
Assembly by Intelligent Scaffolding

Erik Komendera, Dustin Reishus, and Nikolaus Correll

erik.komendera@colorado.edu, reishus@colorado.edu, nikolaus.correll@colorado.edu

Department of Computer Science
University of Colorado at Boulder

Technical Report CU-CS 1080-11

April 2011

Assembly by Intelligent Scaffolding
Erik Komendera Dustin Reishus Nikolaus Correll

Abstract—We propose a novel class of algorithms for au-
tonomously assembling structures from inert building blocks
guided by intelligent scaffolding components. Intelligent scaffold
units are equipped with sensing, actuation, computation and
communication abilities and facilitate the attachment of inert
building blocks to the structure. After attaching an inert building
block, the scaffold structure reconfigures to attach the next
block until the structure is completed. The proposed algorithms
are scale-free and independent of the implementation of the
locomotion of building blocks and intelligent scaffolding blocks.
For example, movement of building and scaffold blocks can
be achieved using manipulating robots or self-assembly in a
well-stirred liquid. In a robotic assembly context, the intelligent
scaffolds take the role of markers on the structure and allow for
reducing the perception and coordination requirements on the
robotic team. In this paper, we describe algorithms for converting
any desired structure that can be represented as 3D lattice into
a finite state machine that is executed by intelligent scaffolding
blocks; we prove that all finite structures can be assembled using
intelligent scaffolds; and we provide examples of simulations that
assemble a square, a fractal structure, and a model of a space
station, each using only three intelligent scaffold components.

I. INTRODUCTION

We wish to design distributed algorithms that guide the as-
sembly of structures from passive building blocks. We propose
to coordinate the assembly of structures using “intelligent scaf-
folding”. Intelligent scaffolds (IS) are computational building
blocks that have some sensing, actuation, computation and
communication abilities. IS blocks store all the information
that are required to assemble a structure and serve as markers
on the structure as assembly progresses. IS blocks remain
in a contiguous group and always remain attached to the
structure. By continuously re-assembling along the surface of
the structure being built, arbitrary large-scale structures can
be built from inert components with only a few IS blocks
(Figure 1).

Autonomous assembly has the potential to revolutionize
manufacturing, repair, and construction from the nano- to
the macro-scale [29]. Miniaturizing this process is desirable
as it allows for parallel assembly of a large number of
structures and the assembly of structures in locations that are
not accessible by tools that are larger than the actual parts to
be assembled. Assembly using intelligent building blocks that
coordinate the process has been experimentally demonstrated
at the nano-scale using DNA tiles [1, 21, 18], at the meso-scale
using intelligent building blocks self-assembling in a liquid
[16], on an air table [12], using miniature robots [7], or by
disassembly [8] and at the macro-scale using reconfigurable
robots [23, 30], using mobile manipulators that are guided
by an intelligent structure [27, 28], building blocks equipped

Fig. 1. Intelligent scaffolds (red) assembling a L-shaped structure from
passive building blocks (blue), starting from the top, left in clock-wise order.
Scaffolding blocks communicate via their faces to attract other scaffolding
blocks and building blocks, or to detach from the structure.

with active markers [4], or mixed active/passive truss struc-
tures [31]. There is also a large body of theoretical work on
(self-)assembly algorithms that might be enabled by future
nano-robotic systems [19, 9, 3, 22, 20] or the possibility to
embed intelligence into building materials at a large scale and
at low cost [28, 10].

In all of the above approaches, building blocks equipped
with sensing, actuation, computation or communication ca-
pabilities need to remain in the final structure, which is not
desirable if the structure serves purely structural purposes,
e.g., when used as a bridge or habitat. In the IS paradigm,
however, the components containing computational capabili-
ties can be re-used after completing the construction and only
a few intelligent blocks are required to assemble structures
of arbitrary size. Other autonomous approaches that allow
for (self-)assembly of purely passive structures rely on the
application of external fields, e.g., magnetic [14], passive
effects [15], or stigmergy [26, 11], where the complexity of
the possible structures is limited by the perception capabilities
of the assembly agents, and none of these approaches allow
for the assembly of arbitrary complex structures.

The IS paradigm is scale-free and independent of the loco-
motion mechanism of building and IS blocks. For example,
IS blocks could guide a team of mobile manipulators to add
passive building blocks to a structure, remove an IS block, or
attach an IS block to the scaffold structure by signaling using
LEDs on their faces (see Figure 1, e.g.). In this case, robot ma-
nipulators that move blocks would not need to communicate,
would not need the ability to assess construction progress, and
could identify where to place the next block by relying on an
IS block as a marker using minimal perception abilities. At
a microscopic scale, intelligent scaffolds could self-assemble
in a well-stirred liquid and selectively bind passive building

blocks to their surface, detach, and re-attach elsewhere on the
scaffold until the desired structure is completed.

This research has immediate applications in enabling robot
manipulators with limited perception capabilities to build large
structures using cheap materials in the near future. We believe
its real potential, however, lies in providing a theoretical
framework for determining the sensing, actuation, computation
and communication abilities required by intelligent building
blocks on the micro- and milli-scale. Although most of the
self-assembly work in this size scale uses only passive effects
(capillary, electrical, shape-based, and magnetic) [15], recent
results in the field suggest that NEMS and MEMS are possible
substrates for the intelligent scaffolding algorithms proposed
in this research. For instance [24] demonstrates controlled self-
assembly of silver nano-cubes by selective functionalization of
their faces, and [25] demonstrates self-assembly of polymer
micro components by grafting DNA as binding agent on
their faces, leveraging the power of DNA self-assembly for
systems three orders of magnitude larger than the DNA itself.
Here, temperature can be used to control when certain DNA
strands assemble, and temperature-based sequencing of self-
assembly using DNA applied to the faces of silicon and
gold micro-components was demonstrated in [13]. Similarly,
selective heating of micro-sized components for assembly and
disassembly using solder (instead of DNA) has been shown
in [6]. Also, the emerging field of nano networks makes
rapid progress on wireless communication between micro-
sized devices; see [2] for a recent survey of the field. Finally,
although explicitly not bio-inspired, the intelligent scaffold-
ing paradigm bears resemblance to DNA translation. Here,
ribosomes correspond to intelligent scaffolds that execute
a sequential program provided by mRNA, and sequentially
assemble proteins whose components are delivered to it using
tRNA [17].

A. Contribution and Outline

This paper introduces the intelligent scaffold paradigm,
presents algorithms that compile arbitrary structures into pro-
grams for IS blocks, and demonstrate proofs that show that the
IS paradigm can guide the assembly of every finite structure.
Definitions are provided in Section II. Section III describes the
finite state automaton implementation of intelligent scaffolds.
Algorithms that generate assembly sequences for a given
structure are described in Section IV, along with proofs of
correctness. Algorithms and proofs are validated by simulated
assembly of a series of example structures, including a model
of the International Space Station, in Section V. Limitations
of the approach and future work are discussed in Sections VI
and VII.

II. INTELLIGENT SCAFFOLD DEFINITIONS

A structure is a connected subset of Z3, denoted S. Without
loss of generality, we will assume that 〈1, 0, 0〉 is in S.
Positions in a structure are occupied by blocks, which are
modeled as unit cubes. Structures can be assembled by starting
with all positions empty and adding one block at a time in a

position adjacent to the growing structure. The blocks do not
spontaneously combine with each other;1 scaffolds are needed
to catalyze binding reactions between blocks. A block that
binds to a scaffold will also bind to its neighboring blocks
and become a part of the structure. More formally, a structure
assembly sequence to assemble a structure S is a sequence
of structures 〈S0,S1,S2, . . . ,Sn〉 such that S0 = ∅, Sn = S,
and for all t ∈ [n], |St| = t.

An intelligent scaffold (IS) component is a computational
object with faces that are able to connect to and disconnect
from blocks or other scaffolds. IS components (sometimes re-
ferred to simply as scaffolds) direct the assembly of structures
by indicating where and when blocks and other scaffolds are
to be added to a growing structure. Scaffolds (defined more
formally in Section III) are modeled as unit cubes, and work
in groups to assemble structures. All scaffolds in a group must
be connected to at least one other scaffold in the group and
at least one scaffold in the group must be connected to the
growing structure.

Scaffold groups move scaffold by scaffold, with individual
scaffold components detaching and reattaching later to one of
the fixed scaffolds. By a sequence of such actions, we say
that the intelligent scaffold group moves along the structure.
Scaffolds will also selectively bind to either blocks or other
scaffolds, and will selectively detach themselves, allowing for
increased control over the assembly process. We define τ to be
an upper bound on the maximum size of a scaffold group. A
small τ implies that the structure may be cheaper to assemble
(requiring fewer computational components), but may take
longer to assemble.

More formally, a scaffold group is a connected sub-
set of Z3. Given a structure assembly sequence S =
〈S0,S1,S2, . . . ,Sm〉, a scaffold path for S, denoted T , is a
sequence of scaffold groups 〈T0, T1, T2, . . . , Tm〉 such that for
all i ∈ [m]:

1) T0 = {〈0, 0, 0〉} and
2) 1 ≤ |Ti| ≤ τ and
3) if i < m, then

∣∣|Ti| − |Ti+1|
∣∣ = 1 and

4) there exists a non-decreasing function f : N → N such
that

a) Ti ∩ Sf(i) = ∅ and
b) Ti ∪ Sf(i) is connected.

For all structures S, an IS assembly sequence for S is a pair
〈S,T 〉, where S is a structure assembly sequence to assemble
S and T = 〈T0, T1, T2, . . . , Tm〉 is a scaffold path for S. The
assembly time for the IS assembly sequence is m.

III. INTELLIGENT SCAFFOLD AUTOMATON

Intelligent scaffolds to build finite structures (and regular
infinite structures) can be implemented as finite state automata.
Individual scaffolds may rely on face configuration changes
(attachment of an adjacent block or attachment or detachment
of an adjacent scaffold) from its neighboring scaffolds to

1This assumption can be relaxed if mobile manipulators attach blocks
instead of random processes

TABLE I
DEFINITIONS OF SYMBOLS USED THROUGHOUT THE PAPER

Symbol Meaning
[k] {0,1,2,. . . ,k}
S Structure (subset of Z3)
n = |S| Size of structure S
S Structure assembly sequence (sequence of structures)
T Scaffold group (subset of Z3)
T Scaffold path (sequence of scaffold groups)
m = length of T Assembly time
〈S,T 〉 IS assembly sequence
Nf Face-adjacent region, or von Neumann neighborhood
Ne Edge-adjacent region
NS Neighborhood of S

change its own state; thus, each scaffold will pass messages to
neighboring scaffolds indicating a change of one of its faces.
Messages provide the input for a scaffold to change its internal
state: it does this by comparing a received message to a table
of transition requirements for the current state. If one such
requirement is met, the scaffold component transitions to a
new state.

Note that, like many other formal models of self-assembly,
the IS paradigm is a restriction of cellular automata. Every IS
system can be modeled as a three-dimensional CA. However,
the additional restrictions imposed in the IS system provide
a better model of physical self-assembling systems than more
general CA models.

A. Finite State Machine Model

Each scaffold consists of a state, a set of face configu-
rations, and a transition table. Each face can have one of
five configurations: open-to-block (Ob), open-to-scaffold (Ob),
bound-to-block (Bb), bound-to-scaffold (Bs), and closed (Cc).
The set of configurations is denoted O. Open-to-scaffold
can transition to bound-to-scaffold with the attachment of a
scaffold; likewise open-to-block can transition to bound-to-
block with the attachment of a block. Closed faces facilitate
no reactions. An inter-scaffold message is a pair consisting of
the state of the scaffold sending the message, and a function
mapping a changed face to a new configuration. All face
configuration changes results in the scaffold sending a message
to all connected scaffolds (and to itself). All inter-scaffold
messages must propagate through the entire scaffold group,
but in most cases the scaffold group will be small relative to
the size of the structure (see Conjecture 1 in Section IV).

Given a structure S, we will define a finite state machine
M = 〈Q,M, δ〉 that will run on each scaffold to give an IS
assemble sequence 〈S,T 〉. Here, Q is a finite set of states,M
is a finite set of messages, and δ : Q×M→ Q is a transition
function. The set Q of states and the transition function δ will
be described in Section IV.

There are several notions of “neighborhood” needed
to define IS systems: Nf is the face-adjacency region
(the 3-dimensional von Neumann neighborhood of the
origin), Ne is the edge-adjacency region (the set of
positions in the 3 × 3 cube centered at the origin
with distance two from the origin, under the `1 norm),

and NS is the neighborhood of a structure S. More
formally: Nf = {〈1, 0, 0〉, 〈−1, 0, 0〉, 〈0, 1, 0〉, 〈0,−1, 0〉,
〈0, 0, 1〉, 〈0, 0,−1〉} = {+X,−X,+Y,−Y,+Z,−Z}.
Ne = {〈−1,−1, 0〉, 〈1,−1, 0〉, 〈−1, 1, 0〉, 〈1, 1, 0〉,
〈−1, 0, 1〉, 〈1, 0, 1〉, 〈0,−1, 1〉, 〈0, 1, 1〉, 〈−1, 0,−1〉,
〈1, 0,−1〉, 〈0,−1,−1〉, 〈0, 1,−1〉}. For all structures S,
NS = {x ∈ Z3 \ S | ∃y ∈ S, z ∈ Ne ∪Nf ∧ x = y + z} is
the neighborhood of S.

Let Call = {c | c : Nf → O} be the set of all functions
from Nf to O, each of which is a possible face configuration
of an intelligent scaffold component. M = Q×Call is the set
of all possible messages for a given state machine.

At each time t ∈ N, positions in Z3 (referred to as cells)
can be either empty, occupied by a scaffold, or occupied by a
block. At time t = 0, there is one seed scaffold (canonically
at position 〈0, 0, 0〉) and the other cells are empty. Cells can
transition from empty to scaffold and back, but the transition
to a block is final. The seed state q0 ∈ Q is a special
state that begins the assembly process. By convention, the
seed state cannot be reached by any other state to prevent
identical structures from appearing elsewhere in the assembly.
The seed scaffold will begin the assembly sequence: new scaf-
folds and/or structure blocks will attach to the seed scaffold,
triggering messages and state transitions. For a fixed scaffold
to bind to a free scaffold, the fixed scaffold must have an open-
to-scaffold face, but the free scaffold attachment face may be
closed.

A newly placed scaffold component will start in a default
state. Upon receiving the connection message from its neigh-
bor, a default state will transition to another state. The default
state has all six of its faces closed. To detach, a scaffold will
transition to the default state. This will cause it to detach and
become free, making the cell it was occupying empty. De-
fault and disconnected scaffolds can then be reused. Through
progressive attachments, state changes, and detachments, a
structure will emerge. The detachment process allows a small
number of scaffolds to be used to construct arbitrary finite
structures.

More formally, for all t ∈ N ∪ {0}, At : Z3 → {b, s, ε}
is the assembly space at time t, where ε represents an empty
cell, b represents a cell occupied by a block, and s represents
a cell occupied by a scaffold. Let M = 〈Q,Σ, δ〉 be the FSM
running on the scaffolds. If At(x) = s for some t ∈ N and
x ∈ Z3, we will denote the state of M on s as sq and the
face configuration of s as sc. For all structures S, we say that
M assembles S iff for all t ∈ N ∪ {0}, for all x ∈ Z3:

1) A0(〈0, 0, 0〉) = s in state q0 and
2) if x 6= 〈0, 0, 0〉 then A0(x) = ε and
3) if At(x) = ε and At+1(x) = b then there exists d ∈ Nf

such that At(d(x)) = s, where sc(d−1(x)) = Ob and
4) if At(x) = ε and At+1(x) = s then there exists d ∈ Nf

such that At(d(x)) = s, where sc(d−1(x)) = Os and
5) A−1m (b) = S

IV. ALGORITHMS

This section will describe the algorithms used to generate
an IS assembly sequence for a given structure. We will first
describe an algorithm that transforms a given finite structure
into an action list (a list of block attachments and scaffold
attachments and detachments), then we will describe an algo-
rithm that transforms the action list into a finite state machine
that can be run on the scaffold components to assemble the
structure.

A. Finite Structure Assembly Planner

The scaffold planner algorithm will attempt to find a
sequence of scaffold movements and block placements that
construct the structure without violating any of the following
rules:

1) All new blocks must be face-adjacent to a block already
on the structure.

2) New scaffolds must be attached (face-adjacent) to exis-
tent scaffolds.

3) The scaffold group must be contiguous and always have
at least one member attached to the structure.

4) No more than a specified number of scaffolds are used.

Pseudocode for the scaffold planner is given in Algorithm 1.
The scaffold planner computes an IS assembly sequence by
which a set of scaffolds can incrementally assemble a con-
nected structure without a contiguous scaffold group detaching
at any step in the process. Following the initial placements
of the seed scaffold and seed block in lines 2–5, blocks are
added to the structure in an incremental fashion, such that all
new blocks are connected to an existent block. This ensures
that Rule 1 is followed, and is implemented in lines 7–8
and 15–16 by choosing the next block to be added from the
neighborhood of the current structure. If none of the remaining
blocks are reachable by the scaffold group, the algorithm backs
up to a point where it could have chosen a different assembly
sequence and attempts to assemble the structure from that
point in lines 9–14. The algorithm finds a scaffold path from
the current scaffold group to the next block, subject to Rules 2–
4, in lines 17–19. Finally, the action list is updated in lines 20–
22.

To prove that all finite structures are assemblable, we will
first prove a lemma that all finite structures that do not enclose
empty spaces are assemblable:

Lemma 1: For all finite structures S such that Z3 \ S is
connected, there exists an IS assembly sequence 〈S,T 〉 for
S.

Proof: Let S be a finite structure such that Z3 \ S is
connected. Then there exists a structure assembly sequence
S = 〈S0,S1,S2, . . . ,Sn〉 for S such that for all i ∈ [n],
Z3 \ Si is connected. Note that 〈T0〉 is a scaffold path for
〈S0〉. Let i ∈ [n − 1] and assume there exists a scaffold
path T i = 〈T0, T1, T2, . . . , Tj〉 for Si = 〈S0,S1,S2, . . . ,Si〉.
Since Z3 \ Si is connected, there exists a path P =
〈x1,x2, . . . ,xk〉 in Z3 \ Si from Tj to Si+1 \ Si. Then

T i+1 = 〈T0, T1, T2, . . . , Tj , Tj ∪ {x1}, Tj ∪ {x1,x2}, . . . Tj ∪
{x1,x2, . . . ,xk−1}〉 is a scaffold path for Si+1. The lemma
follows by induction.

Theorem 1: For all finite structures S, there exists an IS
assembly sequence 〈S,T 〉 for S.

Proof: Let S be a finite structure. Let C =
{C0, C1, C2, . . . , Ck} be the connected components of Z3 \S.
Then there exists a minimum spanning tree U ⊂ Z3 such that

1) the root of U /∈ S and
2) for all i ∈ [k] there exists x ∈ Ci such that x is a leaf

of U and
3) S \ U is connected.
Let S ′ = S \ U . Then Z3 \ S ′ is connected, so S ′ is

assemblable by Lemma 1. Let 〈S′,T ′〉 be an IS assembly
sequence for S ′. Extend the scaffold path T ′ to a scaffold
path T ′′ such that the last scaffold group of T ′′ is U .

Consider a sequence of positions 〈x0,x1, . . . ,xj〉 such that
each xi is in U and the distance from the root to xi is non-
increasing in i. Extend the scaffold path T ′′ to a scaffold path
T by removing the position xi from last scaffold group in
turn. Finally, extend the structure assembly sequence S′ to a
structure assembly sequence S by adding each position xi in
turn if xi ∈ S. Then 〈S,T 〉 is an IS assembly sequence for
S.

Conjecture 1: There exist structures S such that a group of
at least 3 scaffolds is required to assemble S and all structures
can be assembled with at most 3 scaffolds.

We believe that three scaffolds are necessary to assemble
some structures in order to keep the scaffold group connected
to the growing structure while the group turns corners. For
example, Figure 3 shows a structure in which it appears
that scaffold groups must turn corners in order to place all
the blocks. We believe that three scaffolds are sufficient to
assemble all structures because a scaffold group of size three
can move along the outside of a structure to get to any
necessary position, so long as the group does not completely
enclose itself with blocks.

The following two lemmas demonstrate that a scaffold
group can access all positions in its moveSpace in such a way
that blocks can be placed at any position that is face-adjacent
to the growing structure:

Lemma 2: For all structures S, for all scaffold groups
T such that S ∩ T = ∅ and S ∪ T is connected, if
moveSpace is the connected component of NS that contains
T then for all x ∈ moveSpace, there exists a scaffold path
〈T0, T1, T2, . . . , Tm〉 such that T0 = T and x ∈ Tm.

Proof: Let S, T , moveSpace, and x be as in the statement
of the lemma. Since moveSpace is connected, there exists a
path P = 〈y0,y1, . . . ,yk〉 such that y0 ∈ T ∩ moveSpace,
yk = x, and for all i ∈ [k], yi ∈ moveSpace. Let T0 =
T and for i ∈ {1, 2, . . . , k}, let Ti = Ti−1 ∪ {yi}. Then
〈T0, T1, . . . , Tk〉 is a scaffold path such that T0 = T and x ∈
Tm.

Lemma 3: For all structures S, for all x ∈ NS , for all
scaffold groups T such that S∩T = ∅ and S∪T is connected,
if moveSpace is the connected component of NS that contains

Algorithm 1 Finite Structure Assembly Planner
1: def ScaffoldPlanner: structure S, maxScaffolds τ
2: S = 〈S0,S1〉 where S0 = ∅ and S1 = {〈1, 0, 0〉}.
3: T = 〈T0〉 where T0 = {〈0, 0, 0〉}.
4: n = 1, m = 0, mn = m
5: actionListn =

〈
addScaffold(〈0, 0, 0〉), addBlock(〈1, 0, 0〉)

〉
.

6: while Sn 6= S do
7: moveSpacen = connected component of NSn containing Tm
8: nextBlocksn = S ∩moveSpacen
9: while nextBlocksn = ∅ do

10: n = n− 1, m = mn

11: if n = 1 then
12: return; no assembly sequence exists.
13: end if
14: end while
15: Choose closest nextBlock ∈ nextBlocksn to Tm.
16: nextBlocksn = nextBlocksn \ {nextBlock}
17: nextBlockScaffolds = nextBlock face-adjacency spaces ∩ moveSpacen
18: Find a path from Tm to nextBlockScaffolds that follows Lemma 3.
19: While moving the scaffold group, increment m for each change in Tm and maintain |Tm| ≤ τ .
20: actionListn = addScaffold(x ∈ Z3) and/or detachScaffold(x ∈ Z3) for each change in T .
21: Sn+1 = Sn ∩ {nextBlock}
22: Add addBlock(x ∈ Z3) to actionListn
23: n = n+ 1, mn = m
24: end while
25: return actionList

T and x ∈ moveSpace, then there exists a scaffold path
〈T0, T1, T2, . . . , Tm〉 such that T0 = T and x /∈ Tm and
x ∈ {z ∈ moveSpace | y ∈ Nf ∧ z = x + y }.

Proof: Let S, T , moveSpace, and x be as in the statement
of the lemma. Let Z = {z ∈ moveSpace | y ∈ moveSpace ∧
z = x + y }. For all z ∈ Z, since moveSpace is connected
there exists a path Pz from T to z. Consider a shortest such
path, P ′. Then P ′ ends at z′ ∈ Z and x /∈ P ′ (otherwise there
would be a z′′ 6= z′ that had a shorter path). By Lemma 2
there exists a scaffold path T that begins with T at ends with
a scaffold group Tk such that x /∈ Tk but x is adjacent to Tk.

B. Compiler Algorithm

The actionList returned by the Finite Structure Assembly
Planner contains sufficient information to create M , the finite
state machine. Scaffolds at each position in the actionList
represent states, and actions adjacent to that scaffold such as
“addBlock” and “addScaffold” translate to Ob or Os. For a
scaffold to detach (“detachScaffold”), the action in actionList
immediately before “detachScaffold” is translated to a message
µ ∈M representing that previous action. The transition table
for the scaffold and µ would then lead to the default state.

V. EXAMPLES

This section presents examples of structures that can be
built with intelligent scaffolding, and include a 2 × 2 lattice
as well as the scaffold state machine that was generated by

Fig. 2. Three snapshots of the square assembly in progress. The left-most
shows the scaffold in state 2 just before a scaffold attaches (the blue circle
indicates that the face is open to a scaffold). The middle shows three scaffolds,
with the lower right scaffold in state 6 just before a block attaches. The right-
most shows the finished assembly after all the scaffolds have detached.

the compiler, a fractal structure that maximizes backtracking,
and a model of the International Space Station (ISS) that
demonstrates the assembly of structures with many building
blocks.

a) Square: A 2×2 square can be created with an 8-state
intelligent scaffolding machine, including the default state
(labeled 0) and the seed state (labeled 1). Table II describes an
intelligent scaffolding state machine that can construct a 2×2
square (Figure 2). In this example, the square is formed on
an adjacent plane beneath the scaffold layer, although such
restrictions are not necessary. Note that state 1, the seed,
cannot be reached by any other state. This restriction means
that no inputs can change a scaffold component to the seed
state, so it must be done independently. The seed state is
assumed to exist at 〈0, 0, 0〉 as determined by Algorithm 1. The

Fig. 3. Instances of a fractal structure that maximizes scaffolding backtrack-
ing moves with respect to total number of building blocks.

seed’s −Z state is set to open-to-block. When a block connects
to that face, the seed transitions to state 2. State 2 opens its
+X face to a scaffold. When a default scaffold connects to
state 2, the connected face transmits the connection message〈
2, 〈〈1, 0, 0〉, Bs〉

〉
to the new scaffold. The new scaffold,

starting in state 0, receives the message and transitions to
state 3. The rest of the scaffold and block placements proceed
similarly. Note that the transition message for states 2, 4, 6, and
7 are same. When state 7 lays the final block, all scaffolds go to
state 0 and thus detach, having finished the task. Empty spaces
in the state transition table correspond to the state transitioning
to itself for a given message.

b) Fractal Snowflakes: If few scaffolds are used, as
might be desirable for cost considerations, then to assemble
some structures a scaffold group may have to “backtrack” in
order to reach all the positions in which blocks need to be
placed. By “backtracking”, we mean that the scaffold group
must move along parts of the structure that have already
been completed, without placing any new blocks. Figure 3
shows a fractal structure in which backtracking is necessary
if only three IS components are used in the scaffold group.
The structure is a three-dimensional, recursive cross, and after
assembling one arm of the cross, the scaffold group must move
back along the completed are in order to reach the other arms.

c) International Space Station: Finally, we would like
to demonstrate that the IS paradigm is able to handle large-
scale structures. We obtained a CAD model of the ISS from
[5] and converted it into a three-dimensional lattice graph
containing 3,782 building blocks. The assembly sequence
(actionList length 45,637) was calculated by the Scaffold
Planner algorithm for three IS blocks. Construction began at
the lower left corner of the model (corresponding to one of
the solar panels) and continued outward until the sequence
concluded in the opposite corner. Although the algorithm
presented in this paper is limited to constructing structures, we
believe extending the presented algorithm to handle different
kinds of building blocks — that might enable the construction
of functional structures — is straightforward.

VI. DISCUSSION

The algorithms presented in this paper are scale-free and
independent of how building and scaffold blocks locomote.
Microscale scaffold blocks might swim in a liquid or might

be placed and removed by mobile manipulators. Although
the IS paradigm might drastically reduce the coordination
and perception requirements of such a manipulation system,
this comes at a price: assembling a structure made of n
passive building blocks usually requires multiple manipulation
steps. Therefore, the IS paradigm becomes less competitive
the more capable robots become. However, even if robots are
able to assemble structures exclusively from passive building
blocks, i.e., without relying on markers on the structure, the IS
paradigm could be used to support the assembly of structures
that require scaffolds during assembly to overcome gravity.

We have shown that the intelligent scaffold structure can
build any finite structure. Depending on the building blocks
and locomotion-scheme actually used, there might be addi-
tional constraints that prevent a structure from completion. For
example, [28] considers blocks that cannot be inserted between
two blocks already placed. Also, the workspace of a robotic
manipulator might be limited and may not place blocks into
arbitrary configurations. Finally, a scaffold structure might also
be implemented as a snake or a paper that climbs along the
emerging structure by folding, leading to additional constraints
and redundant motions that need to be taken into account. We
believe that all of these constraints can be modeled in the
assembly planner, which is subject to further work.

We believe that three scaffold components are sufficient
for assembling any finite structure; in particular we have not
found any structure that cannot be assembled by at most three
scaffolds. We intend to try to prove or disprove that conjecture
in the future. If this conjecture holds, this gives the intelligent
scaffolding model an enormous advantage over other self-
assembly methods. Not only will arbitrarily large structures be
possible with only a few scaffolds, the scaffolds themselves
can be reused. This will allow a set of intelligent scaffolds
to mass produce structures. If a large number of scaffolds are
deployed in a medium with blocks, several structures can be
built at once. The blocks themselves only need the requirement
that they cannot spontaneously combine unless a scaffold is
present to catalyze the reaction.

Although we have not formally analyzed the complexity of
the proposed algorithms, all of the structures that we have
assembled required state machines roughly on the order of
the number of blocks. Considering the computational expres-
siveness, we believe that the IS paradigm can be reduced
to the tile assembly model [20]. The tile assembly model
has been shown to be Turing universal, and we conjecture
that also the IS paradigm will allow us to implement every
possible computation as an assembly process. In turn, we could
use this capability to find trade-offs between computation,
communication, memory and additional assembly steps.

Some of the tenets of the mathematical model may change
to account for realistic computational scenarios such as error-
handling and unexpected events. Error-handling in the current
algorithm is limited and any single error in the assembly
process, including communication errors, could ruin the ex-
pected result. We plan to address this issue in future work
by extending the scaffold program by error handling routines

TABLE II
2× 2 SQUARE INTELLIGENT SCAFFOLD STATE MACHINE

State, (Face Configuration) Message: 〈q ∈ Q, nf ∈ Nf , o ∈ O〉
q ∈ Q (nf ∈ Nf , o ∈ O) 〈1,−Z,Bb〉 〈2,+X,Bs〉 〈3,−Z,Bb〉 〈4,−Y,Bs〉 〈5,−Z,Bb〉 〈6,−X,Bs〉 〈7,−Z,Bb〉

0 (Cc) 3 5 7
1 (−Z,Ob) 2
2 (+X,Os) 0
3 (−Z,Ob) 4
4 (−Y,Os) 0
5 (−Z,Ob) 6
6 (−X,Os) 0
7 (−Z,Ob) 0

Fig. 4. A 3782-block model of the International Space Station is built incrementally using 3 intelligent scaffold units.

and investigate algorithms that can move a scaffold along a
structure to repair it.

The finite state machine model may also change. For exam-
ple, we might require that a single state have only one open
face. Having multiple open faces introduces a race condition
if the order of the connections is not predetermined. A poorly
designed state machine could take different paths depending on
the order that the faces on a single scaffold are bound. Another
example is the transition function. Currently, only messages
are considered as input.

Finally, we can consider different models of computation
in the intelligent scaffolds. For instance, we may allow the IS
components to be Turing universal instead of limited to finite
state machines.

VII. CONCLUSION AND FUTURE WORK

This paper presents a novel paradigm for autonomous
assembly in which assembly is coordinated using intelligent
scaffold blocks. Intelligent scaffolding blocks store a represen-
tation of the structure to be assembled and keep track of the
assembly state. At the macro-scale, where robots assemble a
structure, the scaffold coordinates building agents, and simpli-
fies their perception by active signaling, yet allow to construct
structures from passive blocks. At the micro-scale, where both
scaffold and building blocks might move in a stirred liquid,
the scaffold selectively binds to itself or free-floating building
blocks. We show analytically that intelligent scaffold blocks
can assemble any finite structure. We conjecture that every
structure can be constructed with at most three scaffolding
blocks, and demonstrate the assembly of a structure composed
of 3,782 passive blocks using only three intelligent scaffold
blocks in simulation. Limitations of the proposed approach are
that the complexity of the resulting structure is limited by the

memory available on each intelligent scaffold block and that
re-arranging the IS blocks requires additional manipulation
steps.

In future work, we plan to give our algorithms the ability to
compress the resulting FSMs, e.g., by automatically compiling
sub-routines for recurrent elements in a structure. We also want
to analytically derive an upper bound on the maximum number
of assembly steps for any structure, and investigate algorithms
that minimize backtracking. Further, we will investigate using
the IS paradigm to assemble potentially infinite structures.
We will validate the IS paradigm by using it to coordinate
the autonomous assembly of 3D structures by a team of
mobile manipulators with limited perception capabilities. With
respect to a possible implementation of the IS paradigm at
the microscale, we will also validate the IS paradigm in 2D
on an air-table. Along these lines, we are also interested in
formal theory on the minimal sensing, actuation, computation
and communication requirements for IS blocks to assemble a
specific structure, as well as in exploring trade-offs between
sensing, locomotion, computation and communication. Finally,
we are interested in investigating algorithms that will allow
the intelligent scaffold to split up in sub-teams. By this, IS
building blocks could not only work on multiple structures in
parallel, but also assemble a single structure in parallel and
reduce back-tracking by serving as markers.

REFERENCES

[1] L. Adleman. Molecular computation of solutions to
combinatorial problems. Science, 266:1021–1024, 1994.

[2] I. Akyildiz and J. Jornet. Electromagnetic wireless
nanosensor networks. Nano Communication Networks,
1(1):3–19, 2010.

[3] D. Arbuckle and A. Requicha. Self-assembly and self-

repair of arbitrary shapes by a swarm of reactive robots:
algorithms and simulations. Autonomous Robots, 28(2):
197–211, 2010.

[4] A. Bolger, M. Faulkner, D. Stein, L. White, .S-K. Yun,
and Daniela Rus. Experiments in decentralized robot
construction with tool delivery and assembly robots. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2010.

[5] M. Carbajal. Cad model of the interna-
tional space station, October 2008. URL
http://www.nasa.gov/multimedia/3d_re
sources/assets/iss_c2.html. Last retrieved
January 16, 2011.

[6] J. Chung, W. Zheng, T. Hatch, and H. Jacobs. Pro-
grammable reconfigurable self-assembly: parallel hetero-
geneous integration of chip-scale components on planar
and nonplanar surfaces. J. Microelectromech. Syst., 15:
457–64, 2006.

[7] W. Evans, G. Mermoud, A. Martinoli, and V. Kumar.
Comparing and modeling distributed control strategies
for miniature self-assembling robots. In IEEE Interna-
tional Conference on Robotics and Automation, pages
1438–1445, Anchorage, AK, 2010.

[8] K. Gilpin, K. Kotay, D. Rus, and I. Vasilescu. Miche:
Modular shape formation by self-disassembly. The Inter-
national Journal of Robotics Research, 27(3–4):345–372,
2008.

[9] S. Goldstein, J. Campbell, and T. Mowry. Programmable
matter. Computer, 38(6):99–101, 2005.

[10] A. Grushin and A. Reggia. Parsimonious rule generation
for a nature-inspired approach to self-assembly. ACM
Transactions on Autonomous and Adaptive Systems, 5
(3), 2010.

[11] O. Holland and C. Melhuish. Stigmergy, self-
organisation, and sorting in collective robotics. Artificial
Life, 5(2):173–202, 1999.

[12] E. Klavins. Programmable self-assembly. Control Sys-
tems Magazine, 24(4):43–56, August 2007.

[13] T. Kusakabe, T. Tanemura, Y. Higuchi, K. Sugano,
T. Tsuchiya, and O. Tabata. DNA mediated sequential
self-assembly of nano/micro components. In Proc. of the
Int. Conf. on Micro Electro Mechanical Systems, pages
1052–1055, Tucson, AZ, 2008.

[14] S. Martel and M. Mohammadi. Using a swarm of self-
propelled natural microrobots in the form of flagellated
bacteria to perform complex micro-assembly tasks. In
2010 IEEE International Conference on Robotics and
Automation (ICRA), pages 500–505, May 2010.

[15] M. Mastrangeli, S. Abbasi, C. Varel, C. Van Hoof, J.-
P. Celis, and K. Boehringer. Self-assembly from milli-
to nanoscales: methods and applications. Journal of Mi-
cromechanics and Microengineering, 19(8):37pp, 2009.

[16] P.White, V. Zykov, J. Bongard, and H. Lipson. Three
dimensional stochastic reconfiguration of modular robots.
In Robotics: Science and Systems, 2005.

[17] V. Ramakrishnan. Ribosome structure and the mecha-

nism of translation. Cell, 108(4):557 – 572, 2002.
[18] D. Reishus, B. Shaw, Y. Brun, N. Chelyapov, and

L. Adleman. Self-assembly of DNA double-double
crossover complexes into high-density, doubly connected,
planar structures. Journal of American Chemical Society
(JACS), 127(50):17590–17591, November 2005.

[19] A. Requicha. Nanorobots, NEMS and nanoassembly.
Proceedings of the IEEE, Special Issue on Nanoelectron-
ics and Nanoprocessing, 91(11):1922–1933, 2003.

[20] P. Rothemund and E. Winfree. The program-size com-
plexity of self-assembled squares. In Proceedings of the
32nd Annual ACM Symposium on Theory of Computing
(STOC00), pages 459–468, Portland, OR, USA, May
2000.

[21] P. Rothemund, N. Papadakis, and E. Winfree. Algorith-
mic self-assembly of DNA Sierpinski triangles. PLoS
Biology, 2(12):e424, 2004.

[22] M. Rubenstein and W. Shen. Automatic scalable size
selection for the shape of a distributed robotic collective.
In Int. Conf. on Intelligent Robots and Systems, Taipei,
Taiwan, October 2010.

[23] D. Rus, Z. Butler, K. Kotay, and M. Vona. Self-
reconfiguring robots. Communications of the ACM, 45
(3):39–45, 2002.

[24] M. Rycenga, J. McLellan, and Y. Xia. Controlling the
assembly of silver nanocubes through selective function-
alization of their faces. Advanced Materials, 20(12):
2416–2420, June 2008.

[25] T. Tanemura, G. Lopez, R. Sato, K. Sugano, T. Tsuchiya,
O. Tabata, M. Fujita, and M. Maeda. Sequential and
selective self-assembly of micro components by DNA
grafted polymer. In IEEE 22nd International Conference
on Micro Electro Mechanical Systems, pages 184–187,
Sorrento, 2009.

[26] G. Theraulaz and E. Bonabeau. Coordination in dis-
tributed building. Science, 269:686–688, 1995.

[27] J. Werfel and R. Nagpal. Extended stigmergy in collec-
tive construction. IEEE Intelligent Systems, 21(2):20–28,
2006.

[28] J. Werfel and R. Nagpal. Three-dimensional construction
with mobile robots and modular blocks. International
journal of robotics research, 3-4(27):463–479, 2008.

[29] G. Whitesides and B. Grzybowski. Self-assembly at all
scales. Science, pages 2418–2421, 2002.

[30] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll,
H. Lipson, E. Klavins, and G. Chirikjian. Modular self-
reconfigurable robot systems—challenges and opportu-
nities for the future. IEEE Robotics and Automation
Magazine, pages 43–53, March 2007.

[31] S. Yun, Y. Yoon, and D. Rus. Self assembly of modular
manipulators with active and passive modules. In Proc. of
IEEE/RSJ International Conference on Intelligent Robots
and Systems Workshop on Self-Reconfigurable Robots,
San Diego, USA, October 2007.

