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Abstract

The measure of heart rate variability (HRV) has become a valuable metric for diagnosing
cardiac health. The ECG is the representative signal containing information about the condi-
tion of this health metric. Analysis of this highly complex and irregular signal cannot always
be addressed through linear statistics. Nonlinear methods are able to describe the processes
generated by biological systems in a more effective way. The adoption of these methods in a
clinical environment, however, has been difficult and slow. This paper examines the feasibility
of using nonlinear analysis methods in such a setting. Given two data sets of a normal patient
and a patient with atrial fibrillation (from PhysioNet), we examined the effectiveness of using
Poincaré plots, largest Lyapunov exponent, and detrended fluctuation analysis, in differentiat-
ing the subjects. All the methods used were able to clearly separate the two data sets. From a
clinical perspective, calculating accurate Lyapunov exponents requires an average of 5.5 hours
of data, while Poincaré plots and DFA require approximately 100 and 80 minutes, respectively.
Both Poincaré plots and DFA would serve well in characterizing a patient relatively quickly,
while Lyapunov exponents would be too time intensive. To test our hypothesis, we designed
and implemented a simple ECG system that gathered 90 minutes of data from an unclassified
subject. A Poincaré and DFA analysis of the data suggested a healthy normal individual.

1 Introduction

It has been observed that the cyclic variations of heart rate plays an important role in the health
of an individual. Heart rate variability (HRV), the variation over time of the period between heart
beats, is thought to reflect the heart’s ability to adapt to changing circumstances. Its variation may
contain indicators of current diseases, or warnings about impending cardiac diseases. Physiological
signals, however, often vary in a complex and irregular manner making it difficult to analyze them.
Since the underlying mechanisms involved in the control of heart rate is mainly nonlinear [4], the
application of nonlinear analysis techniques seem appropriate.

One of the controversial topics related to nonlinear science is the dynamical characterization of
HRV. While the question as to whether the human heart is chaotic by nature is interesting, it is a
question that is unlikely to be resolved very soon. Given the complexity of the human heart, where
different subsystems with feedback loops constantly adapt the cardiac system to its physiological
needs and requirements, it may very well be that the human heart is chaotic in one instance and
stochastic in another. The debate as to its dynamic nature is interesting to the extent that it leads
to new insights about health and disease in patients.

Setting aside the difficulties in documenting chaotic dynamics in HRV, the goal of this paper is
to examine the feasibility of nonlinear analysis in a clinical setting. Towards that end, it examines
several methods such as Poincaré plot analysis, Lyapunov exponents, and detrended fluctuation
analysis (DFA) in distinguishing between groups of patients. Most studies of nonlinear techniques on
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Figure 1: An ECG Example

HRV are based on long-term time series and hence focused on 24-hour ambulatory ECG recordings.
We examine using these methods on consecutively smaller data lengths to determine their reliability
in HRV classification.

Measuring the electrical impulses of the heart through an ECG is the standard way to study
HRV. This paper examines 3 ECG data sets: a healthy subject, a subject with atrial fibrillation,
and an unclassified subject. The first two data sets were obtained from PhysioNet, while the third
was obtained experimentally through a custom ECG system. The length of time to obtain data
from the third subject was informed by the results from the first two data sets. The third subject
was then classified based on the analysis of the obtained ECG data.

In the next section, we describe the ECG data used and the RR interval method used in the
analysis. Section 3 discusses in detail the nonlinear techniques used in characterizing the signals. The
results of the analysis are provided in section 4. Section 5 presents the design and implementation
of the custom ECG system followed by an analysis of the data obtained. We finally conclude in
section 6.

2 ECG Data and Methods

An ECG measures the electrical impulses of heart activity, and is composed of four components:
the p-wave, the QRS complex, and the t-wave (Figure 1). Typically, conditions of the heart are
detected by irregular behavior in either the amplitude, duration, or frequency of the smaller waves
or QRS complex. While they are valid methods for analysis, they require high resolution data and
are affected by noise. Another alternative, which this paper explores, is to focus on the R-peak of
the QRS complex, more specifically, the duration between the R spikes. This measure, dubbed the
RR interval, is useful in detecting heart beat irregularities. It is robust to noise as it only requires
keeping track of the time between major, easily detectable spikes. Given the RR intervals, the heart
rate (beats per minute) is given as:

HR = 60/Ri (1)

This paper analyses three data sets, two of which were obtained from the PhysioNet database of
physiologic signals [2]. Each of the two time series from PhysioNet is 24 hours long. The first time
series (n1rr) is of a healthy, adult male who is 32 years old. The second time series (a1rr) is of an
atrial fibrillation (AF) patient. The sex, and age of the AF patient were not provided. The third
data set was obtained experimentally, using a simple, custom ECG system, from a 30 year old adult
male with no prior HRV classification (e.g.. normal, AF, cardiac arrhythmia, etc). Informed by our
analysis of the two PhysioNet data sets, we gathered 90 minutes of ECG data and then used the
data to classify the subject.
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3 Nonlinear Methods of Analysis

Nonlinear techniques have been used in a variety of studies to describe complex biological systems
in an effective way [1, 3]. The methods employed by this paper to study HRV include, interspike
interval embedding, the largest Lyapunov exponent (LLE), Poincaré plot geometry, and detrended
fluctuation analysis (DFA). Each is discussed in detail in the subsections below.

3.1 Poincaré Plots

A Poincaré plot analysis portrays the nature of RR interval fluctuations. It is a plot in which each
RR interval is plotted as a function of the previous RR interval (RRn against RRn+1). It is used as
a quantitative visual technique where the shape of the plot is used to indicate the degree of heart
failure of the subject [10]. The plot provides summary information, as well as detailed beat-to-
beat information on the behavior of the heart. It can be analyzed quantitatively by calculating the
standard deviations of the distances of the R − R(i) to the lines y = x and y = −x + (R − Rm),
where R − Rm is the mean of all the beat-to-beat intervals. The standard deviation of the short-
term RR interval is referred to as SD1 (minor axis of the cloud), while the standard deviation of
the long-term RR interval is called SD2 (major axis of the cloud). Typically, the ratio SD1/SD2 is
used to characterize various cardiac abnormalities. A lower ratio is an indicator of a healthy heart
and typically creates a comet or cigar-like plot.

3.2 Interspike Interval Embedding

Often, the first step in nonlinear dynamical analysis is the reconstruction of the phase space. It is used
in calculating various measures such as the Lyapunov exponent (Section 3.3). The simplest method
for reconstruction is the time-delay method described by Takens [8], where the multidimensional
dynamics of the system can be generated from one measurement variable. In order for Takens
theorem to hold, the sampling time interval needs to be uniform, which is not the case with RR
intervals. If however, we assume that the spikes result from an integrate and fire process, then
the RRi(s) are just an integral of some state variable. This idea, proved by Sauer [7], allows the
embedding of RR intervals using usual time delay embedding. The reconstructed and original system
attractors are topologically equivalent. For a time series R − R(n), where n = 1, 2, ...N , the time
delay vectors in phase space can be reconstructed as defined by

Xn = [RR(n), RR(n+ τ), RR(n+ 2τ), ..., RR(n+ (m− 1)τ)] (2)

where τ is referred to as the delay time and m is the embedding dimension. This paper employed the
false nearest neighbors technique in estimating the embedding dimension, and the average mutual
information technique in estimating the delay.

3.3 Largest Lyapunov Exponent (LLE)

The largest Lyapunov exponent is a quantitative measure of the sensitivity of the system to initial
conditions and gives a measure of predictability. It defines the average rate of divergence of two
neighboring trajectories. Even though an m-dimensional system has m Lyapunov exponents, it is
often sufficient to compute just the largest Lyapunov exponent. A negative exponent implies that
the orbits approach a common fixed point while a zero exponent represents orbits that maintain
their relative positions (on a stable attractor). A positive exponent is indicative of orbits that are
on a chaotic attractor. Different methods exist for calculating the largest Lyapunov exponent. The
method employed by this paper was proposed by Rosenstein et al [6]. It is known to be robust with
data length. This method looks for the nearest neighbor of each point in phase space and tracks
their separation over a period of time. By plotting the log of the divergence versus time, the LLE
is estimated by computing a least-squares fit to the linear region of the resulting curve. The LLE
for normal subjects should be lower than patients diagnosed with AF since the variation in RR is
much lower (compared to AF).
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3.4 Detrended Fluctuation Analysis (DFA)

A time series is generally considered stationary if its mean, standard deviation and higher moments
are invariant under time translation. Signals that fail these conditions are considered nonstationary.
For such signals, a bounded time series can be integrated and mapped to a self-similar process. A
sequence of coin flips, for example, can be mapped using this method to a one-dimensional random
walk (a stationary integrated time series). However, using this type of fractal analysis for highly
nonstationary signals like heart rate, only makes the nonstationary of the original data even more
apparent during the integration procedure.

Detrended fluctuation analysis is used to overcome this complication. This technique, introduced
by Peng et al [5], is a modified version of the root-mean-square analysis of a random walk that can
be used to quantify the fractal scaling properties of short interval RR interval signals. The general
idea behind DFA is to calculate the average amount of fluctuation over bins of different sizes (root
mean square deviation between the signal and its trend in each bin) and plot the result as a function
of bin size on a log-log scale.

First, the RR time series of length K is integrated using the equation,

y(k) =
k∑

i=1

[RR(i) −RRavg] (3)

where y(k) is the kth value in the integrated series. RR(i) is the ith interbeat interval and RRavg

is the average interbeat interval over the entire beat series. The integrated series is then divided
in n windows of equal length. In each window, a least squares line representing the trend in that
window is fitted to the RR interval data. The y coordinate of the straight line segments are denoted
by yn(k). Finally, the integrated time series is detrended in each window. The root-mean-square
fluctuation of the integrated and detrended series is calculated using equation 4.

F (n) =

√√√√1/N

N∑
k=1

[y(k) − yn(k)]
2

(4)

This computation is repeated over different window sizes to obtain the relationship between F (n)
and the window size n. This relationship can be thought of as the number of beats in a window
that is the size of the window of observation. Usually, F (n) will increase with window size. A linear
relationship on a log-log graph indicates the presence of self-similarity. The fluctuations in small
boxes are related to the fluctuations in large boxes in a power-law fashion. The slope of the line,
relating logF (n) to log n determines the scaling exponent, α. Fractal like signals result in a scaling
exponent value of 1 (α = 1). A totally random signal results in a value of 0.5. For a more intuitive
understanding, α can be thought of as the “coarseness” of the original time series. The larger the
value of α, the smoother the series.

For healthy, normal subjects, the scaling exponent should be closer to 1, indicating fractal-like
behavior. For highly varying signals, like patients with atrial fibrillation, the exponent should be
very low [9].

4 Results

Using the nonlinear methods discussed above, the two data sets for normal and AF subjects were
analyzed. The results focus on the feasibility of using nonlinear approaches in analyzing cardiovascu-
lar variability in a clinical setting. If, for example, 24 hours of ECG data is required for a particular
nonlinear analysis method, it would be too time intensive to succeed in a clinical environment.

Figure 2 shows the Poincaré plots for both subjects. For the normal subject, the classic cigar
shape is clearly visible in the plot. The ratio SD1/SD2 for the normal subject is 0.85. In the case
of the AF subject, the plot shows a “fan-like” dispersion. The ratio SD1/SD2 for the AF subject is
3.02, indicative of an unhealthy heart. This ratio is more in the case of the AF subject due to more
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Figure 2: Poincaré plots for normal subject (left) and AF subject (right). The SD1/SD2 ratios are
0.85 and 3.02 respectively.

Figure 3: Phase-space plots for normal subject (left, m = 7, τ = 2) and AF subject (right, m = 8,
τ = 2).

variation in the RR interval. The Poincaré plots, differentiates the two data sets significantly. To
get a clear picture of the plots, approximately 10000 (∼ 1.5hrs) beats were required.

To generate the phase-space plots, Tisean was used to compute the embedding dimension (m)
and the delay (τ). The embedding dimension was calculated using false nearest neighbors and the
delay was estimated using average mutual information. Figure 3 details the phase-space plots for
the two data sets. For the normal subject, the phase-space plot looks like a cluster of points. In the
case of atrial fibrillation, heart rate signal records highly erratic variability; this is depicted in the
scattering of points in the phase-space plot.

Given a reconstruction of the phase space, the LLEs for the normal and AF subjects were
calculated (using Tisean lyap r). In order to determine the minimum amount of data required for
a successful estimation, LLEs were calculated for different time lengths. Table 1 details the results.
The LLEs computed from 20 hours of ECG data are the most accurate. Given this baseline, LLEs
were then computed for progressively smaller data lengths. For the normal subject, an accurate LLE
estimate can be obtained with 5 hours of ECG data; the AF subject required 6 hours. Results show
a positive LLE for both data sets, suggesting a chaotic time series. While the LLE characterizes the
two subjects well, with the AF subject having a higher LLE than the normal subject (due to higher
RR variations), it is too time intensive for a clinical setting.

The last nonlinear method employed to distinguish the two data sets was DFA. Figure 4 shows
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Figure 4: DFA analysis

the results of the analysis. For the normal subject, the fractal scaling (α) exponent is 0.8. In previous
studies, healthy subjects revealed a scaling exponent of approximately 1 [9], indicating fractal-like
behavior. For highly varying signals, like patients with AF, the scaling exponent is very low. The
results support this conclusion with the AF subject having a reduced scaling exponent of 0.13. This
method required approximately 8000 beats (∼ 80min), the least amount of data out of the nonlinear
methods used.

Table 1: LLEs for various time lengths

Normal AF

LLE (10 min) 0.03 0.09
LLE (1 hr) 0.23 0.43
LLE (3 hrs) 0.49 0.35
LLE (5 hrs) 0.53 0.45
LLE (6 hrs) 0.56 0.66
LLE (8 hrs) 0.57 0.64
LLE (20 hrs) 0.55 0.67

5 Experiment and Analysis

Of the nonlinear analysis methods used, Poincaré plot geometry, and DFA required the least amount
of data for distinguishing the two subjects. While 1.5 hours of ECG data is still considerable, it is
not as prohibitive as a 24 hour requirement. To test these two methods, a simple ECG system was
developed and used to gather data from an unclassified subject. The experimental ECG system is
by no means perfect, but since the analysis methods described above only require RR intervals, the
system only needs to detect the spikes in the signal train and not the finer characteristics (p-wave
and t-wave). The simple ECG designed for this experiment is different from many others in that
it greatly simplifies the circuitry by eliminating noise reduction components, accomplishing this via
software-based data post-processing.

The electrical signals generated by the heart can be detected on the surface of the skin. In
theory one should be able to grab two leads of a standard voltmeter and see the voltage change with
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Figure 5: Simple ECG circuit

Figure 6: ECG signal of unclassified subject

each heart beat. However, since the fluctuations are rapid and the signal is extremely weak (a few
millionths of a volt) by the time it reaches the skin, it is difficult to detect without amplification.
A simple way to amplify the electrical difference between two points is via an operational amplifier.
The gain on an op-amp is controlled by varying the resistors attached to it. Unfortunately, the
amplifier also amplifies radiation from a variety of other electrical sources (computers, cell phones,
lights, wiring) which is absorbed by the skin and is measured with the ECG. The traditional method
for dealing with noise is complicated analog circuity. However, since the ECG signal is much slower in
comparison to the characteristic, repeating, high-frequency noise, it can be separated using digital
signal processing software on the computer. In order to digitize the signal, the analog to digital
converter found in the common audio input of a computer sound card can be used.

The circuit diagram of the ECG system is detailed in Figure 5. The 0.1uF capacitor was used
to stabilize the signal and reduce high frequency noise. With the circuit output connected to the
audio input of the sound card, a sound editor was used to record the ECG data in live mode. Once
the data was recorded, it was post processed by applying a lowpass filter at 30Hz. This eliminated
most of the electrical noise (> 30Hz), while leaving the ECG intact (< 15Hz). Since, the low pass
filter dramatically decreased the potential of the waveform, the volume of the signal was increased.
Finally an auto-gain filter was employed to normalize the heart beat potentials.

The ECG signal of the unclassified subject can be seen in Figure 6. It is clear from the trace that
even after processing there is still a lot of noise present. While the p-wave and the t-wave are lost
in the noise, the R spike is clearly visible and the RR intervals can be calculated. A Poincaré plot
of the RR intervals (Figure 7) of the subject seems to suggest a normal, healthy individual. The
shape of the plot follows a “cigar-like” pattern and a quantitative analysis of the standard deviations
reveals a low SD1/SD2 ratio of 0.77. This classification is confirmed by the DFA analysis, shown in
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Figure 7: Poincaré plot of unclassified subject

Figure 8: DFA analysis of unclassified subject

Figure 8, where the scaling exponent (α = 0.92) is a value close to 1, indicating a healthy subject.

6 Conclusion

Methods from nonlinear dynamics provide valuable information regarding the dynamics and stucture
of beat-to-beat time series. In this paper, we explored the feasibility of using nonlinear analysis
methods in a clinical setting. More specifically, Poincaré plots, LLE, and DFA methods were used
in analyzing HRV of two data sets (normal and AF) from PhysioNet. While our analysis allowed us
to clearly differentiate the subjects, the data length required varied depending on the method used.
Of the three methods used, calculating Lyapunov exponents required the most amount of data, with
an average of 5.5 hours of data, while Poincaré plots and DFA required an average of 90 minutes of
data. In a clinical setting, both Poincaré plots and DFA would serve well in characterizing a patient,
while Lyapunov exponents would be too time intensive. To test our hypothesis, we designed and
implemented a simple ECG circuit and gathered 90 minutes of data from an unclassified subject. A
Poincaré and DFA analysis of the data suggests a healthy normal individual.
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ABSTRACT
When looking at  system dynamics, ‘sensitivity’  refers to  a small 
change in initial conditions or parameters yielding a 
comparatively size-able change in trajectories over time. In 
baseball, for example, altering a baseball pitch by inches in both 
final location and trajectory could be the difference between balls, 
strikes, pop flies and home runs. This paper investigates how the 
trajectories of various baseball pitches change due to slight 
alterations in parameter values and initial conditions for the 
differential equations that govern the ball’s motion. Once the most 
sensitive parameter values are discovered, a sensitive pitch is 
determined from this analysis. Finally, through using major league 
baseball Pitch f/x data, pitchers who throw sensitive pitches are 
identified along with the type of actual  in-game pitches  that tend 
to be sensitive. 

Categories and Subject Descriptors
N/A

General Terms
N/A

Keywords
Chaotic Dynamics, Final Project, Runga Kutta, Baseball  Pitch 
Trajectories, Sensitive Pitches, 

1.  INTRODUCTION
In baseball the difference between a ball  and strike is a matter of 
inches. Any variable that yields a small change in pitch location 
cannot only change a given at-bat, but also, the course of a game. 
Being able to identify the parameters  that  most effect pitch 
trajectory and final location, as well as being able to  find the 
degree to which these parameters effect trajectory and pitch 
location, could be useful in categorizing  ‘sensitive pitches‘-- i.e. 
pitches wherein a slight change in parameter values or initial 
conditions yields a greater than normal variation in final ball 
location and velocity. Such analysis could give insight into  the in-
game effectiveness of these sensitive pitches as well  as how 
successful pitchers who throw these sensitive pitches are.

In order to do the above analysis we must first  better understand 
the forces that act upon a ball as it  flies through the air. For this 
project, we will specifically be looking at the equations of motion 
that describe fastball, curveball, slider, and screwball. Figure 1 
depicts the spin  on these 4 pitches (as thrown by a right handed 
pitcher) [1].

Previous research covers  the analysis  of baseball  pitch trajectories 
including spin parameters  [5], trajectory tracking [6], and the 
analysis of specific in-game pitches [7,9]. Specifically, [7] 
calculated and analyzed the sensitive trajectories of  knuckleballs. 

Furthermore, previous Pitch f-x research has looked at automatic 
pitch classification from Pitch f-x data [4].  

As a pitch  flies  through the air, three factors determine its 
resulting velocity at each point  of its trajectory. First, the ball has 
an initial  velocity due to the force applied by the pitcher throwing 
the ball towards home plate. Second, air resistance yields a drag 
force that counteracts the ball’s  velocity. Finally, there is a 
Magnus force due to the spin of the ball. The velocity, drag force 
and Magnus force are depicted in Figure 2 [2].

Figure 2 is a top down ‘birds eye view’  perspective; thus, the 
component of Magnus force pointing towards the first base side   
originates from the counter-clockwise spin of the baseball around 
an axis pointing outwards from the page towards the reader (from 
the perspective in Figure 2). The Magnus force always acts 
perpendicular to  the axis of spin [1].  Figure 3 gives a closer look 
at parameters that lead to the Magnus force in Figure 2.

Figure 1: A depiction of the four baseball pitches (for a right 
handed pitcher), with their respective spins, included in this 

project

Figure 2: Factors that determine a given pitch’s trajectory: drag 
force, Magnus force, and velocity due to the pitcher’s initial force



Figure 3 depicts  the two sides of the ball moving at different 
velocities. Since air is moving past the ball faster on one side and 
slower on the other, a low pressure system forms towards the 
slower (first base side in  this  case) of the ball resulting in  the 
Magnus force we see in Figure 2. The Magnus force parameters of 
spin  speed and axis of rotation, along with the initial velocity of 
the ball, are the main system parameters/initial conditions we will 
be altering to detect sensitive pitches in this paper. 

2.   METHOD

2.1. The Equations of Motion
The axes  we will use for the baseball equations of motion are as 
follows:

 The differential equations  of motion we will use for the flight of a 
pitched baseball are as follows:

In Equation 1, v is the speed of the ball, (vx, vy , vz) is  the speed in 
the (x,y,z) direction respectively, w is  the speed of rotation, g is the 
force of gravity, and Φ is the angle between the z-axis and the 
ball’s axis of rotation. B  is an approximation constant equal to 
4.1e-4. This approximation  constant enables the Magnus terms to 
be correct; Ideally, the B term would be speed dependent (ie: 
dependent on drag); however, for the purposes of baseball  pitches 
at speeds from 50-110 mph, this  is  assumed to be a correct 
approximation [3]. F(v) is the drag force related to  the ball and 
thus  depends on the speed of the ball. F(v) is approximated to be 
as follows:

Finally, the initial condition is assumed to be: 

Where θ is  the initial elevation of the ball and vo is the initial 
speed. Therefore, all  the initial  velocity  is assumed to be in the x  

Equation 1: The Differential Equations of Motion for a pitched 
baseball [2,3].  

Figure 3: The Magnus force is caused the air on one side of the 
ball travelling faster than the other side yielding a low pressure 
system on the slower travelling side and a resulting force in that 
direction. v is velocity, w is rotation speed and r is ball radius.

Figure 4: The axes we will be using. +x is towards homeplate, +y 
is towards first base, and +z points towards the sky

dx
dt

= vx

dy
dt

= vy

dz
dt

= vz

dvx
dt

= −F(v)vvx + Bw(vz sinφ − vy cosφ)

dvy
dt

= −F(v)vvy + Bwvx cosφ

dvz
dt

= −g − F(v)vvz − Bwvx sinφ

F(v) = 0.0039 + 0.0058

1+ exp(v − vd
Δ

)
Equation 2: The approximation of F(v) where v is the speed of the 

pitch, vd is 35 m/s and Δ is 5 m/s [2,3]
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Equation 3: The initial conditions of a baseball pitch that we use 
for Equation 1.



and  z direction with the amount in each direction based on the 
initial angle of elevation. Thus, the only ball movement in the y 
direction comes from the Magnus force terms in Equation 1.  
Also, from Equation 3  we see that the pitch is  assumed to start at 
(0,0,0) regardless of the pitcher’s height, release point etc.

It should be noted that Equation 1 only takes into consideration 
the Magnus force based on the angle between the ball’s axis  of 
rotation and the z-axis completely ignoring the Magnus  force due 
to  the angle between the ball’s axis of rotation and the x or y-axis. 
[4] actually shows the full equations of motion, including these 
terms, however, justifies eliminating these terms from the 
equations of motion saying that the force from this spin is 
assumed to be small. Another thing to note is that these equations 
assume that the ball’s rate of spin does not change as it travels 
through the air. In actuality, the rate of spin should decrease as it 
travels towards the plate. 

2.2. Solving the Equations of Motion for 
Sensitive Parameters
The general method we use to detect sensitive pitches  is to take 
parameters we want to investigate and change them slightly while 
keeping every other parameter/initial condition constant. For 
every  parameter value, we solve the equations of motion 
(Equation 1) using fixed step fourth order Rungu Kutta with a 
timestep of .0001 seconds [1]. After we have obtained all the 
trajectories that correspond to slight variations of a particular 
parameter, we go through and compare the ending point (ie:  ball’s 
point in space when it crosses home plate and its speed) of each 
result with the subsequent result (the smallest unit of change in 
parameter). The adjacent parameter values which exhibit the 
greatest difference in end point position and  velocity are assumed 
to  be the parameter values with the greatest sensitivity. Doing this 
for each parameter should give us a sensitive pitch profile.

For the purposes of this paper, the values we alter are the speed of 
rotation (w), the axis of rotation (Φ) as well as the initial 
conditions: speed (vo) and initial elevation angle (θ). It should be 
noted that when altering a particular one of these parameters/
initial conditions, we chose arbitrary constant values for the other 
parameters; it was assumed that the parameter/initial condition  
we were altering  would be sensitive at  the same value independent 
of the values of other parameters/initial conditions. This 
assumption  might not actually be true for every parameter/initial 
condition we alter. For example, in the  trivial case, if we were to 
set w=0, we would not expect that small or large scale changes in 
Φ would make any difference in pitch trajectory. Time constraints 
limited the research to just 1 combination-- given more time, 
ideally, we could go  back and do every combination of parameter/
initial condition. Though the analysis used in this paper might not 
return the most sensitive pitch because of the assumption made, it 
should  nevertheless return a sensitive pitch for given parameter/
initial condition values used.

Finally, after discovering the sensitive values for every parameter/
initial condition, a Pitch f/x profile was made for the pitch having 
all these sensitive parameter/initial condition values. Then this 
Pitch f/x profile, with  tolerances set on each Pitch  f/x parameter, 
was compared to every pitch thrown in  2009. The tolerances were 
slowly  increased until a size able number of pitches were detected 
to  determine the closest  real  major league pitch  with the 
sensitivity  values described above. The Pitch f/x parameters used 
for comparison are as follows (note that  Pitch f/x uses a different 
coordinate system-- they swap the x and the y coordinates  we use 

in  Figure 4, so their x is our y etc.): start_speed, end_speed, pfx_x 
and pfx_z (the furthest deviation that a pitch trajectory has in  the x 
and z direction from the straight line trajectory),  (vxo, vyo , vzo)-- 
initial velocity  conditions for each component, break_y (break in 
the y direction), break_angle (horizontal  angle of break measured 
from vertically down with left  being positive and right being 
negative), and spin_rate (speed of spin) [8].  

3.   RESULTS/DISCUSSION
Each parameter/initial condition was varied  based on realistic in-
game values one might actually see. These values are as follows.

Rate of spin, w, was altered from 30 rotations per second to 45 
rotations per second in increments of 1 rotations per second with 
vo=37.9984 m/s (~85 mph), Φ=0, and θ=0. The following plot  is 
all the trajectories computed from this calculation:

As w increases, the ball fans out  in  the y  axis which is what we 
would expect with a Φ=0. Also, as one might  expect, the greatest 
difference happened at w= 45 rps. The following graph is the 
result of the most sensitive w value trajectories plotted together (ie 
the trajectories that had the greatest difference-- as mentioned 
above we only looked at  parameter and initial condition 
differences of 1 unit).

Figure 5: The trajectories obtained by altering w from 30 rps to 
45 rps with vo=37.9984 m/s (~85 mph), Φ=0 degrees, and θ=0 

degrees.



Similarly the axis of rotation, Φ, was altered from 0 to 90 degrees 
by units of 1 degree (In retrospect it should have been altered 
from -90 to 90, but assuming symmetry we should get the similar 
results;  this result should correspond to a right hander’s 
curveball) with  w=30, vo=37.9984 m/s, and θ=0. The following 
graph is all the Φ trajectories plotted together.

 As one can see, with a low Φ, analogous to the slider pitch in 
Figure 1, the ball fans out more horizontally and breaks less. With 
a high Φ the ball breaks more with less horizontal movement. The 
following graph is the result of the most sensitive Φ values plotted 
together.

In Figure 8 we see that there is very little difference between the 
two trajectories:  one breaks slightly more and one has  slightly 
more horizontal movement.
Initial velocity, vo,was altered from 36 m/s to 45 m/s (~80 mph to 
~100 mph) with w=30, Φ=0, and θ=0. The actual change in initial 
condition vector this represents  can be calculated by using 
Equation 3. The following is a plot of all the trajectories computed 
from these calculations:

For greater velocities, the pitch has less time to break and to curve 
horizontally. Thus, the faster pitches have a straighter trajectory 
whereas the slower pitches have more movement (it should be 
noted that axis orientation was intentionally changed slightly to 
better depict this phenomenon). The following graph is the result 
of the most sensitive vo values plotted together. 

Figure 6: The trajectories obtained with the most sensitive values  
w equal to 44 and 45 rps with vo=37.9984 m/s (~85 mph), Φ=0 

degrees, and θ=0 degrees.

Figure 7: The trajectories obtained by altering Φ from 0 degrees 
to 90 degrees with vo=37.9984 m/s (~85 mph), w=30, and θ=0 

degrees.

Figure 8: The trajectories obtained with the most sensitive   Φ 
values equal to 7 and 8 degrees with vo=37.9984 m/s (~85 mph), 

w=30, and θ=0 degrees.

Figure 9: The trajectories obtained by altering vo from 35 m/s to 
45 m/s with Φ =0 degrees, w=30, and θ=0 degrees.



At the values of vo equal to 39 m/s and 40 m/s we see that the 
slower trajectory breaks and moves horizontally noticeably more 
than the faster trajectory.                                       

Finally, we alter initial elevation, θ, from -2 degrees to 2 degrees 
in  increments of 1 with w=30, Φ=0, and vo=37.9984 m/s. Again, 
one can use Equation 2 to calculate the initial state vector this 
represents. The following is a plot of all the trajectories  computed 
from these calculations.

This  is pretty uninteresting; basically throwing a ball at a different 
initial elevation angle leads  to the ball’s ending elevation being 
altered dramatically. One would expect this  to be the case; 
however, without knowing the extent to which this does or does 
not happen in a game it is hard to justify not analyzing this. For 
example, over the course of a game, as a pitcher’s arm gets tired, 
one might suspect that the initial angle of elevation might change. 

The greatest theta difference was found to be when theta equaled  
-1 degrees  and -2 degrees  (since these trajectories  are easily 
distinguishable in Figure 11, I decided not to plot them).
Putting  all these trajectory values together we can obtain the most 
sensitive two pitches. The following is 2 graphs, one of the most 
sensitive two trajectories with the initial angle, θ, altered (Figure 
12), and one of the most sensitive two trajectories with the initial 
angle not altered (Figure 13).

From the above plots we see that our most sensitive pitch, when 
we take out the change in initial elevation, has a small difference 
in  location with very slight  changes in initial/conditions and 
parameter values. Computing the difference in final state for the 
pitches in Figure 13, we see that our two pitches have the 
following differences (in absolute value) when they reach home 
plate.

Figure 10: The trajectories obtained with the most sensitive vo 
values equal to 39 m/s and 40 m/s (~87.24 mph and ~89.47 mph)   

with Φ =0 degrees, w=30, and θ=0 degrees.

Figure 11: The trajectories obtained by altering θ from -2 to 2 
degrees with Φ =0 degrees, w=30 rps, and vo=37.9984 m/s

Figure 12: Two trajectories, one with values (w, Φ, vo, θ)= (45 
rps, 8 degrees, 40 m/s, -2 degrees) and the other with values (w, 

Φ, vo, θ)= (44 rps, 7 degrees, 39 m/s, -1 degrees)

Figure 13: Two trajectories, one with values (w, Φ, vo, θ)= (45 
rps, 8 degrees, 40 m/s, -1 degrees) and the other with values (w, 

Φ, vo, θ)= (44 rps, 7 degrees, 39 m/s, -1 degrees)



With a small change in pitching parameters and initial conditions, 
the two pitches have slight a change in x velocity  and in break (z) 
when they reach home plate (2.4 mph and 2.16 inches 
respectively). This small change should be expected based on the 
minute amount we changed the two pitches. However, a few 
inches on a breaking ball  could be the difference between a ball 
that gets hit hard and a ground out etc. 
The pitches in Figure 12 and 13 are not realistic pitches by any 
measure. They both refer to a 90  mph curveball which would very 
rarely, if ever, happen in a game. The range of parameter values 
used were realistic with respect  to that parameter but not 
necessarily realistic when taken in  combination with the other 
parameter values. Therefore when returning the most  sensitive 
pitch, the pitch returned should not be thought of as  an actual 
pitch, but rather, a combination of sensitive parameters. The 
trajectories in Figure 12 and 13 give us an idea as to the scale of 
change we are talking about. 
Finally, Pitch f-x data was analyzed to see what  type of pitch this 
would most closely correspond to in baseball. This analysis was 
done informally, starting each Pitch f-x parameter out with a given 
tolerance and slowly increasing the tolerances until a size-able 
amount of pitches from 2009 were obtained. Pitch f-x can be 
inaccurate and the tolerance values were somewhat arbitrarily 
changed among other things. Therefore, these results should be 
taken more as  a proof of concept  as to how one might go about 
transferring this sensitivity analysis to actual in-game pitches and 
not as infallible conclusions.  
The pitch that the above sensitive pitch most consistently 
corresponded to was a breaking ball. Specifically, in Pitch f-x 
terms, the pitch usually had approximately the following 
properties: startSpeed: 80.7 mph, endSpeed: 75.0 mph, vxo: 1.607 
ft/s  vyo: -118.285 ft/s vzo:-3.808 ft/s, pfx_x:  1.293 inches  pfx_z: 
-4.043 inches, breakLength: 8.0 inches, breakAngle: -14.2 
degrees, spinRate: 1078.845 rotations per minute. The pitchers in 
2009  who threw this  pitch the most were found to be Justin 
Verlander , Dan Haren, Josh Hammel and Chris Volstadt. All  of 
these pitchers had fairly good 2009 seasons, and with the analysis 
done thus far,this makes sense because all we have shown is that 
they all have a pretty significant breaking ball. One might  expect a 
good  breaking ball to  go hand in hand with success. However, one 
might  also suspect that someone who overly relies on a ‘sensitive 
pitch’  might possibly miss  location leading to more walks and hits 
as well as more swing through strikes and badly contacted balls 
because of the deceptive location and velocity of two similar 
looking pitches. Again, a more formal  analysis must be done to 
see if this is actually the case.

4.    CONCLUSIONS
This paper alters various pitch parameters and initial conditions to 
determine what pitch parameter values are the most sensitive and 
visualizes these parameters to get a better idea as to how slight 
changes in these initial conditions/parameters effect the trajectory 
of a given pitch. Specifically, the most sensitive values 
corresponding to initial speed, initial elevation, rotation speed, 
and axis of rotation were found. 

 Future research should focus on limiting the pitches analyzed to 
realistic pitches and comparing all these realistic parameter 
values/initial conditions together to better see the coupling effects, 
if any, yielding bigger changes in trajectories. Using these realistic 
pitch trajectories, the Pitch f-x study should be made more formal 
with tolerance values being changed slightly and in a uniform 
manner for each parameter. The Pitch f-x study should also be 
done more in-depth to discover what outcome the sensitive pitch 
usually had in the real in-game scenario. Finally, it might be 
interesting to analyze knuckleball equations as those trajectories 
are actually chaotic meaning small scale variations could yield 
large scale trajectory differences.
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Figure 14: The differences in final state, in absolute value, 
between the two two pitches thrown in Figure 13
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Abstract— Computer systems are dynamical systems that
can be characterized using the tools of nonlinear dynamics.
In this paper we examine which nonlinear techniques can be
applied to the analysis of computer performance data from
real benchmark programs. We find that basic delay coordinate
embedding and analysis of unstable periodic orbits provide
insights into the dynamics of the system. However, calculations
of system invariants such as the largest Lyapunov exponent
and correlation dimension of the system are not practical given
the limited amount of data in the data sets considered. This
limitation seems as if it would be true for many cases when
looking at the local dynamics of computer performance for real
programs.

I. INTRODUCTION

Computer systems often appear to behave somewhat ran-
domly when someone tries to characterize their performance
over time. For instance the number of environment variables
defined can cause a dramatic variance in the run time of
standard SPEC benchmarks.[3] However, this ”randomness”
is mostly an artifact of the nonlinear dynamics of the system
and its sensitive dependence to seemingly inconsequential
aspects of the system’s state.

Mytkowicz, Diwan, and Bradley [1] recently characterized
computer systems as nonlinear dynamical systems. Their
analysis looked at the dynamics of filling matrices in row-
major and column-major order on different computer archi-
tectures. They found that the same program could behave
periodically on one system and chaotically on another system
simply due to the different computer architectures involved.
They characterized these systems using standard methods
for analyzing nonlinear systems: delay coordinate embedding
and determining fractal dimension, entropy, and the largest
Lyapunov exponent.

However, in order to accurately characterize the system
using many of these methods a very large number of samples
need to be taken of the system. For real world applications it
is generally not possible to run the program longer in order to
generate this volume of data. Furthermore, a single program
often exhibits different regions of behavior as it transitions
from one loop to another and it is not possible to control
how long these regions last.

To understand these transitions, we propose thinking of a
computer system as moving between a series of attractors
based upon how the program perturbs the system. This
is much like changing the physics of a double pendulum
in a complex way while the pendulum is moving. For
some period of time the system is pulled towards some

periodic or chaotic attractor and exhibits periodic or pseudo-
periodic behavior. Then when the physics change the system
undergoes a bifurcation, follows some transient path, and
then settles on a different attractor.

In this paper we look at how some of the nonlinear system
analysis techniques can be applied to the local attractors
within a time series trace of computer performance metrics.
We first look at the problem of applying delay coordinate
embedding and present how we found a reliable embedding
dimension despite the small amount of data. Then we exam-
ine using this embedding to determine the largest Lyapunov
exponent, fractal dimension, and entropy for a section of
the time series data and we find that it is difficult to use
these measurements because of the limited amount of data
available. Finally we look at finding local unstable periodic
orbits in the time series and hypothesize that this information
may provide insight into the relationships between different
metrics from the same system.

A. Experimental Data

For performing our analysis we focused on two data sets
from Hauswirth, Sweeney, and Diwan’s Vertical Profiling
experiments. [2] Choosing data that has previously been
thoroughly analyzed enables us to examine how different
metrics from running the same program relate to one another.
These multiple metrics also provide different views into the
dynamics of the same system. Additionally this removes the
difficult problem of having to rigorously capture new data.

The datasets were generated running two different pro-
grams on a PowerPC POWER4 machine with the AIX
operating system and Jikes RVM as the Java Virtual Machine.
Metrics were sampled from all levels of the system: hard-
ware, operating system, virtual machine, and the application.

The first data set consists of 30 metrics sampled over time
while running the JBB benchmark from SPECjbb2000. [4] In
this dataset Hauswirth, et al had examined and identified the
cause for a gradual increase in the number of instructions
per cycle (IPC) metric. In our experiments we focus on
comparing the gradual increase in the IPC (referred to as
”JBB section 1” throughout the rest of this paper) to the
IPC after the gradual increase has settled out (”JBB section
2”). The gradual increase data we look at has a total of 750
samples. Figure 1 shows the region of the IPC time series
that corresponds to the gradual increase.

The second data set has 202 metrics captured while run-
ning the DB benchmark from SPECjvm98.[5] The anomaly
examined in this dataset by Hauswirth, et al was a periodic



Fig. 1. JBB IPC metric waveform.

Fig. 2. DB IPC metric waveform.

behavior in the IPC metric. We also focused on this same
periodic behavior (”DB section 2”) and compared it to
previous periodic behavior which had additional irregular
patterns in it(”DB section 1”). There is a total of 1300
samples showing this periodic behavior. Figure 2 depicts the
two regions which we examined.

B. Data Analysis

For most of our data analysis we made use of the functions
in the TISEAN [6] package of nonlinear analysis functions.
The particular functions we used were:

• mutual: Calculate the mutual information between sam-
ples.

• false nearest: Varies the embedding dimension and cal-
culates the number of neighbors each point has in the
embedded state space.

• delay: Embed the dataset with delay coordinate embed-
ding.

• lyap k: Estimates the largest Lyapunov exponent from
a dataset.

• upo: Find unstable periodic orbits of a particular period.
Since a computer has discrete states that it transitions

between rather than being a continuous time system we
treated all of our data as a non-linear map between successive
states.

II. DELAY COORDINATE EMBEDDING

A common first step in analyzing a time series sampling
of a non-linear dynamic system is to use delay coordinate
embedding to reconstruct a state space that is topologically
equivalent to the original state space.[7] The embedding
projects the data into a higher dimension by having each
additional dimension represent the sample some time τ later.
So in order to complete the embedding a τ and an embedding
dimension m must first be determined.

A. Determining τ

For each metric in each data set we determined τ using the
standard method of finding the first minimum of the mutual
information between all of the samples in the time series.[7]
To calculate mutual information we used TISEAN’s mutual
command and then estimated the first minimum as the
first point where an increase in τ would cause the mutual
information to increase by 0.5%.

This calculation was done for all of the time series within
a dataset and τ was chosen to be the median τ from all the
time series in each dataset. This resulted in a τ of 2 for JBB
and 8 for DB. Figure 3 shows histograms of the τ values
from each of the datasets.

Using the same τ across all of the waveforms in a dataset
is justified because the samples are being taken at the same



frequency for all of the metrics. Inspection of some of the
metrics where τ had been determined to be much larger than
the median indicates that the reason for the large τ is that
there really was no first minimum in the mutual information
between samples, and the minimum detection algorithm was
just choosing a minimum based on noise in the mutual
information metric. This case usually occurred because the
metric in question was showing little to no activity during
the program run.

(a) (b)

Fig. 3. Histograms of τ for (a) JBB and (b) DB.

B. Determining m
Using the calculated τ value the embedding dimension

m was then estimated using the false nearest neighbors
method.[8][9] TISEAN’s false nearest function indicates
how many neighbors a sample has as the embedding dimen-
sion increases. For each time series we chose the first m
where the false neighbors decreased by less than 0.1%.

Figure 4 shows the distributions of embedding dimensions
found for the two datasets. Similar to our calculations of τ we
chose an overall embedding dimension m̂ = median(m)+1
as our dimension for all of the time series in that dataset.
We added one to the embedding dimension to ensure that
the embedded data would fully reflect the dynamics of the
system. For both datasets we found and used an embedding
dimension of 12.

Interestingly, this embedding dimension is the same one
found by Mytkowicz, et al when examining loops filling in
matrices on x86 architectures.[1] One would expect that our
datasets using the PowerPC POWER4 processor, with a less
complicated architecture than the Intel Pentium 4 or Intel
Core2 from their work, would exhibit lower dimensional
behavior. However, these datasets are also more complicated
programs and running on top of a Java virtual machine
which may add a few dimensions to the system. A wider
investigation on the effective dimension of different computer
systems seems appropriate but is outside of the scope of this
paper.

C. State Space
Using these calculated m and τ values we embedded

the data from JBB sections 1 and 2. Figures 5(a) and 5(b)

(a) (b)

Fig. 4. Histograms of m for (a) JBB and (b) DB.

shows a projection of the embedded data onto the first two
dimensions. The embedding for JBB section 2 clearly shows
a mostly fixed point with some periodic behavior that can
easily be seen to correspond with the slight periodic behavior
in that part of the time series. The embedding for JBB
section 1 containing the gradual increase shows a similar
pattern except that the location of the ”fixed point” is moving
over time from (0.4,0.4) to (0.6,0.6) as the gradual increase
occurs.

Figures 5(c) and 5(d) shows a similar projection of the
embedded state space for DB sections 1 and 2. A similar
analysis of the state space shows the expected periodicity of
section 2. Furthermore the slight decrease in amplitude of the
time series data in DB section 2 shows up as the diameter of
the projection shrinking over time. The state space for DB
section 1 does not exhibit the same regular periodic behavior
as section 2, and appears to be more chaotic.

Although these observations about the state space are not
terribly surprising when one looks at the time series, it
is possible that viewing the data through the prism of an
embedded state space trajectory could provide a useful means
of examining the time series data. In particular this may be a
better representation of the data for use in machine learning
techniques since the data points become more separable
when they are projected into this higher dimensional space.

III. CALCULATION OF LOCAL INVARIANTS

The number of samples required for effective calculation
of the largest Lyapunov exponent (LLE) is a problem still
being hotly debated. But even the lowest estimates suggest
that to get an accuracy within ±10% for a system with only
3 true dimensions requires 1000 points and increases with
at least 3d as the true dimension d increases. [10] Since
the embedding dimension must be greater than twice the
true dimension of the system, the computer systems for our
datasets clearly have more than 3 dimensions. This indicates
that theoretically we have no where near enough data to
accurately calculate the LLE.

Nevertheless, it seems worthwhile to consider if there is
any information that can be gained from even an inaccurate



(a) JBB section 1 (b) JBB section 2

(c) DB section 1 (d) DB section 2

Fig. 5. Embedded State Space projection for (a) JBB section 1, (b) JBB section 2, (c) DB section 1, and (d) DB section 2. The color coding of points
corresponds to when in time that point occurred. The color coding makes the gradual increase in JBB section 1 clear as the bulk of the points move
towards the upper right as time progresses.

estimation of the largest Lyapunov exponent since it is a good
way to characterize the type of an attractor and could give
insight into when and how the dynamics change throughout
a program run if we could calculate local exponents for
multiple windows of the time series.

Using lyap k from TISEAN we calculated the Lyapunov
exponents for the four sections in JBB and DB:

• JBB section 1: λ ≈ −0.0008
• JBB section 2: λ ≈ −0.0002
• DB section 1: λ ≈ 0.0020
• DB section 2: λ ≈ 0.0010

Relative to each other these results do match fairly well
what we know about these sections of the waveforms. They
are all largely periodic which is indicated by lambda being
approximately equal to zero. Relative to DB section 2, DB
section 1 appears to be more chaotic which is indicated by
having a more positive Lyapunov exponent.

However, the process for calculating these values leaves

us with little confidence in them. The output from lyap k
requires the user to find a linear scaling region and the slope
of that linear region is the LLE. Picking such a scaling region
from our outputs was very open to interpretation which
leaves us with very little confidence in the final LLE values.

To test these results further we calculated the LLEs
corresponding to DB section 2 for all 202 metrics from the
DB dataset. In theory since they all come from the same
system the LLE should be the same for any of the metrics.
The actual results found that the LLE varied from -0.0036
to 0.0106 across the different metrics, and that for 57 of the
metrics the LLE could not be determined because there was
no visible scaling region in the output of lyap k.

Calculating LLE across all metrics does seem to give a
gross approximation of the LLE for the system. However,
the wide variation suggests that as anticipated this is not a
reliable method of characterizing the system. Based on these
results we feel that calculations of the local invariants for the



system are not a practical way to characterize performance
data. It could be possible in some cases that the system could
be sampled much more quickly thus providing enough data to
perform these calculations. However, sampling more quickly
will often perturb the dynamics of the running program, thus
invalidating the results.

Attempts to calculate the correlation dimension and en-
tropy of the different sections were also not successful.
This is an odd result since theoretically calculating the
dimension should need quite a bit less data than calculating
the LLE. We take this as further confirmation that the local
dynamics of real world programs cannot be analyzed using
their invariants.

IV. UNSTABLE PERIODIC ORBITS

Since most useful programs consist of some series of loops
it makes sense that the periodic behavior in performance
metrics would be indicative of what is occurring within the
system. One important characteristic of chaotic systems is
that they exhibit periodic behavior for brief periods of time
before transitioning away to another different period. These
unstable periodic orbits (UPOs) can be used to characterize
how the system is behaving. For this reason we wanted to
explore the relationship between what periods are present in
different metrics of the system.

Fig. 6. UPO stability for JBB section 1 (x’s) and JBB section 2 (o’s) of
the IPC metric.

A. Stability of UPOs

Using TISEAN’s upo function we found the stability of
the UPOs in JBB sections 1 and 2 with a period of less than
40 samples.[11] Figure 6 shows the stability of the orbits
found for the two sections and which period they occurred
at. The upo algorithm works by finding patterns that nearly
repeat with a particular period in the time series. For this
reason section 1 exhibits a much larger number of periods
since the IPC is gradually increasing over time and so the
UPOs are visiting different regions of state space.

The stability metric which upo reports is based on an
estimation of the local eigenvalue at that point. These values

(a) IPC

(b) Load Store Unit Flushes Srq

(c) Load Store Unit Flushes Lrq

(d) Ratio of Optimized Locks vs All Locks

(e) SysZeroCalls

(f) SysCopyCalls

Fig. 7. UPO stability for section 1 of JBB across multiple metrics.

are problematic due to the sparse nature of the data, but
the results do suggest that their relative values may be
useful. For instance, the obvious dominant periodic pattern
throughout the time series is the jump down to around 0.27.
This point occurs fairly regularly throughout the entire run
of the program and based on inspection of the time series
has a period that varies between the mid-twenties and lower
thirties. This corresponds with the most stable periods found
by upo.

To examine how these UPOs appear in other metrics we
looked at JBB section 1 for a selected set of metrics. The



resulting periods and their stability are shown in figure 7.
Section 1 of the IPC metric has a gradual increase which
Hauswirth, et al investigated and created a causality chain
for to find the root cause of this performance anomaly. The
first step in their causality chain was the Flushes of the Load
Store Unit (Figures 7(b) and 7(c)). This then led them to look
at the ratio of optimized locks to all locks (Figure 7(d) as
a proxy for how much of the Java code had been optimized
over time.

Although it is problematic to draw conclusions from such a
small subset of the metrics it seems readily apparent that the
UPOs in these three causal metrics appear to be more similar
to the UPOs in the IPC metric than the other two metrics
that were analyzed. The other two metrics were chosen to be
analyzed because based on the authors notes Hauswirth, et al
had also considered them as potential causes. Unfortunately
due to time constraints on this paper and how long upo takes
to find UPOs we were not able to run an analysis of all 30
metrics in the JBB dataset.

However, it does seem reasonable that the periods that
occur in a metric causing an anomaly would also appear in
the anomaly itself. This suggests that an analysis of UPOs
may be a useful feature for discriminating between which
metrics may indicate the cause of an anomaly. For instance,
looking at the percentage of periods that appear in common
between two metrics may indicate to what extent they are
related. Or the top N most stable periods could be compared.

B. UPOs in State Space

In addition to the stability of the UPO, upo outputs a
series of points to characterize the path of the orbits it finds.
Unfortunately the points in the paths are an average of all
the points for that step in the orbit. This averaging corrupts
the actual data points such that the path does not correspond
to any real points in the data set. Figure 8 shows an orbit of
period 28 overlaid onto the embedded state space for JBB
section 2. It is expected that the points within a UPO once
embedded would overlap directly with the actual data points
in the time series. However, as seen in this plot, some of
the data points in the orbit do not overlap anywhere near the
actual points. This shows how the orbit has been corrupted
by the averaging of the data points making this output from
upo only useful as a rough idea of which points the orbit is
visiting. It seems it would be much more useful to have a
true trajectory that is representative of the characteristic orbit
of a UPO.

V. CONCLUSIONS

In this paper we have examined how some nonlinear dy-
namics techniques can be used to examine the local dynamics
of computer performance of real benchmark programs. The
techniques for characterizing the system’s invariants (largest
Lyapunov exponents, fractal dimension, and entropy) do not
appear to be viable methods given the large amount of data
needed to accurately estimate these invariants and the small
amount of data available for any local region of a program.
Additionally, the existing tools for determining unstable

Fig. 8. JBB unstable periodic orbit with period 28. The points in the orbit
output by upo (circles) does not align with real points from the trajectory
(dots).

periodic orbits corrupt the state space of the characteristic
orbits they find.

However, some methods do seem to have potential in an-
alyzing computer performance. Delay coordinate embedding
provides views of the state space which could be useful in
understanding the dynamics of the system. We found that
m and τ can be determined by looking at all of the metrics
captured from a particular system. This reduces the number
of samples needed for any single metric to determine these
values. Finding the existence of unstable periodic orbits of
local sections of a time series also seems to work well. These
orbits also appear to provide a feature for gaining insight into
the relationship between different metrics.

VI. FUTURE WORK

Further examination is warranted of how UPOs from
different metrics relate to one another. In particular it would
be interesting to see if using UPOs as a feature in a machine
learning system could help to distinguish between metrics
which might be causing a given performance anomaly and
those which are not.

Unfortunately upo takes a very long time to examine
a time series for any particular period, and each period
must be examined independently. The time complexity of
the algorithm seems to increase with a high polynomial as
the period being searched for increases. The authors of the
program had actually added a hard-coded limit of 20 for the
maximum period which we had to override to examine our
datasets. This increasing run time as the period increases
prevented us from analyzing the DB dataset because its
dominant periods are on the order of 50 to 100 samples.

The characteristic orbits that upo outputs for each period
it finds are also corrupted by the averaging it does. Not being
corrupted, a characteristic orbit might allow comparing orbits
of different periods to see how close they are to hitting the
same data points. Additionally they might allow comparing
orbits that are getting expanded or contracted over time such



as the ones in the JBB gradual increase where some of the
points in the orbit are staying mostly the same while other
move to new points.

Therefore, for further investigation of the UPOs in com-
puter performance it seems wise to rewrite upo to both
run faster and produce a characteristic period rather than
the mean period which corrupts the orbits actual dynamics.
Using this output it would then be interesting to see whether
the similarity between the UPOs can be used to discriminate
between which metrics may be related to a performance
anomaly in another metric.
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A Lorenzian based chaotic encryption scheme

Michael Brunel

Abstract

In this paper I present a chaotic encryption scheme based upon the Lorenz system. The encryption 
scheme is a combination of a block and stream cipher. 

1. Introduction
Encryption, at its core is, simply transforming one set of data into another set. Civilizations as far back 
as the ancient Egyptians have used encryption to hide their sensitive data. The fundamental problem 
with these systems is that they are not overly secure. To achieve security the outputs should be 
indistinguishable from random. This very naturally leads to utilizing a system that already provides 
random data. One of the earliest examples of this can be seen in [1]. This early step showed the validity 
of utilizing an already chaotic primitive to underline an encryption scheme. This work has been 
followed upon by many people including [2-5].

In this vain I propose a new encryption scheme based on the chaotic regions of the Lorenz system. 
Utilizing the Lorenz system as an underlying platform, a blocking stream cipher was built around it to 
encrypt streams of data of arbitrary length. Considerations on the Lorenz system as utilized by an 
encryption scheme is detailed in the next section. This is followed by the implementation details, some 
analysis of the system and the data generated and finally some areas of future work. 

2. Lorenzian Chaos
While there is no universally accepted definition of what constitutes chaos the following working 
definition is highly agreed upon [6]:

Chaos is aperiodic long-term behavior in a deterministic system that exhibits sensitive dependence on 
initial conditions.

1. “Aperiodic long-term behavior” means that there are trajectories that do not settle into either 
fixed points or predictable orbits.

2. “Deterministic” means that the system can be determined solely from its inputs and knowledge 
of the system itself. No outside forces, such as noise, factor into the path of the system.

3. “Sensitive dependence on initial conditions” means that nearby trajectories separate 
exponentially fast.



The Lorenz system is a collection of three Ordinary Differential Equations [7]:

where σ is called the Prandtl number and ρ is called the Rayleigh number. 

For values of ρ over 25 the system becomes a chaotic system as can be seen in Figure 1.

Figure 1: Lorenz system. 150,000 iterations (0,1,1.05)  σ = 10, ρ=28 and β = 8/3

As can be seen in Figure 1, the system does indeed have a chaotic trajectory. 



3. Implementation
My system utilizes the Lorenz system in a two step encryption process. Firstly, the plain text file which 
is to be encrypted is analyzed to determine its size in bytes. This is used as the length of the trajectory 
needed to be calculated for the Lorenz system. Initial values for the Lorenz system is chosen and a 
trajectory is generated. This trajectory is then combined with the plain text to make a new file. A 
second set of initial values are chosen and a second Lorenz trajectory is generated. This is then 
combined with the text from the previous round. This text is outputted as the encrypted version of the 
original plain text. 

3.1 Initial conditions and the key

The choice of initial conditions for the Lorenz system is very central in determining if the system is 
chaotic or not. As such, certain bounds have been established on what can be inputted as initial 
conditions to the Lorenz system. In accordance with the data presented in [6,7] we can ascertain a set of 
lower bounds on the values of the system. 

While all of the variables are used in determining the trajectory of the system, ρ, x, y, and z have the 
largest impact on this. As such, these are 4 variables that can be set for each run of the Lorenz system. 

These 8 variables, 4 from each run, are the concatenated together to form the key of the system. 

3.2 Lorenz trajectories

After the trajectory has been generated, the x,y and z coordinates that were generated are converted into 
their binary form. Then, using binary xor, we combine this with the binary version of the plain text. The 
second trajectory is combined in a slightly more complicated matter. Each set of coordinates is first 
converted to binary and xor'ed into a block of the text from the previous round. The binary coordinates 
are then converted into an unsigned integer value which is then modded by the size file. This gives 
some new location in the text file, the block in that section is then swapped with the block that we just 
created. Once the entire trajectory is exhausted we output this new file as the encrypted text.

3.3 Decryption

To decrypt a file, simply provide the encrypted file and the appropriate key. The mechanism for 
decryption is very similar to that of encryption, except that it is done in reverse. The second step of the 
encryption process becomes the first step of the decryption process.

4. Data and Analysis

4.1 How random is random

Whenever a system is said to be random, the first question that arises is “is it really random”. Thus, to 
truly say that a system is random, you must test a systems randomness. Indeed this is an impossible 
task with a finite set of data from a potentially infinite data set, however with a sufficiently long sample 
we can be reasonably confident that the given system is indeed random. NIST[8] provides a statistical 



package that can be used to determine how random a set of inputs are. 

The NIST statistical suite was run on a set of 10 streams, consisting of 1000000 bits each. The streams 
were generated by encrypting a pdf version of the Perl cookbook. All metrics within the suite were run, 
however, the Universal metric reported an error that I was unable to resolve in the given time. 

From [9] we can determine that an overall pass rate of 88.95% is considered as acceptable for a random 
number generator. The NIST suit stated that a minimum pass rate for all test preformed was ≈89.5607%

Analysis of the test data indicates that the BlockFrequency test is the worst preforming test, with all 
others in the upper 90% range. This test compares the frequency of 1's vs 0's in a given block. While 
this data suggests that my system does indeed equate to random, there is some cause for concern in the 
poor performance of the BlockFrequency test. 

4.2 Speed

Speed is a primary consideration when comparing any new system to that of its predecessor. As such I 
compared my scheme against AES-256-CBC as provided by the crypt package in Perl. I choose this 
implementation as a comparison to keep as many variables the same as possible. A comparison of times 
can be seen in Table 1.

 Table 1: A comparison of the time needed to encrypt a file. All times in milliseconds

As you can see from Table 1, my code has a linear dependence on the size of the input, which makes it 
considerably slower than AES. While my RK4 solver is far from optimized I am not confident that an 
appropriate speed increase can be gained from this alone, and as such it will remain decidedly slower 
than AES. 

4.3 Key space

The key size for my program is 512 bits, which when looking at a straight brute force attack is 2512 

possible keys. This is well beyond a straight brute force attack, which peak somewhere around 270. 
However, during my analysis of this system I noticed some irregularities that may allow an adversary 
to reduce the key space required to search. Firstly, I do not throw out any part of the transient, as such a 
sufficiently close guess as to my initial conditions could yield enough data to help narrow down their 
search space. This can be worked around by throwing out some number of coordinates along the 
transient. The second thing that I believe could be a problem is the method in which my system 
chooses its keys, it can be either set by the user, or it uses the Perl rand function to determine a set of 
initial conditions within the given bounds of chaotic Lorenz. Currently, that includes some very large 
values for the coordinates and ρ are possible. I am unsure if a sufficiently high set of values either fails 
to be chaotic, or takes so long to get to chaos that an attack could be made in that deterministic region. 

AES Lorenz System
1MB 0.013 15.729
2MB 0.022 34.949
5MB 0.045 84.889
10MB 0.102 167.617



5. Conclusion

5.1 Future work

Several areas of this project show potential for future work and improvements

5.1.1 Performance

No work was done to compare this algorithm to other algorithms in it fields, or across other fields. 
There are a vast number of other areas that this system could be used in which merit consideration. 
Also, there is amble opportunity to fine tune the algorithm within the code itself, especially with 
currently implemented RK4. 

5.1.2 Randomness

With the randomness of this system close to the acceptable limit of random, so work can be done to 
investigate why this test performs poorly on the BlockFrequency test, as well as its failure to run the 
Universal test. There is also the potential to alter how the trajectory coordinates are utilized in the 
combination phases of this code, perhaps using fewer of the more static bits.

5.1.3 Key space

While a straight brute force attack is unfeasible, as noted in section 4.3, some other more clever attacks 
based on near trajectory approaches are potentially possible. An investigation of the feasibility of these 
attacks, and similar exploits based on the inherit properties of a chaotic system could be investigated.
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Abstract	
  

	
  
	
   This	
   paper	
   investigates	
   the	
   applicability	
   of	
   Compressed	
   Sensing,	
   a	
   new	
  
technique	
   for	
   signal	
   acquisition	
   and	
   compression,	
   on	
   non-­‐linear	
   dynamic	
   systems	
  
and	
   chaos.	
   	
   Compressed	
   Sensing	
   theory	
   asserts	
   that	
   signals	
   can	
   be	
   “sensed”	
   and	
  
recovered	
  with	
   far	
   fewer	
  samples	
  or	
  data	
  points	
   than	
   traditional	
  methods	
  specify.	
  	
  
Most	
   of	
   the	
   Compressed	
   Sensing	
   research	
   to	
   date	
   has	
   focused	
   on	
   linear	
   signal	
  
acquisition	
   and	
   the	
   Fourier	
   domain.	
   	
   To	
   investigate	
   Compressed	
   Sensing’s	
  
applicability	
   on	
   non-­‐linear	
   dynamic	
   systems,	
   we	
   study	
   a	
   Lorenz	
   system	
   in	
   two	
  
states.	
   	
   First,	
   we	
   investigate	
   a	
   fixed-­‐point	
   Lorenz	
   attractor.	
   	
   We	
   show	
   that	
   our	
  
Compressed	
  Sensing	
  technique	
  is	
  able	
  to	
  weakly	
  capture	
  the	
  dynamics	
  of	
  the	
  system	
  
using	
   only	
   29%	
   of	
   the	
   original	
   signal.	
   	
   Second,	
   we	
   investigate	
   a	
   chaotic	
   Lorenz	
  
attractor	
   (strange	
  attractor).	
   	
  We	
   show	
   that	
  our	
  Compressed	
  Sensing	
   technique	
   is	
  
able	
   to	
   capture	
   the	
   dynamics	
   of	
   the	
   chaotic	
   attractor	
   using	
   60%	
   of	
   the	
   original	
  
signal.	
  
	
  

I.	
  Introduction	
  
	
   	
  
	
   The	
   Nyquist	
   rate	
   asserts	
   that	
   a	
   signal	
   must	
   be	
   sampled	
   at	
   least	
   twice	
   the	
  
maximum	
   frequency	
   presented	
   in	
   the	
   signal.	
   However,	
   recent	
   research	
   in	
   signal	
  
recovery	
  techniques	
  has	
  shown	
  that	
  one	
  can	
  recover	
  certain	
  signals	
  with	
  far	
  fewer	
  
samples	
   using	
   the	
   theory	
   of	
   Compressed	
   Sensing.	
   	
   We	
   know	
   that	
   the	
   Nyquist	
  
theorem	
   is	
   based	
   upon	
   linear	
   assumptions	
   and	
   is	
   not	
   applicable	
   to	
   non-­‐linear	
  
dynamic	
   systems.	
   	
   The	
   question	
   becomes	
   –	
   “Is	
   Compressed	
   Sensing	
   applicable	
   to	
  
non-­‐linear	
  dynamic	
  systems?”	
  
	
  
	
   In	
  this	
  paper,	
  we	
  investigate	
  the	
  applicability	
  of	
  Compressed	
  Sensing	
  on	
  non-­‐
linear	
  dynamic	
  systems	
  and	
  chaos.	
  	
  We	
  present	
  a	
  Compressed	
  Sensing	
  technique	
  for	
  
compressed	
   data	
   acquisition	
   of	
   non-­‐linear	
   time-­‐series	
   signals.	
   	
   This	
   technique	
  
utilizes	
  the	
  theory	
  of	
  Compressed	
  Sensing	
  and	
  the	
  discrete	
  wavelet	
  transform.	
  	
  We	
  
utilize	
  two	
  different	
  Lorenz	
  systems	
  to	
  test	
  our	
  technique	
  and	
  present	
  results	
  on	
  our	
  
findings.	
  
	
  

In	
   specific	
   applications,	
   this	
   technique	
  might	
   enable	
  more	
   accurate	
   control	
  
signal	
   acquisition	
   and	
   possibly	
   better	
   time-­‐series	
   predictive	
   techniques	
   through	
  
signal	
  resolution	
  enhancement.	
  	
  

	
   	
  
II.	
  Compressed	
  Sensing	
  

	
  



	
   Compressed	
   Sensing	
   is	
   a	
   new	
   technique	
   for	
   signal	
   acquisition	
   and	
  
compression.	
   	
  Compressed	
  Sensing	
  systems	
  allow	
  robust	
  data	
  acquisition	
   to	
  occur	
  
with	
   far	
   fewer	
   samples/measurements	
   (M	
   <<	
   N)	
   than	
   expected	
   by	
   standard	
  
theories.	
   	
   These	
   systems	
   measure	
   signals	
   by	
   a	
   linear	
   dimensionality	
   reduction	
  
process	
  as	
  follows	
  [1]:	
  
	
  

€ 

y =Φx 	
   (1)	
  
	
  
where	
  Φ	
   is	
  an	
  M	
  x	
  N	
  measurement	
  matrix	
  and	
  x,	
   the	
  signal	
   to	
  be	
  measured,	
  has	
  a	
  
sparse	
   representation	
   x	
   =	
   Ψα	
   in	
   some	
   basis.	
   	
   The	
   signal	
   equation	
   is	
   typically	
  
expressed	
  as	
  x	
  =	
  Ψα	
  where	
  Ψ	
  is	
  an	
  N	
  x	
  N	
  orthonormal	
  basis	
  matrix.	
  
	
  
	
   This	
   linear	
   dimensionality	
   reduction	
   produces	
   an	
   underdetermined	
   linear	
  
system	
  of	
  equations	
  that	
  can	
  be	
  recovered	
  using	
  the	
  linear	
  program:	
  
	
  

€ 

min x *
1
	
  subject	
  to	
  

€ 

Φx* =Φx 	
   (2)	
  
	
  
	
   The	
   theory	
   relies	
   on	
   two	
   central	
   tenants,	
   a	
   K-­‐sparse	
   signal	
   and	
   incoherent	
  
sampling.	
  	
  The	
  signal	
  must	
  be	
  sparse	
  or	
  nearly	
  sparse	
  in	
  a	
  convenient	
  basis.	
  	
  This	
  is	
  
referred	
   to	
   as	
   K-­‐sparse	
  where	
   K	
   represents	
   the	
   number	
   of	
   non-­‐zero	
   entries	
   in	
   α.	
  	
  
Said	
  another	
  way,	
  K-­‐sparse	
  represents	
  the	
  number	
  of	
  active	
  components	
  in	
  α.	
   	
  The	
  
number	
   of	
   measurements	
   necessary	
   to	
   accurately	
   reproduce	
   or	
   in	
   some	
   cases	
  
exactly	
  reproduce	
  a	
  signal	
  is	
  directly	
  related	
  to	
  K.	
   	
  The	
  measurement	
  basis	
  Φ	
  must	
  
also	
   be	
   incoherent	
   or	
   exhibit	
   low	
   coherence	
   to	
   the	
   representation	
   basis	
  Ψ.	
   	
   	
   The	
  
coherence	
  between	
  the	
  measurement	
  basis	
  Φ	
  and	
  the	
  orthonormal	
  representation	
  
basis	
  Ψ	
  is	
  defined	
  as	
  [1,2]:	
  
	
  

	
  
(3)	
  

	
  
where	
  φ	
  and	
  ψ	
  represent	
  the	
  components	
  of	
  the	
  two	
  bases.	
  	
  It	
  follows	
  from	
  equation	
  
3,	
  above,	
  that	
  μ	
  ∈	
  [1,	
  √n].	
  	
  The	
  system	
  has	
  maximum	
  incoherence	
  when	
  μ	
  ≈	
  1.	
  	
  The	
  
number	
   of	
  measurements	
   necessary	
   to	
   accurately	
   recover	
   a	
   signal	
   is	
   also	
   directly	
  
proposal	
  to	
  the	
  incoherence	
  of	
  the	
  bases.	
  	
  This	
  relationship	
  is	
  defined	
  as	
  [1,	
  2]:	
  
	
  

	
   (4)	
  
 
where	
  m	
   is	
   the	
   number	
   of	
  measures,	
   C	
   is	
   a	
   positive	
   constant,	
   μ	
   is	
   the	
   coherence	
  
measure	
  defined	
  above,	
  S	
  is	
  the	
  K	
  value	
  or	
  sparsity,	
  and	
  n	
  is	
  the	
  signal	
  length.	
  
	
  
	
   From	
  equations	
  3	
  and	
  4,	
  it	
  can	
  be	
  shown	
  with	
  overwhelming	
  probability	
  that	
  
a	
  signal	
  can	
  be	
  accurately	
  reconstructed	
  with	
  [3,4]:	
  	
  
	
  

	
   (5)	
  



	
  
measures	
  M,	
  where	
  K	
   is	
   the	
  sparsity	
  value,	
  and	
  N	
   is	
   the	
   length	
  of	
   the	
  signal.	
   	
  This	
  
inequality	
  is	
  derived	
  with	
  the	
  assumption	
  that	
  μ	
  =	
  1,	
  i.e.	
  there	
  exists	
  an	
  incoherent	
  
relationship	
  between	
  the	
  measurement	
  basis	
  Φ	
  and	
  the	
  orthonormal	
  representation	
  
basis	
  Ψ.	
  
	
  
	
   Using	
  a	
  Gaussian	
  random	
  measurement	
  basis	
  with	
  mean	
  0	
  and	
  variance	
  1/m,	
  
the	
   probability	
   of	
   coherence	
   between	
   the	
   measurement	
   basis	
   Φ	
   and	
   the	
  
orthonormal	
  representation	
  basis	
  Ψ	
  is	
  extremely	
  low,	
  almost	
  zero.	
  	
  This	
  represents	
  
a	
   “near-­‐optimal”	
   sensing	
   strategy	
   that	
   has	
   a	
   high	
  probability	
   of	
   incoherence	
   [3,4].	
  	
  
Given	
   this	
   fact,	
   the	
   research	
   presented	
   in	
   this	
   paper	
   is	
   centered	
   around	
   a	
  
Compressed	
   Sensing	
   process	
   that	
   utilizes	
   a	
   Gaussian	
   random	
  measurement	
   basis	
  
with	
  mean	
  0	
  and	
  variance	
  1/m.	
  
	
  

III.	
  Lorenz	
  System	
  
	
   	
  
	
   The	
  Lorenz	
  system,	
  a	
  three-­‐dimensional	
  dynamic	
  system,	
  is	
  utilized	
  to	
  study	
  
the	
  applicability	
  of	
  Compressed	
  Sensing	
  on	
  non-­‐linear	
  dynamic	
  systems	
  and	
  chaos.	
  	
  
The	
   system	
   is	
   defined	
   by	
   the	
   following	
   system	
   of	
   ordinary	
   differential	
   equations	
  
(ODE):	
  
	
  

	
  
	
  

	
  
	
  

	
  

(6)	
  

	
  
This	
  system	
  has	
  been	
  selected	
  for	
  this	
  study	
  for	
  three	
  primary	
  reasons:	
  1).	
  It	
  

is	
  a	
  fairly	
  simple	
  system,	
  2).	
  It	
  has	
  been	
  well-­‐studied	
  3).	
  	
  It	
  is	
  a	
  chaotic	
  system	
  under	
  
certain	
   initial	
   conditions.	
   	
   The	
   third	
   criterion	
   above	
   is	
   important,	
   because	
   this	
  
research	
   investigates	
  not	
  only	
  non-­‐linear	
  systems	
  but	
  also	
  non-­‐linear	
  systems	
  that	
  
are	
  chaotic.	
  
	
  

In	
  this	
  research,	
  we	
  utilize	
  two	
  different	
  Lorenz	
  systems.	
  	
  These	
  two	
  different	
  
systems	
   are	
   defined	
   by	
   their	
   initial	
   conditions.	
   	
   The	
   first	
   system	
   is	
   a	
   fixed-­‐point	
  
attractor	
  (see	
  figure	
  1).	
  	
  It	
  is	
  defined	
  by	
  the	
  initial	
  conditions:	
  	
  σ	
  =	
  10,	
  β	
  =	
  8/3,	
  ρ	
  =	
  13,	
  
x	
  =	
  1,	
  y	
  =	
  0,	
  z	
  =	
  0.	
   	
  The	
  second	
  Lorenz	
  oscillator	
  is	
  a	
  chaotic	
  system	
  that	
  exhibits	
  a	
  
strange	
  attractor	
  (see	
  figure	
  2).	
  It	
  is	
  defined	
  by	
  the	
  initial	
  conditions:	
  σ	
  =	
  10,	
  β	
  =	
  8/3,	
  
ρ	
  =	
  28,	
   x	
  =	
  1,	
   y	
  =	
  0,	
   z	
  =	
  0.	
   	
  The	
  only	
  difference	
  between	
   these	
   two	
   systems	
   is	
   the	
  
initial	
  condition	
  ρ,	
  but	
  the	
  dynamics	
  of	
  the	
  two	
  systems	
  are	
  wildly	
  different.	
  
	
  



Figures	
  1,	
  2:	
  Figure	
  1	
  depicts	
  a	
  Lorenz	
  system	
  with	
  ρ	
  =	
  13.	
  	
  This	
  is	
  a	
  fixed-­point	
  
attractor.	
  	
  Figure	
  2	
  –	
  depicts	
  a	
  Lorenz	
  system	
  with	
  ρ	
  =	
  28.	
  This	
  is	
  a	
  chaotic	
  attractor	
  

(strange	
  attractor).	
  
	
  
	
   To	
  approximate	
  the	
  Lorenz	
  ODE	
  system,	
  we	
  utilize	
  a	
  fixed	
  time	
  step	
  Runge–
Kutta	
   (RK)	
   integrator.	
   	
   Specifically,	
   we	
   utilize	
   the	
   fourth-­‐order	
   method;	
   simply	
  
referred	
  to	
  as	
  RK4.	
  	
  It	
  is	
  important	
  to	
  note	
  that	
  a	
  fixed	
  time-­‐step	
  integrator	
  is	
  used	
  
for	
   this	
   research.	
   	
   Later	
   in	
   the	
   paper,	
   we	
   present	
   calculated	
   values	
   of	
   the	
   largest	
  
Lyapunov	
  exponents.	
  	
  To	
  calculate	
  these	
  values,	
  we	
  employ	
  the	
  TISEAN	
  time-­‐series	
  
analysis	
   package	
   and	
   the	
   lyap_r	
   method.	
   	
   This	
   method	
   uses	
   the	
   algorithm	
   of	
  
Rosenstein	
  et	
  al	
  [12].	
  	
  The	
  Rosenstein	
  algorithm	
  first	
  embeds	
  the	
  time-­‐series	
  signal	
  
using	
   delay	
   coordinate	
   embedding.	
   	
   For	
   delay	
   coordinate	
   embedding	
   to	
   work	
  
properly,	
  a	
  stable	
  fixed	
  time	
  period	
  signal	
  is	
  required.	
  
	
   	
  
	
   We	
   use	
   a	
   fixed	
   time	
   step	
   of	
   0.01	
   (h)	
   to	
   integrate	
   the	
   Lorenz	
   system.	
   	
   To	
  
investigate	
  the	
  dynamics	
  of	
  the	
  wavelet	
  transform,	
  the	
  system	
  is	
  integrated	
  for	
  165	
  
seconds.	
   	
   This	
   produces	
   16,500	
   data	
   points.	
   	
   The	
   first	
   116	
   points	
   of	
   data	
   are	
  
discarded.	
  	
  These	
  points	
  are	
  considered	
  the	
  transients.	
  	
  The	
  data	
  set	
  is	
  then	
  reduced	
  
in	
   size	
   to	
  16,384	
  points.	
   	
   To	
   investigate	
   the	
  dynamics	
  of	
  Compressed	
  Sensing,	
   the	
  
signal	
  is	
  then	
  shortened	
  to	
  8,192	
  points.	
   	
  Points	
  8,193	
  to	
  16,384	
  are	
  dropped	
  from	
  
the	
  data	
  set.	
   	
  This	
   is	
  necessary	
  to	
  make	
  the	
  problem	
  tractable	
   in	
  both	
  the	
  memory	
  
and	
  computational	
  domains.	
  
	
  

It	
   is	
   important	
   to	
   note	
   that	
   the	
   system	
   sizes	
   are	
   chosen	
   for	
   a	
   couple	
   of	
  
reasons.	
   	
   First,	
   the	
   wavelet	
   transform	
   that	
   is	
   utilized	
   in	
   this	
   research	
   requires	
   a	
  
signal	
  that	
  is	
  a	
  power	
  of	
  two.	
  	
  Second,	
  a	
  relatively	
  small	
  data	
  set	
  allows	
  the	
  problem	
  
to	
  be	
  computationally	
  tractable.	
  	
  This	
  is	
  important	
  during	
  the	
  signal	
  recovery	
  phase.	
  	
  
Finally,	
  the	
  signal	
  is	
  long	
  enough	
  to	
  exhibit	
  the	
  non-­‐linear	
  dynamics	
  that	
  are	
  under	
  
investigation.	
  

	
  
	
   For	
   all	
   time-­‐series	
   analysis	
   presented	
   in	
   this	
   paper,	
   we	
   utilized	
   the	
   x	
  
component	
   of	
   the	
   generated	
   data	
   set.	
   	
   We	
   did	
   not	
   investigate	
   any	
   differences	
  



between	
   the	
   x,	
   y,	
   and	
   z	
   components	
   of	
   the	
   systems.	
   	
   This	
   investigation	
   is	
  
unnecessary,	
   as	
   the	
   x	
   component	
   should	
   fully	
   incorporate	
   the	
   dynamics	
   of	
   the	
  
underlying	
  system.	
  

	
  
IV.	
  Wavelet	
  Transform	
  

	
  
	
   The	
   first	
   tenant	
   of	
   Compressed	
   Sensing	
   is	
   that	
   the	
   signal	
   to	
   be	
   measured	
  
must	
  be	
  sparse	
  in	
  some	
  basis.	
   	
  Compressed	
  Sensing	
  does	
  not	
  specify	
  the	
  basis	
  that	
  
must	
  be	
  used.	
  	
  It	
  instead	
  just	
  assumes	
  that	
  there	
  exists	
  a	
  sparse	
  basis.	
  	
  It	
  is	
  up	
  to	
  the	
  
implementer	
  to	
  determine	
  the	
  appropriate	
  basis.	
  	
  	
  
	
  

In	
  the	
  case	
  of	
  non-­‐linear	
  dynamic	
  systems	
  determining	
  the	
  proper	
  basis	
  is	
  a	
  
hard	
   problem.	
   	
   Typically,	
   Compressed	
   Sensing	
   investigates	
   signals	
   in	
   the	
   Fourier	
  
Domain	
  using	
  Discrete	
  Fourier	
  Transforms	
  (DFT).	
  	
  DFT	
  is	
  not	
  applicable	
  to	
  the	
  non-­‐
linear,	
   non-­‐stationary	
   time-­‐series	
   signals	
   that	
   are	
   investigated	
   here	
   [10].	
   	
   The	
  
Fourier	
  transform	
  is	
  dependent	
  on	
  linear	
  and	
  stationary	
  assumptions.	
  

	
  
To	
  over	
   come	
   the	
   limitation	
  of	
   Fourier	
   transforms,	
   recent	
   research	
   in	
  non-­‐

linear	
   data	
   analysis	
   has	
   shown	
   that	
   wavelet	
   transforms	
   can	
   capture	
   the	
   time-­‐
frequency	
   characteristics	
   of	
   non-­‐linear	
   dynamic	
   systems	
   [11].	
   	
   The	
   wavelet	
  
transform	
  is	
  defined	
  as	
  the	
  following:	
  

	
  

	
  
(7)	
  

	
  
where	
  a	
  is	
  a	
  scale	
  parameter	
  and	
  ψ	
  is	
  an	
  orthonormal	
  wavelet.	
  
	
  
	
   For	
   the	
   wavelet	
   transform	
   to	
   be	
   applicable	
   to	
   the	
   Compressed	
   Sensing	
  
problem,	
   it	
   must	
   be	
   shown	
   that	
   the	
   transform	
   produces	
   a	
   K-­‐sparse	
   basis	
   for	
   the	
  
system	
   and	
   that	
   the	
   transform	
   maintains	
   the	
   dynamics	
   of	
   the	
   system.	
   	
   In	
   this	
  
research,	
  K-­‐sparse	
  is	
  defined	
  as	
  the	
  number	
  of	
  values,	
  K,	
  above	
  or	
  below	
  a	
  threshold	
  
value.	
   	
   The	
   threshold	
   value	
   in	
   theory	
   should	
   be	
   zero,	
   but	
   because	
   of	
   machine	
  
accuracy	
  and	
  other	
  error	
  conditions,	
  K	
  is	
  defined	
  as	
  a	
  threshold.	
  
	
  
	
  	
   To	
  investigate	
  whether	
  the	
  wavelet	
  basis	
  is	
  sparse,	
  we	
  first	
  transformed	
  the	
  
two	
   Lorenz	
   time-­‐series	
   signals	
   (p=13	
   and	
   p=28)	
   using	
   Matlab	
   and	
   the	
   WaveLab	
  
library	
  [13].	
  	
  We	
  utilized	
  a	
  Coiflet	
  wavelet	
  transform	
  with	
  the	
  following	
  parameters:	
  
par	
  (a	
  parameter	
  related	
  to	
  the	
  support	
  and	
  vanishing	
  moments	
  of	
  the	
  wavelets)	
  =	
  
3,	
   coarsest	
   Level	
   =	
   4.	
   	
   Figure	
   3	
   and	
   4	
   provide	
   a	
   visual	
   representation	
   of	
   the	
   two	
  
sparse	
  domains,	
  Lorenz	
  p=13	
  and	
  p=28.	
   	
  The	
   fixed-­‐point	
   system	
   is	
  very	
   sparse	
  as	
  
expected	
  by	
  its	
  dynamics.	
  	
  It	
  spirals	
  in	
  towards	
  its	
  fix-­‐point	
  and	
  then	
  remains	
  at	
  its	
  
fix-­‐point.	
   	
   The	
   chaotic	
   system	
   on	
   the	
   other	
   hand	
   is	
   not	
   as	
   sparse.	
   	
   Visual	
   it	
   looks	
  
fairly	
  sparse	
  but	
  there	
  are	
  a	
  lot	
  of	
  small	
  non-­‐zero	
  terms	
  in	
  the	
  data	
  set	
  that	
  are	
  not	
  
visible	
  in	
  figure	
  4.	
  
	
  



	
  
Figure	
  3,	
  4:	
  Figure	
  3	
  plots	
  the	
  wavelet	
  coefficients	
  over	
  time	
  for	
  Lorenz	
  (p=13).	
  Figure	
  

4	
  plots	
  the	
  wavelet	
  coefficients	
  over	
  time	
  for	
  Lorenz	
  (p=28).	
  
	
  
	
   	
  To	
   explore	
  whether	
   the	
  wavelet	
   transform	
  maintains	
   the	
   dynamics	
   of	
   the	
  
system,	
  we	
   first	
   analyzed	
   the	
   effects	
   of	
   the	
   transform	
  on	
   the	
   fixed-­‐point	
   attractor	
  
Lorenz	
  system.	
  	
  We	
  performed	
  a	
  wavelet	
  transform	
  on	
  the	
  x	
  component	
  time-­‐series	
  
data	
  for	
  the	
  Lorenz	
  system	
  (p=13)	
  followed	
  by	
  an	
  inverse	
  wavelet	
  transform.	
   	
  The	
  
wavelet	
  transform	
  followed	
  by	
  the	
  inverse	
  should,	
  at	
  least	
  in	
  theory,	
  give	
  us	
  back	
  the	
  
original	
  system	
  or	
  in	
  this	
  case	
  the	
  original	
  time-­‐series	
  data.	
   	
  Next,	
  we	
  analyzed	
  the	
  
dynamics	
   of	
   the	
   original	
   signal	
   by	
   computing	
   the	
   Lyapunov	
   exponent,	
   λ1.	
   	
   We	
  
performed	
  the	
  same	
  calculation	
  for	
  the	
  wavelet	
  signal.	
  
	
  

	
  
Figures	
  5,	
  6:	
  Figure	
  5	
  plots	
  the	
  average	
  divergence	
  over	
  time	
  for	
  the	
  Lorenz	
  System	
  
(ρ=13).	
  	
  Figure	
  6	
  plots	
  the	
  average	
  divergence	
  over	
  time	
  for	
  the	
  Lorenz	
  System	
  (ρ=13)	
  

after	
  a	
  wavelet	
  /	
  wavelet	
  Inverse	
  transform.	
  
	
  



Figure	
  5	
  plots	
  the	
  average	
  divergence	
  over	
  time	
  for	
  the	
  Lorenz	
  system	
  with	
  
ρ=13.	
   	
  Figure	
  6	
  plots	
  the	
  average	
  divergence	
  over	
  time	
  for	
  the	
  Lorenz	
  System	
  with	
  
ρ=13	
   after	
   a	
  wavelet	
   transform	
  and	
   an	
   inverse	
  wavelet	
   transform.	
   	
  We	
   computed	
  
both	
  plots	
  utilizing	
  the	
  TISEAN	
   lyap_r	
   tool.	
   	
  The	
  slope	
  of	
   the	
   linear	
  region	
  of	
   these	
  
plots	
   indicates	
  the	
  largest	
  Lyapunov	
  exponent,	
  λ1.	
   	
  The	
  slope	
  of	
  the	
  normal	
  Lorenz	
  
system	
   is	
   λ1	
   =	
   -­‐0.22	
   seconds,	
   while	
   the	
   slope	
   of	
   the	
   wavelet	
   system	
   is	
   λ1	
   =	
   -­‐0.18	
  
seconds.	
  	
  The	
  scaling	
  region	
  used	
  for	
  both	
  slope	
  calculations	
  is	
  between	
  time	
  =	
  400	
  
to	
   1000.	
   	
   The	
   dynamics	
   of	
   the	
   system	
   are	
   not	
   perfectly	
   preserved	
   by	
   the	
  wavelet	
  
transform.	
   	
   The	
   Lyapunov	
   exponents	
   are	
   close,	
   but	
   the	
   plots	
   are	
   dissimilar.	
   	
   To	
  
further	
   investigate	
   the	
  wavelet	
  effects,	
  we	
  calculated	
  the	
  Euclidean	
  distance	
  of	
   the	
  
residuals	
  and	
  plotted	
  the	
  residuals	
  over	
  time	
  (see	
  figure	
  7).	
  	
  The	
  Euclidean	
  norm	
  of	
  
the	
  residuals	
  is	
  ||ε||2	
  =	
  2.2586e-­‐8.	
  	
  The	
  actual	
  difference	
  between	
  the	
  expected	
  value	
  
and	
  the	
  predicted	
  value	
  (wavelet	
  transform)	
  is	
  very	
  small,	
  but	
  large	
  enough	
  to	
  affect	
  
the	
  underlying	
  dynamics	
  of	
  the	
  system.	
  	
  	
  
	
  

	
  
Figure	
  7:	
  Plots	
  the	
  residuals	
  over	
  time	
  for	
  the	
  wavelet	
  transform.	
  

	
  
To	
   further	
   analyze	
   the	
   impact	
   that	
   the	
   wavelet	
   transform	
   has	
   on	
   the	
  

dynamics	
   of	
   the	
   Lorenz	
   attractor,	
   we	
   next	
   performed	
   the	
   same	
   analysis	
   for	
   the	
  
chaotic	
   attractor,	
   ρ=28.	
   	
   Figures	
   8	
   plots	
   the	
   average	
   divergence	
   over	
   time	
   for	
   the	
  
Lorenz	
  System	
  with	
  ρ=28.	
   	
  Figure	
  9	
  plots	
  the	
  average	
  divergence	
  over	
  time	
  for	
  the	
  
Lorenz	
   System	
   with	
   ρ=28	
   after	
   a	
   wavelet	
   transform	
   and	
   an	
   inverse	
   wavelet	
  
transform.	
  	
  The	
  slope	
  of	
  the	
  normal	
  Lorenz	
  system	
  and	
  the	
  wavelet	
  inverted	
  system	
  
are	
  both	
  λ1	
  =	
  0.84.	
   	
  The	
  scaling	
  region	
  used	
   for	
  both	
  slope	
  calculations	
   is	
  between	
  
time	
  =	
  0	
  to	
  400.	
  
	
  



	
  
Figure	
  8,	
  9:	
  Figure	
  8	
  plots	
  the	
  average	
  divergence	
  over	
  time	
  for	
  the	
  Lorenz	
  System	
  

(ρ=28).	
  	
  Figure	
  9	
  plots	
  the	
  average	
  divergence	
  over	
  time	
  for	
  the	
  Lorenz	
  System	
  (ρ=28)	
  
after	
  a	
  wavelet	
  /	
  wavelet	
  Inverse	
  transform.	
  

	
  
The	
  dynamics	
  of	
  the	
  system	
  are	
  properly	
  preserved	
  by	
  the	
  wavelet	
  transform.	
  	
  The	
  
Euclidean	
  norm	
  of	
  the	
  residuals	
  is	
  ||ε||2	
  =	
  1.4998e-­‐8.	
   	
  Figure	
  10	
  plots	
  the	
  residuals	
  
over	
  time	
  for	
  the	
  chaotic	
  Lorenz	
  system.	
  
	
  

	
  
Figure	
  10:	
  Plots	
  the	
  residuals	
  over	
  time	
  for	
  the	
  wavelet	
  transform.	
  

	
  
	
   	
  

V.	
  The	
  Impact	
  of	
  Compressed	
  Sensing	
  On	
  A	
  Fixed-­‐Point	
  Attractor	
  
	
   	
  
	
   To	
   investigate	
   the	
   effects	
   of	
   Compressed	
   Sensing	
   on	
   a	
   dynamic	
   system,	
  we	
  
first	
  investigated	
  the	
  effects	
  it	
  has	
  on	
  a	
  Lorenz	
  fixed-­‐point	
  attractor.	
  	
  The	
  fixed-­‐point	
  



attractor	
  was	
  selected	
  for	
  several	
  reasons.	
   	
  First,	
   it	
  represents	
  a	
   fairly	
  simple	
  non-­‐
linear	
  dynamic	
  flow	
  model.	
  	
  Second,	
  it	
  is	
  inherently	
  sparse.	
  	
  The	
  attractor	
  spirals	
  in	
  
towards	
   a	
   fixed-­‐point	
   and	
   once	
   it	
   reaches	
   the	
   fixed-­‐point	
   it	
   stays	
   at	
   that	
   point.	
  	
  
Finally,	
  the	
  Lorenz	
  system	
  has	
  been	
  thoroughly	
  researched	
  and	
  studied.	
  
	
  
A.	
  Method	
  
	
  
	
   We	
  integrated	
  the	
  Lorenz	
  system	
  with	
  initial	
  conditions	
  σ	
  =	
  10,	
  β	
  =	
  8/3,	
  ρ	
  =	
  
13,	
  x	
  =	
  1,	
  y	
  =	
  0,	
  z	
  =	
  0	
   (see	
  Lorenz	
  section	
   for	
  details).	
  This	
  produced	
  a	
  data	
   set	
  of	
  
8,192	
  (N)	
  points	
  over	
  a	
  period	
  of	
  ~82	
  seconds.	
  	
  Utilizing	
  WaveLab	
  [13]	
  and	
  a	
  Coiflet	
  
wavelet	
   transform,	
   we	
   then	
   transformed	
   the	
   x-­‐variable	
   time-­‐series	
   data	
   into	
   its	
  
corresponding	
  wavelet	
  coefficients.	
  
	
  
	
   To	
  decide	
  on	
   the	
  number	
  of	
  points	
   to	
   randomly	
   sample,	
  we	
  employed	
  a	
  K-­‐
sparse	
  threshold	
  of	
  1e-­‐5.	
  	
  This	
  threshold	
  yielded	
  a	
  K-­‐sparse	
  basis	
  with	
  K	
  =	
  616	
  (the	
  
number	
  of	
  active	
  /	
  non-­‐zero	
  components	
  of	
  the	
  signal).	
   	
  With	
  this	
  threshold	
  value,	
  
we	
  calculated	
  M	
  =	
  2,411	
  (the	
  number	
  of	
  data	
  points	
  to	
  randomly	
  sample)	
  utilizing	
  
equation	
  5	
  above.	
  
	
  

Next,	
  we	
  generated	
  an	
  M	
  x	
  N	
  Gaussian	
  random	
  measurement	
  matrix	
  Φ	
  using	
  
Matlab’s	
   randn	
   function.	
   	
   Using	
   Matlab’s	
   ortho	
   function,	
   we	
   produced	
   an	
  
orthonormal	
   basis	
   for	
   the	
   Gaussian	
   random	
   measurement	
   matrix.	
   	
   Using	
   the	
  
measurement	
  matrix	
  we	
  randomly	
   “sensed”	
  2,411	
  points	
  out	
  of	
   the	
  8,192	
  wavelet	
  
coefficients	
  of	
  the	
  signal	
  (equation	
  1).	
  	
  These	
  2,411	
  points	
  formed	
  the	
  measurement	
  
signal.	
   	
   Using	
   the	
   measurement	
   signal,	
   we	
   then	
   computed	
   the	
   minimum	
   energy	
  
solution:	
  

	
  

€ 

x0 =Φb 	
   (8)	
  
	
  
where	
   x0	
   is	
   the	
   initial	
   guess,	
   Φ	
   is	
   the	
   measurement	
   matrix,	
   and	
   b	
   is	
   the	
   sensed	
  
signal.	
  	
  	
  
	
  

In	
   order	
   to	
   recover	
   or	
   reconstruct	
   an	
   estimate	
   of	
   the	
   original	
   signal	
   y,	
   we	
  
must	
  find	
  a	
  solution	
  to	
  the	
  linear	
  optimization	
  problem	
  described	
  in	
  equation	
  2.	
  	
  The	
  
goal	
  is	
  to	
  find	
  a	
  solution	
  to	
  the	
  underdetermined	
  l1-­‐minimization	
  problem	
  (equation	
  
2).	
  	
  To	
  solve	
  this	
  linear	
  program,	
  we	
  leveraged	
  the	
  L1-­‐Magic	
  convex	
  program	
  library	
  
[6].	
  	
  L1-­‐Magic	
  implements	
  several	
  different	
  optimization	
  routines.	
  	
  For	
  this	
  research,	
  
we	
   leveraged	
   the	
   basis	
   pursuit	
   method.	
   	
   This	
   method	
   is	
   implemented	
   using	
   the	
  
interior	
   point	
   algorithm	
   for	
   convex	
   optimization.	
   	
   We	
   used	
   the	
   following	
   tuning	
  
parameters	
  for	
  the	
  basis	
  pursuit	
  algorithm:	
  duality	
  gap	
  =	
  1e-­‐3,	
  maximum	
  number	
  of	
  
primal-­‐dual	
   iterations	
   =	
   20,	
   tolerance	
   for	
   conjugate	
   gradients	
   =	
   1e-­‐8,	
   maximum	
  
number	
  of	
  conjugate	
  gradients	
  iterations	
  =	
  10,000.	
  
	
  
B.	
  Dynamics	
  
	
  



	
  
Figure	
  11,	
  12:	
  Figure	
  11	
  plots	
  the	
  average	
  divergence	
  over	
  time	
  for	
  the	
  fixed-­point	
  
Lorenz	
  System	
  (ρ=13).	
  	
  Figure	
  12	
  plots	
  the	
  average	
  divergence	
  over	
  time	
  for	
  the	
  

Compressed	
  Sensing	
  reconstructed	
  fixed-­point	
  Lorenz	
  System	
  (ρ=13).	
  
	
  
	
   To	
  explore	
   the	
  effects	
   that	
  Compressed	
  Sensing	
  has	
  on	
   the	
  dynamics	
  of	
   the	
  
fixed-­‐point	
  Lorenz	
  system,	
  we	
  calculated	
  the	
   largest	
  Lyapunov	
  exponent	
  λ1	
   for	
  the	
  
original	
   signal	
   (x-­‐axis	
   time-­‐series)	
   and	
   the	
   Compressed	
   Sensing	
   reconstructed	
  
signal.	
  	
  We	
  calculated	
  the	
  Lyapunov	
  exponent	
  using	
  TISEAN’s	
  lyap_r	
  command.	
  	
  We	
  
used	
  an	
  embedding	
  dimension	
  of	
  6,	
  which	
  represents	
  twice	
  the	
  Euclidean	
  dimension	
  
of	
   the	
   system.	
   	
   We	
   selected	
   a	
   time	
   delay	
   of	
   11,	
   which	
   has	
   been	
   suggested	
   as	
   an	
  
optimal	
   delay	
   for	
   the	
   Lorenz	
   system	
   [15].	
   	
   Figure	
   11	
   and	
   12	
   plot	
   the	
   average	
  
divergence	
  over	
   time	
   for	
   the	
   two	
  systems.	
   	
  The	
  slope	
  of	
   the	
   linear	
   region	
  of	
   these	
  
plots	
  indicates	
  the	
  largest	
  Lyapunov	
  exponent,	
  λ1.	
   	
  The	
  slope	
  of	
  the	
  original	
  Lorenz	
  
signal	
  is	
  λ1	
  =	
  -­‐0.44	
  seconds,	
  while	
  the	
  slope	
  of	
  the	
  reconstructed	
  signal	
  is	
  λ1	
  =	
  -­‐0.08	
  
seconds.	
  	
  The	
  scaling	
  region	
  used	
  for	
  both	
  slope	
  calculations	
  is	
  between	
  time	
  =	
  100	
  
to	
  600.	
  	
  The	
  dynamics	
  of	
  the	
  system	
  are	
  not	
  perfectly	
  preserved	
  by	
  the	
  Compressed	
  
Sensing	
  embedding.	
  	
  The	
  Lyapunov	
  exponents	
  are	
  close,	
  but	
  the	
  plots	
  are	
  dissimilar.	
  	
  
The	
  reconstructed	
  plot	
  exhibits	
  a	
  fair	
  amount	
  of	
  noise.	
   	
  This	
  is	
  especially	
  visible	
  in	
  
the	
  region	
  between	
  0	
  and	
  100.	
  
	
  

To	
   further	
   investigate	
   the	
   Compressed	
   Sensing	
   effects,	
   we	
   calculated	
   the	
  
Euclidean	
  distance	
  of	
  the	
  residuals	
  (predicted	
  vs.	
  theoretical	
  values).	
  	
  The	
  Euclidean	
  
norm	
  of	
  the	
  residuals	
  is	
  ||ε||2	
  =	
  0.0596.	
  	
  The	
  actual	
  difference	
  between	
  the	
  expected	
  
value	
  and	
  the	
  predicted	
  value	
  (Compressed	
  Sensing	
  reconstruction)	
  is	
  not	
  large,	
  but	
  
enough	
  to	
  affect	
  the	
  underlying	
  dynamics	
  of	
  the	
  system.	
  
	
  
C.	
  Discussion	
  
	
  
	
   As	
  noted	
   in	
   the	
  methods	
   section	
  above,	
  we	
  measured	
  2,411	
  random	
  points	
  
from	
  the	
  Lorenz	
  time-­‐series	
  data	
  set.	
  This	
  comes	
  out	
  to	
  be	
  roughly	
  29%	
  of	
  the	
  data.	
  	
  



Using	
  this	
  reduced	
  dataset,	
  we	
  were	
  able	
  to	
  reconstruct	
  the	
  time-­‐series	
  signal	
  fairly	
  
accurately.	
  	
  We	
  measured	
  an	
  L2	
  norm	
  of	
  the	
  residuals	
  of	
  just	
  0.0596.	
  	
  When	
  looking	
  
at	
  a	
  plot	
  of	
  the	
  original	
  signal	
  vs.	
  the	
  reconstructed	
  signal,	
  it	
  is	
  very	
  hard	
  to	
  tell	
  the	
  
difference	
  between	
   the	
   two	
   systems.	
   	
   In	
   fact,	
   no	
   comparison	
  plots	
   are	
   included	
   in	
  
this	
   paper	
   because	
   the	
   plots	
   would	
   add	
   very	
   little	
   value.	
   	
   You	
   cannot	
   tell	
   the	
  
difference	
   between	
   the	
   original	
   signal	
   and	
   the	
   Compressed	
   Sensing	
   reconstructed	
  
signal.	
  
	
  
	
   When	
   we	
   investigated	
   the	
   Lyapunov	
   exponent,	
   a	
   dynamical	
   invariant,	
   a	
  
slightly	
   different	
   picture	
   emerged.	
   	
   The	
   calculated	
   value	
   of	
   the	
   largest	
   Lyapunov	
  
exponent	
  for	
  the	
  recovered	
  signal	
  did	
  not	
  closely	
  match	
  the	
  calculated	
  value	
  of	
  the	
  
original	
   signal.	
   	
   This	
   indicates	
   that	
   the	
   reconstructed	
   signal	
   does	
   not	
   possess	
   the	
  
same	
  dynamics	
  as	
  the	
  original	
  signal.	
  	
  	
  Both	
  Lyapunov	
  exponents	
  are	
  small	
  negative	
  
values.	
  	
  This	
  indicates	
  that	
  both	
  systems	
  are	
  contracting,	
  i.e.	
  heading	
  towards	
  a	
  fixed	
  
point.	
  
	
  
	
   As	
   noted	
   above	
   in	
   the	
  Wavelet	
   section,	
   the	
  wavelet	
   transform	
   changed	
   the	
  
dynamics	
  of	
  the	
  fixed-­‐point	
  Lorenz	
  attractor.	
  	
  In	
  contrast,	
  the	
  chaotic	
  attractor	
  was	
  
not	
   affected	
   by	
   this	
   transform.	
   	
   Given	
   this	
   information,	
   it	
   is	
   likely	
   that	
   the	
  
reconstructed	
   fixed-­‐point	
   attractor’s	
   dynamics	
   is	
   at	
   least	
   in	
   part	
   affected	
   by	
   the	
  
wavelet	
  transform.	
  
	
  

We	
   also	
   investigated	
   the	
   effect	
   of	
   increasing	
   the	
   measurement	
   signal	
   size.	
  	
  
We	
  doubled	
  the	
  measurement	
  size	
  from	
  2,411	
  to	
  4,822	
  and	
  then	
  re-­‐ran	
  the	
  process	
  
of	
   sensing	
   and	
   reconstructing.	
   	
   Interestingly,	
   doubling	
   the	
   signal	
   size	
   caused	
   very	
  
little	
   change	
   in	
   the	
   dynamics.	
   	
   With	
   the	
   longer	
   signal,	
   the	
   calculated	
   largest	
  
Lyapunov	
  exponent	
  was	
  λ1	
  =	
  -­‐0.11	
  seconds.	
  
	
  

VI.	
  The	
  Impact	
  of	
  Compressed	
  Sensing	
  On	
  A	
  Chaotic	
  Attractor	
  
	
  
	
   To	
  continue	
  our	
  analysis	
  on	
  the	
  effects	
  of	
  Compressed	
  Sensing	
  on	
  a	
  dynamic	
  
system,	
  we	
  next	
  investigated	
  the	
  effects	
  it	
  has	
  on	
  a	
  Lorenz	
  chaotic	
  attractor	
  (strange	
  
attractor).	
  	
  Again	
  this	
  system	
  was	
  chosen	
  for	
  many	
  of	
  the	
  same	
  reasons	
  stated	
  above	
  
in	
  the	
  fixed-­‐point	
  section.	
  	
  In	
  addition,	
  we	
  wanted	
  to	
  investigate	
  if	
  a	
  chaotic	
  system	
  
could	
  be	
  sensed,	
  compressed,	
  and	
  recovered	
  using	
  the	
  Compressed	
  Sensing	
  method.	
  
	
  
A.	
  Method	
  
	
  
	
   We	
  followed	
  almost	
  exactly	
  the	
  same	
  procedure	
  as	
  used	
  above	
  for	
  the	
  fixed-­‐
point	
  attractor.	
   	
  The	
  only	
  difference	
  was	
  that	
  we	
  employed	
  a	
  K-­‐sparse	
  threshold	
  of	
  
1e-­‐1.	
   	
   This	
  was	
   required	
   because	
   the	
  wavelet	
   basis	
   of	
   the	
   chaotic	
   attractor	
   had	
   a	
  
large	
   number	
   of	
   small	
   non-­‐zero	
   active	
   components.	
   	
   This	
   threshold	
   yielded	
   a	
   K-­‐
Sparse	
   basis	
   of	
   K	
   =	
   1,273	
   (the	
   number	
   of	
   active	
   /	
   non-­‐zero	
   components	
   of	
   the	
  
signal).	
   	
  With	
   this	
   threshold	
   value,	
   we	
   estimated	
  M	
   =	
   4,982	
   (the	
   number	
   of	
   data	
  
points	
  to	
  randomly	
  sample)	
  using	
  equation	
  5	
  above.	
  
	
  



B.	
  Dynamics	
  
	
  
To	
  further	
  explore	
  the	
  effects	
  that	
  Compressed	
  Sensing	
  has	
  on	
  the	
  dynamics	
  

of	
  the	
  Lorenz	
  system,	
  we	
  examined	
  the	
  Lorenz	
  chaotic	
  attractor.	
  	
  We	
  calculated	
  the	
  
largest	
   Lyapunov	
   exponent	
   λ1	
   for	
   the	
   original	
   signal	
   (x-­‐axis	
   time-­‐series)	
   and	
   the	
  
Compressed	
   Sensing	
   reconstructed	
   signal.	
   	
   Again,	
   we	
   calculated	
   the	
   Lyapunov	
  
exponent	
  using	
  TISEAN’s	
  lyap_r	
  command.	
  	
  We	
  used	
  an	
  embedding	
  dimension	
  of	
  6,	
  
which	
  represents	
  twice	
  the	
  Euclidean	
  dimension	
  of	
  the	
  system.	
  	
  We	
  selected	
  a	
  time	
  
delay	
   of	
   11,	
  which	
  has	
   been	
   suggested	
   as	
   an	
   optimal	
   delay	
   for	
   the	
   Lorenz	
   system	
  
[15].	
   	
  Figure	
  13	
  and	
  14	
  plot	
  the	
  average	
  divergence	
  over	
  time	
  for	
  the	
  two	
  systems.	
  	
  
The	
   slope	
   of	
   the	
   linear	
   region	
   of	
   these	
   plots	
   indicates	
   the	
   largest	
   Lyapunov	
  
exponent,	
  λ1.	
  	
  The	
  slope	
  of	
  the	
  original	
  Lorenz	
  signal	
  is	
  λ1	
  =	
  0.84	
  seconds,	
  while	
  the	
  
slope	
  of	
   the	
  reconstructed	
  signal	
   is	
  λ1	
  =	
  0.79	
  seconds.	
   	
  The	
  scaling	
  region	
  used	
   for	
  
both	
  slope	
  calculations	
  is	
  between	
  time	
  =	
  0	
  to	
  400.	
  	
  The	
  dynamics	
  of	
  the	
  system	
  are	
  
fairly	
   well	
   preserved	
   by	
   the	
   Compressed	
   Sensing	
   embedding.	
   	
   The	
   Lyapunov	
  
exponents	
  are	
  very	
  close	
  and	
  the	
  plots	
  are	
  just	
  slightly	
  different.	
  
	
  

	
  
Figure	
  13,	
  14:	
  Figure	
  13	
  plots	
  the	
  average	
  divergence	
  over	
  time	
  for	
  the	
  fixed-­point	
  
Lorenz	
  System	
  (ρ=13).	
  	
  Figure	
  14	
  plots	
  the	
  average	
  divergence	
  over	
  time	
  for	
  the	
  

Compressed	
  Sensing	
  reconstructed	
  fixed-­point	
  Lorenz	
  System	
  (ρ=13).	
  
	
  

To	
   further	
   investigate	
   the	
   Compressed	
   Sensing	
   effects,	
   we	
   calculated	
   the	
  
Euclidean	
  distance	
  of	
  the	
  residuals	
  (predicted	
  vs.	
  theoretical	
  values).	
  	
  The	
  Euclidean	
  
norm	
  of	
  the	
  residuals	
  is	
  ||ε||2	
  =	
  1.3923.	
  	
  The	
  actual	
  difference	
  between	
  the	
  expected	
  
value	
  and	
  the	
  predicted	
  value	
  (Compressed	
  Sensing	
  reconstruction)	
  is	
  not	
  large,	
  but	
  
bigger	
  than	
  the	
  fixed-­‐point	
  residuals.	
  
	
  



C.	
  Discussion	
  
	
  
	
   In	
  contrast	
  to	
  the	
  fixed-­‐point	
  attractor,	
  the	
  chaotic	
  attractor	
  required	
  a	
  larger	
  
measurement	
   data	
   set.	
   	
   For	
   the	
   chaotic	
   attractor,	
   we	
   randomly	
   measured	
   4,982	
  
points,	
  which	
  is	
  roughly	
  60%	
  of	
  the	
  data.	
  	
  As	
  expected,	
  the	
  chaotic	
  attractor	
  is	
  not	
  as	
  
sparse	
  in	
  the	
  wavelet	
  basis	
  as	
  the	
  fixed-­‐point	
  attractor.	
  	
   Using	
   this	
   larger	
   data	
   set,	
  
we	
  measured	
  an	
  L2	
  norm	
  of	
  the	
  residuals	
  of	
  1.3923.	
  	
  This	
  is	
  significantly	
  higher	
  than	
  
the	
  measured	
  value	
  for	
  the	
  fixed-­‐point	
  Lorenz	
  system.	
  	
  Again,	
  when	
  looking	
  at	
  a	
  plot	
  
of	
  the	
  original	
  signal	
  vs.	
  the	
  reconstructed	
  signal,	
  it	
  is	
  very	
  hard	
  to	
  tell	
  the	
  difference	
  
between	
  the	
  two	
  systems.	
  
	
  
	
   The	
  calculated	
  values	
  of	
  the	
  largest	
  Lyapunov	
  exponent	
  between	
  the	
  original	
  
and	
  reconstructed	
  signal	
  did	
  not	
  change	
  much.	
  	
  We	
  calculated	
  a	
  value	
  of	
  λ1	
  =	
  0.84	
  for	
  
the	
   original	
   and	
   λ1	
   =	
   0.79	
   for	
   the	
   reconstructed	
   signal.	
   	
   Both	
   values	
   are	
   positive	
  
indicating	
  that	
  the	
  system	
  is	
  indeed	
  chaotic	
  and	
  expanding	
  in	
  at	
  least	
  one	
  dimension.	
  
	
  

VII.	
  Conclusion	
  
	
  
	
   In	
   this	
   paper,	
   we	
   proposed	
   a	
   new	
   technique	
   for	
   compressing	
   non-­‐linear	
  
dynamic	
  time-­‐series	
  data.	
  	
  We	
  showed	
  that	
  both	
  a	
  chaotic	
  and	
  a	
  fixed-­‐point	
  Lorenz	
  
attractor	
   can	
   be	
   sensed,	
   compressed,	
   and	
   recovered	
   using	
   our	
   technique.	
   	
   In	
  
addition,	
  we	
  presented	
  findings	
  that	
  indicate	
  our	
  technique	
  maintains	
  the	
  dynamics	
  
of	
  the	
  chaotic	
  attractor.	
  	
  We	
  measured	
  the	
  largest	
  Lyapunov	
  exponent,	
  a	
  dynamical	
  
invariant,	
  of	
  both	
  the	
  original	
  chaotic	
  attractor	
  and	
  the	
  recovered	
  signal.	
  	
  We	
  found	
  
very	
  little	
  change	
  between	
  the	
  two	
  measured	
  values.	
  	
  These	
  measurements	
  provide	
  
strong	
   indication	
   that	
  our	
  Compressed	
  Sensing	
   framework	
  properly	
  maintains	
   the	
  
dynamics	
  of	
  the	
  Lorenz	
  chaotic	
  attractor.	
  	
  However,	
  our	
  current	
  mechanism	
  failed	
  to	
  
maintain	
   the	
   dynamics	
   of	
   the	
   fixed-­‐point	
   attractor.	
   	
  We	
  measured	
   fairly	
   different	
  
Lyapunov	
  exponent	
  values	
   for	
   the	
  original	
   fixed-­‐point	
  attractor	
  and	
   the	
  recovered	
  
signal.	
   	
   This	
   indicates	
   that	
   the	
   dynamics	
   are	
   not	
   properly	
   maintained	
   by	
   our	
  
technique	
  for	
  the	
  Lorenz	
  fixed-­‐point	
  attractor.	
  	
  	
  
	
   	
  
	
   While	
   these	
   results	
   validate	
   the	
   applicability	
   of	
   Compressed	
   Sensing	
   on	
  
certain	
  non-­‐linear	
  dynamic	
  systems,	
  they	
  also	
  raise	
  new	
  questions	
  and	
  new	
  areas	
  of	
  
research.	
   	
  We	
   found	
   in	
   our	
   research	
   that	
   Coiflet	
  wavelet	
   transforms	
  maintain	
   the	
  
dynamics	
   of	
   a	
   chaotic	
   attractor	
   but	
   failed	
   to	
   do	
   so	
   for	
   a	
   fixed-­‐point	
   attractor.	
  	
  
Further,	
  we	
  discovered	
  that	
  signal	
   length	
  did	
   little	
  to	
   improve	
  the	
  dynamics	
  of	
   the	
  
fixed-­‐point	
  attractor.	
  	
  In	
  the	
  end,	
  we	
  believe	
  that	
  Compressed	
  Sensing	
  is	
  applicable	
  
to	
  non-­‐linear	
  dynamic	
  systems	
  and	
  chaos.	
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 TRAJECTORY ANALYSIS FOR MANIFOLD RETURN 
TRANSFERS FROM SUN-EARTH L1 LIBRATION POINT ORBITS 

Bradley W. Cheetham*  

Orbits within the unstable equilibrium regions of the Sun-Earth three-

body system have been the focus of much past research.  It is common to 

investigate transfers to these regions and trajectories to remain in these 

regions.  Returning to Earth, on the other hand, is a less well studied 

concept. While the Genesis mission returned to the Earth directly, no 

mission has returned to orbit the Earth.  This work will examine transfers 

from this region back to Earth orbits of varying altitude and inclination.  

Potential future applications could involve scientific missions, reduced 

cost orbital plane changes, or stealth orbit transfers.  

INTRODUCTION 

  Libration points in the Sun-Earth system have been used as staging grounds for scientific 

missions for decades.  These missions generally are sent to the Sun-Earth regime and maintain 

orbits to achieve scientific objectives.  The first of these missions was the International Sun-Earth 

Explorer-3 (ISEE-3) in 1978 which traveled to the Sun-Earth L1 point and after its nominal mis-

sion demonstrated the ability to transfer within the Sun-Earth system efficiently utilizing pertur-

bations from multiple bodies.  More recently Parker and Lo proposed using the dynamics of libra-

tion point orbits (LPOs) to enable efficient transfers to the Moon.
1
 Current work is investigating 

the use of libration point orbits as staging grounds for operationally responsive space
2
 and for 

improving the efficiency of transfers between orbits of varying inclination and altitudes.
3
   

 Under the assumptions of the Circular Restricted Three-Body Problem (CRTBP) five statio-

nary solutions, referred to as libration points, exist.
 4

  Libration points are equilibrium points in a 

three-body system where the gravitational forces and centripetal accelerations are equal.  The five 

libration points, also referred to as Lagrange points, are shown in Figure 1 where the primary is 

the Sun and the secondary is considered to be the Earth-Moon system centered at the systems ba-

rycenter.  Naming convention here will refer to the points with the prefix L# to denote a libration 

point.  Extensive research has identified numerous families of periodic and quasi-periodic orbits 

about the libration points.
 5,6,7

  For purposes of this study, one family was selected and orbits were 

generated for reference.  It is important to note that different families may not exhibit consistent 

behavior due to the nature of the chaotic environment within which they exist.  Thus all conclu-

sions derived from this initial work are only to be considered applicable to the orbital regime eva-

luated; it is not yet possible to extend these conclusions to universal application.   

                                                      

*Graduate Research Assistant, Colorado Center for Astrodynamics Research, University of Colorado, Boulder, Colora-

do 80309. 
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For this research the focus will be on using L1 initial orbits.  While several missions have 

flown to and maintained orbits about this LPO in the Sun-Earth system, to date no spacecraft or 

mission has returned from this LPO to an Earth orbit.   

To demonstrate the accessible altitudes for transfers from LPOs about the Sun-Earth L1 point, 

Poincare maps will be the primary tool used. These maps will be constructed in three-dimensional 

space to show the location of the periapsis crossing for each orbit.  Similar work has been done 

by Nakamiya et al
8
 and Villac and Scheeres

9
 investigating transfers in the Hill Three-Body Mod-

el.  The work performed here will build upon the concepts and initial understandings developed 

by both Nakamiya and Villac and expand upon this work by evaluating the transfers in the 

CRTBP and specifically by investigating these transfers in exclusively the Sun-Earth system.   

  

 
Figure 1. Libration Points in a generic Three-Body System. 

 

FORMULATION 

 LPOs in this paper are modeled under the equations of motion of the Circular Restricted 

Three-Body Problem (CRTBP).  The CRTBP model assumes that there exist two massive bodies, 

a primary and a secondary, and a third body (i.e. a spacecraft) which is assumed to have negligi-

ble mass compared to the other two bodies.  The orbits of both the primary and secondary are as-

sumed to be circular about their combined center of mass, which is referred to as the barycenter 

of the system.  The reference frame for three-body analysis is centered on this barycenter and ro-

tates with the same angular velocity as the two primaries.   
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Figure 2. Three Body Problem Formulation. 

 

As seen in Figure 2, the x-axis is defined as the line extending from the origin through the sec-

ondary.  The z-axis extends in the direction of the angular momentum of the system and the y-axis 

completes the right-hand coordinate frame.  The system is also normalized by the mass parameter 

μ, defined in Equation 1,  
 

            

,         (1) 

 

where m1 and m2 are masses of the primary and secondary, respectively. 
 

The equations of motion governing the movement of the third body are: 
 

    (2)  

         

      (3)  

           

          

   (4) 

 
The reader is directed to Szebehely for a further explanation of the equations of motion.

 10
 

 

The distances from the barycenter to the primary and secondary, respectively, may be found as  
 

      (5) 

       

    (6)  

 
The equations of motion shown in Equations 2-4 allow for the existence of an integral of mo-

tion in the rotating frame.  The integral of motion is known as the Jacobi constant, C, and is given 

by Equation 7. 

          

           (7)  
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     (8)  

       

        (9) 

IMPLIMENTATION 

The non-linear dynamics of the CRTBP cause the creation of orbits to be a non-trivial endea-

vor.  Due to the chaotic nature of the region, initial conditions are extremely important and even 

slight variations of position or velocity can result in completely different behavior.  The genera-

tion of initial conditions for periodic orbits in this region requires a two step process.   

The first step for generating these orbits utilized a third order Richardson-Cary analytical ex-

pansion to generate an orbit from which initial conditions are derived.
11,12

  The non-dimentional 

parameter and the libration point region (L1) were held constant while the Z-amplitude was varied 

from a dimensional value equivalent of 0 to 1.4 million kilometers.  This process was used to 

generate a representative set of 5000 initial conditions for periodic orbits. 

These 5000 initial conditions as generated by the Richardson-Cary routine were then further 

refined using a single-shooter algorithm.  The single shooting-shooting algorithm used here takes 

advantage of the symmetry of a LPO and integrates the initial conditions forward in time to the 

point at which they cross the x-z plane.  It then varies the values of the initial conditions using the 

state transition matrix until the trajectory crosses the plane perpendicularly.  The tolerance en-

forced on this constraint determines the extent to which the orbit will exhibit periodic tenden-

cies.
13

       

This single-shooter algorithm was implemented and, in conjunction with a variable step 

Runge-Kutta 7/8 integration scheme, used to refine the initial conditions as generated from the 

Richardson-Cary step previously.  After running the single-shooter over all the initial conditions, 

those trajectories that converged within tolerances were saved for later use.  A sample of these 

orbits is shown below in Figure 3 in the rotating reference frame. 

  Figure 3. Sample set of LPOs generated for study (non-dimensional units). 
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After generation of the initial LPOs in the Sun-Earth L1 region was complete the next step in 

the analysis of return trajectories was to develop a scheme to generate invariant manifolds which 

depart the LPO and approach the Earth.  The key data this study sought was the accessibility of 

Earth orbits from these LPOs using manifolds with varied departure time (of the orbit) and varied 

initial orbits.   

In order to generate these invariant manifolds the Monodromy matrix, which is the state tran-

sition matrix propagated for one orbital period, is used to determine the stable and unstable direc-

tions.  These directions correspond to the eigenvectors of the Monodromy matrix.  At the desired 

point of departure from the orbit, a small (on the order of 1x10
-5

 to 1x10
-6

) non-dimensional per-

turbation to the position and velocity is added or subtracted from the state in the unstable direc-

tion.  Depending on the sign of this contribution the manifold will either depart the LPO and ap-

proach the secondary body or it will depart away from the secondary body.  This behavior is not 

consistent between orbits and thus a positive perturbation on one LPO may exhibit the opposite 

behavior of another LPO with the same perturbation.  The reader is directed to Parker and Chua 

for more detailed explanation of how to generate stable/unstable invariant manifolds.
14

  Within 

this implementation a code is used to account for computational errors in the calculation of the 

eigenvalues which was developed by Russell.
15

  As an example of the manifolds generated for 

this study Figure 4 shows the unstable manifolds, in red, of an orbit with the manifolds approach-

ing the secondary as time moves forward.   

 

Figure 3. Invariant manifolds departing towards Earth (non-dimensional units). 

 

With the ability to create manifolds the last step in developing the tools for this study was to 

create a code to find how close each manifold passes to the Earth.  This seemingly trivial evalua-

tion proved to be a challenge.  After multiple approaches were attempted and several discussions 

with subject matter experts, a less-than-optimal yet effective scheme was devised.  The challenge 

stems from two major considerations.  First a generic code which tracks the trajectory until the 

distance to the Earth grows, or in other words when the sign of the difference between successive 

points changes, and determines this to be periapsis is ineffective.  Due to the asymptotic departure 

from the LPO, after perturbation the trajectory can seemingly approach and depart with respect to 

the Earth several times.  Secondly due to the step size of the variable step integrator, as the trajec-
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tory approaches the Earth there is no guarantee that an integration point will be placed at the loca-

tion of periapsis.   

To address this challenge a script was developed which looks at the entire unstable invariant 

manifold trajectory and calculates the smallest distance to Earth along that trajectory.  Using this 

as a starting point, unless this point lies at the end of the trajectory in which case it is discarded, 

the script backs up 5 integration steps and integrates forward using a much smaller fixed time-

step integrator.  This procedure is iterated until the periapsis is found to within a pre-specified 

tolerance.  In evaluating this scrip several checks are required including a check for planetary im-

pact, a check that the perturbation has caused the manifold to approach the secondary, and a 

check to make sure the iteration does not continue infinitely. An example of both the need for this 

script as well as its implementation, Figure 4 shows several manifolds propagated and the subse-

quent points (thick parts of the trajectories) solved for using the periapsis code. 

 

 

Figure 4. Periapsis code solving for closest Earth approach (non-dimensional units). 

RESULTS 

Using the tools described in the previous section, analysis was done on the Earth return acces-

sibility behaviors of multiple LPOs.  The results shown here are representative of an extensive 

opportunity for future study.   

Generating and propagating manifolds for an entire orbit with reasonable fidelity is a compu-

tationally intensive task.  Thus the first analysis that was performed was to see if there were spe-

cific ranges along LPOs within which manifolds were more likely to have a close, and thus use-

ful, approach of Earth.  To evaluate this tendency of an orbit several LPOs were selected from the 

group generated for analysis and examined.  It is very important to note that all conclusions de-

rived from these orbits are applicable only to this family or group of orbits.  There are numerous 

factors which influence these results.  In addition to the family of orbits, the size of the perturba-

tion applied to the LPO at the desired point of departure plays a very significant role in the rela-

tionship between departure point and Earth approach distance.  As this perturbation decreases, the 

manifold more closely models a realistic trajectory.  The trade-off, however, is that the smaller 
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the perturbation is, the longer the trajectory takes to depart the libration point region and conse-

quently more computational resources are needed to run over multiple manifolds. 

Results were generated for four different LPOs.  These LPOs are shown in Figure 5 and are 

labeled A, B, C, and D.  This identification will be used in subsequent plots and text to refer to 

each orbit. 

 

Figure 4. Evaluated representative LPOs (non-dimensional units). 

 

As shown in Equation 7 a Jacobi constant can be calculated for each orbit in the CRTBP.  This 

value is constant over the entire orbit and can only be changed by forces external to the system.  

The Jacobi values for each of the orbits A-D is shown in Figure 5. 

 

Orbit Designation Jacobi Value 

A 3.00083727793964 

B 3.00076187145967 

C 3.00066900380081 

D 3.00053477198624 

   Figure 5. Value of Jacobi constant for each representative LPO. 

 

It can be observed from Figure 5 that for this orbit family, the larger the z-amplitude (out of 
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tion size.  Thus the results observed are valid for only this family of orbits with this specific per-

turbation. 

 

 

   Figure 6. Closest approach versus departure location on LPO. 

Figure 6 clearly shows a trend over all of the orbits that there are certain departure windows 

along the LPO which provide closer approaches to the Earth.  These trajectories, under the formu-

lation used for this paper, appear to approach Earth when they depart within the range of 0-45 

degrees.  Thus for future implementation, this proves there are „sweet spots‟ which only need to 

be evaluated with manifolds and once these are determined, code can be streamlined to only eva-

luate these areas of the orbit.  It is apparent from the plot for orbit D in Figure 6 that it does not 

approach very close to the Earth and has a very small window within which manifolds come even 

close a usable return Earth orbit.  Similar data to this is possible from such plots over a larger 

range of orbits with a higher fidelity of evaluation.   

The following plots Figures 7-10 show the three dimensional Poincare plot for the four orbits 

identified previously.  One plot, to the left, shows a general plot of the location at which the tra-

jectory approaches closest to the Earth for all departures.  The second figure, to the right, shows 

where the trajectories approach close to a usable Earth orbit.  For reference, the radius of geosta-

tionary orbits is 4.2164x10
4
 km. 
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   Figure 7. Poincare maps of closest Earth approach for LPO A. 

Figure 7 shows the plots for closest approach of orbit A which is an entirely in-plane LPO.  

This is commonly referred to as a Lyapunov orbit when there is no out of plane component for 

the orbit.  Just as the orbit itself is in-plane, initial conditions originating in this LPO result in in-

plane manifolds and in-plane Earth approaches.  The discontinuity of the plot on the left is caused 

by propagation time.  All manifolds are propagated for the same length of time, although some 

pass by the Earth sooner than others.  Thus it is possible with this implementation to be detecting 

the second periapsis if it is closer than the first.  The plot on the right is zoomed in and shows 

how the orbits approach closer to the Earth.  In this case it is observed that manifolds from LPO 

A approach the Earth at a distance that is within the range of mid-Earth orbits (MEOs) and Geos-

tationary orbits (GEOs). 

 

 

 

   Figure 8. Poincare maps of closest Earth approach for LPO B. 

Demonstrating the behavior of manifolds originating on LPO B, Figure 8 shows that overall 

the manifolds behave differently than in Figure 7 and in this case cover close approaches from 
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-4 -2 0 2 4

x 10
5

-4

-2

0

2

x 10
5

-3

-2

-1

0

1

2

3

x 10
5

X

Orbit A

Y

Z

-2

0

2

4

6

x 10
5

-6

-4

-2

0

x 10
5

-2

0

2

4

x 10
5

X

Orbit B

Y

Z



 10 

 

 
 

   Figure 9. Poincare maps of closest Earth approach for LPO B. 

Demonstrated in Figure 9, LPO C behaves differently in a global sense with a much wider 

range of approach distances.  This orbit again approaches Earth from LEO to GEO making it an 

interesting target of future study. 

  

   Figure 10. Poincare maps of closest Earth approach for LPO D. 

The final figure demonstrating these results, Figure 10, demonstrates that orbit D does has 

similar accessibility to orbit A which approaches Earth from MEO to GEO.   

 

 

 

 

 

 

-6 -4 -2 0 2 4 6

x 10
5

-6

-4

-2

0

2

x 10
5

-4

-2

0

2

4

6

x 10
5

X

Orbit C

Y

Z

-4 -2 0 2 4 6 8

x 10
5

-6
-4

-2
0

2
4

x 10
5

-6

-4

-2

0

2

x 10
5

X

Orbit D

Z

Y



 11 

FUTURE RESEARCH 

As stated previously, the work done here serves as the foundation for extensive subsequent 

study.  Future development in this area is likely to include a more effective Earth-approach code 

which will likely be developed within the integration scheme itself.  Another area for exploration 

would be to validate the results seen here for various other LPO families.  Evaluation of the affect 

of perturbation size on manifold Earth-approach behavior would also be beneficial. 

Additionally effort will be spent to develop an evaluation scheme to study the inclination 

access of these manifolds.  Such an inclination scheme will need to utilize the velocity vector at 

Earth approach and determine what inclination orbit this trajectory would enter if an in-track burn 

were performed in the negative-velocity direction. 

Finally, the near-term culmination of this work will be to implement a looping script which 

will be able to evaluate the Earth approach distance and inclination for a broad range of LPOs and 

thus provide an ability to evaluate the appropriate LPO which will generate a desired manifold to 

orbits with specified altitude and inclination. 

CONCLUSION 

The chaotic nature of these non-linear orbits was observed clearly in the vast variation of ma-

nifold behaviors based on changing initial conditions along a single orbit.  Patterns were found 

demonstrating that within the orbits studied there are certain specific regions along an LPO from 

which initial conditions propagate to advantageous Earth approaches.  Simultaneously it was ob-

served that some orbits have limited Earth orbit accessibility.  These conclusions demonstrate that 

the specific initial conditions, as expected, drive the accessibility of Earth orbits from LPOs. 

This work has demonstrated that there is sufficient evidence of the benefits that would arise 

from investigating this behavior with increased rigor and fidelity.  As expected, these manifolds 

are symmetric to those used to leave Earth for LPO transfers.  However, transfers from high Earth 

orbits have not been studied at length and may in fact be the target altitude and inclinations which 

such a transfer is advantageous for. 
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Abstract
Situational awareness of Earth-orbiting particles such as active satellites and space debris is highly important

for future human activities in space. The intersection of multiple admissible regions can be used to correlate optical
observations as well as give an initial state estimate. The current algorithm, however, uses Keplerian dynamics, which
is often an insufficient model for long term propagation. In this paper, I discuss results obtained with a symplectic
integrator and its linear counterpart, the symplectic state transition matrix. The new dynamics causes interactions of
admissible regions that had not been observed with Keplerian dynamics to appear.

1 Introduction
Situational awareness of Earth-orbiting particles such as active satellites and space debris is highly important for future
human activities in space. Presently, over 300,000 particles have been estimated to exist, and over 80,000 observations
are made per day [1]. Observations are made either by radar or optical sensors. Determining the state of some Earth-
orbiting object based on one optical observation is an underdetermined problem, since usually the range and range-rate
of the object remain unknown. Furthermore, it is generally uncertain whether two arbitrary optical observations are of
the same object. This is the crux of the too short arc (TSA) correlation problem [2][3].

Fujimoto and Scheeres are currently investigating a correlation technique that uses an uncertainty region of the
observed objects state, or the admissible region, that is defined based on some physical constraints of the possible
orbits [4]. The admissible region is a 2-dimensional submanifold embedded in a 6-dimensional state space. The
intersection of multiple admissible regions can be used to correlate optical observations as well as give an initial
state estimate. Furthermore, the propagation of the admissible region over time can be linearized locally to speed up
computation. In our current algorithm, however, we only use Keplerian dynamics for the propagation, which does not
capture the dynamical effects of a gravitational field of an oblate Earth or of third-bodies.

In this paper, I discuss an updated correlation algorithm that utilizes a symplectic integrator and its linear coun-
terpart, the symplectic state transition matrix (SSTM), which allowed me to incorporate orbit perturbations due to
the J2 term of the Earth’s gravity potential. I first define the admissible region in detail as well as introduce the
necessary dynamics / dynamical systems concepts (Section 2). Next, I outline the symplectic integration methods I
implemented: the 4th order Gauss collocation method, and the 4th order SSTM (Section 3) [5][6]. With these tools,
I simulate observing objects in a GPS, Molniya, and GEO orbit 3 times each over the span of 100 hours (Section 4).
The manifolds propagated by the symplectic integrator began to deviate from the Keplerian solution significantly for
observations separated by 100+ hours, and the intersection region changed as a result. The symplectic propagator
ultimately improved initial state estimates compared to Keplerian dynamics.

2 Background
In this section, I explain how the admissible region concept can be used to correlate optical observations and give an
initial orbit estimate. I also introduce the basics of symplecticity and linearized dynamics.
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Figure 1: An admissible region for X = (α, δ, α̇, δ̇,Θ,Φ) = (2.064 rad, -0.2378 rad, 0.5072 rad/hr, 0.0654 rad/hr, 4.8
rad, 0.1 rad). The different shadings represent the different regions which satisfy each criterion in set C; thus, the
admissible region is where all types of shading overlap, or the region outlined by the black line.

2.1 The Admissible Region
For optical-only observations, which are usually made for objects in medium Earth orbit (MEO) and geostationary
orbit (GEO), only the angles and angular rates of the track can be determined [7][8]. That is, the range and range rate
remains largely unconstrained, except for a few physical restrictions which can be used to constrain their values. Thus,
each track can be mathematically expressed in terms of an attributable vector X at epoch t of the observation [3]:

X = (α, δ, α̇, δ̇) ∈ [−π, π) × (−π/2, π/2) × R2, (1)

where α is the right ascension and δ is the declination of the observed object. For a more complete description of the
track, I append the longitude Θ ∈ [−π, π) and latitude Φ ∈ (π/2, π/2) of the observation as observation parameters.

For any X, I can take different values of range and range-rate (ρ, ρ̇) to complete the topocentric coordinates of the
particle and thus obtain different physical orbits. However, not all of these orbits are relevant for any given application.
For instance, we may not be interested in objects that escape Earth orbit a couple of hours after observation. Rather, a
closed region of the (ρ, ρ̇) plane can be defined such that all of the physically relevant orbits are contained within the
interior of this region. I define this region as the admissible region FX(t) [2]. A set of criteria C defining the admissible
region has been proposed by Marsukin, et al.:

C =
4⋂

i=1

Ci, (2)

and

C1 = {(ρ, ρ̇) : E ≤ 0} C2 = {(ρ, ρ̇) : 2 ≤ ρ ≤ 20} (3)
C3 = {(ρ, ρ̇) : 1.03 ≤ rp} C4 = {(ρ, ρ̇) : ra ≤ 25}, (4)

where E is the specific geocentric energy of the debris particle, and rp and ra are the perigee and apogee altitudes,
respectively. Units of length are in Earth radii. Figure 1 is an example of an admissible region.

Suppose we have multiple admissible regions FX1(t1), FX2(t2), . . . , FXn(tn) each based on uncorrelated optical tracks
at different times. To determine whether these observations are correlated, I map their respective admissible regions
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Figure 2: Map T evolves admissible regions FX1(t1) (blue) and FX2(t2) [orange] from two separate observations to a
common epoch τ. The intersection point [green] is where the observed object most likely exists in state space.

to a common state space and propagate them to a common epoch time τ with some transformation T (τ, ti), where i =
1, 2, . . . , n. In this paper, I use the Poincaré orbit element space, which are non-singular canonical orbit variables [9]:

l = Ω + ω + M L =
√
µa

g =

√
2L
(
1 −
√

1 − e2
)

cos(ω + Ω) G = −g tan(ω + Ω) (5)

h =

√
2L
√

1 − e2 (1 − cos i) cosΩ H = −h tanΩ,

where µ is the standard gravitational parameter. We expect that if the observations are related, then their admissible
region maps T (τ, ti) ◦ FXi(ti) would intersect at the same state space coordinate as the observed object. Furthermore,
since T is invertible and continuous, each T (τ, ti) ◦ FXi(ti) are 2-dimensional manifolds embedded in 6-dimensional
space. As a consequence, the probability that any 2 admissible region maps intersect randomly is 0 [10]. Figure 2 is a
graphical representation of the algorithm.

In the current algorithm, T is a Keplerian propagator that simply adjusts the mean anomaly by:

∆M =
√
µ

a3∆t, (6)

where ∆t is the propagation time. Although simple, requiring just one propagation time step, a Keplerian propagator
assumes the object is affected only by gravity from a perfectly spherical Earth. In reality, the Earth has very complex
features on its surface that change the gravity potential function. Gravity from third bodies such as the sun and the
moon also pull on the object, among many other perturbating forces. Therefore, Keplerian dynamics is only a good
approximation for, at best, ∼ 100 hours prior and after an observation. If we are to propagate objects for longer periods
of time, we need to incorporate a better force model.

2.2 Symplecticity
Symplecticity is an important characteristic of Hamiltonian flow [5][11]. Let us define symplecticity by first consid-
ering a 2-dimensional state space p-q spanned by vectors ξ = (ξp, ξq)T and η = (ηp, ηq)T . Then, we say that a linear
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map A : R2 → R2 is symplectic if:
det
[
( ξ η )

]
= det

[
( Aξ Aη )

]
. (7)

The determinant for 2-space is the oriented area between ξ and η, so a symplectic map in 2-space preserves area. For
a general 2d-dimensional map A : R2d → R2d, we define the conserved quantity as the sum of determinants over pi-qi
space for all i = 1, 2, . . . , d:

d∑

i=1

det
[
( ξi ηi )

]
=

d∑

i=1

det
[
( A′ξi A′ηi )

]
, (8)

where ξi = (ξpi, ξqi)T , ηi = (ηpi, ηqi)T , and A′ : R2 → R2 such that A′ξ is equal to the pi-qi components of Aξ, and so
on. Therefore, the sum of the areas between ξi and ηi in each pi-qi space is conserved. We simplify (7) and (8) as:

AT
(

0 I
−I 0

)
A = AT JA = J, (9)

where I is the identity matrix. For non-linear continuously differentiable flows ϕ(p,q), each point on the map is locally
approximated by a linear map through its Jacobian ∂ϕ/∂(p,q). We thus define a flow to be symplectic if:

(
∂ϕ

∂(p,q)

)T
J
(
∂ϕ

∂(p,q)

)
= J (10)

is true at every point on the flow.
A symplectic numerical integrator is a numerical integration scheme set up so that it preserves a flow’s symplec-

ticity. That is: (
∂(pn+1,qn+1)
∂(pn,qn)

)T
J
(
∂(pn+1,qn+1)
∂(pn,qn)

)
= J, (11)

where n indicates the current integration step. It has been shown that integration methods that preserve quadratic first
integrals such as angular momentum and energy are symplectic [12]. The great advantage to applying symplectic
methods to Hamiltonian systems instead of, say, standard Runge-Kutta integration, is that it rigorously obeys con-
servation laws and preserves the “structure” of the system. As a consequence, we expect an increase in integration
accuracy.

2.3 Linearized Dynamics
Suppose we have some dynamical system described by the following differential equation:

ẋ = f (t, x). (12)

By taking a Taylor series expansion about some reference point x0 and dropping higher order terms, we linearize the
dynamics about this point:

ẋ0 + δẋ =
∂ f
∂x0

(x0 + δx)⇔ δẋ = ∂ f
∂x0
δx. (13)

Instead of solving (13) to find δx at a later time, we’d like to define a matrix Φ such that:

δx(t) = Φ(t, t0)δx0 (14)

called the state transition matrix (STM). From the definition,

Φ̇ =
∂ f
∂x0
Φ. (15)

To solve for the STM of a system, typically one would numerically integrate (15) simultaneously with (13) using
initial conditions Φ = I.
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The symplectic integrator explained in Section 2.2 can only propagate points in time. The aim of this paper,
however, is to propagate admissible regions, which are 2-dimensional manifolds. I can take a large number of sample
points on the manifold and propagate them non-linearly using a symplectic integrator, but this process often becomes
a bottleneck for the correlation algorithm. It is more efficient to take a smaller subset of sample points and use these
as reference points to linearly propagate small planar regions in state space. Computation times reduce from on the
order of days to tens of minutes while still retaining density distribution to within ∼ 5% over the entire manifold [4].

3 Method
In this section, I outline the symplectic numerical integrator (Gauss collocation) and the SSTM that I implemented for
this project

3.1 Gauss Collocation Method
The Gauss collocation method is a type of symplectic integrator. In a general collocation integration method, given
initial conditions x0 at time t0 for a system ẋ = f (t, x), the flow is approximated as some polynomial u(t) of decree s
such that 1. u(t0) = x0 and 2. the time derivative of u matches f at s distinct points [5]. That is:

{
u(t0) = x0
u̇(t0 + cih) = f (t0 + cih, u(t0 + cih)), (16)

where i = 1, 2, . . . , s, ci’s are constants specified by the method and integration order, and h is the integration time step.
In the Gauss method, the ci’s are the zeros of the s-th shifted Legendre polynomial. The equations can be reformulated
in the Runge-Kutta form [13]:




k1 = f
[
t0 +
(

1
2 −

√
3

6

)
h, x0 +

{
1
4 k1 +

(
1
4 −

√
3

6

)
k2

}
h
]

k2 = f
[
t0 +
(

1
2 +

√
3

6

)
h, x0 +

{(
1
4 +

√
3

6

)
k1 +

1
4 k2

}
h
]

x1 = x0 +
1
2 (k1 + k2)h

(17)

Note that k1 depends on both k1 and k2, and the same is true for k2. Therefore, the Gauss collocation method is
an implicit integrator. One computationally efficient way to solve for the k parameters is to use a Newton-Raphson
iteration. If we let Kn = (k1n, k2n)T be the n-th guess for the k parameters,

∂ f
∂x0

∣∣∣∣∣
Kn

(Kn+1 −Kn) = −






f
[
t0 +
(
1/2 −

√
3/6
)

h, x0 +
{
1/4k1n +

(
1/4 −

√
3/6
)

k2n
}

h
]

f
[
t0 +
(
1/2 +

√
3/6
)

h, x0 +
{(

1/4 +
√

3/6
)

k1n + 1/4k2n
}

h
]

 −Kn


 = −Fn (18)

⇔ Kn+1 = Kn −
∂ f
∂x0

∣∣∣∣∣
−1

Kn
Fn. (19)

∂ f /∂x0|K=0 is a good enough approximation for ∂ f /∂x0|Kn in most cases.
Figure 3 shows a comparison between the integration accuracy of a 4th order Gauss collocation integrator and a

constant step 4th order Runge-Kutta integrator written for a class assignment [14]. Figure 4 is a comparison of the
change in energy over time. We see that the Runge-Kutta solution loses energy, and thus the numerical dynamics force
the orbit to spiral inwards.

3.2 Symplectic State Transition Matrix
Instead of integrating (15) with a symplectic numerical integrator to solve for the STM, we can take advantage of the
discretized dynamics and find some set of matrices Fn such that:

Φ(t, t0) = Fn ◦ Fn−1 ◦ · · · ◦ F1 ◦ Φ(t0, t0), (20)
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Figure 3: Orbit of a GPS satellite propagated 700 hours with 1000 time steps using a symplectic (left) and Runge-Kutta
(right) integrator. Point-mass gravity potential was used for this example.
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where n is the number of integration steps and Φ(t0, t0) = I [6]. The discretized Hamiltonian dynamics are:

qn+1 = qn + hpn − αh2 ∂Un

∂qn
(21)

pn+1 = pn − αh
∂Un

∂qn
− (1 − α)h

∂Un+1

∂qn+1
, (22)

where q is the general coordinate, p is the general momentum, U is the potential function, h is the integration timestep,
and α is parameter that dictates the integration “direction”: α = 0 corresponds to backward Euler, α = 1 to forward
Euler, and α = 1/2 to midpoint rule. Then,

(
δqn+1
δpn+1

)
= Fn

(
δqn
δpn

)
, (23)

where

Fn =

(
I − αh2(∂2Un/∂q2

n) hI
−αh(∂2Un/∂q2

n) − (1 − α)h(∂2Un+1/∂q2
n+1)(I − αh2(∂2Un/∂q2

n)) I − (1 − α)h2(∂2Un+1/∂q2
n+1)

)
. (24)

This formulation is 1st order and is symplectic (i.e. ΦT JΦ = J) only for α = 0 or 1. For a 2nd order accuracy, we
combine two integration steps:

(
δqn+1
δpn+1

)
= Fn+1/2(α = 1) ◦ Fn+1/2(α = 0)

(
δqn
δpn

)
= F ′n

(
δqn
δpn

)
(25)

⇔ F ′n =



I − h2/2 · (∂2Un+1/2/∂q2
n+1/2) h

{
I − h2/4 · (∂2Un+1/2/∂q2

n+1/2)
}

−h · (∂2Un+1/2/∂q2
n+1/2) I − h2/2 · (∂2Un+1/2/∂q2

n+1/2),


 (26)

where n + 1/2 is a half integration step of h/2 between n and n + 1. For even higher order accuracy, we employ a
technique called fractal decomposition, which is based on Lie group theory [15]:

(
δqn+1
δpn+1

)
= Fn

(
δqn
δpn

)
, (27)

where

Fn(h, t) = F ′n (s3h, t + (1− s3)h) ◦ F ′n (s3h, t + (1− 2s3)h) ◦ F ′n ((1− 4s3)h, t + 2s3h) ◦ F ′n (s3h, t + s3h) ◦ F ′n (s3h, t) (28)

and s3 = 1/(4 − 3√4).

4 Results
I simulated observing the following objects 3 times each over 100 hours:

GPS (a, e, i,Ω, ω,M) = (3.9994 rE, 0.0006, 1.1284 rad, 4.9148 rad, 4.2128 rad, 2.9461 rad)

Molniya (4.1472 rE, 0.5529, 1.2347 rad, 5.5811 rad, 2.4137 rad, 4.8996 rad)

GEO (6.6102 rE, 0.0003, 0.0002 rad, 3.1274 rad, 2.3294 rad, 5.7226 rad),

where a is the semi-major axis, e is the eccentricity, i is the inclination, Ω is the longitude of the ascending node, ω
is the argument of periapsis, and M is the mean anomaly of the object. These values are actual spacecraft data taken
from the TLE catalog [16]. The first observation is made at time 0, the second at ∼ 50 hours, and the third ∼ 100
hours. Since we are most interested in how the new dynamics and integration scheme affects the propagation of the
manifolds, I assume that we have knowledge regarding which object each observation was of.
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I model the dynamics of the observed objects with the following gravitational potential:

U =
µ

r

{
1 − J2

(RE

r

)2 (3
2

sin2 ϕ − 1
2

)}
, (29)

where r is the radial distance of the debris object from the Earth’s center of mass, J2 is the oblateness term of the
spherical harmonics decomposition of the Earth’s shape, RE is the radius of the Earth, and ϕ = z/r is the latitude of
the debris object [9]. We expect secular perturbations in (Ω, ω,M), and smaller periodic perturbations in all orbital
elements. Note that any conservative perturbation force can be added to the potential function, including third-body
effects, higher order harmonics of the Earth’s surface, and solar radiation pressure. For this project, I chose to imple-
ment only the J2 term because it is the largest perturbation force for objects in MEO and GEO by at least an order of
magnitude, and due to project time constraints [17].

For each observation, I take a 0.01×0.01 sized subset of the admissible region in the ρ-ρ̇ space that includes the true
state of the observed object and map it to Poincaré orbit element space. I then propagate the subsets backwards in time
to the epoch of the first observation for that object using 1. Keplerian motion and 2. symplectic numerical integration
as described in Section 3 with the potential in (29). Similar to Hsu’s method of locating attractors, we determine where
the manifold lies in 6-space by discretizing the space into 100× 314× 49× 30× 10× 10 = 4.6158× 109 discretization
units, or “bins,” and recording whether the non-linearly mapped reference points on the manifold or their local linear
approximations lie in each bin [18]. The number of bins in each coordinate direction was chosen such that the bins
were hypercubes with equal sides. Instead of searching for exact intersections of admissible regions, I look for bins
where subregions of multiple admissible regions exist; i.e. when the two manifolds overlap. Since it is extremely
difficult to depict a 6-dimensional space on 2-dimensional paper, we project the Poincaré space onto 3 2-dimensional
planes using their symplectic coordinate-conjugate momentum pairs; i.e. L-l, G-g, and H-h [7].

4.1 GPS
Figure 5 shows the propagated admissible regions for all 3 observations. The observations were made at time 0, 58.7
hours, and 100 hours. As time passes, the manifold is stretched in the l direction, which is a measure of the angular
position of the spacecraft on the orbit. l is modulo 2π, so as a consequence, the manifold gets “shredded” in the L-l
plane [7]. The most notable difference between the symplectic and Keplerian integration schemes is in the H-h plane,
which is expected since these are equivalent to Ω in the classical orbit elements, and J2 perturbs Ω the most. We see
that as time passes, the admissible region map propagated by Keplerian dynamics drifts away from the true spacecraft
state. At 100 hours, the Keplerian propagator has accumulated so much error that the map no longer includes the true
state. On the other hand, the map propagated by the symplectic integrator includes the true state all all 3 times. The
symplectic integrator allows us to implement a better force model with good numerical accuracy.

Figure 6 shows the the observations at time 0 and 100 hours run through the correlation algorithm explained
in Section 2.1. For both propagation schemes, the admissible regions overlap over a small region (∼ 100 bins), so
the algorithm correctly correlates the two observations. However, since the admissible region map from Keplerian
dynamics does not include the true state, neither does the overlap region. Therefore, the accuracy of the initial state
estimate from the Keplerian dynamics is poor. Conversely, the overlap region for the manifolds propagated with the
symplectic integrator does include the true state, so accuracy is improved in this case.

4.2 Molniya
Molniya orbits were often used by the Soviet Union during the cold war for its communication satellites [9]. Accurate
integration of Molniya orbits in a reasonable timeframe proved to be difficult due to its high speed at its periapsis
compared to the two other objects (7.2359 km/s versus 3.9530 km/s for GPS, 3.0748 km/s for GEO). That is, small
time steps are required to completely capture the dynamics of the object near periapsis, thus increasing the number
of total time steps. With the MATLAB implementation I wrote for this paper, propagation of the admissible region
subspace by 108 hours using 2000 time steps required 30+ hours on a dual-core Xeon server. This setting, however,
only achieves ∼ 0.1 Earth radius accuracy in the position, as seen in Figure 7. The integration error is large enough to
push objects into the wrong discretization bins in state space.
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Figure 5: Admissible regions from time 0 (green), 58.7 hours (red), and 100 hours (blue) propagated back to time 0
using a symplectic (top) and Keplerian (botttom) propagator for observations of a GPS satellite. The manifolds have
been projected onto the L-l (left), G-g (mid), and H-h (right) planes. Each symbol is a discretization bin that includes
the respective manifold. The actual coordinate of the object’s state is indicated by the yellow x.
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Figure 6: Correlation process for observations at time 0 (green) and 100 (red) hours using a symplectic (top) and
Keplerian (botttom) propagator for a GPS satellite. The overlap region is indicated in black, and the actual coordinate
of the object’s state by the yellow x. The Keplerian propagator fails to include the true state in the L-l and H-h planes.
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Figure 7: Position error of backward propagation of an object in Molniya orbit for a 4th order Gauss collocation
integrator using 2000 time steps over 100 hours. The “true” orbit was calculated with a 4th order constant step Runge-
Kutta method with 10000 time steps.
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Figure 8: Admissible regions from time 0 (green), 60 hours (red), and 108 hours (blue) propagated back to time 0
using a symplectic (top) and Keplerian (botttom) propagator for observations of a Molniya satellite.

With the above caveat in mind, Figure 8 shows the propagated admissible regions for all 3 observations. The
observations were made at time 0, 60 hours, and 108 hours. The manifolds propagated by 108 hours with the two
methods are visibly different in all projection planes. The manifold propagated by the symplectic integrator has
irregular lumps after 108 hours for L ∼ 8. This behavior is likely numerical dynamics, since generally the lower L
is for an object, the higher its velocity at periapsis. Unlike the GPS case, the true state is included in all admissible
region maps for both the symplectic and Keplerian integrators.

Figure 9 shows the the observations at time 0 and 108 hours run through the correlation algorithm. Again, the
algorithm correctly correlates the observations for both propagation schemes. Neither overlapping region, however,
includes the true state due to numerical dynamics for the symplectic propagator and poor force modeling for the
Keplerian propagator. This example illustrates that no matter how accurate my force model may be and no matter how
strictly my integrator conserves energy, I may still obtain poor state estimation results from a lack of time steps. A
variable step symplectic integrator should be implemented for practical use, and desirably, the results should constantly
be corroborated with those from another integration scheme, or those using different time steps.

4.3 GEO
Figure 10 shows the propagated admissible regions for all 3 observations. The observations were made at time 0,
50 hours, and 100 hours. Secular perturbation due to the J2 term increases as the orbit’s semi-major axis decreases
and as the inclination increases. GEO objects are in circular, zero-inclination orbit with a larger semi-major axis than
the previous two orbit types, so we expect the difference between the symplectic and Keplerian propagation to be
the smallest of the three examples. Indeed, even after propagating for 100 hours, the it is difficult to visually discern
the difference between the manifolds maps from the symplectic integrator and that from Keplerian dynamics. The
manifolds, nevertheless, do move around in state space even though the satellite will appear to be fixed in the night
sky (hence its name, “geostationary orbit.”)

Figure 11 shows the the observations at time 0 and 100 hours run through the correlation algorithm. Again, the
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Figure 9: Correlation process for observations at time 0 (green) and 108 (red) hours using a symplectic (top) and
Keplerian (botttom) propagator for a Molniya satellite. The overlap region is indicated in black. Both propagators fail
to include the true state in the L-l plane, and the Keplerian propagator further fails in the H-h plane.

algorithm correctly correlates the observations for both propagation schemes. Furthermore, the overlap region calcu-
lated with the symplectic propagator includes the true object state. Surprisingly, the overlap region from Keplerian
dynamics failed to do so. Even for objects as high in altitude and low in inclination as GEO, the Keplerian propagator
accumulated enough error over 100 hours to push the true state out of the overlap region. I conclude that a point-mass
dynamics model is simply insufficient for accurate state estimation, and thus Keplerian dynamics is not recommended
for propagating objects for over ∼ 101 hours.

5 Conclusions
In this paper, I discussed symplectic propagation of admissible regions in state space to incorporate better force models
with high numerical accuracy. A Gauss collocation method and the symplectic state transition matrix were imple-
mented. For the three examples I investigated – GPS, Molniya, and GEO objects – I found that although a Keplerian
propagator was enough to correlate optical observations, the symplectic integrator produced better initial state es-
timates especially for propagation times on the order of 102 hours. Future work would be to propagate the entire
admissible region rather than a subset, and to incorporate more perturbation terms in the force model.
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Figure 10: Admissible regions from time 0 (green), 50 hours (red), and 100 hours (blue) propagated back to time 0
using a symplectic (top) and Keplerian (botttom) propagator for observations of a GEO satellite.
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Figure 11: Correlation process for observations at time 0 (green) and 100 (red) hours using a symplectic (top) and
Keplerian (botttom) propagator for a GEO satellite. The overlap region is indicated in black. The Keplerian propagator
fails to include the true state in the G-g plane.
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Rigorously Pursuing Chaos in Time Series Data:

An Algebraic Topological Approach

Joshua Garland∗ Zach Alexander †

1 Introduction

Rigorously proving that a dynamical system exhibits chaos numerically is a particularly fas-
cinating aspect of numerical dynamics. During this semester we examined several different
properties of a dynamical system which are usually signatures of chaos but not sufficient evi-
dence to prove a system is in fact chaotic. The closest we were able to come to numerical proof
of chaos was by studying the Lyapunov exponent and the capacity dimension of the Lorenz
attractor. Both of these methods are unsatisfactory in a rigorous sense. Neither provide con-
crete proof of a system’s chaotic nature, due in part to their vast dependence on parameter
values. Mischaikow outlines an alternative to these in [4] and [6]. In [4] Mischaikow’s out-
lines an algorithm to compute a lower bound on the topological entropy of a system, positive
entropy being a sufficient condition for chaos! In [6] Mishaikow et al. rigorously explains
the theory behind this algorithm using aspects of both Algebraic Topology and Conley Index
Theory.

Mischaikow’s approach is fascinating in that it beautifully couples Chaos, Computer Sci-
ence and Mathematical theory. By personally coding these algorithms, I hope to gain a better
understanding of the theory explained in [6]. My project will aim to: First, implement these
algorithms and second, explore as much of the background theory as time allows.

While I implement [4], which is intended for experimental data, Zach Alexander will do
independent analysis of this system, but from a flow perspective using GAIO. When we both
finish our analysis we will compare our results. Even with a poor delay coordinate embedding
we hope to preserve the topological structure of the attractor. Hence, if I conclude that the
system exhibits a positive entropy then Zach should as well. Much of the literature states
that similar techniques work with flows but most papers are oriented around maps, a direct
comparison between experimental and flow data does not directly appear in the literature as
far as Zach and myself can tell.

Remark: Zach and I do not expect to obtain the same entropy because while there is
at least a homeomorphism between our attractors and the entropy is preserved under such a
conjugacy map, we are only able to compute a lower bound. Since Zach is using the equations
while I am embedding it would not at all be suprising if one of us computes a tighter lower
bound on the entropy.

In addition to this flow comparison, I will compare the results of this algorithm with the
results found in [10] by Sarah Day, a PhD student of Mischaikow. In [10] an alternative
∗University of Colorado at Boulder, Department of Applied Mathematics.
†Collaborator from University of Colorado at Boulder, Department of Applied Mathematics.
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algorithm is rigorously outlined to analyze topological entropy of a system defined with a
map. She then uses this algorithm to rigourously prove a lower bound on the entropy of the
Hénon map. I would like to use the code I generate based on [4] on the Hénon map and see
how the two outputs compare.

2 Theory1

The following section will aim to provide the reader with an elementary introduction to the
theory which governs the algorithm [4]. It is not intended to be a complete overview of any
of the subjects, just a basic introduction.

2.1 Symbolics Dynamics and Topological Entropy

Define T to be the m x m (m ≥ 2) matrix with entries tij ∈ Z2 . The symbol space
corresponding to T is: [10]:

ΣT := {S = (s0s1 . . . )|tsksk+1
= 1 ∀k}

We can think of the symbol space, ΣT , as the set of words which can be generated by T
through transition. We think of ΣT in this way because T represents all allowable transitions
between symbols in our symbolic dynamical system. We also need to defined σT : ΣT → ΣT

as σT (s) := s′, wheres′i = si+1.[10] That is σT is a continuous map on our symbol space
which takes collections of symbols to collections of symbols interior to words. We refer to
the framework (ΣT , σT ) as a subshift of finite type. This name emphasizes that we have a
finite number of symbols, m. That is we have a finite number of characters in our “symbolic
alphabet” and only a subset of the set of all words generated by these m characters is allowed
by the matrix T which governs allowable symbol transitions. The finite type also emphasizes
that all words can be defined using a finite matrix T. Furthermore, the set of forbidden words
is finite. Moreover, with an appropriate choice of metric on ΣT our shift map σT : ΣT → ΣT

is in fact a dynamical system [10].
The reason that dynamics defined by subshift of finite type are of interest is that objects

which can be difficult to identify such as fixed points and periodic orbits are easily obtained
utilizing (ΣT , σT ). For example to find a period n orbit, we would just need to find the word
s∗ such that s∗ = (s0s1 . . . ) ∈ ΣT such that si+n = si ∀i ∈ N. Since important aspects of
dynamical systems are easily identifiable using (ΣT , σT ) it would seem that this technique,
would allow almost trivial analysis of dynamical systems and their landscapes. Unfortunately
this isn’t quite the case, most dynamical systems cannot be expressed in terms of symbolic
dynamics with subshifts of finite type. Fortunately, there are now methods which exist to
represent a general non-hamiltonian dynamical system by symbolic dynamics through a special
topological conjugacy or a less restrictive topological semi-conjugacy. [10].

Definition 1. A continous map ρ : X → Y is a topological semi-conjugacy between f : X →
X and g : Y → Y if ρ ◦ f = g ◦ ρ and ρ is surjective. If in addition ρ is injective, then ρ is a
topological conjugacy .[10]

The reason we are interested in such mappings is that several properties of dynamical
systems are invariant to topological (semi-)conjugacy. In particular properties such as periodic

1Much of this section will follow the theoretical development in [10, 2, 1] and is included to provide back-
ground theory to explain the algorithm. For a more rigorous discussion see [10, 2, 1, 6, 3]
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orbits and topological entropy are preserved under the actions of ρ. Thus if we can generate a
conjugacy map between a general dynamical system, and a finite subshift dynamical system
,we can analyze properties using the finesse of the symbolic dynamics, without being restricted
to dynamics defined by subshift dynamics.

The property we are particularly interested in is a dynamical systems topological entropy,
htop, which is a measure of the complexity of a given system. A map f for which htop(f) > 0
is said to be chaotic, and if, htop(f) > htop(g) then we say f is ‘more chaotic’ than g. The
Bowen’s definition of topological entropy is as follows[10]:

Definition 2. Let f : X → X be a continous map. A set W ⊂ X is called (n, ε, f)-seperated
if for any two different points x, y ∈ W there is an integer j with 0 ≤ j < n so that the
distance between f j(x) and f j(x) is greater than ε. Let s(n, ε, f) be the maximum cardinality
of any (n, ε, f)-seperated set. The topological entropy of f is the number

htop(f) = lim
ε→0

lim sup
n→∞

log(s(n, ε, f))
n

While in theory this definition makes sense, computationally calculating this quantity is
quite challenging. However, the dynamics defined by subshift of finite type gives a very nice
computational way of rigourously calculating this quantity. Thus if we can define a topological
semi-conjucacy between our dynamical system and some symbolic system, we can calculate the
original systems topological entropy which is invariant to the actions of conjugacy mappings.

Theorem 1. Let T be a symbol transition matrix and let σT : ΣT → ΣT be the associated
subshift of finite type. Then htop(σT ) = log(sp(T )) where sp(T ) is the spectral radius of T .

Unfortunately most systems are not defined as a subshift and linking a system to a conju-
gate subshift system is challenging. The algorithm we implement uses Conley index theory to
build a subshift system with the itinerary function serving as the semi-conjugacy between the
two systems[10]. The following two theorems are the brunt of what validates this algorithm
theoretically and are taken from [10].

Definition 3. Suppose N ⊂ X may be decomposed into m < ∞ disjoint, closed subsets
(N = ∩i=1,...,mNi). Let S be the maximal invariant set in N (i.e. S is the largest set such
that S ⊂ N and f(S) = S). Then f j(S) ⊂ N ∀ j = 0, 1, . . . . Finally, let T be the m x m
symbol transition matrix given by

tij =
{

1 : (S ∩Nj) ∩Ni 6= ∅
0 : otherwise

The itinerary function ρ : S → ΣT is given by ρ(x) = s0s1 . . . , where sj = i for f j(x) ∈ Ni.

Using the itinerary map as our semi-conjugacy mapping we can obtain a lower bound on
the topological entropy of our system in the following way.

Theorem 2. Suppose that the itinerary function ρ is a semi-conjugacy from f : S → S to
σT : ΣT → ΣT for some S ⊂ X and subshift of finite type (σT ,ΣT ) with symbol transition
matrix T . Then

htop(f) ≥ log(sp(T )) = htop(σT )

where sp(T ) is the spectral radius of T .
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That is the spectral radius of the Transition matrix for which our system is semi-conjugate
to will be a lower bound on the entropy of our system. A positive lower bound will allow us
to conclude our original system is chaotic, whereas a zero lower bound will not allow us to
conclude anything about our system and is considered a trivial entropy. Before describing the
algorithm implementation one more theoretical digression is necessary.

2.2 Basic Conley Index Theory and Homology2

A fundamental aspect of Mischaikow’s et .al algorithm [4] is to construct an isolating neigh-
borhood of the original dynamical system. An isolating neighborhood, N , is a strict subset of
the system image which strictly contains one of the dynamical systems invariant sets, inv(N).
Unlike an invariant set, trajectories can leave an isolating neighborhood but they must do
so through what is called the (isolating neighborhood) exit set, which we will call L. Two
crucial concepts behind the isolating neighborhood is that the isolating neighborhood is com-
pact and its exit set, L, has a non trivial intersection with ∂N . This tells us the following:
not only is the invariant set strictly contained in the interior of N but also that points in the
set K = N \ L are unable to leave N . We are not however interested in the structure of the
isolating neighborhood, which is computable, but we are interested in the isolated invariant
neighborhood.[4] To deal with this theoretical discrepancy the algorithm relies on the usage
of Conley Index Theory. First we must understand the idea of an index pair.

Definition 4. [4] Given an isolating neighborhood N of f , a pair of compact sets (K,L) with
L ⊂ K ⊂ N is called an index pair if the following properties are satisfied:

1. If x ∈ K and f(x) ∈ N then f(x) ∈ K.

2. If x ∈ L and f(x) ∈ N then f(x) ∈ L.

3. If x ∈ K and f(x) /∈ N , then x ∈ L
4. The maximal invariant set contained in N is a subset of the interior of K\L.

According to [4] the importance of an index pair is that the index pair that the homology
groups H∗(N/L) and a homology map F∗ : H∗(N/L)→ H∗(N/L) induced by F are invariants
of the maximal invariant set contained in N . Furthermore, if under a change in the dynamics,
N remains an isolating neighborhood, the homology group and map do not change. To utilize
index pairs to recover the structure of the invariant sets we return to [10]. Before defining the
conley index we must have the following definition:

Definition 5. Two group homomorphismsφ : G → G and ψ : G′ → G′ on abelian groups G
and G′are shift equivalent if there exists group homomorphisms r : G → G and s : G′ → G′

and a constant m ∈ N (referred to as the ‘lag’) such that

r ◦ φ = ψ ◦ r, s ◦ ψ = φ ◦ s, r ◦ s = ψm, ands ◦ r = φm.

The shift equivalence class of φ, denoted [φ]s, is the set of all homomorphisms ψ such that ψ
is shift equivalent to φ.

2This section is loosely based around [6], however much of the notation and definitions are borrowed from
[10], [2].
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Definition 6. Let P = (P1, P0) be an index pair for isolated invariant set S = Inv(P1 \ P0)
and let fP∗ : H∗(P1, P0) → H∗(P1, P0) be the map induced by the relative homology groups
H∗(P1, P0) from the map fP . The Conley index of S is the shift equivalence class of fP∗

Con(S, f) := [fP∗ ]s

While this definition is precise, a less rigorous definition can be used for the purposes of
this algorithm.

Definition 7. If (K,L) is an index pair of Inv(N), then the Conley Index of Inv(N) is
defined to be the homotopy type of the quotient space N/L.

Some very nice properties of the Conley Index can be summarized in the following way.

Proposition 3. The Conley index is an index of isolating neighborhoods that satisfy:

1. If N and M are isolating neighborhoods such that inv(N) = inv(M) then the Conley
Index (N) =Conley Index(M).

2. If Conley Index(N) is non trivial that is not equal to zero then the inv(N) 6= ∅.
3. If N is an isolating neighborhood for a continous family of dynamical systems φλ, λ ∈

[0, 1] then Conley Index (N,φ0) =Conley Index(N,φ1).

The third is important because it guarantees that the Conley Index is invariant to small
perturbations in the dynamical system. Since this project will be oriented around delay
coordinate embedded data it will inevitably posses small perturbations resultant from both
RK4 error, embedding error and fixed point error. This property allows us to utilize the
Conley Index with very little concern for it varying from the true dynamical systems index.

Thus, using the index pair (K,L) we need to construct the quotient space K/L. Within
this topological subspace we think of each point in the exit set L as a single point in the
quotient space. To visually understand this see Figure 1.3 With this Figure think of K as the
blue and L as the red. The final image is the quotient space K/L. This allows us to construct a
set of manifolds whose surface is the isolating neighborhood of the invariant set with the exiting
set compressed to a single point. From this we can compute the homology group of the quotient
space H∗(K/L). Where the elements of H∗(K/L) are the homotopy equivalence classes of
closed curves lying on the surface of the quotient space. To visualize homotopy classes observe
Figure 24, we consider two curves in this space of the same homotopy class or homotopy
equivalent if one can be continually deformed into another. So [γ1] ≡ [γ2] ≡ [γ3] ≡ [γ4] are
all homotopy equivalent but none of these are equivalent to [γ5] since this curve cannot be
continually deformed to the others due to the hole in space.

Since [γ4] is homotopy equivalent to a single point, this class will be the identity of our
homology group. For each element of H∗(N/L) we receive a copy of Z. More precisely, if
the index pair consists of disjoint sets (Nj , L)Jj=1 then our homology group H∗(N/L) will
be the free group isomorphic to ZJ := {(z1, . . . , zJ) |z1, . . . , zJ ∈ Z}. For example again
consider Figure 1, then the order of H∗(N/L) would be 2 and thus H∗(N/L) ∼= Z ⊕ Z :=
{(z1, z2) |z1, z2 ∈ Z}.

Once we have constructed H∗(N/L) we can construct from the multivalue map a transition
matrix T : H∗(N/L)→ H∗(N/L) which forms a subshift of finite type on H∗(N/L). Using the
itinerary map as our semi-conjugacy mapping we can obtain a lower bound on the topological
entropy of our system by Theorem 2.

3Illustration by D. Y. Garland
4Illustration by D. Y. Garland
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Figure 1: Topological Quotient Space

2.3 The System

In order to investigate this algorithm I will be using a known chaotic system from [11], in
particular:

ẋ = −2y
ẏ = x+ z2

ż = 1 + y − 2z

I will not however, be directly using the governing equations. Instead, using fourth/fifth
order Runge Kutta (Matlabs ode45) I integrated the system and then used an embedding
program to generate several embeddings by varying both τ and m. A boast of this algorithm
is that it can recover topological quantities of a data set even if the embedding dimension is
low or if τ is chosen poorly. In light of this I choose an embedding which looked very poor
compared to the original system and used this as the dynamical system. An example of the
final bad embedding can be seen in Figure 4. The final step in obtaining the “experimental
data” is to take a Poincaré section of this data. While several Poincaré sections were taken
and analyzed, the Poincaré section in Figure 5 was the primary data being analyzed.
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Figure 3: The original system.

Before deciding on this system I considered the following properties: Lyapunov Exponent,
Capacity Dimension and the ratio of dominant to recessive Lyapunov exponents. We also
wanted a system which would be very difficult to prove was chaotic by traditional means, i.e.
calculation of fractal dimension and the Lyapunov exponent. In general a low dimensional
delay coordinate embedding will be most successful if the dominant Lyapunov exponent is
quite small and positive and the majority of the other exponents are large and negative.

The Lyapunov spectrum of this system is {0.076, 0,−2.076} [11]. Notice the dominant
Lyapunov exponent is very small and positive. Standard algorithms which are intended to
analyze experimental time series data can have up to a 10% error in the calculation of the
dominant Lyapunov exponent.[12] This particular system would be exceptionally difficult to
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Figure 4: Embedded system.
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Figure 5: Poincaré Section of the bad embedding.

conclude chaos based on the Lyapunov exponent as 10% fluctuation could quite easily have
this system result in a negative Lyapunov exponent! Moreover, the large negative Lyapunov
exponent should allow very succesful low dimensional embeddings. Furthermore, this system
has a non-integer capacity dimension, 2.037 [11] which is a nice signature of chaos but not
necessary as can be seen with Sprott’s simple chaotic system [11]. For these reasons this
system should be a great candidate for this algorithm.

3 Computational Aspects

My implementatoin of [4] will construct a multivalued map, F , and a collection of cubes which
act as an isolating neighborhood N of an invariant set under the influence of F . Lastly it will
construct an index pair for F .

The final stage of [4], namely the calculation of the transition matrix and itinerary function,
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Figure 6: Zach’s Poincaré section of the original system.

will be accomplished with CHomP, a free software library developed by Mischaikow et al.

3.1 Algorithm Implementation

The Multivalue Map The multivalued map can be thought of as a symbolic encoding
of the original dynamical system. We would like F to be coarser than the original map f
while preserving the basic properties of the original system. This in part helps mitigate error
propagation due to delay coordinate and experimental error. As described in [4], to define

Figure 7: Visual example of the map creation process.

F we first define the image and range of F . To do this we divide our phase space into a
grid of squares with side lengths ε. We then define G to be the set of squares which contain
experimental data points and Y , to be the region of phase space which is determined by
G. The next step is to define a dynamical system on Y , this dynamical system will be a
multivalued map called F : G ⇒ G, which takes grid squares to grid squares.
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This task was accomplished by placing a grid over the experimental data using a similar
mapping used traditionally to calculate the capacity dimension. This collection of grid squares
will act as the domain of F . We now need to construct the preimage and imaging sets of
F constraining our space to the original systems image. That is, we need both G|F and
Y = G|F(G) such that: if g ∈ G then f(g) ∈ F(G) ∀g ∈ G where f is the original flow.

So we must construct G|F = {G′|F(G) = G′ for each G ∈ G} and its image. To accomplish
this we take each experimental data point, g ∈ G for all G ∈ G, and map each g forward one
step in time (See Figure 7).

We then record all possible image squares of G in a cell array (See Figure 8). Each index in
the cell array represents a grid element G and the cell array as a whole represents G. Each cell
is a matrix containing the image of a particular G under F for which that index corresponds.
So cells which are nonempty in the cell array represent G|F and the corresponding cells
represent each of their images in F . Notice that each grid square G can map to many grid
squares, this is why the map is refered to as a multivalued map and NOT a function. While
it seems this is the map we are looking for we are not quite done. Defined as above, F does
not quite preserve the dynamics of the original system.

Figure 8: Visual representation of transition from f to F

Before using F three issues must be resolved: (1) we must guarantee that we preserve the
original mapping (i.e. if g ∈ G then f(g) ∈ F(G) ∀g ∈ G where f is the original flow) by
eliminating images which have trivial intersections, (2) the “four square” problem, and lastly
(3) guarantee that Y does not exceed the image of the original image set, up to ε-resolution.

First, we make sure the mapping is preserved. Observe this might not be the case if the
image squares are disjoint. To solve this problem for each G we use F(G) to construct the
smallest rectangle containing F(G) and take all squares in this rectangle to be the new F(G).
This solves the disjoint image problem.

The next issue to resolve is the “four square” image problem described in [4]. The simplest
statement of this problem, is if four squares lie next to each other, the image of the four squares
must have an intersection which is nontrivial. The reason being is that if a point lies on the
boundary, or worse, the central corner of the four grid squares, it must be mapped interior to
the image of these four squares. At first this seemed trivial and superfluous, and was ignored
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for a long time. However, it turns out to my surprise that experimental data very frequently
violates this property and this turned out to be an extremely important property for F to
satisfy. Not satisfying this property seemed to manifest itself when F was being verified to
be acyclic. Violating this four square problem seemed to almost directly impact the maps
acyclicity. We will consider this later when we discuss CHomP in the results section of this
paper.

The solution to this problem is given in [4]: “For each grid point, look at the images of the
four grid squares which meet at that point. If they do not intersect, increases each image by
the set of all squares which intersect the set representing it.” Similar language to this is used
in [10] when talking about a sets combinatorial neighborhood. Thus to fix this problem we
extend each image square by its combinatorial neighborhood until the image of four squares
has a nontrivial intersection, and finally updating F to reflect this increase in image.

The final problem arises from the additional images being added. Essentially we must
ensure that the dynamical system defined on Y is no larger than the original system. To
do this we simply intersect each image with the dynamical system, that is we take G|F and
intersect it with Y so that ∀ G ∈ G F(G) = F(G) ∩ Y . This last step ensures that the
dynamical system defined on Y is no larger than the original system. That is no image
squares are generated if they do not contain an original experimental data point. We then
translate the cell array F into a text file formatted as prescribed by [8] to be used by CHomP.

Isolating Neighborhood To construct the isolating neighborhoods we utilize both F and
F−1 repetitively, where F−1(C) := {G ∈ G|F(G) ∩ C 6= ∅}[4], until we no longer have any
change in the image set. To start this we guess a strict subset of G ∩Y which we call C0. This
is the first approximation to the isolating neighborhood, the only restriction which is placed
on the guess is that it is a strict subset of G ∩Y . We then define C1 = C0∩F(C0)∩F−1(C0).
That is we move each G ∈ C0 forward in time and backwards in time one step. The second
step in this procedure is to “remove a component of C1 which touches the boundary of C0

relative to Y ”.[4] After removing any such G ∈ C1 we check if C0 = C1. We continue this
process until Ci = Ci+1 for some i. Once the algorithm has converged in this sense we define
Ci+1 to be our isolating neighborhood N .

Index Pairs Now that we have an isolating neighborhood N we can produce an index
pair for F . Let L consist of the elements of F(Ci+1) which touch ∂Ci+1 relative to Y , this
will constitute the exit set L. We then define K = Ci+1 ∪ L, then (K,L) is an index pair for
F . We must now calculate H∗(K,L) and the corresponding map on homology T , which will
act as our itinerary function and semi-conjugacy between these new subshift of finite type
dynamics namely H∗(K,L) and our original system. For this computation we will rely on
CHomP. With these inputs I can use homcubes from the CHomP library in order to calculate
the topological entropy of the system.

4 Challenges and Results

4.1 Challenges

With [4] coded I thought I would be able to investigate several different variations on this
dynamical system. In fact I thought it would be quite easy to analyze any time series,
experimental data or dynamical system with this algorithm as long as it primarily acted as
a map. Unfortunately, the fact of the matter is that two awkward sentences in [4] make this
algorithm ambiguous at two crucial moments. On top of this homcubes is quite sensitive
to what it accepts as input. In particular, besides theoretical considerations made in [4]
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additional computational and theoretical restrictions are placed on F by homcubes such as
acyclicity5.

Figure 9: An index pair generated by this software which looks correct, but produced very
bad output with CHomP.

Figure 10: The resulting output from CHomP for 9. Observe the high dimensional Homology
group.

Furthermore, actually finding an isolating neighborhood for a dynamical system is far
less trivial than originally believed based on [4]. Mischaikow presents the calculation of a
semi-conjugacy between the subshift of finite type namely H∗(K,L) and the original system
as a completely trivial action which is almost an afterthought of [4]. Calculating this semi-
conjugacy however seems to be a fundamental challenge in this process which I now see

5We say that a cubical (combinatorial multivalue) map F : X → Y is acyclic if for every set of cubes R ⊂ X
such that ∩R 6= ∅, the set |F(R)| is acyclic.[8].
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after coding this algorithm from scratch. Constructing a valid isolating neighborhood and
generating a map which satisfy acyclicity in order to use CHomP were by far the most time
consuming computational aspects of this project.

The Isolating Neighborhood algorithm as stated in [4] begins by guessing a proper subset
of G|F and then iterating in the way described in section 3.1. The challenge of this however
is finding an isolating neighborhood which can then be translated into an index pair which
satisfies all the requirements listed in section 2.2. The issue is that the isolating neighborhood
and the index pair act similarly but, have several theoretical restrictions which deviate them
just enough that finding an index pair becomes extremely challenging.

For example, if you choose your initial guess to be too large, say only 50 cubes are removed
from the image, then using [4] you almost get immediate convergence. This makes sense
theoretically because if you consider the majority of G|F minus some small number of cubes
it would make sense that this is a compact cover of several invariant sets. The problem is
this usually results in a trivial homology group since the quotient space N/L will have no
holes. This trivial homomorphism almost always results in a zero entropy which does not
allow us to make any conclusions about the chaos of the given system. If you take the other
extreme and take a very small guess as the initial guess the probability of this being a cover
of a disconnected invariant set is almost zero, and so the algorithm almost always results in
K = ∅ which results in a trivial itinerary mapping and nothing can be said about the chaos
of the original system. Even when the algorithm does converge, many times taking (K,L) as
an index pair for F would result in a violation of acyclicity which would cause homcubes to
crash.

This guess and check method suggested in [4] seems highly inefficient. With hundreds of
guesses and checks made with the Sprott Poincaré section, Sprott flow and Hénon data not a
single index pair was found by this algorithm. It seems that a huge amount of luck is needed
in the guessing process. For this reason it seems a more systematic approach is needed such as
the methods described in [1, 2, 10]. This will be discussed further in the future works section.
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4.2 Sprott Poincaré Section Compared with Sprott Flow
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Figure 11: Resulting index pair from a large original guess. Only about 50 cubes removed.

Due to the challenges in finding an index pair I was not able to calculate a lower bound on
the topological entropy for the Poincaré section. For similar reasons Zach was also unable
to calculate a lower bound on entropy for his system. Thus, no direct comparisons could be
made between the Flow and embedded data, which was very disappointing.
On several occasions we got results from homcubes. However, in each case as we analyzed the
output, implications were that the output was unreliable. Such reasons were: extremely high
dimensional homology groups for low dimensional quotient spaces, nonzero traces of inclusion
maps, trivial mappings, inclusion maps which did not agree with the transition matrices etc.
For these reasons we were not at all confident in the results we received and did not think
comparing them was in any way helpful or legitimate. Several examples of neighborhoods
and corresponding index pairs can be seen in the following figures. None of these however
resulted in positive entropy.
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Figure 12: Resulting index pair from a medium original guess. Several hundred cubes removed
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Figure 13: Resulting index pair from a very small original guess. Almost all cubes removed.

4.3 Hénon Results
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Fig. 4.1. (a) A combinatorial index pair, (P1,P0), computed using Algorithms 1 and 2 for the
Hénon map at depth d = 7. (P0 is the collection of boxes shown in cyan.) (b) The corresponding
symbol transition graph produced by Algorithm 6.

4.1. Joining two short cycles. For purposes of illustration, we begin with a
relatively simple example on the grid at depth d = 7. Although the resulting entropy
lower bound, 0.2406, is small, this example provides us with matrices of reasonable
sizes for depicting the results of various stages of the procedure. For this example,
we locate a region of interest, S, by searching the computed enclosure H on G(7) for
a cycle of length 2, a cycle of length 4 and shortest path connections from the 2-cycle
to the 4-cycle and from the 4-cycle to the 2-cycle. S is the union of these four objects.
Applying Algorithms 1 and 2 to S result in the index pair given in Figure 4.1.

Theorem 4.1. The topological entopy of the Hénon map (4.1) is bounded from
below by 0.2406.

Proof. The computed index map for the index pair depicted in Figure 4.1(a) is

hP,1 =



A B B B B C D E F F

A 0 0 0 0 0 0 −1 0 0 −1
B 0 0 0 0 0 0 −1 0 0 0
B 0 0 0 0 0 0 0 0 0 0
B 0 0 0 0 0 0 0 0 1 0
B 0 0 0 0 0 0 0 0 1 0
C 1 0 0 0 0 0 0 0 0 0
D 0 1 0 1 0 0 0 0 0 0
E 0 0 0 0 0 1 0 0 0 0
F 0 0 0 0 0 0 0 −1 0 0
F 0 0 0 0 0 0 0 1 0 0


The rows and columns are labeled by location of the corresponding homology genera-
tor in the labeled regions of the isolating neighborhood (see Figure 4.1(a)). Applying
Algorithm 5 for removing transient generators to hP,1 produces the shift equivalent

21

Figure 14: Isolating Neighborhood with Commuting Diagram from [10].

As a way of trying to better understand [4] I considered other similar algorithms in hopes
of understanding the fundamental problem better. The most helpful and promising algorithm
I investigated was found in the dissertation of Sarah Day and was published in [10] and
added to in [1]. What initially intrigued me was that this particular paper had very explicit
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explanations which were backed up by theoretical considerations and proofs. Moreover, this
paper simply uses the Hénon map and as such is easily reproducible. With [4] the results are
produced by data recorded from a magneto-elastic ribbon. The data they used however is
nowhere to be found which makes testing the algorithm and reproducing the results almost
impossible. My initial aim was to use my code on this map and see if my results would be
similar to [10]. After scrutinizing [1, 2, 10] it also occurred to me that while the algorithm in
[10] was intended for the analysis of maps it would also serve quite nicely for the analysis of
time series data through Poincaré sections.
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Figure 15: A similar isolating neighborhood as that found in [10]

Figures 14 and 15 illustrate that my algorithm was able to compute isolating neighbor-
hoods very similar to those found in [10]. The main difference is the interval arithmetic being
used in her implementation. In addition, she also uses graph theory on the symbolic transition
matrix in order to automate the construction of an isolating neighborhood.

Figures 16-17 demonstrate one of the methods implemented in [10] to locate an isolating
neighborhood. The basic idea is that particular cubes are “blown out” or folded and then the
resulting set is cut down to an isolating neighborhood by the PRL algorithm. The important
feature to notice about these pictures are where the bands of empty space occur. These will
relate to holes in the Topological quotient space which will directly effect the homology group
being formed for the subshift of finite type.
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Figure 16: My resultant index pair from the “Blowout” method using a depth 5 blowout

Fig. 4.2. The combinatorial index pair, (P1,P0), constructed starting with Algorithm 4 for
Theorem 4.2 at depth 12. (P0 is the collection of boxes shown in cyan.)

equivlalent map on 309 generators. Finally, Algorithm 6 produces a semi-conjugate
subshift of finite type with 247 symbols. The symbol transition matrix for the con-
structed subshift is depicted in Figure 4.3. The log of the spectral radius of T is
bounded from below by 0.4318. The result then follows from Theorem 2.7. !

For the above result computed on the grid G(12), we choose the maximal cycle
length for Algorithm 4 to be Max Cycle Length= 7. This choice is made because
choosing Max Cycle Length< 7 yields a lower bound than that given in Theorem 4.2,
and choosing Max Cycle Length> 7 yields an entropy lower bound of 0. This behavior
is depicted in Figure 4.4. The reason that choosing a large maximal cycle length leads
to a 0 lower bound is that the corresponding isolating neighborhood produced by
Algorithm 1 is a covering of the entire attractor, with corresponding trivial symbolic
dynamics.

In principle, improving the bound requires only extra computational cost. Fig-
ure 4.5 shows the change in the computed entropy bound with increase in resolution
of the grid (and corresponding increase in computational expense) for the Hénon
map. The dip in the graph at depth 11 is of interest because, in general, we expect
a monotonic increase in the computed entropy bound with increase in resolution of
the grid. This non-monotonic behavior indicates that our choice of region of interest,
S, in Algorithm 4 is indeed sub-optimal. In fact, choosing S to be the boxes in G(11)

contained in the isolating neighborhood N returned by Algorithm 4 and Algorithm 1
on G(10) would yield the same entropy as that computed at depth 10 and so it is
possible to compute a higher entropy bound at this resolution.

4.3. Fold preimage removal. A priori knowledge of the Hénon map sug-
gests another approach for constructing the region of interest S. We notice that
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Figure 17: Sarah’s resultant index pair from the “Blowout” method from [10].

When I inserted the above index pairs and associated map into homcubes I received either
a trivial homology or a violation of acyclicty warning. This was further evidence to me that
I should consider an alternative algorithm because it does not seem the PRL consistently
produces maps which allow transition to subshift of finite type.

5 Further Work and Conclusions

Investigating the work of Mischaikow et. al was an incredible learning experience. Not only
did I gain knowledge in Chaotic systems but in Algebraic Topology, and Conley Index Theory.
In addition I gained valuable experience in the act of algorithm deciphering. Moreover [4]
provided a great springboard into this vast subject matter.

In the near future I hope to create an algorithm based on the best from each of the
algorithms I studied. Each had strengths and weaknesses and it would seem that a compilation
of these algorithms would be quite strong. For example in [10] a great Isolating Neighborhood
algorithm is outlined which utilizes graph theory to find cycles and fixed points with respect

17



0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

140

160

180

Figure 18: An index pair generated by Zach using the Cycle method described in [10].

Figure 19: Output of CHomP illustrating a 4 cycle in the Index Pair shown in Figure 18

to F . These cycles are then connected using Dijkstra as an initial “region of interesting
dynamics”. This region of interest is then used as an initial guess for a set to grow into
an Isolating Neighborhood. For the multivalue map, the PRL algorithm [4] seems the most
promising as it was originally developed with time series analysis in mind. For the index pair
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I would return to Mischaikow, but not [4], in his book he provides a very nice algorithm for
this computation. Preliminary results suggest this approach will be quite useful. In fact, Zach
was able to rigorously prove the existence of a 4 cycle, the Index Pair and output can be seen
in Figure 18. In addition, with this collection of tools I was able to verify fixed points and 2
cycles for the Hénon map.
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ABSTRACT 

There is an intrinsic linking between beauty, nature, and 

mathematics that has been thoroughly analyzed but is still not 

fully understood. This paper discusses some of the previous 

research and background of how aesthetic beauty relates to 

mathematics and natural patterns. A study is conducted and 

discussed wherein photographic composition techniques based on 

mathematical patterns were tested for aesthetic preference. It was 

determined that composition techniques based on the Rössler 

chaotic formula do significantly better than traditional techniques 

for influencing photographic composition. 

Categories and Subject Descriptors 

G.1.7 [Numerical Analysis]: Ordinary Differential Equations – 

chaotic systems 

General Terms 

Experimentation, Human Factors, Theory. 

Keywords 

Chaotic Dynamics, photography, composition, aesthetics of 

mathematics. 

1. INTRODUCTION 

1.1 The Visual System 
The connections between beauty, nature, and mathematics are 

often experienced on a daily basis and routinely implied in 

conversations ranging from friendly banter to scientific discourse. 

It is well-known that simple mathematical patterns can be found 

throughout nature and form very attractive aesthetics. For 

instance, the Fibonacci sequence can be seen in the patterns of a 

sunflower‘s seeds and the shape of pinecones, and much of 

Mandelbrot‘s inspiration for fractal research resided in describing 

the forms of mountains, clouds, and rivers [Mandelbrot 1989]. 

The relationship between mathematical equations, nature, and our 

understanding of beauty seems to be intrinsically linked. 

Mathematical symmetry, repetition, and size ratios are all 

generally found to be aesthetically pleasing, even in a ―raw‖ 

visual representation [Mandelbrot 1989]. Yet surprisingly little is 

known about what connections actually exist between these 

concepts and exactly how they operate; a deeper understanding of 

why patterns and images of natural life are so appealing is 

generally lacking. 

Although there appears to be significant knowledge gaps into why 

human nature has an appreciation for mathematical patterns and 

the natural environment, it is not a result from a lack of trying. 

Quite the contrary, mathematicians, cognitive scientists, 

evolutionary psychologists, and artists, amongst many others, 

have all addressed the issue and although much has been 

discovered, much still remains to be discovered.  As expected, 

nearly all disciplines confirm intuitions that the natural 

environment is aesthetically pleasing and patterns are liked, but 

the complexity of how this occurs is quite unexpected.  For 

instance, visual pattern recognition was once thought to be a 

strictly higher-level cognitive process but more recent research 

has found that ―not only does information from lower-level 

processing influence higher levels, but higher-level processing, 

involving stored knowledge, can guide lower-level perception in 

tasks such as segmentation‖ [Mitchell 2008]. In other words, our 

visual systems are not unidirectional; what we perceive can 

influence what we think and what we think can influence what we 

perceive. This effect can propagate to nearly all levels of 

cognitive processing: ―[Rob] Goldstone reported on experimental 

results that indicated that even the most abstract of tasks—

mathematical reasoning—is affected by visual input, such as the 

layout of the problem on the page‖ [Mitchell 2008]. 

The key to the visual system is not the layering alone, but rather 

the ―ability to fluidly integrate the different levels that provide the 

major source of visual understanding in humans and other 

animals‖ [Mitchell 2008]. In fact, this fluid integration is so 

capable that ―while modern computer vision systems have 

impressive performance in some specific domains, there are no 

systems able to recognize instances of visual categories or 

understand the contents of visual scenes with anywhere near the 

generality and robustness of human perception‖ [Mitchell 2008]. 

The visual system is incredibly resilient as well and a ―search of 

complex visual displays for single features can take place in 

parallel with relatively little effect of the number of distracters‖ 

[Posner 1990]. Not only is the human visual system fast, but it is 

not easily distracted. 

1.2 Art from Math 
The interaction between cognitive layers can help to explain why 

humans are attracted to certain patterns and by extension certain 

mathematical images and art forms. The fluid interaction of 

information between the low-level perceptual layers of the brain 

and the higher-level interpretation layers of the brain could be led 

to create harmonious or discordant flows. Visual images that have 

a combination of both simple patterns as well as more complex 

meaning can be considered more aesthetically pleasing than those 

that simply have basic repeating patterns. In essence, activating 

more of the cognitive pipeline can be a potential measure for 

determining aesthetics. Although this idea is conjecture, it is 

supported by Mandelbrot‘s exploration and discovery of a new art 

form, fractal geometry, and Ned Kahn‘s observations on 

aesthetics: ―Your mind is working on a lot of levels. You‘re 



processing this visual information, and you‘re recognizing 

patterns, some so subtle you probably can't describe what you're 

seeing, but on some level aesthetically… there's an indication that 

there is an order in there‖ [Walker 1999]. 

In Mandelbrot‘s description of fractals, he mentions that ―the 

inputs are typically so extraordinarily simple as to look positively 

simple-minded. The outputs, to the contrary, can be spectacularly 

complex‖ [Mandelbrot 1989]. In essence, this plays quite well to 

the configuration of the visual system, a vast combination of 

interactions between simple and complex systems. As such, one 

would expect that fractals would be visually attractive which is 

exactly what he found: ―most surprisingly and without any 

prodding, this new geometric language has given rise to a new 

form of art‖ [Mandelbrot 1989]. In fact, he attributes their 

inherent beauty to the very survival of the field of fractals: ―the 

beauty of a flower is useful – even indispensable – to the survival 

of its species. Similarly, it was the attractiveness of the fractal 

images that first brought them to the attention of many colleagues 

and then of a wide world‖ [Mandelbrot 1989]. 

The research into fractals is also interesting in its applications to 

modeling nature. As Mandelbrot investigated the ability of 

fractals to model mountain ranges he found that ―when the 

representation of nature by fractal is perceived as successful, it 

also tends to be perceived as beautiful. Unquestionably, the fractal 

'forgeries' of mountains and clouds are examples of 

representational art‖ [Mandelbrot 1989]. If fractals are to be taken 

as an indication, then portions of the beauty of nature lie in the 

interaction between simple and complex patterns and portions of 

the beauty of art lie in its ability to represent the natural world. 

1.3 Math from Art 
Just as art and beauty arise out of mathematically-based 

approaches, there are examples of math being found in art-based 

endeavors. Dan Rockmore writes about the field of ―stylometry‖ 

which derives mathematical models of artists and styles from 

artistic works [2007]. Notably, Richard Taylor has provide the 

work of Jackson Pollock and discovered that ―the ‗chaos‘ for 

which one critic famously denounced Pollock‘s work in the 1950s 

is something that Taylor saw quite literally as the mathematics of 

fractal geometry‖ [Rockmore 2007]. Regularity can be found by 

examining the different color layers of Pollock‘s paintings and 

calculating the fractal dimension therein. As Rockmore 

insightfully notes, however: ―it‘s significant that Taylor found a 

digital signature for Pollock. But what might be even more 

significant is that the art world paid attention to it, for this shows 

the art/science boundaries are continuing to become fuzzier and 

fuzzier‖ [2007]. Thus, not only are there intrinsic links between 

math, art, and nature, but as those links are discovered they are 

becoming increasingly useful in pragmatic ways. 

1.4 Implications for Photography 
The connection between the low and high level processing of 

visual information and aesthetics can also be seen in the field of 

photography. It has been discovered that the most influential 

factor in the appeal of a photograph was its composition compared 

to other factors such as colorfulness, portrayal of babies, visibility 

of faces, sharpness, quality of image, etc [Savakis 2000]. In other 

words, the geometric layout of items in a photograph has the most 

influence on its aesthetics over all other factors.  Again this plays 

into the relationship between lower-level and higher-level 

cognitive process interactions. The individual shapes, patterns, 

and images in a photograph can quickly be perceived and 

interpreted by the visual system, but there is likely another 

interplay appearing with the composition of the shapes and 

patterns and their relationships to one another. The effects of 

composition not only have effects on the aesthetic value, but also 

on the memory impact of an image. It has been found that 

―focusing on the layout is more important than focusing on the 

objects for remembering a given scene‖ [Mitchell 2008]. Overall, 

the relationship between objects in photographs tends to have 

more value than the objects themselves.  

Generally speaking, there are no rigid rules for creating 

compositions in photograph [Savakis 2000]. However, 

photographers have developed several techniques and heuristics 

for creating appealing composition in two-dimensional 

photographs. The most common composition heuristic by far is 

the ―rule of thirds.‖  With this composition, major focal points of 

the photograph are placed approximately one-third inward from 

the borders of the image. In other words, two horizontal lines can 

be constructed and put on top of an image, one-third of the way 

from the top and bottom of the total image height. Similarly, two 

vertical lines can be constructed and put one-third of the way from 

the left and right of the total image width. These four lines will 

create four intersection points which are the suggested focal 

points of the image, Figures 1 and 2. 

 

 

Figure 1: Rule of Thirds 

 

 

Figure 2: Rule of Thirds Composition [Jones 2010] 

 



Another compositional heuristics that is widespread amongst 

photographers is the use of the golden spiral, Figure 3. The golden 

spiral is created by decreasing the radius of a spiral in proportion 

to the golden ratio. Focal points of an image should then be placed 

along the path or near the center of the spiral as shown in Figure 

4. 

In both the rule of thirds and the golden spiral, the layout and 

focal points of objects in a photograph are based on their relative 

ratios to each other. Thus the composition has little mathematical 

basis other than the value of the ratio and has, in Mandelbrot‘s 

terms, no representational value. The two compositional patterns 

do have the effect of moving focal areas away from the center of 

the image. This is largely their main function as photographs with 

 

Figure 3: Golden Spiral 

 

 

Figure 4: Golden Spiral Example [Garn 2010] 

 

 

Figure 5: Diagonals Composition 

 

Figure 6: Triangles Composition 

 

Figure 7: Lorenz Composition 

 

Figure 8: Rössler Composition [Bradley 2010] 

 



perfectly centered subjects tend to feel static and unbalanced. 

Similarly, photographs with strong contrast, such as a horizon 

line, cut across the center or middle of the image tend to be less 

liked than those with contrast areas off-center. 

The most common technique for creating photographs with the 

rule of thirds or the golden spiral composition is to crop and adjust 

photographs in post-production editing. Many graphics packages 

will allow users to overlay the composition guides over 

photographs and crop or distort a photo to match the guides. 

Other, less-common, overlays can also be used including one 

focused on diagonal lines, Figure 5, and one on triangles, Figure 

6. Yet all of the common overlay techniques are based on ratios of 

the distance between objects and have no representational value. 

An obvious question thus arises. If simple, ratio-based 

compositions can improve the aesthetic value of a photograph, can 

other methods based on other mathematical principles be used to 

provide aesthetic improvements as well?  Specifically, can chaotic 

dynamics be used to create new overlays to guide the 

compositions of photographs and how would these compositions 

compare to the traditional ones?  Overlays based on chaotic 

dynamics could have the potential advantage of being based on 

observed patterns and shapes, rather than ratio values, and thus 

might be more cognitively interesting than existing composition 

techniques. The interplay between simple patterns and complex 

patterns would be heightened. Additionally, the chaotic dynamics 

based compositions could be rooted in systems that have 

representational value much like Mandelbrot‘s fractals. If patterns 

that are based on natural phenomena are used, one would expect a 

higher level of aestheticism to result. 

2. METHODOLOGY 

2.1 General Setup 
Just as a survival mechanism exists for fractals and beauty for a 

set to become more popular, a similar natural selection can be 

seen with chaotic dynamics equations [Mandelbrot 1989]. In 

particular, two of the most popular dynamical systems to be 

studied are the Lorenz and Rössler systems [Lorenz 1963, Rössler 

1976]. Projections and models of the two systems have distinct 

patterns that are visually interesting and captivating. The two 

systems are widely discussed in chaotic dynamics literature and 

appear in several introductory texts on the topic. As such, they 

provide ideal candidates for testing as potential composition 

guides in comparison to two of the most common traditional 

guides, the rule of thirds and the golden spiral. 

This study evaluated the relative aesthetic value of the four 

composition layouts by creating an online user survey that 

compared the chaotic compositions against the traditional ones. 

The results were used to determine if any significant benefit or 

detriment could be found by using the new composition styles. 

2.2 Image Set Selection 
This study examined the comparisons by first gathering 

representative photographs that exhibit compositions reflective of 

each desired composition heuristic. Photographs that are 

exemplars of the rule of thirds and golden spiral were collected as 

well as images that resemble layouts similar to the Lorenz and 

Rössler systems. The images were chosen from a gallery of 

curated photographs from an online photography community, 

1x.com [1x 2010]. The curation process for the site ensures that 

images meet a minimum threshold for image quality, style, 

content, and technique. By using a gallery that is vetted in this 

manner, those same variables are controlled for in the user 

judgment process. Images of lower quality or of offensive content 

are not present and are thus controlled for. Additionally, 

preferences between images were further controlled by only 

evaluating photographs that ranked in the top 200 most popular 

images of all time on the site. This ensured that both the site 

curators as well as the site‘s community population both agreed 

upon all images of being the highest caliber and quality. As such, 

judgments made in this study‘s survey should not show effects 

from basic subjective quality measures. 

Evaluations of over 200 photographs were made and an initial 

filtering of images was based on subject matter and content of 

images. Images that were simply portraits, single subject, 

contained strong religious symbols, contained offensive images, 

contained adult content, or contained common phobias (i.e. 

snakes, spiders, etc.) were removed from the test set to further 

control for selection bias. The threshold for filtering was 

essentially determined to ensure composition was an influencer 

for photo selection rather than being completely outweighed by 

one of the common confounding variables. By filtering the 

dataset, a collection of approximately 120 photographs remained 

that were similar in quality, content, style, and popularity yet had 

compositional variability. 

2.3 Image Classification 
Although overlays and guides can be used to assist in 

manipulating photographs to fit a compositional pattern, detecting 

the use of a composition pattern is much more difficult: ―although 

general guidelines for photographic composition have been 

 

 

Figure 9: Screenshots of Image Classifier [Limawhisky 2010, 

Augusteijn 2010] 



established, there is no work to date for automatic determination 

of a picture‘s composition‖ [Savakis 2000]. As such, a custom 

classification tool had to be created to streamline and assist with 

the human judgment of photographs to determine if an underlying 

composition heuristic was present. Specifically, a tool was created 

that projected the four composition overlays (Figures 1, 3, 7, and 

8) of interest onto four repetitions of a photograph to allow a 

human judge to determine the best fit of composition. The tool 

allowed for the manipulation of the overlays to ensure accurate 

classification. For instance, the golden spiral overlay was rotated 

and translated in various directions to ensure that all variations of 

the golden spiral could be correctly detected. The tool also 

handled various image aspect ratios by scaling the composition 

overlays to correctly match the aspect ratio of the underlying 

image. In some instances, this could lead to distortion, but 

generally the scaling was minimal and distortion negligible 

ensuring a good wellness of fit. A sample of the classification 

tool‘s interface can be seen in Figure 9. 

The image classification process involved viewing each image 

with the composition overlays and determining which of five 

categories it best fit in: Lorenz, Rössler, Thirds, Golden Spiral, or 

No Good Fit. The classification program would appropriately 

rename and categorize each image based on the judgments made. 

Once the initial classification of all the photographs was made, the 

10 images that fit each classification most strongly were used for 

the final survey. This process was essentially a continual 

reiteration of the first classification pass but with successively 

stricter thresholds until only the 10 most fitting images in each 

composition category remained. The final test set consisted of 40 

images, 10 each of the four composition categories. 

2.4 Survey Configuration 
A web-based application was created to conduct the survey. This 

allowed for the convenience and flexibility of participants to take 

as much time as they needed, take as many iterations of the survey 

as they desired, and to expand the participant pool. The 

application was created in PHP and presented results using 

HTML/CSS to allow for the broadest support of participant access 

as possible. 

The web application presented a set of twenty pairs of 

photographs to participants, Figure 10. In each pairing, one 

photograph with a traditional composition style and one 

photograph with a chaotic composition style were presented. 

Users were asked to select the photograph in each pair they 

preferred based on aesthetics only, without knowing what the 

differentiating factor was. The paired photographs, their column 

position, and their ordering on the page were all randomized to 

ensure ordering effects were not present. The pairs of photographs 

were randomized to prevent effects of one image being clearly 

favored to an alternate photograph. By randomizing all pairings, 

the composition effects should become more prevalent and 

generally favorable images will have less of a statistical impact. 

After twenty pairings, the user could opt to submit their results at 

which point the data was saved and available for analysis. The 

participants were thanked for their participation but were not 

prevented from retaking the survey multiple times. 

2.5 Participants 
The participants involved in the study were initially a convenience 

sample of the students taking Spring 2010 Chaotic Dynamics 

course at the University of Colorado at Boulder. However, the 

participants were encouraged to use their social networks to 

recruit additional participants. As such, an ad-hoc social graph of 

participants was created. The major participant groups included 

 

Figure 10: Online Survey for Photo Judgment [Arment 2010, 

Rudomina 2010, Smart 2010, Strahinjic 2010] 

 

 

Figure 11: Timeline of Survey Submissions 

 



the course students themselves, previous students of the course 

over the past five years contacted through an email list, and social 

connections through those individuals. 

3. RESULTS 

3.1 Summary Statistics 
In total 122 survey sessions were taken with 2,353 pairs of 

photographs rated. Seven sessions only rated 19 pairings, one 

sessions only rated 17 pairings,  and 4 sessions had zero or one 

rating. The latter 4 sessions were likely participants that were 

simply attempting to see what the survey was about and what the 

application did but did not want to actually participate. Those 

ratings were removed from analysis as outliers for individual-

based statistics. 

The effects of the social networking and broadcasting of the 

survey seemed to have a dramatic effect as well. Not only was the 

total number of sessions much higher than the number of class 

members, but only 25% of survey sessions originated from the 

University of Colorado at Boulder campus network. This includes 

users taking the survey from the main campus, campus housing, 

or through the VPN network. 

The survey submissions over time were generally as one would 

expect as seen in Figure 11. The vast majority of users responded 

immediately after receiving a personal invitation or email as seen 

by the majority of submissions from Thursday near 3pm through 

Thursday evening and nearly all surveys coming in by Saturday 

evening. There were obvious drop-offs at night and in the early 

morning with resurgence occurring during the daytime. One 

particular gap exists between early Friday evening and late Friday 

evening. This could result from people returning home and taking 

the survey after being out on a Friday night or from users in 

different time zones completing the survey during daylight hours. 

For instance, several submissions originated from Japanese users. 

Very few submissions were received after Saturday evening and 

they were discarded as outliers due to pragmatic needs to process 

data. 

3.2 Chaotic versus Traditional Composition 
As shown in Table 1, the number of votes for chaotic 

compositions, 1186, is only slightly higher than that for traditional 

compositions, 1167. Using a two-tail χ2-test with α=0.05, we can 

calculate χ2=0.153 which is not statistically significant (χ2<0.001 

or χ2>5.024 needed for significance). The variation between the 

chaotic and traditional compositions is not greater than what we 

could account for based on chance and random choice. In other 

words, we cannot attribute user preferences to the photographs 

based solely on whether it used a chaotic or traditional 

composition approach. 

However, if we analyze the data based on the individual type of 

composition style in the same manner, two-tail χ2-test with 

α=0.05, we obtain χ2=16.484 which is statistically significant 

(χ2<0.216 or χ2>9.348 needed for significance). Thus, there does 

seem to be an effect where the composition type is affecting user 

preference. A quick look at Table 2 indicates that both the rule of 

thirds and the golden spiral are nearly exactly at chance rates. 

However, the Rössler composition style is higher than chance at 

28% and the Lorenz composition style is lower than chance at 

22%. An effect seems to be present that the Rössler composition 

is indeed preferred by users while the Lorenz composition is 

disliked by users. Since these are both chaotic-based 

compositions, their results cancel each other out at a high-level 

but differences do exist between them. This combining effect can 

be seen in Figure 12. Interestingly, both of the traditional, and 

most common compositions, are at chance rates. 

In both the former, collapsed, and the latter, independent cases, it 

is important to note that the proportions of choice are still closely 

related. This is important in that it signifies that none of the 

composition styles were particularly unviable as an alternative. 

Although the Lorenz composition was statistically chosen less 

than chance, it was still picked 22% of the time. In the big picture, 

this would still indicate a viable choice to use if one were 

determining how to compose a photograph. Although it does not 

do as well as the others, it is still a potential candidate for 

compositional use. The same is true of the other three composition 

styles. Although Rössler was chosen more often than the 

traditional compositions, they are all still quite competitive with 

each other. 

3.3 Individual Effects 
Although the previous analysis indicates the results of the survey 

across the population of participants, it does little to explain the 

effects of the individuals and the preferences each survey 

Table 1: Combined Votes by Chaotic or Traditional 

Composition 

Traditional  1167  49.6%  

Chaotic  1186  50.4%  

 

Table 2: Votes by Composition Style 

Thirds  590  25%  

Golden Spiral  577  25%  

Rössler  662  28%  

Lorenz  524  22%  

Total  2353  100%  

 

 

Figure 12: Combined Votes for Composition Styles 

 



participant had. 

At the individual level, one can determine whether a particular 

survey participant preferred chaotic compositions, traditional 

compositions, or had no preference. In doing so, one can calculate 

the results in Table 3 indicating the number of participants that 

chose chaotic compositions more often than traditional, vice 

versa, or at the same rate. With a two-tail χ2-test at α=0.05, we 

obtain χ2=3.746 which is not statistically significant (using 2 

degrees of freedom comparing only preferences for chaos and 

traditional compositions with no expectation of a lack of 

preference). However, one can observe a difference if a one-tail 

χ2-test with α=0.10 is used. There seems to be a difference that 

more individuals prefer chaotic compositions overall but the 

confidence is slightly lower. 

Looking at Table 4 one can notice very interesting result in 

individual preferences for composition types. The Rössler and 

rules of thirds compositions are quite dominate amongst 

individual preferences and is significant with a  two-tail χ2-test at 

α=0.05, obtaining χ2=17.797 (χ2<0.216 or χ2>9.348 needed for 

significance). Thus, more individuals seem to prefer the rule of 

thirds and the Rössler composition types than individuals that 

prefer the golden spiral or the Lorenz compositions. This can also 

be seen in Figures 13 and 14 relating the number of chaotic and 

traditional choices made to the number of individuals doing so. 

The chaotic composition histogram is slightly left-skewed while 

the traditional composition histogram is slightly right-skewed. 

3.4 Image Effects 
An analysis of the images that were chosen more often than others 

reveals a consistent, linear spread between the most popular 

images and the least popular. However, an analysis of the most 

winning and least winning images, Table 5, reveals trends 

previously exposed in the analysis. Amongst the top five most 

winning images, three are based on the Rössler and amongst the 

top five least winning images, three are based on Lorenz. The rule 

of thirds compositions are well spread throughout the list and the 

golden spiral images are generally centered about the middle. As a 

general descriptive rule, the Rössler compositions won the most, 

the Lorenz compositions won the least, the rule of thirds had the 

highest standard deviation, and the golden spiral the least. 

Table 3: Individual Preferences for Composition 

Individuals Preferring Chaos  54 46% 

Individuals Preferring Traditional 45 38% 

Individuals with No Preference 19 16% 

 

 

Table 4: Individual Preferences for Composition by Type 

Individuals Preferring Thirds 27  23%  

Individuals Preferring Golden Spiral  16  14%  

Individuals Preferring Rössler  35  30%  

Individuals Preferring Lorenz  12  10%  

 

 

Figure 13: Individual Preference for Chaotic Composition 

Histogram 

 

 

Figure 14: Individual Preference for Traditional Composition 

Histogram 

 

Table 5: Most Winning and Least Winning Images 

Picture Win Count Composition 

T_18606 80 Thirds 

R_14369 79 Rössler 

R_31933 78 Rössler 

R_32531 78 Rössler 

T_26147 77 Thirds 

… … … 

T_32134 39 Thirds 

L_32529 36 Lorenz 

L_31943 34 Lorenz 

T_14346 31 Thirds 

L_32522 25 Lorenz 
 



4. CONCLUSION AND FUTURE WORK 
This study evaluated the notion that visualizations of 

mathematical formula are often inherently beautiful and visually 

appealing. It was determined that although chaotic attractors as 

composition guides are not necessarily an improvement across the 

board when compared to traditional composition guides, they are 

not a step backwards either. When split apart between the rule of 

thirds, golden spiral, Lorenz, and Rössler compositions, the 

Rössler composition clearly performs better overall. Thus, a solid 

recommendation can be made that using the Rössler attractor as a 

composition guide can result in aesthetically pleasing 

photographs. This finding is particularly interesting because it 

conflicts with commonly taught practice. 

In general, the rule of thirds and the golden spiral are taught as 

successful alternatives to an inclination of new photographers to 

focus subjects in the center of a frame. Yet the Rössler 

composition guide is closely related to that behavior but with a 

focal point slightly off in one corner. Perhaps a successful 

learning technique could be to not only use the Rössler 

composition guide as a successful technique, but one that would 

take very little modification from early photographers‘ natural 

inclinations. As such, the Rössler composition style can be 

implemented as a great learning tool. 

Another explanation of the Rössler compositions possible success 

is the rise of online social networks and shared social media. The 

survey participants have been exposed to more amateur and peer 

photography than what has been historically possible and thus the 

―bulls-eye‖ pattern of composition may be more familiar to the 

participants. A future study could control for familiarity of 

amateur photography to enthusiast or professional photography to 

determine this effect. 

The success of the Rössler composition, and the non-failure of the 

Lorenz composition, suggest that there are likely many more 

opportunities for new composition guides. The focus on 

traditional compositions may be stifling creativity and the field of 

chaotic dynamics seems well posed to offer suggestions for new 

ideas and forms in composition techniques. One can even imagine 

situating objects based on the three-dimensional forms of chaotic 

dynamic formulas in three-dimensional space and then taking the 

two-dimensional photograph from that configuration. Thus, there 

seem to be many opportunities for both immediate pragmatic 

gains for photographers as well as future study for other 

improvements in aesthetic design and thought. 
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This paper investigates the stability of circular three-craft invariant shape Coulomb
formations, with the goal of investigating potential reconfigurations using hyperbolic
manifolds. The system is expressed in a novel rotating frame so that a circular invari-
ant shape solution corresponds to a single point in state space. After identifying a case
where multiple shapes exist for constant charge levels, a linearization of the equations
of motion are done about the equilibria. The eigenvalues of the linearized system are
used to perform a stability analysis for each of the invariant shapes. It is found that
one equilibrium exhibits marginally stable behavior while the other is a hyperbolic
point. The stable and unstable manifolds are examined for the hyperbolic equilib-
rium. For the case examined here a reconfiguration using hyperbolic manifolds is not
possible, but the results suggest that more studies are needed.

I. Introduction

CLOSE formation flying of spacecraft presents many exciting possibilities, with applications ranging from ad-
vanced weather monitoring to high resolution earth imaging and astronomy applications. The ability to concen-

trate a large number of scientific instruments within a group of satellites separated by tens of meters would be a major
step forward over the limited space provided by a single satellite. A further advantage of using a satellite formation
results from the fact that not all of the satellites need to be launched simultaneously. This means that an advanced
complex of scientific instrumentation could be pieced together gradually over time. Because the satellite formation
would not need to be connected by rigid structure, a large savings in mass would occur over a large complex like the
International Space Station. With the high cost of sending objects into orbit, any reduction in mass would result in a
significant reduction in cost. This would make space-based science missions more economical, allowing for a larger
number of studies to be conducted. One potential application where close formation flights would be particularly
useful is the field of interferometry. In fact, such formations have been proposed for the Terrestrial Planet Finder
Interferometer concept currently under study by NASA.1, 2

Many instruments used to conduct space based research can be very sensitive to interference caused by free floating
particles. When considering close formation flight of a small cluster of satellites, this can be a very serious problem if
traditional propellant-type thrusters are used to maintain the formation. In such close proximity, it is almost guaranteed
that the propellant mass ejected by a thruster on one satellite will come into contact with other satellites and possibly
interfere with the delicate instrumentation onboard. One way to circumvent this problem is to use electrostatic forces
to control the formation.3, 4 By charging individual spacecraft, attractive and repulsive forces are created which can
be used to control a close formation at distances up to tens of meters. This method of propulsion essentially requires
no propellant, meaning there will be no ejected particles to interfere with other craft in the formation. Furthermore, it
is also very efficient, requiring power levels on the order of Watts.5 Such a propulsion method would require active
charge control, which has already been demonstrated on the SCATHA and ATS missions.6, 7, 8

For the current study, we consider three-craft collinear invariant shape Coulomb formations in deep space.9 Plasma
effects will be ignored, as large Debye lengths are assumed. Furthermore, only electrostatic forces will be considered,
as external forces (gravity, solar radiation pressure, etc.) are assumed to be nonexistent. The charge levels on the three
craft will be set at constant, but not necessarily equal, values. With such a configuration, it has been hypothesized

∗Graduate Student, University of Colorado
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that a situation may exist where two invariant shape solutions are possible for the same charge levels.9 The goal of
the current study is to confirm that this hypothesis is valid, and study the stability of the resulting invariant shape
solutions. For a case where two invariant shapes result for the same charge levels, we would like to ascertain whether
or not a reconfiguration might be possible using hyperbolic manifolds in state space. That is, can we slightly perturb
one invariant shape such that the natural dynamics of the system will cause a reconfiguration into another? Such a
reconfiguration would be beneficial, as it would require minimal energy input. From a mission design standpoint, the
two invariant shapes could be used to perform different tasks. Transferring between the two on a manifold would be
inexpensive compared to more direct methods, and could extend the life of the formation.

II. Background
A. Hamiltonian Treatment

When considering the intercraft forces between charged craft, it is appropriate to treat the craft as point charges
for a reasonable approximation.10 Using this assumption, a Coulomb formation may be treated as a conservative
Hamiltonian system, so long as the charge levels on the craft are held constant. In the collinear invariant shape
formation, the charge levels on the craft are maintained at a constant level. To determine the Hamiltonian form for the
formation, expressions for the potential and kinetic energy are needed. If we define the generalized momentum term,
~pi, as

~pi = mi~̇ri,

where mi is the mass of craft i, the total formation kinetic energy can be expressed as

T =
3∑
1

~pi · ~pi

2mi
. (1)

Noting that the potential energy between two craft is10

V = kc
c1c2
r
,

where kc is the Coulomb constant, c1 and c2 are the charges on craft 1 and 2, and r is the distance between the craft,
the total system potential energy can be expressed as

V = kc

(
c1c2
r12

+
c1c3
r13

+
c2c3
r23

)
. (2)

With both of these quantities defined, the system Hamiltonian is expressed as

H = T + V. (3)

To determine the system dynamics, we define the position of each spacecraft to be the generalized coordinates, ~qi.
Pairing the conjugate momenta, ~pi, with their corresponding ~qi, the system dynamics are determined by

~̇pi = −∂H
∂~qi

~̇qi = −∂H
∂~pi

.

For any craft i in the formation, the Hamiltonian equations lead to

mi~̈ri =
3∑

j=1,j 6=i

kc
c1c2
r2ji

êji, (4)

where êji is the unit vector from craft j to craft i. This form is identical to the system dynamics when non-constant
charges are present. The difference is that in such a case energy will no longer be conserved, which is due to the fact
that power is required to change the charge levels on the craft.
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B. Invariant Shape Formation
Hussein et. al9 lays the groundwork for determining invariant shape Coulomb formations. It is important to

recognize that invariant shape does not mean fixed shape. That is, the formation geometry at some time ti does not
necessarily have to match that at some other time, tj . To better define the meaning of invariant shape, consider a
collinear configuration of craft, as shown in Fig. 1. If we define a parameter, χ, as

χ =
r23
r21

, (5)

then an invariant shape formation is one where χ is constant for all time. The individual separation distances can
change with time, so long as the ratio of one to the other remains unchanged. It is apparent that due to separation
distances being positive quantities, χ will be positive. In a collinear invariant shape formation, the craft will orbit
about the formation center of mass on Keplerian trajectories. The trajectories may be circular, elliptic, parabolic, or
hyperbolic. These trajectories will evolve such that the craft are collinear for all time.

m1, q1 m2, q2 m3, q3

r12 r23

Figure 1: Collinear invariant shape Coulomb formation

In order to maintain this collinear invariant shape, the craft must be charged appropriately depending on the value
of χ. Given a set of charges, the appropriate value of χ can be determined by satisfying the quintic equation9

0 = − w2w3 (m2 +m3)− w2w3 (2m2 + 3m3)χ+ [w1m1 (w2 − w3)− w2w3 (m2 + 3m3)]χ2

+ [w1w2(3m1 +m2) + w3m3(w1 − w2)]χ3 + w1w2(3m1 + 2m2)χ4 + w1w2(m1 +m2)χ5,

where wi = ci/mi. Considering only the case where all three craft are of equal mass, the above quintic equation can
be reduced to the form

0 = −2− 5χ+ (δ − σ − 4)χ2 + (4δ + σ − 1)χ3 + 5δχ4 + 2δχ5, (6)

where δ = c1/c3 and σ = c1/c2. It is apparent that the coefficients in Eq. 6 are dependent only on the craft charges.
Depending on the values of these charges, it may be possible to find multiple positive χ values which satisfy the
equation. Indeed, this was predicted by Hussein et. al,9 though no particular cases were found. It turns out, however,
that a multitude of cases do in fact exist where two χ values satisfy Eq. 6 for a given δ and σ. Consider, for example,
setting δ = −0.05 and σ = 7. Solving for the roots of Eq. 6 yields two positive values: χ = 3.2508, 4.3283. This is
but one example out of many that will yield such a result.

Having identified that multiple invariant shape solutions exist for a constant set of charges, we would like to
know if a reconfiguration may be possible using hyperbolic manifolds that connect one invariant shape to another.
In essence, we are looking for a heteroclinic orbit to connect one invariant shape solution to another. Typically, the
Coulomb formation dynamics are expressed in an inertial frame with the center of mass at the origin. The problem
with such a configuration is that the only true “equilibrium” parameter which remains constant for an invariant shape
is χ. That is, if you put the system in an invariant shape configuration, χ will remain constant for all time but the state
variables (~r1, ~̇r1, ..., ~̇r3) will be time varying. This makes performing a standard linearization about an invariant shape
equilibrium impossible. What is needed is a way to express the system dynamics in a manner such that an invariant
shape solution corresponds to a single point in state space. The solution to this problem is obtained by expressing the
dynamics in a rotating coordinate frame.

III. 3-Body Dynamics
A. Rotating Coordinate Frame

To determine the stability of the equilibria of the collinear invariant shape Coulomb formation, we will derive the
system dynamics in a rotating coordinate frame, B, defined by the orthogonal unit vectors

B :
{
b̂1, b̂2, b̂3

}
.
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The B frame is aligned such that craft 1 is confined to the b̂1 axis for all time, while craft 2 and 3 are free to move
about in the b̂1 - b̂2 plane. The origin of the B frame is aligned with the center of mass of the formation, and the
frame rotates about this point as craft 1 moves around the center of mass. This configuration is depicted in Figure 2.
The angular velocity of the B frame relative to the inertial frame, N , is expressed as

ωB/N = θ̇b̂3.

The kinematic equations for craft 1 in B frame components are

~r1 = x1b̂1 (7)
~̇r1 = ẋ1b̂1 + θ̇x1b̂2 (8)
~̈r1 = (ẍ1 − x1θ̇

2)b̂1 + (x1θ̈ + 2θ̇ẋ1)b̂2. (9)

The kinematic equations for craft two and three in B frame components are

~ri = xib̂1 + yib̂2 (10)
~̇ri = (ẋi − yiθ̇)b̂1 + (ẏi + xiθ̇)b̂2 (11)

~̈ri = (ẍi − xiθ̇
2 − yiθ̈ − 2ẏiθ̇)b̂1 + (ÿi − yiθ̇

2 + xiθ̈ + 2θ̇ẋi)b̂2. (12)

2

3

1
b̂1

b̂2

�r1

�r2

�r3

θ̇

Figure 2: The rotating B frame.

Returning to Eq. 4, the equation describing the dynamics of a craft in the formation, we can determine the state
equations in the B frame. Beginning with craft 1, we obtain

ẍ1 =
kcc1
m1

(
c2
x1 − x2

r312
+ c3

x1 − x3

r313

)
+ x1θ̇

2 (13)

θ̈ = − kcc1
m1x1

(
c2
y2
r312

+ c3
y3
r313

)
+

2θ̇ẋ1

x1
. (14)

Applying Eq. 4 to craft 2 and 3, we obtain

ẍ2 =
kcc2
m2

(
c1
x2 − x1

r312
+ c3

x2 − x3

r323

)
+ x2θ̇

2 + y2θ̈ + 2ẏ2θ̇ (15)

ÿ2 =
kcc2
m2

(
c1
y2
r312

+ c3
y2 − y3
r323

)
+ y2θ̇

2 − x2θ̈ − 2ẋ2θ̇ (16)

ẍ3 =
kcc3
m3

(
c1
x3 − x1

r313
+ c2

x3 − x2

r323

)
+ x3θ̇

2 + y3θ̈ + 2ẏ3θ̇ (17)

ÿ3 =
kcc3
m3

(
c1
y3
r313

+ c2
y3 − y2
r323

)
+ y3θ̇

2 − x3θ̈ − 2ẋ3θ̇. (18)
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Contained in Eqs. 13- 18, then, are the dynamics of the Coulomb formation expressed in the B frame. Note that
these equations imply an 11-dimensional state space, described by the state variables

~X =
[
x1, ẋ1, x2, ẋ2, y2, ẏ2, x3, ẋ3, y3, ẏ3, θ̇

]
.

The advantage of using the B frame is that a particular class of invariant shape solutions correspond to a single point
in state space. If we consider only the case where the craft orbit about the formation center of mass on circular

trajectories, the invariant shape satisfies a dynamic equilibrium such that ~̇X = ~0. In order for this to be true, ẋ1 =
ẋ2 = ẋ3 = ẏ2 = ẏ3 = 0. Furthermore, all craft must lie on the b̂1 axis so that y2 = y3 = 0. To maintain the
equilibrium, the craft must be positioned at finite xi values such that the centripetal forces acting along the b̂1 axis
precisely balance with the Coulomb forces acting on the craft. When this happens, θ̇ will be constant and the craft will
maintain a circular invariant shape. The state variables all take on constant values, corresponding to a single point in
state space. Thus, we have derived the dynamics in such a way that we can use linearization to analyze the stability of
a circular invariant shape solution.

B. System Constraints
As noted above, Eqs. 13-18 imply an 11-dimensional state space. There are a few important constraints, however,

which can be used to reduce this state space dimension. First, consider the fact that the Coulomb forces are internal to
the system. That is, the force from craft i on craft j is exactly equal and opposite of the force from craft j on craft i.
If these electrostatic forces are the only forces acting on or within the system, the center of mass is inertial due to the
fact that

M ~̈Rc =
∑

~Fext = 0.

As a result, we can always establish initial conditions which will maintain the center of mass at the origin of B for all
time. Doing this yields four constraint equations for the system,

0 = m1~r1 +m2~r2 +m3~r3 (19)
0 = m1~̇r1 +m2~̇r2 +m3~̇r3. (20)

This means that at any point in time, if we know the positions and velocities of craft 1 and 2, we can compute the
position and velocity of craft 3. This is significant because it allows for a reduction in state space to exclude x3, ẋ3, y3
and ẏ3.

Similarly, we can reduce the state space even further by considering angular momentum. Recalling that when
only Coulomb forces are acting within a formation no external forces or torques are present, we can conclude that the
formation angular momentum is constant because

~̇H = ~L = 0.

Note that due to all craft motion being contained in the b̂1 − b̂2 plane, the angular momentum will always be aligned
with the b̂3 axis. If we denote the initial angular momentum as ~H0, it naturally follows that at any time, t,

~H0 =
3∑

i=1

~ri(t)×mi~̇ri(t) (21)

By expressing ~ri and ~̇ri in B frame components, we can explicitly solve for the angular rate θ̇ at any point in time
knowing the initial angular momentum. Contained in Eqs. 19-21, then, are five constraints which can be used to reduce
the state space from eleven dimensions to six. The reduced state space can thus be described by the state variables

~X∗ = [x1, ẋ1, x2, ẋ2, y2, ẏ2] .

C. Equation Linearization
To determine stability properties of a circular invariant shape solution, a linearization of Eqs. 13-16 is done about

a dynamic equilibrium, ~X∗e . Using a first order Taylor series approximation, the linearized dynamics are expressed as

~̇X∗ =

[
∂ ~̇X∗

∂ ~X∗

]
~X∗

e

δ ~X∗, (22)
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where δ is used to signify small perturbations about the equilibrium point. The Jacobian matrix
[

∂ ~̇X∗

∂ ~X∗

]
is evaluated at

the equilibrium point, ~X∗e , and the eigenvalues of this matrix are computed. These eigenvalues yield insight into the
stability properties of the invariant shape solution. Should it be found that an invariant shape solution is a saddle point,
the eigenvectors of the Jacobian matrix can be used to slightly perturb the initial conditions to examine the behavior
of the stable and unstable manifolds. Seeing how these manifolds evolve with time will yield insight into whether or
not it is possible to connect two invariant shape solutions using the natural dynamics of the system.

IV. Analysis of a Multiple Invariant Shape Case
Returning again to the example case mentioned above, with δ = −0.05 and σ = 7, an analysis will be performed to

determine whether or not a reconfiguration is possible using connecting manifolds. To determine the charge levels for
each craft, c1 is arbitrarily set at 10µC, and the other two charges are computed using δ and σ. Recall that two invariant
shape solutions were obtained using Eq. 6: χ = 3.2508, 4.3283. In order to examine the stability of these invariant
shape solutions, we first need to determine the equilibrium point in state space, which requires initial conditions. The
invariant shape solution places no requirement on the actual separation distances; it only requires that the ratio remain
constant for all time. Thus, we are free to choose one of the separation distances. In this case, we will choose the
distance between craft 1 and 2, denoted as x12. As described above, a circular invariant shape solution confines all craft
to the b̂1 axis, with zero initial velocity. We only need to find the x coordinates for each craft, and the angular rotation
of the B frame that will yield a dynamic equilibrium. Consider arbitrarily placing craft 1 at the origin (0,0) in the B
frame. Note that for this development, we have not yet aligned the origin with the formation center of mass. With craft
1 as the rightmost craft in the formation, craft 2 and 3 would be located at ~r2 = −x12b̂1 and ~r3 = −(1 + χ)x12b̂1.
Using the positions of the three craft, the center of mass of the formation is computed as

~Rc = −x12(2 + χ)
3

b̂1. (23)

To enforce the requirement that the origin of B be aligned with the center of mass, we compute the compliant craft
locations using

~r1 = −~Rc

~r2 = −x12b̂1 − ~Rc

~r3 = −(1 + χ)x12b̂1 − ~Rc.

Thus, given a desired separation distance, x12, we can immediately determine the equilibrium location of the craft in
the B frame as

~r1 =
(2 + χ)x12

3
b̂1 (24)

~r2 =
(χ− 1)x12

3
b̂1 (25)

~r3 = − (1 + 2χ)x12

3
b̂1. (26)

To determine the angular rate, θ̇, of the formation we introduce an alternate form of the dynamics derived by Hussein
et. al.9 The equations of motion for a single craft in an invariant shape formation can be expressed as

r̈i = −µi

r3i
~ri. (27)

Using this form, the angular rate of a circular invariant shape formation can be determined by

θ̇ =
√
µi

r3i
. (28)

For the case where all craft are of mass m, the parameter µ is determined for craft 1 as

µ1 = − (2 + χ)2kcc1
9m

[
c2 +

c3
(1 + χ)2

]
. (29)
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We can then combine Eqs. 28 and 29 to determine the necessary value of θ̇ to maintain an invariant shape formation.
Recall that while θ̇ does not appear explicitly in the state variables, it is necessary in order to determine the initial
angular momentum of the system. This angular momentum value will be constant for all time. This introduces an
important requirement when establishing initial conditions for the invariant shape solutions. It is mandatory that both
invariant shape equilibria be configured such that they have the same angular momenta. If they do not, they are
different dynamical systems occupying an entirely different state space. It would be impossible for the invariant shape
solutions to connect along manifolds. To ensure this constraint is met, the initial conditions are set for one invariant
shape formation. The angular momentum resulting from this configuration is used to determine the initial conditions
for the other invariant shape solution. For a circular invariant shape solution, the angular momentum of the formation
is

~H = mθ̇
(
r21 + r22 + r23

)
b̂3. (30)

In order to determine the necessary initial conditions, Newton-Raphson iteration can be used on Eq. 30 to find the
appropriate value for x12 that will yield the required momentum.

Using the above procedure, the equilibrium conditions were determined for the two invariant shape solutions
under consideration. The results are summarized in Table 1. Only the six state variables and the angular momenta
are presented, to correspond with the reduced state space. The position and velocity of craft 3 can be computed using
the center of mass constraint. Likewise, θ̇ can be computed using the angular momentum. Having determined the
state-space equilibrium point, we can proceed to a stability analysis using the linearized equations of motion.

χ x1 ẋ1 x2 ẋ2 y2 ẏ2 H0

(m) (m/s) (m) (m/s) (m) (m/s) (kg m2/s)

3.2508 44.616 0 19.125 0 0 0 350.972

4.3283 42.188 0 22.188 0 0 0 350.972

Table 1: Equilibrium conditions for circular invariant shapes

Considering first the case where χ = 3.2508, the Jacobian matrix in Eq. 22 is computed using the parameter values
outlined in Table 1. The resulting six eigenvalues of this matrix, presented in Table 2 , consist of three complex conju-
gate pairs with 0 real parts. This implies that small perturbations will cause the craft to oscillate about the equilibrium
configuration. Indeed, this behavior is observed when the system is perturbed slightly from the equilibrium, as seen in
Fig. 3. Unfortunately, the results of this linearization do not necessarily yield a true picture of the stability of the invari-
ant shape. While it appears to be marginally stable, it is entirely possible that nonlinear terms in the dynamics could
cause the perturbation to grow slowly with time, ultimately resulting in instability and large scale divergence from the
invariant shape equilibrium. It is clear, however, that this particular configuration is not a saddle point with stable and
unstable manifolds. Thus, we cannot exploit a manifold to potentially reconfigure the craft to another equilibrium.

χ Eigenvalues

3.2508 ± 7.687i×10−4, ± 5.467i×10−4, ± 2.966i×10−4

4.3283 ± 9.747i×10−4, ± 5.470i×10−4, ± 0.3284

Table 2: Eigenvalues of Jacobian matrices for the invariant shape solutions

Considering next the case where χ = 4.3283, the Jacobian matrix is re-calculated with the parameter values in
Table 1. The six eigenvalues of this matrix, shown in Table 2, consist of two complex conjugate pairs with zero
real parts, and two real numbers, one positive and one negative. The appearance of the real number eigenvalues
means that this invariant shape solution is a saddle point. Small perturbations will deviate from the equilibrium due
to the instability. In this case, unlike before, stable and unstable manifolds do exist. While there is little hope of
a reconfiguration using these manifolds, it is still of interest to examine what they look like. The stable manifold
was computed by slightly perturbing the system along this manifold and integrating backwards in time. Likewise,
the system was also perturbed slightly along the stable manifold and integrated forward in time. The resulting craft
trajectories in the orbit plane are presented in Fig. 4. Interestingly, it appears that the two manifolds are almost mirror
images of each other, reflected across the b̂1 axis. The main difference is the speed of the craft. The craft on the
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unstable manifold travel much farther in the same amount of time as those on the stable manifold. This results in more
oscillations for the craft on the unstable manifold than those on the stable manifold. It is clear, however, that the stable
manifold does not originate at another invariant shape solution, and the unstable manifold does not connect to another
invariant shape solution.
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Figure 3: Time evolution of a) x and b) y coordinates after a small perturbation for the χ = 3.2508 circular
invariant shape.
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Figure 4: Craft trajectories on a) stable and b) unstable manifolds for the χ = 4.3282 invariant shape.

V. Conclusion
We have examined a case where multiple invariant shape solutions exist for a constant set of charges. Using the

rotating B frame, the circular invariant shape solution is reduced to a single point in a six dimensional state space. The
two different equilibria are found to have different stability properties. For the χ = 3.2508 shape, we see marginally
stable-like behavior. Small perturbations tend cause oscillations about the equilibrium state. It is unclear, however,
whether or not these oscillations will grow into instability if given enough time. On the other hand, the χ = 4.3283
shape is found to be a saddle point equilibrium. The unstable and stable manifolds of this invariant shape appear to
originate very far from the center of mass of the formation. While a reconfiguration along a hyperbolic manifold is
the goal of the stability analysis, it is not possible for this case. The conclusion we can draw, however, is that different
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invariant shape solutions can have different stability properties. This is an important result, as it implies we may find
a case where two invariant shape solutions for the same system could both be hyperbolic points with a connecting
heteroclinic orbit in state-space. Thus far, the results have been inconclusive regarding such a reconfiguration, but it
is hypothesized that such a case does exist. What remains to be done is a large search of the invariant shape solution
space in an attempt to find a case with multiple hyperbolic equilibria. The development outlined here has provided the
necessary tools for analyzing the stability of invariant shape solutions and will be useful in further studies.
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1 Introduction
One of the problems of interest to biologists is to determine patterns in genetic sequences that have no current
explanation [Ber]. In fact experimental observation pertaining to the presence of excess oligonucleotides of some
type over the expected number for random sequences can be taken as evidence for this functional significance
[Sol] and hence reveal dependencies between bases that form the skeleton of any nucleic acid. Knowledge of
these dependencies may be extremely useful while constructing probabilistic bounds for occurrence of a family
of motifs in a gene sequence [SL]. In this paper, we employ a variant of the chaos game representation algorithm
first coined by Barnsley [Bar] to graphically represent a typical random gene sequence. Analysis of this fractal
representation enables us to answer questions like: (1) What is the probability of occurrence of a motif with a par-
ticular type of trailing subsequence, in a random sequence of fixed length ? (2) What is the conditional probability
of finding a particular base given the occurrence of a certain subsequence ? In this paper, we also propose a new
fractal characterization of another object of interest to probabilists , labelled Ψn, which denotes the number of
times a rare motif may occur in a random sequence of given length, n. In spirit, this is equivalent to what is known
as the occupancy problem in Markov process where mathematicians are concerned about the type of distribution
of Ψn [Erh]. For biologists, a mathematical characterization of Ψn provides information about chances of random
occurrence of mutants.

The rest of the paper is organized as follows. Section(2) introduces the chaos game algorithm and the variant
employed for representing genetic sequence. In section(2.1) we provide some experimental results (plots) of this
algorithm when applied to real gene sequences. In section (2.2), we propose how information may be extracted
from these pictorial representations and quantified in terms of probability of occurrences of a certain class of events
(subsequences). In section (3.1), we state some relevant definitions and theorems which we use to characterize
Ψn in section (3.2). Finally, in section (4) we conclude with a brief summary and scope for future work.

2 The chaos game (CG) algorithm
In figure(1) we see the structure of a typical double stranded DNA. In most traditional approaches, like the one
in [Ken], the occurrence of the nucleotide bases is assumed to be independent, i.e. Pr(Xi = g|Xi−1 = c) =
Pr(Xi = g) = pg and so on. Here, Xi denotes a random variable at the ith instant of the random sequence of
length, n; Xi may be either one of a, c, g or t. However, this assumption about independence is far from the truth,
as we will see shortly.

The chaos game is an algorithm which enables one to produce fractal structures in an iterative manner. For-
mally, it belongs to the more general class of linear iterative function system. The basic steps of the algorithm are
as follows [Jef]:

• Locate three initial points in a plane such that they are not collinear.

• Label one of the vertices with the numerals 1 and 2, the second vertex with the numerals 3 and 4, and the
third vertex with the numerals 5 and 6.

• Pick a random initial starting point in the plane.

• Roll a six-sided die, the number rolled on the die picks out the corresponding vertex of the triangle.

• Place a mark halfway between the current point and the indicated vertex.

• Continue the above procedure.

1
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Figure 1: A typical double stranded DNA sequence.

The algorithm produces the well known Sierpinski triangle with 3 initial points; however with 5,6 or 7 initial
points, the chaos game code produces a pentagon within a pentagon, a hexagon within a hexagon, a heptagon
within a heptagon respectively. The case with 4 initial points is quite different though. In fact with 4 initial points,
the space (square) gets filled up uniformly and randomly with dots. Thus we see that the patterns produced depend
heavily on the initial number of vertices, hence the name chaos game.

It may be important to note that the picture produced by the chaos game is known as the attractor. A more
formal treatment of the chaos game in terms of iterated function systems may be found in [Edg] but has been
omitted from discussion in this paper.

In this paper, we employ the chaos game algorithm with some modification to reveal certain patterns in genetic
sequences. We refer to figure(2). We start by assigning the tags corresponding to each of the bases in a DNA
sequence (i.e. a, c, g and t) to the four vertex of a square. We take the center of the square as the starting point
of our algorithm and read the genetic sequence character by character, each time placing a dot half way between
the current point and the vertex corresponding to the character being read out from the sequence and continue the
process until we have read the entire sequence. A few initial instances of this algorithm is shown in figure(2).

Figure 2: modified chaos game algorithm

2
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2.1 CGR on experimental sequences
If the sequence being read were to be truly random with independent occurrence of the nucleotide base, we would
expect absence of any interesting pattern(s). To ascertain our claim, we generated a random sequence comprised
of characters from the alphabet, A = {a, c, g, t} by using Matlab’s pseudo random generator, randi() and
obtained the picture shown in figure(3). Clearly, we see that the space within the square was uniformly and
randomly filled with dots, thereby implying the lack of any inherent dependencies in the occurrence of the bases.

Figure 3: Chaos game representation of a truly random sequence.

Now, we use the gene database from the National Center for Biotechnology Information to test the CGR code
on some real gene sequences. The results are shown in the figures in this section. A few interesting features of

Figure 4: CGR of mitochondrial RNA sequence from Atlantic Hagfish.

the above representation produced by the CG algorithm are noted as below.

• neighboring points on the CGR are not close by in the actual sequence.

• subsequences ending with a common trailing sequence are mapped to their respective sub-quadrant as
shown in figure(6).

• evidence of fractal nature of the plots imply presence of dependence in occurrence of the bases.

• figure(6) reveals regions of sparsity, for eg. the cg sub-quadrant; this implies that the likelihood of a g
occurring after an occurrence of c is less likely in comparative terms. Similar arguments may be made for
other subsequences.

• The features/patterns observed in the human DNA have also been found in the DNA sequences of vertebrates
and those of certain viruses like HIV.

3
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Figure 5: CGR of mitochondrial RNA sequence from Homo Sapiens Neanderthalensis.

Figure 6: CGR of human DNA extracted from clone cell.

2.2 Probabilistic assertions about the occurrence of motifs
While [Jef] did report similar results, he relied on visual characterization of the patterns found in CGRs. In fact
it was noted by [Jef] that a more mathematical and measure theoretic approach would be an extremely useful
direction of future research. In the light of the above statement by [Jef], we make a novel attempt in that direction.
It may be useful to note that the following information may be quantified using the CGR,

• Pr(occurrence of a subsequence) = no. of dots in the corresponding sub−quadrant
total no. of dots in the plane

• In a Markov chain model of the genetic sequence, i.e. if {Xi}i≥0 is a Markov process with finite state space
{a, c, g, t}, the joint distribution of the chain (as an example) is computed as follows [Fu]:

Pr(Xn = g,Xn−1 = c, ...,X1 = g,X0 = t) = Pr(Xn = g|Xn−1 = c)...P r(X1 = g|X0 = t)Pr(X0 = t)

Clearly, the terms in the right hand side can be easily derived from the CGR of the sequence, for eg.
Pr(Xn = g|Xn−1 = c) = no. of dots in the cg sub−quadrant

no. of dots in the c sub−quadrant . The above is with respect to a first
order Markov model. For higher order Markov models, it should be clear that the above arguments can be
extended by looking at subsequence lengths of 3 or more and their respective sub-quadrants.

• One interesting aspect of the CGR pointed out earlier is the fact that points close in the sense of the Euclidean
norm in the CGR plane may be far apart in the sequence space. An alternative measure in the CGR space
may be to use the Hausdorff measure. In this regard, it may be useful to point out the strong similarities
between the CGR of the RNA sequence from the Atlantic Hagfish and the Sierpinski gasket; and therefore
we can estimate the Hausdorff dimension of the CGR of the RNA from the Hagfish to be about log 3

log 2 = 1.58
which is numerically verified by using the box-counting algorithm from problem set 10. [Jia] also provide
tight bounds on the estimates of the Hausdorff measure of such fractal sets.

4
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3 Fractal characterization of Ψn

Recall that Ψn denotes the number of times a particular type of rare motif may occur in a random sequence
of length, n. The cumulative distribution of Ψn defined here as Pr(

∑
m≥0 Ψ(m)

n ≤ c) is of immense interest
to probabilists; however the nature of the rare events does not enable one to compute this explicitly and hence
many like [Erh] have proposed approximate distributions with error bounds. Here, we propose a novel fractal
characterization of Ψn in terms of a set whose elements are described based on

∑
m≥0 Ψ(m)

n ≤ c in some limiting
sense stated shortly below. Such results have recently been of much interest in the context of random walks.

3.1 Fractal geometry in a probability space, (Ω,F , µ)[DT]
Definition: A subset A ⊂ Ω is said to be a fractal with respect to a measure (probability measure) µ over Ω if
µ(A) = 0 and dimµ(A) = Dimµ(A) = constant. Here, dim(.) is the Hausdorff dimension and Dim(.) is the
packing dimension as described in [DT]

Clearly, our knowledge about the Cantor set being a fractal satisfies this definition because the lebesgue mea-
sure, λ(A) = 0 and dimλ(A) = Dimλ(A) = log 2

log 3 . It may also be useful to recall the equivalence of the lebesgue
measure over the unit real line and the probability measure over Ω [Qu].

In the same spirit, we state the following theorem.

Theorem [Bill][DT]: For ω ∈ Ω, let un(ω) = {ω0 : Xi(ω0) = Xi(ω); i = 1, 2, ..., n} and let A = {ω :
Xk(ω) = ak; k = 1, ..., n} ⊂ Ω s.t. µ(A) = 0 for some n, then ∃ν(A) = p(a1, ..., an) s.t. ν(un(ω)) ≤
µ(un(ω))c ∀ω ∈ Ω and c > 0 constant.
Also, for some M0 ⊂ {ω : limn→∞

log ν(un(ω))
log µ(un(ω)) = c}, if ν(M0) > 0; then M0 is a fractal and dimµ(M0) =

Dimµ(M0) = c.

3.2 Characterization of Ψn

Let Zi denote a finite length querry subsequence (or motif) and S0 be the rarely occurring target motif of the same
length. Ψn :=

∑
i≥1[Zi ∈ S0] ≡

∑
i≥1 Ii; where Ii has success probability ps0 . Here, [.] refers to the indicator

function.

The strong law of large numbers implies 1
m

∑
m≥1 Ψ(m)

n → nps0 as m → ∞, n fixed. Next we define,

A := {ω : 1
m

∑
m≥1 Ψ(m)

n (ω) 9 nps0} and Bc := {ω : limm→∞
1
m

∑
m≥1 Ψ(m)

n (ω) ≤ c ∈ [0, nps0)}.
Clearly, Bc ⊂ A;Pr(Bc) = Pr(A) = 0. Hence, using the theorem above we have a new measure ν s.t.
ν(Bc) > 0, dimµ(Bc) = f(c) and Bc is a fractal.

It must be pointed out here that while the theorem above is only an existence statement of the new measure
ν, no general construction of such a measure has been reported in the literature; however some example specific
constructions have been proposed for ν by [Bill].

4 Conclusion
In this paper, we have presented a fractal representation of genetic sequence via the modified CGR algorithm
and have thereby shown the inherent dependencies amongst the nucleotide bases. We have made an attempt to
extend the visual features of the CGR to more probabilistic and measure theoretic assertions about the same.
We have also proposed a novel fractal based characterization of Ψn which was defined as the number of times
a rare motif may be seen in a random gene sequence. Future work may include extending this characterization
and establishing a stronger mathematical relation between the fractal characterization and the recent works on
approximating probability distribution for Ψn. A comparative study of the CGR based representation of genes
and other graphical representations of genes may also be very interesting.
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Spatiotemporal Chaos:
Effect of Spatial Smoothing on Bifurcations in a Discrete-Time Chaotic Map

Chaotic Dynamics

Per Sebastian Skardal
(Dated: Due April 30)

I. INTRODUCTION

Many problems that arise in either physics, chemistry, or biology are spatiotemporal in nature. That is they evolve
according to both spatial and dynamic effects. In general spatiotemporal dynamics problems are difficult to solve and
there is little general theory about the behavior of solutions. This paper will explore the spatiotemporal dynamics
of a system inspired by previous and current research with my advisor Professor Juan G. Restrepo. The system will
be a set of integrodifference equations that is applicable to cardiac dynamics. The system is discrete in time and
continuous in space.

Because the system is discrete in time several quantities are analytically solvable. This will both ease some of the
reliance on numerical simulation and yield some analytical results. The model is biologically relevent in a certain
parameter range that does not induce chaotic behavior, but I will explore more extreme parameter choices that do.
The goals of this paper are mathematical rather than biological. I will not connect results back to biology, but rather
explore spatiotemporal dynamics in a more complicated regime for a more academic purpose.

A. Other work in spatiotemporal dynamics

The two most generic ways to add spatial dependence to a dynamical system utilize either spatial derivatives or
spatial integrals. Thus, coupling these with either differential or difference equations (in time) can lead to many
possibilities in modelling spatiotemporal behavior. Coupling spatial derivatives with time derivatives yields systems
of partial differential equations, which are for instance applicable to some reaction-diffusion systems1 and fluid flow
problems. Coupling spatial integrals with time derivatives yields systems of integro-differential equations, which can
model populations of coupled oscillators2–4. Both spatial derivatives and integrals can be coupled with discrete-time
maps as well, which can model cardiac behavior5.

The case in which spatial integrals are combined with discrete-time maps remain a less popular choice to model
phenomena. However, some interesting examples exist. In 1986 Kot and Schaffer6 studied a handful of integrodiffer-
ence equations used to model the dispersal of organisms in ecology. As is usually the case in biological models, several
simplifying assumptions were made, for instance the homogeneity of the environment. The main goal of the paper,
however, was to spark interest in specifically integro-difference equations.

In 1998 Venkataramani and Ott7 used integrodifference equations to explore temporal period doubling in a spa-
tiotemporal system. Specifically the application was in the pattern formation in vibrated sand. Their system consisted
of a discrete-time map that was then analyzed in the Fourier domain.

B. Inspiration: cardiac dynamics

The system in this paper is one that models the behavior of cardiac alternans. In heart tissue the two most important
quantities are the trans-membrane voltage V and the intracellular calcium concentration [Ca2+]i. A normal, healthy
heart displays perfectly periodic signals (with periodicity one) for both the voltage and calcium concentration. That
is, if T is the period of stimulation, then V (t) = V (t + T ) and [Ca2+]i(t) = [Ca2+]i(t + T ) for any time t. If the
voltage and calcium signals lose this periodicity, however, several kinds of cardiac arrhythmia can occur.

Cardiac alternans is defined as an alternating pattern of the voltage and calcium signals in which the signals become
period two. The easiest way to visualize this transition is through the action potential duration (APD) and peak
calcium (Ĉa) quantities. The action potential duration at a beat n (APDn) is defined as the time that it takes a cell
to repolarize after a stimulus at that beat and the peak calcium at a beat n (Ĉan) is defined as the local maximum
of the calcium signal during that beat. A heuristic of these measurements is given in figure 1(a).

In terms of these measurements, cardiac alternans becomes an alternating large-small-large-small pattern of the
discrete-time quantities APDn and Ĉan. Healthy cardiac function displays period one behavior and cardiac alternans
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(a) (b)

FIG. 1: The measurements of APDn and cCan(a). Period-doubling bifurcation: the transistion from normal cardiac behavior
to alternans(b).

displays period two behavior, which suggests that this transition is a period-doubling bifurcation. In fact, in 1984
Guevara et. al.8 showed that this is true. A heuristic of this period-doubling bifurcation is shown in figure 1(b).

Cardiac alternans can appear in a two ways. First, the alternans in voltage and calcium can be positively coupled.
This means that a large (small) action potential corresponds to a large (small) calcium signal at the same beat. In
other words, APDn will be large (small) when Ĉan is large (small). Voltage and calcium can also be negatively
coupled. This means that a large (small) action potential corresponds to small (large) calcium signal at the same
beat. In other words, APDn will be large (small) when Ĉan is small (large).

Furthermore, cardiac alternans can be induced by either voltage or calcium. Because of the way that voltage affects
the calcium concentration, voltage-induced alternans are always positively coupled. However, when alternans are
calcium-induced, the coupling can be either positive or negative. This complication follows from the complexity of
the different calcium currents flowing in and out of the cell.

The effects of voltage-induced alternans has been the topic of several papers (for example by Karma5,9) and are
relatively well understood. However, the effect of calcium-induced alternans remains for the most part unexplored
and poorly understood. This was the inspiration of our model of cardiac behavior. That is, the goal is to induce
calcium alternans in a system where calcium and voltage are coupled together on some spatial domain.

C. The governing equations

Keeping in mind that we wish to model some sort of period-doubling behavior, we introduce the following discrete-
time map

cn+1 = −rcn + c3n, for r ≥ 0. (1)

Not unlike the logistic map, this map has both cascades of period-doubling bifurcations as well as banded chaotic
regions in parameter space. The reason we have chosen this map is because of the symmetry of periodic solutions
around c = 0, which will make some analytical solutions attainable. Later analysis of this map will show a (stable)
period-one solution for 0 ≤ r ≤ 1, period-two solutions for 1 ≤ r ≤ 2, and so on.

The fact that periodic solutions (and chaotic sequences) will be in the range [−2, 2] may raise some issues in so far
as the modelling of actual calcium levels in the heart. However in the regime of period-one and -two solutions, the
map above is conjugate to the actual values of Ĉa both for a healthy heart and one with alternans. Formally this
means that by some (continuous) change of coordinates we can map steady-state solutions c∗ of equation (1) to more
realistic values for Ĉa seen experimentally.

However, to fully explore the effects of alternans, we must couple calcium to voltage, even if the alternans are not
voltage driven. First, we will introduce a few coupling parameters that describe the interaction between calcium and
voltage alternans. Second, we will introduce a spatial integral kernel in the voltage equation to model the diffusion of
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voltage across the domain. The equations are the following:

cn+1(x) = −rcn(x) + c3n(x) + αan(x),

an+1(x) =
∫
G(x, x′)[βan(x′) + γcn+1(x′)]dx′. (2)

Here cn(x) and an(x) represent the value of the calcium and voltage alternans, respectively, at a point x in the
spatial domain, r is our “bifurcation” parameter and is a measure of how strong the calcium alternans are, α, β,
and γ are coupling parameters, and G(x, x′) is the diffusive integral kernel. α represents voltage-to-calcium coupling,
which is always positive, so α < 0, γ represents calcium-to-voltage coupling, which can be positive or negative, so γ
can have either sign, and β represents the perpetuation of voltage alternans, so β < 0. All three coupling parameters
are taken to be less than one in magnitude to prevent divergence of solutions. In our computations we choose

G(x, x′) = G(x, x′, σ2) to be Gaussian with standard deviation σ2 (G(x, x′, σ2) = 1√
2πσ2 e

− (x−x′)2

2σ2 ). In our simulations
we will take σ = 1. The spatial domain will be one dimensional.

There are three main topics of interest as to the solutions to this map. First, we will explore how steady-state
solutions to this system coarsen. By coarsen, we mean how the domain seperates into different in-phase regions. An
example of this is the plot in figure 2(a), which depicts period-two steady-state solutions for different r values given
random initial conditions (red is small r, blue is large r). Second, we will explore the effects the coupling parameters
have on bifurcations. Since the bifurcation is driven by the map in equation (1), we expect the bifurcations of the
system (2) to be similar. Finally, we will explore the competition between the bifurcation parameter r and the diffusion
kernel G. A large r value will tend to polarize solutions and the integral kernel will be a smoothing operator.

II. PRE-ANALYSIS

A. Classifying coarsening

How we choose to characterize the coarsening of calcium alternans is essential to the problem. If we start from
random initial conditions, the domain will seperate into different in-phase regions each time, depending on local
averages of the initial data. Thus, no unique solution can be found for random intial conditions. Instead, we will
calculate the values of steady-state periodic solutions of c(x) for x near the boundaries of different in-phase regions
and in the middle of such in-phase regions that are “far-away” from such boundaries. An analytical expression for
c(x) is difficult to obtain and depends on the kernel G(x, x′), so these two quantities will be the basis of our analysis
of coarsening.

(a) (b)

FIG. 2: Solutions to the system in equation (3). Coarsening of in-phase regions given random initial conditions(a), and analytical
solutions for the step-intial conditions in equation (4)(b). r values range from 0.75 (red) to 1.1 (blue). The horizontal axis is
space (x) and the vertical axis is the value c(x).

Calculating these two quantities for random inital conditions is also problematic. We could run simulations and use
numerical results, but this raises other issues. Instead of starting with random initial conditions, we can start with
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so-called “step” intial conditions defined as

c0(x) = ε · sgn(x),

for some non-zero constant k, which will give exactly two different in-phase regions with a boundary at x = 0. Thus,
we can liken the quantities limx→0± c(x) and limx→±∞ c(x) to the values of c(x) for x near boundaries and far away
from boundaries, respectively. The analytical period-two steady-state solution for c(x) with step initial conditions is
plotted in figure 2(b) for different r (red is small r, blue is large r). I.e. we will use the time series of limx→0± c(x)
and limx→±∞ c(x) to characterize the dynamics of the system.

The standard deviation or width of the kernelG(x, x′) won’t affect either of the values limx→0± c(x) or limx→±∞ c(x),
but rather the shape of c(x) in between. In the step inital condition case, the width of G (in our case σ2) will affect
how fast c(x) converges to limx→±∞ c(x) as x moves away from zero. It’s straight-forward to see that if G is wide the
convergence will be slower and if G is narrow then it will be faster. In the case of random intial conditions the width
of G will also define a minimum width of a coarsened region. Because of the smoothing operator no steady-state
coarsened region with width less than the width of G can exist.

In order to predict behavior for higher-order bifurcation and chaos, we will first solve the system for r in the
period-two regime. We can calculate all the quantities of interest analytically because of the map’s symmetry.

B. Analysis of the uncoupled calcium map

Since all bifurcations and chaos will be driven by the map given in equation (1) a thorough analysis of this map is
useful. The bifurcation diagram of this map is given in figure 3, and it clearly shows period-doubling bifurcations as
well as banded chaos and islands of stability.

FIG. 3: Bifurcation diagram for the map in equation (1).

Up to a certain point, we can compute the (stable) periodic solutions c and the bifurcation values rc in the following
way. For period p solutions, compute the intersections of the pth-return map cn+1 = fp(cn; r) with cn+1 = cn (as
a function of r), which gives period-p solutions (both stable and unstable). Then we can compute (over successive
parameter ranges of r) which of these solutions have a derivative less than one in magnitude. Since this map is clearly
period-doubling, we look for period-one solutions, then period-two, then period-four, and so on. The results of such
analysis for periods one, two and four are given in the following table:

period of stable solutions Steady-state c(r) Range of r
one c(r) = 0 r ∈ [0, 1]
two c(r) = ±

√
r − 1 r ∈ [1, 2]

four c(r) = ±
√
r±
√
r2−4√
2

r ∈ [2,
√

5]

eight . . . . . .
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Thus, period-doubling bifurcations happen at rc = 1, 2,
√

5, . . . Just after r =
√

5 stable solutions become period-
eight, but become difficult to obtain analytically. As with most maps that display period-doubling behavior, there
is an infinite number of period-doubling cascades and for some r sequences become chaotic. Investigation of the
connection between period-doubling cascades and chaos in such maps is an active area of research studied by many
such as Sander and Yorke10.

C. Period-two steady-state solutions

Since the bifurcation is driven by a symmetric equation, we can assume that if c∗(x) is a periodic steady-state
solution, then so is −c∗(x). To ease notation, define

c±∞ = lim
x→±∞

c(x), c0± = lim
x→0±

c(x),

to be the quantities discussed above. Furthermore, let rc,∞ and rc,0 be the critical r values for which bifurcation
happens as x → ±∞ and x → 0±. We will consider solution for the cases β = 0 and −1 < β < 0. In general the
period-two case can be solved for both, but at higher order periods we will need to set β = 0 to solve analytically.

1. β = 0:

In this case, plugging in for an(x) gives

cn+1(x) = −rcn(x) + c3n(x) + η

∫
G(x, x′, σ2)c(x′)dx′,

where η = αγ. In order to compute c±∞ and c0± , note that limx→±∞
∫
G(x, x′, σ2)c(x′)dx′ = c±∞ and

limx→0±
∫
G(x, x′, σ2)c(x′)dx′ = 0. (This is easy to see from figure 2(b).) Also, since solutions are period-two

and symmetric about zero, we have that cn+1(x) = −cn(x). Therefore,

−c±∞ = −rc±∞ + c3±∞ + ηc±∞, − c0± = −rc0± + c30± ,

⇒ c±∞ = ±
√

1− r − η, c0± =
√
r − 1.

Thus, we have that

c±∞ =

{
0 if r ≤ 1 + η

±
√
r − 1− η if r ≥ 1 + η

, and c0± =

{
0 if r ≤ 1

±
√
r − 1 if r ≥ 1

,

and the critical bifurcations points are

rc,∞ = 1 + η, and rc,0 = 1.

2. −1 < β < 0:

When β 6= 0 the voltage term doesn’t die out immediately. Nonetheless, repeatedly plugging in for an−i(x) gives

cn+1(x) = −rcn(x) + c3n(x) + η

∞∑
k=1

βk−1

∫
. . .

∫
︸ ︷︷ ︸

k

 k∏
j=1

G(x(j−1), x(j), σ2)

 cn−k+1(x(k))dx(k) . . . dx(1).

Using Fubini’s theorem11 to interchange the order of integration and some Gaussian distribution tricks, this gives

cn+1(x) = −rcn(x) + c3n(x) + η

∫
G̃(x, x′, σ2)cn−k+1(x′)dx′,

where

G̃(x, x′, σ2) =
∞∑
k=1

|β|k−1G(x, x′, kσ2).
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So as not to break up the flow of this paper I’ve included the computation of G̃(x, x′, σ2) in the appendix.
Again we use the symmetry of period-two solutions and limx→±∞

∫
G(x, x′, σ2)c(x′)dx′ = c±∞ and

limx→0±
∫
G(x, x′, σ2)c(x′)dx′ = 0 to get that

−c±∞ = −rc±∞ + c3±∞ +
η

1 + β
c±∞, − c0± = −rc0± + c30± ,

c±∞ = ±
√

1− r − η

1 + β
, c0± =

√
r − 1.

Thus, we have that

c±∞ =

{
0 if r ≤ 1 + η

±
√
r − 1− η

1+β if r ≥ 1 + η
, and c0± =

{
0 if r ≤ 1

±
√
r − 1 if r ≥ 1

,

and the critical bifurcation points are

rc,∞ = 1 +
η

1 + β
, and rc,0 = 1.

Note that the solutions for −1 < β < 0 extend to the β = 0 case.
In just the period-two case we already see the presence of the competition between r and the smoothing integral.

The function c(x) becomes discontinuous for r > rc,0. Thus, depending on the sign of η we get different behavivors.
If η < 0 then we have three ranges (0, rc,∞), (rc,∞, rc,0), and (rc,0, . . . ) where steady-state c(x) is identically zero,
bifurcation has happened away from boundaries but c(x) is still continuous, and bifurcation has occured at x = 0
and c(x) is discontinuous at the boundaries, respectively. If η > 0, however then three ranges are (0, rc,0), (rc,0, rc,∞),
and (rc,∞, . . . ) where steady-state c(x) is identically zero, bifurcation has happened at from boundaries (thus c(x) is
discontinuous at the boundaries) but c±∞ = 0, and c(x) is discontinuous and nowhere zero, respectively.

This difference in bifurcation near and away from boundaries raises several questions. Does this difference in
bifurcations transcend to high-order periodic solutions? What do the bifurcation diagrams for c±∞ and c0± look like
(perhaps they are just shifted left or right by η

1+β )? Finally, is it possible for just one of either c±∞ or c0± to be
chaotic?

III. HIGHER-ORDER PERIODICITY AND CHAOS

A. Analytic results

Despite higher-order periodic solutions being not applicable to cardiac behavior, it’s still interesting to explore what
happens for larger r values (similar to the Lorenz system). For analytic analysis we will consider β = 0. Again we use

cn+1(x) = −rcn(x) + c3n(x) + η

∫
G(x, x′, σ2)c(x′)dx′,

and the fact that limx→±∞
∫
G(x, x′, σ2)c(x′)dx′ = c±∞. For c±∞ we get the map

cn+1,±∞ = −ρcn,±∞ + cn,±∞,

where ρ = r − η. Thus, the bifurcation diagram for c±∞ will be the same as for the map in equation (1) (see figure
3), but shifted by η. In terms of r, we summarize the low-order periodic solutions as follows:

period of stable solutions Steady-state c±∞(r) Range of r
one c±∞(r) = 0 r ∈ [η, 1 + η]
two c±∞(r) = ±

√
r − η − 1 r ∈ [1 + η, 2 + η]

four c±∞(r) = ±
q
r−η±

√
(r−η)2−4
√

2
r ∈ [2 + η,

√
5 + η]

eight . . . . . .

which matches up with the period-two analysis above.
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The same sort of analysis does not work for c0± . Solutions are still periodic around c0± = 0, but since the periodicity
is greater than 2, then in general cn+1,0± 6= −cn,0± . Instead, the map becomes

cn+1,0± = −rcn,0± + c3n,0± + ηξn, where ξn =
∫
G(0, x′, σ2)cn(x′)dx′.

If periodicity is greater than 2 the behavior to the left of the origin and to the right of the origin are not necessarily
opposite and ξn does not vanish. However, if solutions are period-p, then the average of ξn will vanish over a whole
p-cycle. Thus, an argument can be made that c0± will probably behave in a similar way as c in the uncoupled map
(equation (1)). It’s likely, however, to display some noise.

B. Bifurcation Diagrams

Next we simulate the system numerically and show the bifurcation diagrams for c±∞ and c0± . Figure 4 gives the
bifurcation diagrams using η = −0.2 (α = −

√
0.2, γ =

√
0.2) and figure 5 gives the bifurcation diagrams using η = 0.2

(α = −
√

0.2, γ = −
√

0.2). (Note that switching both signs of α and γ yields the same reults, since η is their product.)

(a)

(b)

FIG. 4: Bifurcation diagrams for c0±(a) and c±∞(b) using η = −0.2.

First we note that there is a strange behavior in the bifurcation diagram for c±∞ for η > 0 for r values slightly
larger than one. It turns out that this is a modal instability, which will be shown later.

Other than this modal instability the bifurcation diagrams look similar to what we predicted with our analytical
results. The bifurcation diagrams for c±∞ are shifted by η and the bifurcation diagram for c0± looks very similar to



8

(a)

(b)

FIG. 5: Bifurcation diagrams for c0±(a) and c±∞(b) using η = 0.2.

that for the uncoupled map. The simulations show some noise that doesn’t exist in the uncoupled map. However,
since numerical simulation required discretization of the spatial domain we should expect the bifurcation diagrams to
look a little “fuzzy”.

Finally, we see that in both cases η > 0 and η < 0 there are ranges of r in which c±∞ behaves chaotically and c0±
doesn’t move chaotically or vice-versa. This coexistence of chaotic and non-chaotic behavior is an interesting result,
since it means that even though the behavior at points x and x∗ are coupled by the smoothing integral their behavior
can be fundamentally different. For instance, r = 2.18 and η = −0.2 gives chaotic behavior for c±∞ but not for c0±
(illustrated by the dashed line in figure 4). Also, r = 2.42 and η = 0.2 gives chaotic behavior for c0± but not for c±∞
(illustrated by the dashed line in figure 5).

C. Bifurcation diagrams for β 6= 0

Although our analytical analysis is only valid for β = 0, we can run numerical simulations to explore the behavior
of the system for β 6= 0. Given our analysis fro the period-two solutions, we guess that β will have no effect of c0±
and will shift bifurcations even further if β < 0 and shift bifurcations less if β > 0. In fact, this is what we see.

Figure 6 gives the bifurcation diagrams for c0± and c±∞ for negative β and positive η (β = −0.2 and η = 0.2). As
predicted, the bifurcation diagram for c0± remains unchanged and the bifurcation diagram for c±∞ is shifted even
further (note that the bifurcation point between period two and four is rc,±∞ less than 2.2 for β = 0 but greater than
2.2 for β = −0.2). The other three sets of bifurcation diagrams are given in the appendix.
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(a)

(b)

FIG. 6: Bifurcation diagrams for c0±(a) and c±∞(b) using η = 0.2 and β = −0.2.

D. Mode analysis

To show that the discrepency in figure 5(b) is truly a modal instability, we will need to do two things. First, instead
of the system in equation (2), we will consider the system given by

cn+1(x) =
∫
G(x, x′, σ2

1)[−rcn(x′) + c3n(x′) + αan(x′)]dx′,

an+1(x) =
∫
G(x, x′, σ2

2)[βan(x′) + γcn+1(x′)]dx′, (3)

where σ1 � σ2 (i.e. σ2 = O(1) and σ1 = O(ε)). This map give qualitatively equivalent behavior as the system in
equation (2). Second, we will assume stable solutions for cn(x) and an(x) and perturb them by the modes cne2πikx
and ane

2πikx, where cn, an � 1, and see how the perturbations evolve. Since the onset of discrepency occurs when
the dynamically stable solutions are cn(x) = an(x) = 0, the perturbations will be

cn(x)→ 0 + cne
2πikx,

an(x)→ 0 + ane
2πikx.

First note that the characteristic function of a gaussian distribution with standard deviation σ2 is e−
4π2k2σ2

2 .
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Dropping nonlinear terms, we get the system

cn+1e
2πikx = e2πikxe−

4π2σ2
1k

2

2 [−rcn + αan]

an+1e
2πikx = e2πikxe−

4π2σ2
2k

2

2 [−γ(r + 1)cn + (β + αγ)an],

which we can write as the following matrix equation (after cancelling the e2πikx terms):[
cn+1

an+1

]
=

 −re−
4π2σ2

1k
2

2 αe−
4π2σ2

1k
2

2

−γ(r + 1)e−
4π2σ2

2k
2

2 (β + αγ)e−
4π2σ2

2k
2

2


︸ ︷︷ ︸

M(k)

[
cn
an

]
.

It follows that if the dominant eigenvalue λ(k) of M(k) is greater than one in absolute value, then mode k is
unstable. Furthermore, if the dominant mode (i.e. k∗ such that |λ(k)| is maximum at k = k∗) is not equal to zero,
then the functions cn(x) and an(x) will have a modal instability and oscillations will occur.

FIG. 7: |λ(k)| vs k for α = −
√

0.2, β = −0.2, γ = −
√

0.2, σ1 = 0.1 and σ2 = 1.

Figure 7 plots |λ(k)| vs k for the η > 0 case. Clearly the dominant mode is both greater than one in magnitude
and away from zero. We can further check our analysis by simulating cn(x), computing the FFT and checking that
the dominant frequency matches up with the dominant mode. This comparison is given in figure 8(a). An example
of oscillations propogated by a modal instability is given in figure 8(b).

(a) (b)

FIG. 8: Comparison of modal analysis to the FFT(a). Example of oscillations propogated by a modal instability(b).

The range of parameters that give rise to modal instability is that in which we see a discrepency in figure 5(b). Be-
cause of the propogation of oscillations, the function c(x) does not subdivide into different in-phase region. Therefore,
no “boundaries” exist and neither do c±∞ or c0± .
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IV. GENERALIZATION TO OTHER MAPS

So far we have analyzed the system given by

cn+1 = f(cn(x); r) + αan(x), where f(ξ; r) = −rξ + ξ3,

an+1 =
∫
G(x, x′)[βan(x′) + γcn(x′)]dx′.

We chose this form of f because its inherent symmetry made several features analytically tractable.
A natural question that arises at this point is the following: If we generalize f(ξ; r) to another map that displays

period-doubling cascades and chaos, do we see similar behavior? Given similar definitons c±∞ and c0± , do the choices
of the parameters α, β, and γ shift the bifurcation diagram in a similar way? Also, is it possible to have a coexistence
of chaotic and non-chaotic behavior at different points in space?

To investigate these questions, suppose f is the logistic map: f(ξ; r) = rξ(1−ξ) (which also displays period-doubling
cascades and chaotic regions in parameter-space). For the quantities c±∞ and c0± defined as they are above, figure 9
gives the bifurcation diagrams for η < 0 and figure 10 gives the bifurcation diagram for η > 0.

(a) (b)

FIG. 9: Bifurcation diagrams for c0±(a) and c±∞(b) using η = −0.2 (f(ξ; r) = rξ(1− ξ)).

We observe that for both η positive and negative the bifurcation diagrams are affected differently. First, in both
cases the bifurcation diagrams for both c±∞ and c0± are shifted. For η < 0 it seems that there is no coexistence of
chaotic and non-chaotic behavior, although there are values of r for which c±∞ and c0± have different periodicity (for
instance r = 3.74). For η > 0, on the other hand we can find r values for which c0± is chaotic but c±∞ is not.

For example, as x→ ±∞ we have

cn+1,±∞ = (r + η)cn,±∞ − rcn,±∞.

As long as η 6= 0 this map is fundamentally different from the standard logistic map. In other words, we cannot
shift parameters to obtain the same map. This is because in the logistic map the parameter r is also a coefficient
of the nonlinear terms. In general, any map whose nonlinear terms are also affected by the parameters will be
fundamentally changed by the coupling parameters because it becomes function with two parameters instead of one
combined parameter. We should not expect the coupling scheme to shift the bifurcation diagrams of these maps in a
uniform way.
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(a) (b)

FIG. 10: Bifurcation diagrams for c0±(a) and c±∞(b) using η = 0.2 (f(ξ; r) = rξ(1− ξ)).

V. CONCLUSION

The effects that a spatial component can have on a dynamical system come from a wide spectrum of possibilities
depending on both the spatial and dynamical behavior of a system. In fact, spatiotemporal dynamics can be applied
to a huge range of systems in physics, biology, etc., but the nature of solutions are very problem specific due to their
complexity.

In this paper we’ve explored the behavior of one of the simplest spatiotemporal systems one can write down (equation
(2)). The dynamical component is driven by a simple discete-time map that exhibits period-doubling bifurcations and
chaotic behavior and the spatial component consists of a simple smoothing operator. These aspects are combined in
a system consisting of two functions on one spatial dimension that are coupled by a few parameters.

With a conveniently chosen map and smoothing kernel (f(ξ; r) = −rξ + ξ3 and the Gaussian kernel G(x, x′, σ2))
several qualities of the system can be understood through analytical computation. Much of this analysis is obtained
by exploring the time series of the functions at a fixed point in space, ~x∗. In this paper we’ve used the quantities
cn,±∞ = limx→±∞ cn(x) and cn,0± = limx→0± cn(x) to describe the dynamic behavior of the function cn(x).

Solutions (c±∞ and c0±) of low-order periodicty are attainable analytically. However, since the map displays both
and infinite number of period-doubling cascades as well as regimes of chaotic behavior, the use of numerical exploration
is necessary. In general, finding the exact form of the function cn(x) (and an(x)) is very difficult if not impossible.
Most likely the use of asymptotics and perturbation theory would be a more fruitful approach.

One interesting feature to observe is the competition between the parameter r and the smoothing operator and
how the coupling parameters affect it. Depending on the coupling parameters we observe a coexistence of different
behavior at different points in space. For instance, steady state c±∞ can have a periodicity of four while steady-state
c0± can have periodicity two. Furthermore, if we increase r enough then one of these quantities can be chaotic while
the other is not.

In summary the class of spatiotemporal dynamical systems is a huge family of dynamical systems that are usually
difficult to solve. This has been an analysis of one such system. Using both analytical and numerical tools we can
begin to understand how the dynamic and spatial components coexist in solutions and affect bifurcation and chaotic
behavior. Albeit simple, systems like this one are in some sense solvable and easy to understand, which is useful in
trying to understand more complicated spatiotemporal problems.

Special thanks to Professor Juan G. Restrepo (Department of Applied Mathematics, University of Colorado at
Boulder), Professor Alain Karma (Department of Physics and Center for Interdisciplinary Research on Complex
Systems, Northeastern University), and Professor Elizabeth Bradley (Department of Computer Science, University of
Colorado at Boulder).
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Appendix A: Computation of G̃(x, x′, σ2) (for −1 < β < 0)

Starting from the equation

cn+1(x) = −rcn(x) + c3n(x) + η

∞∑
k=1

βk−1

∫
. . .

∫
︸ ︷︷ ︸

k

 k∏
j=1

G(x(j−1), x(j), σ2)

 cn−k+1(x(k))dx(k) . . . dx(1),

we seek to simplify the k integrals into a term with just one integral. Since everything inside the integrals are
absolutely and uniformly convergent we can use Funini’s theorem11 to switch the order of integration:

∫
. . .

∫
︸ ︷︷ ︸

k

 k∏
j=1

G(x(j−1), x(j), σ2)

 cn−k+1(x(k))dx(k) . . . dx(1)

=
∫ 

∫
. . .

∫
︸ ︷︷ ︸
k−1

k∏
j=1

G(x(j−1), x(j), σ2)dx(k−1) . . . dx(1)

 cn−k+1(x(k))dx(k).

Inside the brackets we have the convolution of k Gaussian distributions. Next we will use the property that the
convolution of a Gaussian with standard deviation µ2 and ν2 is a Gaussian with standard deviation µ2 + ν2 (this is
an easy property to check, for instance with Mathematica). Formally, if Gσ2 = G(x, x′, σ2), then(

Gµ2 ∗Gν2

)
= Gµ2+ν2 = G(x, x′, µ2 + ν2).

It follows that the convolution of two identical Gaussian distributions with standard deviation σ2 is a Gaussian
distribution with standard deviation 2σ2. Applying this k times means that after k convolutions we are left with a
Gaussian distribution with standard deviation kσ2, or∫

. . .

∫
︸ ︷︷ ︸
k−1

k∏
j=1

G(x(j−1), x(j), σ2)dx(k−1) . . . dx(1) = G(x, x′, kσ2).

Thus, the k-integral term reduces to the single integral∫
G(x, x′, kσ2)cn−k+1(x′)dx′.

Finally, we use the absolute and uniform convergence of both the integral and the sum to interchange the two. The
equation we are left with is

cn+1(x) = −rcn(x) + c3n(x) + η

∫ ∞∑
k=1

|β|k−1G(x, x′, kσ2)cn−k+1(x′)dx′

= −rcn(x) + c3n(x) + η

∫
G̃(x, x′, σ2)cn−k+1(x′)dx′.

Appendix B: Remaining Bifurcation Diagrams for β 6= 0

Figures 11, 12, and 13 give the remaining bifurcation diagrams from β 6= 0: β = −0.2 and η = −0.2, β = 0.2 and
η = −0.2, and β = 0.2 and η = 0.2, respectively.
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(a)

(b)

FIG. 11: Bifurcation diagrams for c0±(a) and c±∞(b) using η = −0.2 and β = −0.2.

-



15

(a)

(b)

FIG. 12: Bifurcation diagrams for c0±(a) and c±∞(b) using η = −0.2 and β = 0.2.

-
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(a)

(b)

FIG. 13: Bifurcation diagrams for c0±(a) and c±∞(b) using η = 0.2 and β = 0.2.
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Are Chaotic Variations ‘Superior’ to Random Variations on a
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Abstract

Chaotic and random variations of an original drum rhythm are created with music
software then studied with the aim of discerning which is superior. Samples of the two
types of variations were presented without knowledge of the project and a survey was
used to collect opinions. It was found that chaotic variations were more pleasing to the
audience. Though iterations of creating music, however, it was found that the differences
in each resulting production of a chaotic or random variation can vary significantly, thus
survey results should not be widely generalized.

1 Introduction

A chaotic system is a deterministic system which shows sensitive dependence on initial
conditions.1 A wide variety of disciplines can employ chaos theory, such as engineering,
economics, and communications. Chaotic dynamics have also been used in a variety of
artistic and creative applications. In the work of Diana Dabby, a chaotic attractor is used
as a means to create variations in pitch sequences of classical music.2 This work inspired
other similar applications, such as dance sequence variations3 and route-setting for rock
climbing.4 Using a chaotic dynamical system for variations ensures each new sequence of
music or dance will be varied from the original due to the system’s sensitive dependence on
initial conditions, but theoretically maintains the structure of the original piece.

In this project, the question was addressed whether the variations in a drum sequence
created using a chaotic attractor maintain enough of the structure of the original piece to
sound more pleasing than a random variation. Previous work has investigated the similar-
ities and differences between stochastic and chaotic data and how they can often appear
similar and even indistinguishable.5 Drum rhythms were chosen as the subject of this study
on random vs. chaotic variations due to the relative simplicity of the instrument and repet-
itiveness of a drum pattern. Results and interpretations come from surveying individuals
about samples of the musical variations.

1.1 Previous Work

In Reference 2, Dabby describes a procedure that was created for a chaotic mapping to
generate musical variations on an original work. The purpose of using a chaotic attractor
was for ‘linking and tracking’ the original and varied piece of music.2 Using a chaotic
attractor as a reference trajectory, x-values of this reference were paired with pitch sequences
in a musical piece. A new trajectory from a perturbed initial condition was then generated

1



IV. RESULTS

Figure 9 shows the simple ballet jump sequence of Fig.
1, a chaotic variation of that jump generated with the Lorenz
system, and a smoothed version of that variation. The se-
quence shown in the middle row of Fig. 9 was derived from
the original using the chaotic symbol-sequence reordering
scheme described in Sec. II. An abrupt transition is visible
between the third and fourth moves of this variation; the
corpus-based graph-theoretic interpolation scheme described
in Sec. III inserted two new moves to produce the smoothed
sequence shown at the bottom of the figure. Note that the
inserted moves define a very natural way to move between
the two body positions that frame the abrupt transition.

While it is clear from the figure that the jump positions
are indeed shuffled and that the interpolated version is indeed
smoother, it is impossible to appreciate these results from a
static portrayal of such a short sequence; please see the web
site listed at the end of the introduction for a variety of ani-
mated variations—including the jump shown in Figs. 1 and
9, a popular dance progression �the macarena�, a martial arts
‘‘form’’ drawn from the discipline of kenpo karate, and a
medley of all three of these movement sequences. Variations
were constructed on each of these four pieces using two dif-
ferent chaotic systems—Lorenz and Rössler—in order to ex-
plore how the attractor geometry affects the variation.
Loosely speaking, variations resemble the originals with

FIG. 8. In real movement sequences, movement graphs have many more edges than the simplified example shown in the previous figure. The graph above,
which represents the movements of the shoulders, was constructed from a small corpus of 38 short ballet sequences. The numbers in each state identify the
discretized position of the joint. The parent-joint probability tables—the boxed pi→p j information in the previous figure—have been omitted in the interests
of clarity.

FIG. 9. A ballet jump: the original sequence �above�, a chaotic variation on that original �middle�, and an interpolated version of that variation �below�. The
moves identified by arrows in the lower sequence were inserted by the interpolation scheme to smooth an abrupt transition between the third and fourth moves
in the chaotic variation above it.
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Figure 1: Original dance sequence (top); Chaotic variation on the sequence(middle); Inter-
polated chaotic variation (bottom)3

and a nearest neighbor-type procedure was used to create a new ordering of the pitches.
The procedure produced some variations that retained the ‘flavor of the original’ and other
variations which were not recognizable from the original, depending on parameters of the
method.2

Similar to Dabby’s procedure, Bradley et. al. used a ‘chaotic symbol-sequence reorder-
ing technique’ to create a variation on a dance sequence.3 Variations on a dance sequence
required careful techniques for interpolating between body positions and smoothing transi-
tions, as shown in Figure 1.

Another interesting application was explored by Phillips and Bradley to use a chaotic
system to aid in setting rock climbing routes.4 The procedure for the variations is similar
to those for the dance sequences and a survey was used as a tool to evaluate the resulting
climbing routes. Surveying techniques for the climbing project inspired the approach for
analysis in this project.

2 Project Approach

To address the question of the superiority of chaotic variations over random variations, an
original 1-measure drum rhythm was created. A method to map the original rhythm onto
a chaotic attractor and onto a random number sequence then back into a drum sequence
was devised, as described in the following sections. Samples of each type of variation were
presented in a survey to aid in drawing a conclusion on the superiority of the variations.

2.1 Music Generation

The music software Fruity Loops (FL) Studio6 was used to create the original rhythm and
the chaotic and random variations. FL Studio allows users to choose from a large variety
of musical interface digital instruments (MIDI) to create measures of music. As shown in
Figure 2, the measure is divided into sixteenth notes (using 4/4 time). On each sixteenth
note, the user can choose any MIDI instrument to play a note. For this project, a cymbal
(called the hi-hat, or simply hat) and a bass drum (called a kick) were used. To give variety

2



Figure 2: Screenshot

to the music, the original rhythm included the four possible combinations of these drums:
no hit notes, only kick notes, only hat notes, and both drums together, as can be seen
in Figure 2. Effects of different drums and different combinations will be discussed in the
results section.

2.2 Chaotic Variations

To generate chaotic variations on the original rhythm, a mapping was established between
the sixteenth notes of the rhythm and data points along a trajectory. The chosen trajectory
was the Lorenz attractor, described by Equation 1, with the parameters a = 16, r = 45,
and b = 4. A fixed-step fourth-order Runge Kutta integrator was used to generate the
trajectory.

ẋ = a(y − x)
ẏ = rx− y − xz (1)

ż = xy − bz

The sixteen notes of measure of kick and hat hit combinations were mapped to sequential
data points starting with the initial condition of the trajectory and repeating continually
along the trajectory’s length every 16 notes. With a chaotic system, a slight variation in
initial condition will yield a very different trajectory. This property was taken advantage
of to create a new trajectory from a slightly different initial set of coordinates in the state
space, as seen in Figure 3.

A nearest neighbor function was used on each point of the new trajectory to find the
closest data point on the original trajectory (as defined by the smallest Euclidean norm).
The note that had been mapped onto the original trajectory was now mapped back to
the new trajectory. This mapping back to the new trajectory provided a variation on the
original rhythm that was input into the FL Studio software to create measures of music.

Different methods for compiling the variations were explored. First, a single measure
of a chaotic drum pattern was created, then repeated for several measures. This will be
referred to as the ‘short variation.’ With many trials of this method, it was found that
there was a wide range in the qualities of the variation, such as maintaining the structure
of the original, maintaining a good beat, or listening pleasure. It is important to remember
that these interpretations were subjective to the author. A second approach to creating a
drum sequence was to follow the new trajectory for 8 x 16 data points, then use the inverse
mapping to create eight different measures of a chaotic variation. This sequence will be
referred to as the ‘long variation.’
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Figure 3: Lorenz Attractor and Perturbed Trajectory

2.3 Random Variations

Random variations on the original drum rhythm were created with a mapping between
the original notes and random numbers generated with the MATLAB program. The rand
function was modified to randomly output numbers between 1 and 16. The 1/16th notes of
the original trajectory, assigned numbers in order from 1 though 16 as before, were mapped
onto these random numbers. The new sequence of notes was input manually into the FL
Studio program to produce the random variation.

Similar to the method for creating short and long variations of the chaotic rhythms,
short and long variation of the random variations were chosen. For the short variation,
one set of 16 random numbers were generated, then the sequence mapped to the sixteenth
notes. This measure was then repeated multiple times. The repetition of the one measure
added structure to the variation that countered the randomness. The long variation was
created by generating 8 x 16 random numbers, then creating eight different measures of
random rhythms to be played together.

3 Survey and Results

Two short, repeating variations of both chaotic and random rhythms were chosen to be
presented, as well as two long variations of each. The rhythms selected were the first
created for each type, as to avoid bias in selection. A Likert scale survey was designed and
presented to the students of the CSCI 5446 to optionally provide opinions on the drum
variations. 18 students provided responses about the drum rhythms presented.

3.1 Survey Design

The Likert scale is a surveying approach that has been used since 1932 in measuring attitudes
of survey respondents.7 The traditional Likert-type survey has five responses, which was
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chosen for this project. The scale is ordinal, and the 5 possible responses were assigned
the values shown in Table 1. It is important to recognize that the scale is not interval,
and it cannot be assumed that the difference in attitude between response choices are the
same.8 For example, the difference in attitude between strongly disagree and agree is not
necessarily the same in attitude difference between disagree and neutral.

Table 1: Likert Scale Values

Criteria Value
Strongly Disagree 1

Disagree 2
Neutral 3
Agree 4

Strongly Agree 5

The survey participants were presented with short and long variations of the music
without being informed of the nature of the project. For the short variations, three questions
were presented, each a comparison between a short chaotic variation and a short random
variation. Two of the questions, which has better rhythm and which is more pleasant to
listen to, were presumed to receive similar responses. It has been suggested that rhythm in
music can be nearly synonymous to aesthetic appeal.9 For the long variations, five questions
were presented relating only to the variation and the original, with no direct comparison
between the chaotic rhythm and the random rhythm. Survey participants did not know
that some rhythms were chaotic and some were random. A copy of the survey is included
in the Appendix.

3.2 Survey Results

In this section, the results of the survey will be discussed, with focus on the responses con-
cerning the long variations. As mentioned in the section ‘Music Generation’ the random
short variations gained structure from the repetition, suppressing the random nature. Also,
the repetition with the chaotic short variations nearly extinguished the structure that re-
sembled the original. These issues were also made apparent by the inconclusive results for
this part of the survey.

Table 2 and Table 3 display a basic statistical analysis of the survey data for the long
drum variations. Reference 7 describes, however, that the mean is often not a representative
quantity for Likert-scale analysis. Calculating the mean with this ordinal scale is more of
a function of audience size than attitude.7 For each question, the median and mode were
found to be the same value, reenforcing the significance of the these statistics.

The plots shown in Figure 3.2 display the raw numbers from responses of the survey
participants for the long variations of drum rhythms. It is interesting to note that the
responses are nearly mirrored for the random and chaotic variations, as was seen in the
statistics tables. Clearly, the chaotic variations were given better scores than the random
variations in every category.
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Table 2: Random Variation Survey Results

Question Mean Median Mode
Sounds like the Original 1.7 2 2

Has Good Beat 2.3 2 2
Sounds Random 3.6 4 4
Maintains Flow 2.3 2 2

Enjoyable for Listening 2.7 2 2

Table 3: Chaotic Variation Survey Results

Question Mean Median Mode
Sounds like the Original 3.7 4 4

Has Good Beat 3.7 4 4
Sounds Random 2.3 2 2
Maintains Flow 3.5 4 4

Enjoyable for Listening 3.6 4 4
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(a) Random Variation Survey Responses
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(b) Chaotic Variation Survey Responses

Figure 4: Survey Responses for Drum Variations (a) Random and (b) Chaotic

3.3 Interpretation of Results and Recommendations

From the survey response, it was clear that more of audience considers that chaotic varia-
tions are superior to random variation for the musical pieces presented. However, during the
exploration of methods to create variations of drum rhythms, it was discovered that there
are numerous parameters that greatly effect the resulting music. Some of these include:
initial conditions, trajectory length for the mapping, number of drums, complexity of the
original rhythm, and how the measures are combined.

Of the parameters effecting the mapping, length of the trajectory was the most signif-
icant. This effect can be visualized by considering the extreme cases of a very short and
very long trajectory. If the trajectory were very short, it is likely that execution of the
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Figure 5: Short Trajectory Length: Mapping Reproduces the Original Rhythm

nearest neighbor procedure would simply reproduce the original trajectory. This concept is
shown in Figure 5. If the trajectory is generated from a very large number of integration
steps, it is simple to imagine the nearest neighbor function would produce data points which
continually ‘jumped’ between different parts of the chaotic attractor.

Regarding the original composition, a first approach to this project was to take several
measures of an existing song as the original piece. It was found that the complicated pieces
that were investigated were not suited for this project, as it was difficult for any variation
to match a complex structure. The original piece was therefore simplified to one repeating
measure with only two types of drums. Interesting future work would be investigating a
different number of drums, or adding other instruments to the original piece.

4 Conclusions

A project was proposed and executed for the CSCI 5446 Chaotic Dynamics course to study
the superiority of chaotic versus random variations of a drum rhythm. A method was
devised to map an original drum rhythm onto a chaotic attractor. A new trajectory of
the chaotic system was created with a perturbed initial condition, and a nearest neighbor
procedure was used to link back to the original attractor and invert the mapping to create
new rhythm sequences. A random number generator was used to create random variations
on the original measure of drum beats. Different variations were presented to participants of
a survey created for this project, and opinions were provided about different characteristics
of the music. Results show that in all categories judged, the chaotic variation was superior
to the random variation. It was noted, however, that many different parameters chosen in
created the variations effect the quality and there results cannot be widely generalized.
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Appendix

Figure 6 shows the survey that was presented to the CSCI 5446 class to optionally provide
opinions.

Survey  on  Chaotic  and  Random  Varations  of  Drum  Beats

Background  Questions

i.  Do  you/have  you  seriously  played  an  instrument  before?

ii.  Do  you/have  you  seriously  played  the  drums  before?

SHORT  SETS Strongly  

Disagree Disagree Neutral Agree

Strongly  

Agree

BEAT  1

1.1 Song  A  has  better  rhythm  than  Song  B

1.2 Song  A  sounds  more  like  the  original  than  Song  B

1.3 Song  B  is  more  pleasant  to  listen  to  than  Song  A

BEAT  2

2.1 Song  A  has  better  rhythm  than  Song  B

2.2 Song  A  sounds  more  like  the  original  than  Song  B

2.3 Song  B  is  more  pleasant  to  listen  to  than  Song  A

LONG  SETS Strongly  

Disagree Disagree Neutral Agree

Strongly  

Agree

BEAT  3

3.1 This  song  sounds  like  the  original

3.2 This  song  has  a  good  beat

3.3 This  song  sounds  random

3.4 This  song  maintains  flow

3.5 I  enjoy  listening  to  this  song

BEAT  3

4.1 This  song  sounds  like  the  original

4.2 This  song  has  a  good  beat

4.3 This  song  sounds  random

4.4 This  song  maintains  flow

4.5 I  enjoy  listening  to  this  song

Figure 6: Survey
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