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PART 1: Introduction and Explanation

Abstract

To analyze computer systems or compare them to one another, measure-
ments are taken as the program runs. This is called a performance trace, and
it can involve large amounts of time series data. Currently, statistical tools are
used for analysis but this approach loses information by ignoring the ordered
nature of the data.

We propose improving computer performance metrics by viewing the com-
puter as a dynamical system and studying the time varying behavior. We pro-
posed accomplishing this by applying recurrence plots (RPs) to the data [6].
This approach provides a graphical characterization of the system that can (in
some cases) filter though noise, identify non-stationary patterns, and make pe-
riodic behavior immediately apparent [7].

I tested the hypotheses that RPs will allow us to easily compare systems as
well as to identify specific points in the data set that warrant further investi-
gation. We found that RPs are not an appropriate tool for this purpose. We
believe this is partially due to the fact that the scale patterns in time series data
from hardware traces is much smaller than the entire time series. This difference
of 1-2 orders of magnitude makes the patterns difficult to see. In addition, RPs
appear too sensitive to noise to be useful for computer applications.

Background

The sensitivity to small perturbations is a defining characteristic of chaotic
systems and is well known in computer systems (ie. irreproducibility, bugs,
etc). It is exhibited within the architectural implementation (hardware) as well
as code (software) and makes analysis difficult and error prone. In previous
work, Bradley, Diwan, and Mytkowicz have shown that a nonlinear dynamics
model of computer systems captures the effects of both factors [§]. Current
work is focused on understanding the effects.

This involves running and analyzing performance traces on hardware as well
as simulators. This generates large amounts of time series data with significant
noise. The conjecture we will explore here is that RPs will help with the data
analysis by providing an additional tool for interpreting and comparing these
complex systems [6].

Methods

A recurrence plot (RP) is a tool which allows recurrence patterns in time
series data to be visualized in two dimensions [9]. This is done by plotting
points where the trajectory at time ¢ is close to the trajectory at time j. This
can produce a colored graph corresponding to a range of differences (unthresh-
olded), or a black and white graph (thresholded) where only the points outside a
specified threshold are plotted. Mathematically, a thresholded RP corresponds



to Ri’j =1if:
|z, — x| <7

else R; ; = 0, where R is the matrix corresponding to the recurrence plot, z;
corresponds to displacement at time t, and 7 is some threshold value.

An RP always contains the line y = x about which it is symmetric (reflect-
ing the fact that the system’s state is equal to itself at every point in time).
Lines parallel to this diagonal signify recurrences. This is useful in identifying
periodicities, limit cycles, or chaotic behavior. Recurrence plots allow one to
look beyond noise in the system as well as to identify non-stationary patterns
and other interesting points [3 [J.

The data to be studied here consists of example data generated for the
purpose of understanding the tools as well as instructions per cycle (IPC) data
taken from a simulator. They both consist of some measurement as a function
of time. We also analyzed cache misses (a memory usage metrics) but these
results are not included in the report. Data was gathered by other members
of the team (specifically Todd and Stephen) from simulators as well as real
hardware systems. Measurements were taken every hundred thousand cycles
and later normalized to ”per cycle” count to produce IPC. When calibrating
the RP software, I down sampled the data in order to achieve a manageable
size.

The goal of this work was to evaluate RPs as a tool for identifying patterns
and points of interest in hardware traces. The data from such traces is long and
difficult to interpret. We explored whether RPs aided in the analysis of these
data.

PART 2: Understand and Calibrate Tools

In order to evaluate the effectiveness of recurrence plots in identifying points
of interest in large time series data, I first looked at data with known character-
istics. This served the purpose of both developing my understanding of the tools
as well as determining the strengths and weaknesses of RP analysis. I chose to
look at the effects of two characteristics that are likely in our experimental data:
noise and drift.

Noise Experiment:

Noise is present in virtually every experimental data set. In our hardware
traces (from real systems), many steps have been taken to limit the amount
of noise, but it is impossible to completely eliminate it. For example, we can
ensure that there are no superfluous programs running when we are taking our
measurements but we cannot turn off the operating system. Therefore, our data
contains known noise from the operating system interrupting and using cycles
of the CPU to perform tasks unrelated to our test programs. It is highly likely
that there exists noise from a variety of unknown factors.

In an effort to quantify effects of noise on the analysis, I generated example
data with varying amounts of noise. The data was generated from the following
function:



1
x(t) = sin(t) + §sin(2t) +exr

Noise was introduced in the last term where r is a random number from a
gaussian distribution, and ¢ is some scaling constant. Various levels of noise
were introduced and are quantified below as a percentage of the range of the
original time series.

The following analysis shows data with no noise (red) compared against data
with 2% noise (green) and completely random data (100% noise, blue). Other
levels of noise (1%, 5%, 10%) were also analyzed but are not shown due to space
considerations.
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Figure 1: Time series of periodic data with noise

Figure 1 shows a snapshot of the time series for visualization purposes (the
entire series contain 3,000 points)[I0]. As you can see, the time series with 2%
noise closely matches the series without noise while the random series does not
(which is expected).

This data was analyzed using TISEAN, a package for analysis of time series
data [4]; select results are shown below.

The first graph of Figure 2 shows mutual information functions for each
level of noise. This is a way of measuring the degree of dependency between
two variables. In the above case, it measures the dependency of two points in
the time series, given they are = distance apart (where z is measured along the
x-axis). We can see that the periodic signal retains a higher degree of mutual
information as compared to the signal with 2% noise. The random signal retains
no mutual information after the first step (which, again, is expected.)

Figure 2b shows TISEAN’s false nearest neighbors function (FNN) is used to
estimate the dimension of compressed data. We expect our traces to be many-
dimensional but we are only measuring one dimension. FNN gives us a way of
determining which points appear close in our trace data but are not actually in
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Figure 2: TISEAN analysis

the system. We can see that the periodic signal is significantly lower than the
signals with noise. We would ideally like the false nearest measure under 0.1.

Figure 2c is a visual representation of the reconstructed dynamics according
to the delay coordinate embedding theorem [5]. This accurately represents the
2% noise signal as a “fuzzy” approximation of the periodic signal (clean red line,
partially visible underneath.) The random signal was left off for clarity (it has
no discernible pattern and covers the entire plot.)

Drift Experiment:

We would also like to be able to identify drift, a form of non-stationarity, in
our data. Drift describes a phenomena where a recurring pattern is obscured by
a constant force in some direction. For example, a swimmer’s periodic motion
can be obscured by the constant current in a river. I analyzed the ability of our
analysis to detect drift by looking at data generated from the following function:

1
x(t) = sin(t) + isin(%) +ext

where ¢ is some small constant. Following is the beginning of a periodic
time series (red) graphed with ¢ = 0.1 (green). You can see that their pattern
is similar but the latter is drifting upwards.

Non-stationarity is difficult to detect with common analysis tools such as
a statistical mean, which ignores time varying behavior. But, it should be
easy to identify with recurrence plots. For example, the above pattern that
reoccurs but is affected by drift upwards (positive) reflects this with diagonal
lines (recurrences) close to the center diagonal but fewer further out, as seen
below.

PART 3: Simulator data (IPC)

The next step in evaluating recurrence plots as a tool for pattern detection
in hardware traces is to analyze data from simulators. They are more complex
and difficult to analyze than the above toy systems but are much simpler than
real systems (i.e., hardware traces from real computers.)

Simulators are a common way to analyze computer systems because they
allow researchers to look at various parameters such as cache size and configu-
ration, processor speed, and much more without buying specific machine. This
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Figure 3: Time series of periodic data with drift
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Figure 4: RP of periodic data with drift

method is also used in industry, allowing the manufacturer to do some analysis
of a processor even before it is built. Simulators can take a large number of mea-
surements as the virtual machine runs a program, and the entire environment
can be controlled and measured.

The simplification of simulators is both a benefit and detriment. It is very
useful to isolate variables in an experiment and, therefore, simulators can be
very helpful in determining the effect of each parameter. But, often, this can
be very misleading because real systems do not operate in isolated, controlled
environments. In fact, it is often the interaction of different parts (cache size,
processor speed, operating system, specific program implementation, etc) that
dominates the dynamics. This can result in simulator traces that are vastly



different than their corresponding hardware traces.

While we recognize the limited connection between simulator results and
hardware results, we chose to test RPs as a tool on various simulator runs. For
the duration of the experiment, the simulator was configured as follows with
approximately 2.4 Ghz processor and 4 MB L2 cache.

I began by running the following two programs on the simulator:

e repeated row major matrix initialization
e repeated column major matrix initialization.

The programs are very simple and are given below:

void rowmajor () {
int i, j, n;
for (n = 0; n < N; n++)
for (i = 0; 1 < 1024; i++)
for (j = 1i; j < 1024; j++)
datali]l [j] = O;

void colmajor () {
int i, j, n;
for (n = 0; n < N; n++)
for (i = 0; i < 1024; i++)
for (j = i; j < 1024; j++)
datalj]l[i] = O;
}

where N = 1000 and the matrix, data, is of size 1024 x 1024. The simulator
interrupted the program every 100,000 cycles to retrieve data. One must be
careful when determining how often this interrupt happens because if it is too
frequent, there will be a large amount of noise introduced. But, if it is not
frequent enough, there will be insufficient data to draw conclusions. We chose
100,000 because, from past experience, we believe this minimized both issues
[8].

Because of the way matrix data is stored in memory and the way the proces-
sor moves data in and out of the caches, the row major initialization is a fast,
efficient use of memory and processors, while the column major initialization is
slow and inefficient.

Next, we ran three more programs that performed a mixture of the above two
programs. They do various percentages of row and column matrix initialization;
equal parts of each, 25% row and 75% column, and visa versa. This was done by
picking a random number from a uniform distribution after each pass through
the matrix to determine which function call, rowmajor() or colmajor(), would
execute next.



The following are snapshots of the time series of the above five programs. As
you can see, row major matrix initialization has consistently higher IPC and,
therefore, is a more efficient use of the computers resources (both memory and
Processors).
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(a) Row, Column Data Separately  (b) Mixed Row and Column Data
Figure 5: Time series of IPC data

Figure 6 shows TISEAN’s mutual information function. We can see that
both the row and column major programs drop off quickly while the mixed
programs drop off more slowly. This results because of the random component
of the mixed programs, making them more “fuzzy.”

(a) Row, Column Data Separately  (b) Mixed Row and Column Data
Figure 6: Mutual Information Function of IPC data

TISEAN’s delay function (Figure 7) is one of the best visualizations of the
characteristics of the five programs. Figure 7a shows the row and column major
programs as both very distinct and very contained. Figure 7b shows all three
mixed programs (one on top of the other), which contain both row and column
as well as the phase change between the two.

This trait is more obscured in the recurrence plots of these time series (Fig-
ures 8 and 9). One can see some degree of periodicity in the row major RP
the the others are obscured with noise. It is likely the case that the periodic
frequencies of the simulator traces are too low (compared to the length of the
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(a) Row, Column Data Separately  (b) Mixed Row and Column Data

Figure 7: Delay Function of IPC data

trace) to be easily apparent. Also, in the mixed programs, we hypothesize that
periodicity is obscured in the RP’s because the dynamics are being dominated
by the random element (switching between rowmajor() and colmajor()).
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Figure 8: RP’s of IPC data, separately

In order to further analyze the above RPs, we use Recurrence Quantification
Analysis (RQA). This is a collection of techniques for mathematically quantify-
ing RPs [2]. It includes various measures, including Percent Determinism. This
measures the frequency with which a given state reoccurs and is given by:

N
Zl:lminl X P(l)
N .
Zi,j:1 R(i, j)
where P(1) represents the frequency distribution of I, the lengths of the diagonal
lines and R(i,7) is the measure of how close the trajectories are at time ¢ and

time j. The following Percent Determinism measures for the above traces give
us an idea of the predictability of each system.

PercentDeterminism =

Table 1 contains the RQA measures for this data. The % Determinism mea-
sures do not seem to reflect the degree of periodicity in the RPs. We believe
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Figure 9: RP’s of IPC data, mixed

Table 1: Percent Determinism Measures
Program Type % Determinism DET/RR

column major 25.6 9
25% row major 26.1 15
50% row major 23.6 19
75% row major 20.7 17
rOW major 20.8 59

that, for the mixed programs, the dynamics are being dominated by the ran-
dom element introduced when choosing between rowmajor() and colmagor().
The second measure (DET/RR) seems to reflect the fact that rowmajor() is
more efficient. We believe this is because it does each iteration faster (more
efficiently), but still has the same overall number of iterations (recurrences).

PART 4: Conclusions

I worked on this project with professors Elizabeth Bradley and Amer Diwan
as well as graduate students Todd Mytkowicz (Systems PhD), Zach Alexander
(Applied Math PhD), and Stephen Heck (Computer Science Masters). One of
the main research interest of the group is an ongoing project titled “Validat-
ing Architectural Simulators Using Non-Linear Dynamics Techniques.” The key



goals of this project are to determine how accurately simulators model corre-
sponding computer hardware and to identify parts of the simulator responsible
for any difference between it and the real hardware system.

We believe that RPs are not an appropriate tool for the analysis of these
data. We found that RPs, when applied to the simplified data in this report,
produce ambiguous results and were not helpful for analysis. First, RPs were
unsuccessful in identifying patterns in the highly periodic simulator data. We
believe this is due to issues with the scale of the patterns (periods) as compared
to the scale of the data. Also, real hardware data has substantially more noise
than any of the time series we looked at in this report. Any useful analysis tool
would need to work in these conditions.
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