
 

Multiple Object 3D-Mapping using a Physics 

Simulator 

Neeti Wagle, Nikolaus Correll 

{neeti.wagle, nikolaus.correll}@colorado.edu 

 

 

Technical Report CU-CS-1069-10 

July 2010 

 

Department of Computer Science 

University of Colorado at Boulder 

430 UCB 

Boulder, CO 80309-0430. 



Multiple Object 3D-Mapping using a Physics Simulator

Neeti Wagle and Nikolaus Correll

Abstract— This paper presents a novel method for mapping
multiple objects such that their positions are consistent with
physics laws. We propose the use of a physics engine to help
the robot understand the behavior of rigid bodies and their
interaction in the real world. We show how pose estimates
obtained from other tracking or modeling techniques can be
used in conjunction with the physics simulator in order to reject
physically impossible hypotheses in a manner similar to human
cognition. We present three different examples which exhibit the
advantages of such a paradigm for constructing geometrically
and physically sound models of the world.

I. INTRODUCTION
Navigation, exploration and manipulation are the most

important high level tasks for a robot. In order to perform
these tasks efficiently a robot needs to uniquely identify
objects, determine their position in the environment and map
them. Several different approaches using laser range finders,
monocular vision and stereo vision have been very successful
in generating 2D maps and 3D with high fidelity[1].

The majority of the mapping approaches assume only little
prior information about the objects, such as coplanarity of
polygons and walls being vertically straight[2], [3]. While
this is an extremely realistic constraint while mapping un-
explored environments, it is too restrictive for non-hostile
and interactive environments. For applications like domestic
robotics and tour guides we envision an environment where
the objects are aware of their own geometry, can communi-
cate with the robot and can send the robot information about
their structure. Alternatively, we can use online databases
or training models generated by vision algorithms[4], [5],
both of which can provide necessary information about the
object based on its pose and illumination invariant features.
Such a design opens up new avenues which can help address
limitations faced in the past.

However, even when the object structure is known and the
robot has 6-DOF object poses, 3D mapping can have prob-
lems with generating geometrically sound maps. A common
and intuitive solution to this problem has been to encode
constraints that ensure that maps adhere to laws of physics
and geometry[3]. Such approaches are not only tedious but
fail to generalize as the complexity of the mapped objects
increases.

The task of obtaining physically realistic maps becomes
further complicated as the amount of physical contact among
objects grows. If each object is being mapped individually,
the robot does not have any information about how position
estimates of different objects in the scene relate to each other
and whether they preserve the overall integrity of the map.

Humans on the other hand can observe a scene and
easily reconstruct a valid, harmonious model of multiple

(a) Hovering objects (b) Embedded objects

Fig. 1. Invalid object configurations

objects in the environment via a seamless integration of their
conceptual world knowledge with their visual measurements.
Fig. 1 shows two configurations of three cubes that cannot
exist in the real world. Humans can automatically analyze
what they see in these scenes and reject them based on their
knowledge of physics. A robot on the other hand has no
reason to disregard these configurations. This lack of world
knowledge is at the center of the problem. In order to develop
a scalable solution the robot would require to emulate a
comparable understanding of the nature of physics and the
world around it.

This paper proposes a novel approach of utilizing a
physical simulator as the world knowledge base and analysis
engine of the robot. We show how pose hypotheses for
different objects can be combined in the physics simulator
to recreate a scene which adheres to real world rigid body
constraints. By incorporating this powerful tool in a intuitive
role, we provide an elegant solution which can be used
to replace hardcoded constraints. The block diagram of the
system is shown in Fig. 2.

Fig. 2. Block Diagram for Multiple Object 3D Mapping using a Physics
Simulator

II. RELATED WORK

Simulators have been used extensively in diverse as-
pects of robotics. Several simulators like SimRobot[6],
USARSim[7] and, Webots [8] provide a cost-effective plat-
form for designing and debugging robot prototypes. Thus,
creating a useful simulation involves testing its accuracy
and validity by comparing its behavior with that of the real
world [9]. In order words, the simulator is used for upstream
modeling and validation i.e. replicating real world behavior
in computer simulations. In contrast, our approach uses a
simulator in a downstream validation process. We make use



of a physics simulator to validate and reject hypotheses that
cannot exist in the real world. Thus, we propose the use of
a simulator as a pseudo expert system for physics.

Under this paradigm it plays a role which is strongly
reminiscent of theory of qualitative physics proposed and
studied during the 80s and 90s. Qualitative physics aims
to study the behavior of mechanisms via simulations and
without numerical solutions [10],[11]. The motivaton behind
this general and multi-purpose approach ([12]) is to incorpo-
rate common sense knowledge of the physical world into the
robotic system [11]. Our approach shares this motivation.

However, qualitative physics does not use any mathe-
matical formalism, and looks to explain entire mechanisms
through simulations[12]. Our approach avoids both of these
pitfalls by employing the physics simulator to only reject
impossible behaviors or physical configurations. Using the
physical simulation in this limited role helps the system
retain control on the solution in a numerical manner while
incorporating the aforementioned common sense knowledge.

The method proposed in this paper utilizes the collision
detection mechanism in physics simulators to identify invalid
multi-object configurations. Rigid body collisions have also
been used in grasping to plan the path of a manipulator
arm[13]. Their technique introduces rigid bodies for each
object’s hypotheses in order to refine their task space, register
potential space occupancy and prevent collisions between
the arm and the object. However, this algorithm focuses
on one object at a time and does not consider the physical
interaction that may exist between different objects in some
configurations e.g. stacks. In contrast, our approach focuses
on finding a configuration of all objects in the scene such
that no two collide and all poses obey laws of physics.

III. THE PHYSICS SIMULATION PARADIGM

A. Pose Hypotheses and Configurations

While mapping a scene, at any given time, the robot has
a 6-DOF pose hypothesis for every object it has sensed or
observed. Each of these hypotheses, h can be given by

h = (x, y, z, θ, φ, ψ)

where the first three represent the XYZ co-ordinates of the
object and the last three represent its pitch, yaw and roll. The
robot may have a single hypothesis or a set of M hypotheses
for each object i.e. in an N object scene

Hi = {h1, h2, . . . , hM} ∀i ∈ [1, N ], M ≥ 1

These hypotheses represent the robot’s beliefs about the
objects in the scene. The degrees to which the robot believes
these hypotheses are given by their posterior probabilities pk.
Thus, the robot’s beliefs about an object can be completely
represented as Hi = {(h1, p1), (h2, p2), . . . , (hp, pM )}

Hypotheses may be obtained from a vision pose estimation
algorithm or from a dynamic state estimation technique like
particle filtering.

In a world or scene with N objects, a combination of N
hypotheses is regarded as one configuration. The space of all

configurations is given by C = H1 ×H2 × . . .×HN . Thus,
a configuration is an instance of a 3D map of the world
with each object, Oi, positioned according to one of its pose
hypothesis. ji, and can be represented as

Ck = (h1j1 , h2j2 , . . . , hNjN
) (1)

When the robot’s position is known while mapping the
estimation of each object is independent of others[14]. Thus,
the probability of a combination of hypotheses is the product
of their individual probabilities, i.e. the probability of any
given configuration Ck is

p(Ck) = p(h1j1 , h2j2 , . . . , hNjN
) (2)

=
N∏

i=1

p(hiji), where ji ∈ [1,M ] ∀i (3)

Because each object’s pose is determined in isolation the
errors in each of the estimations are independent. However,
this also prevents any information from being shared be-
tween the estimation processes. Hence it is possible for a
configuration to contain different types of space violations.

Consider the example where two objects located in close
proximity to each other are mapped using two independent
pose estimation processes. If the magnitude of the sensor
noise is high, it is possible for their hypotheses to map the
objects overlapping one another. This is the case shown in
Fig. 1(b). Here the poses of different objects are in violation
of each other.

Allowing object poses that would not be stable under the
influence of gravitational and other kinematic forces can
result in unstable configurations where objects are hovering
(see Fig. 1(a)) or precariously balanced. This can lead to
unrealistic and incorrect scene reconstructions. In order to
prevent this, we have to inspect the physical interaction
between objects. Independent pose estimation provides no
opportunity to identify such object interactions and conse-
quently fails to weed out invalid configurations.

B. Rigid Body Properties

We use two key behaviors of rigid bodies to reject unstable
or invalid configurations. We describe each of these in detail

1) Volume separation: Volumes of rigid bodies do not
overlap. A given unit of volume cannot be occupied
by more than one object simultaneously. Therefore, the
only contact between two independent bodies has to
be external in nature. A violation of this property is a
direct identifier of an invalid configuration.
Most sophisticated physics engines contain a colli-
sion detection system that can detect the presence
and nature of collisions between geometries in the
simulated world. We use the depth of the collision to
detect volume overlap between distinct objects. If the
overlap depth exceeds a predefined threshold then the
configuration is violating the volume separation rule.
This threshold is selected in order to discount for jitter
in the model.



2) Gravitational force: Due to gravity there are some
poses in which an object cannot be at rest. The gravi-
tational forces dictate the valid poses that an object of
a given geometry can have. As a result, an object in
an invalid pose will succumb to the gravitational force,
undergo motion and reposition itself in a stable pose.
When time is advanced in the physics simulator, it
exerts gravitational pull on all rigid bodies. This causes
any unstable or hovering objects to fall to the solid
plane. We measure any such motion in terms of the
jitter, which is defined as the Euclidean distance be-
tween the resultant object pose, h′

i, from its original
pose, hi,

Ji = ‖hi − h′
i‖2

Now, if J > TJ where TJ is a predefined jitter
threshold, then the original configuration is unstable
and thus invalid.

These properties are central to the hypotheses rejection
process described next.

C. Hypotheses Rejection

Most physics simulators, like ODE and Bullet, provide
tools to create common geometries like boxes, cylinders,
spheres. Using these geometries we can generate rigid bodies
for each object. We remind the reader that the robot can
model objects because the it has access to each object’s struc-
tural information. We can then reconstruct a configuration by
positioning the objects according to their hypotheses.

Our approach uses the physics simulator to eliminate
invalid configurations that violate atleast one of the two
properties from Subsection III-B. These violations indicate
that this combination of hypotheses for the different objects
cannot co-exist in harmony. However, it is important to
note that this does not invalidate any of the individual
hypotheses; each of them may be completely valid in another
configuration.

Hypothesis rejection is a two step process. In the first
step the configuration is tested for volume separation. If no
collisions are detected, then the configuration proceeds to the
second test. Here it is considered stable if the objects remain
at rest in their hypothesized poses when the simulation is
advanced in time.

Using this method of hypotheses rejection, the final world
configuration can be determined from the space of all pos-
sible configurations using an iterative procedure. However,
if there are M hypotheses per object then the number of
configurations containing N objects is equal to MN which is
exponential in the number of objects. This makes exhaustive
analysis of the configuration space intractable. We tackle the
problem of exponential number configurations using a branch
and bound approach.

Configurations are created by selecting hypotheses for
each object in a decreasing order of probability. This means
the first configuration C1 = (h11, h21, . . . , hN1) (Eqn.1), is
the highest probability configuration (Eqn.3) and it represents
the root of our branch and bound tree.

Algorithm 1 Hypotheses Rejection
Require:

• number of objects N
• number of hypotheses per object M
• threshold probability T
• hypotheses H1, . . . HN

• object geometries
Order Hi ∀i in decreasing order
Max-priority queue V = {(h11, . . . , hN1)}
List of expanded nodes E = {}
Solution S = Ø
repeat
v = DeleteMax(V )
if v /∈ E then

if p(v) ≥ T then
Add(V,Children(v))
Add(E, v)

end if
if V olumeSeparation(v) =true then

if Stable(v) =true then
if Jitter(S) > Jitter(v) then
S = v

end if
end if

end if
end if

until V is {} and remaining time > 0
return S

In the branch and bound tree, every node has N children,
obtained by replacing one of N objects’ hypotheses by the
next hypothesis. For example, replacing the jth hypothesis,
of say object i, with the j + 1th hypothesis results in new
child node. Note that since

p(hij) ≥ p(hi,j+1) ∀i, j (4)
p(Cparent) ≥ p(Cchild) (5)

This means that as we explore configurations down a path
of the branch and bound tree the probability decreases. This
property can be used for pruning the tree and configura-
tion space by bounding configuration probabilities below a
threshold T .

For branching we maintain two lists for visited and ex-
panded nodes respectively. The expanded nodes list prevents
repeated exploration of the same configuration in different
branches. The visited nodes priority queue ensures that vis-
ited nodes are expanded in decreasing order of probability. In
this way using branching we examine the higher probability
i.e. more promising configurations earlier.

The first valid configuration found is stored as the solution
to the problem. It may be replaced by any consequent valid
configurations if they exhibit lesser amount of jitter.

The entire process of hypotheses rejection is outlined in
Algorithm 1.

In the event that the robot runs out of time, the branch-



ing strategy guarantees that it abandons lower probability
configurations. These lower probability configurations are
less likely to be the best global solution or provide a
massive improvement over configurations found amongst
their ancestors. Thus, by going through configurations in this
order we maximize the chances of finding the global solution
early on. Hence, the algorithm provides the best solution in
the given time and is an anytime algorithm.

IV. RESULTS

We have implemented this approach using the Open
Dynamics Engine (ODE) which is an open source physics
simulator developed by Russell Smith [15]. ODE provides
basic geometries like box, sphere, cylinder for common
volumes and also contains joints to aid the creation of
complex geometries.

In this section we present three examples which represent
different geometric and physical challenges to 3D mapping.

A. Peg in a hole

Some of the early work in robotics focused on the problem
of inserting a peg into a hole. The task is complicated by
the uncertainty in the peg’s pose [16]. Such uncertainty can
be reduced by eliminating invalid pose hypotheses by using
the physics simulator. For example, using collision detection
the physics simulator can identify that the peg(blue) poses in
Fig. 3 are not valid since they violate the volume separation
rule by overlapping the walls of the square hole (white).

Fig. 3. Invalid peg positions

B. Stacks of Cubes

We present examples of stacked cubes in different con-
figurations where objects have a high level of physical
contact. We demonstrate how the iterative procedure (from
Subsection III-C) finds a valid final configuration from the
particle filter hypotheses for each of the cubes.

The first example, which is a stack of cubes in a vertically
aligned form, was constructed from 5 random hypotheses
per object. The branch and bound tree for this example is
shown in Fig. 4. Each node in the tree is annotated with the
code of the configuration C, its probability p, and the physics
simulator outcome. A configuration code C = ijk represents
a configuration C = (h1i, h2j , h3k). Configurations that
violated either of the rules are marked as ’Invalid’, whereas
valid configurations are annotated with their jitter J values.

Fig. 4 shows that the highest probability configuration
C111 at the root has a collision between the blue and green
cubes. Additionally, 2 of the 3 cubes are suspended midair
making C111 invalid. The nodes are expanded in the non-
increasing order of their probabilities. C211 is the first visited

node that is found to be valid with a jitter value of 0.99; it
is recorded as the first solution. However, C311 discovered
at a later stage exhibits a lower jitter of 0.75 and is selected
as the final solution. While most of the invalid nodes in the
tree are rejected due to collisions, C212 and C222 are rejected
by the second test because they are unstable, which causes
the blue cube to fall to the ground in both cases. Finally, if
this tree was extended further all of the leaf nodes except
C222 would have been expanded; C222 has a probability of
0.0001 < T and represents a bounded node.

Fig. 5. 3D Mapping for pyramid of three cubes. (a)C=111, Invalid.
(b)C=544, J=0.6217

The second example (Fig. 5) increases the complexity of
object interactions by introducing an object that is partially
balanced on two different objects. In this experiment, we
estimated the positions of the centers of three 20cm cubes
using a particle filter over 10 iterations(Fig. 6). Traditionally,
the best hypothesis of each particle filter would be used
to map the cubes at each iteration. Instead, we defined
configurations from these particle filter hypotheses and the
physics simulator was used to find a final world model. For
example, at iteration 7, instead of taking C111 to be the
3D map, we ran the hypotheses through the simulator. It
showed that not only did C111 have a collision between the
green and red squares but the blue square was also suspended
midair (Fig. 5). On the other hand, C544 had no collisions
and exhibited a stable and well balanced pyramid of 3 cubes.

Fig. 6. Noisy 6DOF hypotheses for the 3 20cm cubes were generated by
adding noise with σ = 3 in each dimension. In each run a 1000 particle
particle-fiter was used to estimate the cube positions. The above figure shows
the total configuration and average object mapping centimeter errors with
and without the physics simulator over 20 runs.

We compared the average mapping error per object as well
as the total error in the configuration at each iteration, for
both C111 (blue lines) and the final configurations (black
lines) (Fig. 6). While the physics simulator cannot improve
the error beyond the quality of the particle filter hypotheses,
we can clearly see that a reduction in the mapping error can



Fig. 4. Branch and Bound Tree. The nodes are expanded in the order 111, 112, 113, 121, 211, 122, 212, 123, 131, 213, 221, 132, 311, 222. Bounding
threshold T = 0.0002.

Fig. 7. Sphere mapping using the physics simulator. This figure (l-r) shows
the motion of the sphere rolling down the slope starting from the initial
position in the leftmost frame until it comes to rest at the minima in the
rightmost frame

be obtained by opting for the geometrically and physically
hypothesis chosen by the simulator instead of the highest
probability hypothesis of each object. Though the savings
per object are small for this geometry, the benefits of the
reduction in the total congifuration error accumulate as
the number of objects in the scene increase. Furthermore,
Kruskal-Wallis test on the errors shows results in a p-value
of 0.0307. Thus, our method helps obtain lower bounds on
the error of the estimation process.

C. Sphere on a slope

In this example, the world consists of a fixed V-shaped
groove and a sphere placed at its minima (Fig 7). We
consider the case where the pose estimation algorithm has
mapped the sphere to a point on the slope instead of at the
minima point. A human can look at this configuration and
immediately identify that it is impossible. However, the robot
with no physics knowledge has no basis to arrive at such a
conclusion. If the output of the pose estimation algorithm

Fig. 8. Error obtained with and without simulation when mapping a 5cm
radius sphere with a particle filter over 20 runs. The 6DOF hypotheses were
generated with noise σ = 10 in each dimension.

is now run through the physics simulator for validation it
immediately becomes clear that the sphere will roll down
the slope to the minima of the groove. Because of this the
physics simulator provides a significant improvement over
the C1 hypothesis (Fig. 8). Thus the simulator not only
disproves that the sphere can be on the slope but also shows
that the valid configuration for these geometries is the sphere
resting at the groove’s minima.

V. DISCUSSION

Several vision approaches based on SIFT or similar
techniques[17], [4], [5] have been proposed for estimating
the 6-DOF pose of objects in a scene. Each of these methods
use a training phase to generate a model of the objects which
is then used in recognition. While these methods localize
each object individually and can identify multiple objects



Fig. 9. Fitting peg in the hole using the physics simulator. This figure (l-r)
shows the motion of the peg as it is dropped into the hole starting from the
initial position in the leftmost frame until it fits in the hole in the rightmost
frame

and multiple instances of the same object in the scene, they
do not check for the validity of the entire configuration.
Our approach can be used to analyze their pose hypotheses
and generate physically consistent 3D maps, thus serving
as a physical validation of the multiple objects’ location
hypotheses.

The examples involving cubes show how errors in map-
ping individual cubes can results in volume overlap prob-
lems. Thus, increased proximity poses special challenges for
3D mapping. We have illustrated the ability of the physics
simulator approach to find the best overall solution even
in challenging configurations where objects are balanced on
each other.

The rigid body dynamics change when the object is resting
on one of its rounded surfaces. Such surfaces require a
completely horizontal plane to come to rest, and roll when
placed on a slope. Any configuration which contains a
spherical object on a slope is not stable and will exhibit
motion and change when time is advanced. Since the original
configuration cannot exist, this indicates an error in the
position of the spherical object. The third example illustrates
how the physics simulator is useful in exposing erroneous
pose estimates which cannot exist in the real world due to
the action of forces like gravitation.

Furthermore, the physics simulator can play an additional
role in problems like the peg-in-the-hole, which involve
motion and manipulation. It can provide direct clues about
which configurations can lead to the peg fitting into the hole
exactly. For example, when the peg from the leftmost frame
of Fig. 9 is released, it falls straight into the hole. In this
manner results of physical simulation can be used by the
robot as positive and negative reinforcements of its current
manipulation strategy in a manner akin to human decision
making. This example illustrates how the physics simulator is
useful in configurations where the nature of physical contact
between objects is complex and constrained.

VI. CONCLUSION AND FUTURE WORK
This paper introduces a formal approach to reason about

the implications of pose estimates in multi-object settings by
relying on physical simulation. As the number of possible
hypothesis in a 6-DOF estimation problem grows exponen-
tially with the number of objects, we present a branch-and-
bound algorithm that evaluates only the subset of most-likely
hypothesis.

This paradigm models object mapping process after the
process that humans use for the same task. In doing so,
it captures the elegance and scalability of the approach.
Another key advantage of this approach lies in transforming
a source of complexity into a source of information. Instead
of avoiding the interaction between objects it harnesses it to
extract realistic limitations of configurations. This results in
a mapping solution that is not only based on the estimation
process but also consistent internally as well as with real
world physical laws.

In future work, we are interested in using an image of the
final configuration for visual validation. This would provide
feedback via the comparison of this reconstructed world with
the camera feed.

REFERENCES

[1] H. Durrant-Whyte and T. Bailey, “Simultaneous localisation and map-
ping (slam): Part i the essential algorithms,” Robotics and Automation
Magazine, vol. 13, no. 2, pp. 99–110, 2006.

[2] S. Thrun, W. Burgard, and D. Fox, “A real-time algorithm for mobile
robot mapping with applications to multi-robot and 3D mapping,” in
IEEE international conference on robotics and automation, vol. 1.
Citeseer, 2000, pp. 321–328.

[3] D. Hahnel, W. Burgard, and S. Thrun, “Learning compact 3D models
of indoor and outdoor environments with a mobile robot,” Robotics
and Autonomous Systems, vol. 44, no. 1, pp. 15–27, 2003.

[4] S. Zickler and M. Veloso, “Detection and localization of multiple
objects,” Proc. Humanoids 2006.

[5] A. Collet, D. Berenson, S. Srinivasa, and D. Ferguson, “Object
recognition and full pose registration from a single image for robotic
manipulation,” in IEEE International Conference on Robotics and
Automation (ICRA), Kobe, Japan, 2009.

[6] T. Laue, K. Spiess, and T. Rofer, “SimRobot-a general physical robot
simulator and its application in RoboCup,” Lecture Notes in Computer
Science, vol. 4020, p. 173, 2006.

[7] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper,
“USARSim: a robot simulator for research and education,” in Proc.
of the 2007 IEEE Intl. Conf. on Robotics and Automation (ICRA).
Citeseer, 2007.

[8] O. Michel, “WebotsTM: Professional mobile robot simulation,” Arxiv
preprint cs/0412052, 2004.

[9] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper,
“Bridging the gap between simulation and reality in urban search and
rescue,” Lecture Notes in Computer Science, vol. 4434, p. 1, 2007.

[10] J. De Kleer and J. Brown, “A Qualitative Physics Confluences,”
Artificial intelligence, vol. 24, pp. 7–83, 1984.

[11] P. Fishwick and B. Zeigler, “Qualitative physics: towards the automa-
tion of systems problemsolving,” in AI, Simulation, and Planning in
High Autonomy Systems, 1990., Proceedings., 1990, pp. 118–134.

[12] K. Forbus, “Qualitative physics: past present and future,” in Readings
in qualitative reasoning about physical systems. Morgan Kaufmann
Publishers Inc., 1989, p. 39.

[13] D. Berenson, S. Srinivasa, and J. Kuffner, “Addressing pose uncer-
tainty in manipulation planning using task space regions,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS
’09), October 2009.

[14] K. Murphy, “Bayesian map learning in dynamic environments,” Ad-
vances in Neural Information Processing Systems, vol. 12, pp. 1015–
1021, 2000.

[15] R. Smith, “Open dynamics engine,” http://www.ode.org/.
[16] T. Lozano-Perez, M. Mason, and R. Taylor, “Automatic synthesis

of fine-motion strategies for robots,” The International Journal of
Robotics Research, vol. 3, no. 1, p. 3, 1984.

[17] S. Ekvall, F. Hoffmann, and D. Kragic, “Object recognition and
pose estimation for robotic manipulation using color cooccurrence
histograms,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS, vol. 3. Citeseer, 2003, pp. 1284–1289.


