systems have

been proposed that do not follow best practices laid out in cryptography [3]. On top of

this, many of these systems are not only weak, but slow as well. In part, this is due to the

computationally expensive multiplications and divisions with floating-point numbers that are

common in the creation of chaotic trajectories.

In [2], the authors present both a chaotic Feistel cipher and a chaotic uniform cipher. Both

ciphers were designed with cryptographic principles in mind, including resistance to both

linear and differential cryptanalysis. The ciphers they describe are largely based on techniques

common to traditional ciphers, and they attempt to involve chaos at specific points where

it is most warranted, rather than trying to force a strong cryptographic system out of an

experiment in chaos. While the authors admit that the cipher is still lacking in some areas,

and the link between chaos and cryptography is occasionally tenuous, the attempt is still

impressive academically.

Because of the complexity of a modern cipher, chaotic or otherwise, attempts to analyze them

will be abandoned in favor of a system that can be presented and discussed within the limits

of this paper.

2 Deconstructing a Chaotic Cryptosystem

In order to discuss a chaotic cryptographic system that does not require an advanced knowl-

edge of cryptography, consider the scheme proposed in [1]. As described, this system consists
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of two similar rounds, relies on the Lorenz system for pseudo-random data, and has a key

that is the concatenation of the initial conditions that uniquely describe the two Lorenz tra-

jectories used in the cipher. (As an aside, the original description of the system is lacking

detail in several areas, but it appears unlikely that there exists an interpretation significantly

more cryptographically secure than the one described in this paper.)

2.1 Algorithm

For each round of encryption, it is necessary to generate a Lorenz trajectory whose length

corresponds to the number of bytes in the plain text. To generate a unique Lorenz trajectory,

the XYZ coordinates, along with the Rayleigh coefficient must be specified (σ,β , the time

step, and the initial time are all fixed). For each point in the orbit, the XYZ coordinates

(treated as double-precision floating point numbers conforming to IEEE 754) are extracted

to form a 24-byte binary value.

In the first round, the plain text is stepped through 24-bytes at a time, and the intermediate

cipher text is generated by performing a binary XOR on the plain text with the corresponding

binary value derived from the chaotic orbit. The second round acts on the intermediate cipher

text in a similar manner to the first round. A new trajectory is generated with different initial

conditions and the XOR operation is applied as before. Additionally, after each 24-byte chunk

has been acted on, it is swapped with a 24 byte chunk somewhere else in the intermediate

cipher text. To perform the swap step, the current coordinates of the trajectory (the author

does not describe how they should be combined, or if all three should be used) are converted

to integers, modded by the length of the input, and swapped.

2.2 Cryptanalysis

In order to simplify the analysis, consider each round individually. In particular, if it can

be shown that a round does not contribute to the strength of the cipher, then the remaining

round is the sum of the strength. As the first round is the simpler of the two, we will consider

it first.

Let us assume that the key space (set of all possible initial conditions) is too expansive to

search exhaustively. Then we are left with either strictly the cipher text, or some portion of

the plain text and the cipher text that was emitted for a given unknown key.The later case

is trivially true if we are allowed to encrypt arbitrary plain text with the secret key, and may

be true if we are good at guessing.

Because the plain text is encrypted in blocks of 24 bytes using a unique point on the attractor,

by knowing a small portion of the original text and its corresponding cipher text, we can

determine an initial condition for this trajectory. If this is not at the beginning of the file, we

would simply solve the differential equations for Lorenz with a decreasing time variable until

the beginning of the file is reached. We have neglected to mention the Rayleigh coefficient

here, but the key space has been so dramatically decreased at this point that it could now be

obtained by brute force.

While it appears that the first round could be reversed with a reasonably short amount of

information, the second round is more complicated. The swap means that, not only is the
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text out of order, but also that different pieces may be XOR’d different numbers of times.

Firstly, the shuffle that is used is a poorly implemented Fisher-Yates shuffle. In this case it

means that not all permutations of the intermediate cipher are equally probable. Not only

that, but converting the floating point values used in the trajectory to integer values means

that the space a new swap value can be chosen from isn’t very large, and there is a clear bias

for some areas of the cube that encompasses the attractor to be chosen more frequently than

others. This small key space and poor source of random data, along with the implementation

problem, means that reversing the swap may be possible without having any knowledge of

the plain text.

If a chosen plain text attack is possible, then discovering the mapping between initial and final

positions in the map is trivial: starting with some chosen plain text, perform the encryption

and save the result. Next, modify the plain text by one by and encrypt the message again.

Because this cipher has no diffusion (the effect of a single plain text bit spreading through the

entire cipher), the resulting cipher text will be identical to the first except for a single block.

This process can be repeated as many times as necessary to develop a complete mapping.

Once again, the key space has been dramatically reduced, and it is reasonable to expect that

a brute for search could uncover the desired sequence. This process reveals useful information

about the second half of the key - enough to fully reverse the second round.

2.3 Practical Considerations

Due to the implementation of the swapping step in the second round, any portion of the

intermediate cipher may need to be accessed throughout the encryption process. This is

trivial if the text to be encrypted is small (say, smaller than the size of the cache); however,

as the plain text increased, the time required to encrypt it may increase drastically. In

particular, if the plain text is larger than the size of the cache, then parts of it will need to be

retrieved from main memory, a process on the order of one to two orders of magnitude slower

than accessing the cache. Even worse, if the file cannot be fully contained in main memory,

random seeks to disk will be required. This could quickly become so prohibitively slow as to

appear that it will never finish.

2.4 Conclusion

Although the author is in no way qualified to address serious cryptographic protocols, it is his

opinion that this particular cipher is not suited to protecting sensitive information. Although

the flaws in both rounds have not yet been combined in such a way that either the plain text

or the secret key may be elicited, it appears likely that such a goal may be obtained. It is

possible to induce the cipher to reveal information about the secret key being used such that

the space in which it lives can be narrowed significantly with relatively little effort on the part

of the attacker. Diffusion in the cipher, a property necessary for any strong cryptographic

system, seems to be non-existent in this system, leading the author to believe that differential

cryptanalysis would be a ripe avenue for attack. Furthermore, the practical considerations

discussed above mean that encryption of large files may be unreasonably time consuming

anyway.

3 Page 66



References

[1] M. Brunel, ”A Lorenzian based chaotic encryption scheme” in Projects in Chaotic Dy-
namics: Spring 2010.

[2] Naoki Masuda, Goce Jakimoski, Kazuyuki Aihara, Ljupco Kocarev, ”Chaotic Block Ci-

phers: From Theory to Practical Algorithms, IEEE Transactions on Circuits and Systems
- I: Regular Papers, Vol. 53, No. 6, June 2006.
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