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ABSTRACT

Battery technology is the key bottleneck in many cyber-
physical systems (CPS). For green-energy CPS transporta-
tion applications, such as hybrid electrical vehicles (HEVs)
and plug-in HEVs (PHEVs), the battery system design is
mostly based on lithium-ion rechargeable electrochemical
battery technology, which is bulky, expensive, unreliable,
and is the primary roadblock for PHEV adoption and mar-
ket penetration. For PHEVs, the battery system perfor-
mance and lifetime reliability are further affected by various
user-dependent effects. Battery system modeling and user
study are thus essential for battery system design and opti-
mization.

This paper presents detailed investigation on battery sys-
tem modeling and user study for emerging PHEVs. The
proposed modeling solution can accurately characterize bat-
tery system run-time charge-cycle efficiency, and long-term
cycle life. In particular, it models battery system capacity
variation and fading due to fabrication and run-time aging
effects. An embedded monitoring system is designed and
deployed in a number of HEVs and PHEVs, which can mon-
itor users’ driving behavior and battery usage at real time.
Using the proposed modeling and monitoring solutions, we
conduct user study to investigate battery system run-time
usage, characterize user driving behavior, and study the im-
pact of user driving patterns on battery system run-time
charge-cycle efficiency, capacity variation and reliability, and
life-cycle economy. This work is the first step in battery sys-
tem design and optimization for emerging green-energy CPS
transportation applications.

1. INTRODUCTION

Energy use for transportation represents a pressing chal-
lenge, due to the heavy and growing reliance on petroleum
and the environmental impacts of emissions from fossil fuel
combustion. For instance, over 16 million vehicles are sold in
the U.S. every year [12], and most of which use conventional
combustion engine. Hybrid electric vehicles (HEVs), which

were first developed in 1900, became widely available since
the late 1990s [22], and use both electrical energy storage
and power train technologies, have demonstrated the poten-
tial for dramatic reductions in petroleum use and vehicle
emissions.

Besides a conventional internal combustion engine, an HEV
also includes an energy storage system and an electrical mo-
tor to offer auxiliary power, which allows to downsize the
internal combustion engine, improves user driving experi-
ence, and scavenges the energy generated during braking
events, thereby improving the fuel efficiency, approximately
30%-45% over a comparable conventional vehicle [8]. Plug-
in hybrid electrical vehicles (PHEVs) further advances the
HEV technology by offering the function of plug-in recharg-
ing electricity from the utility grid. Therefore, PHEVs are
able to use electricity as the sole energy source, until the
help from the gasoline engine becomes a must. Thus, the
PHEV technology can improve fuel efficiency further, e.g.,
100 miles per gallon (mpg).

PHEV market penetration, however, has been a great chal-
lenge. This is mainly due to the fact that the advances
of battery technology, the primary energy storage solution
used in (P)HEVs, has not kept pace with the fast growing
energy demands. In (P)HEVs, the battery system design is
mostly based on the lithium-ion rechargeable electrochemi-
cal battery technology, which is bulky, expensive, and unre-
liable. Fabrication and run-time operation introduce signifi-
cant variations to the capacity degradation and aging effects
to individual battery cells, resulting in serious lifetime reli-
ability concerns of the battery system. As automotive com-
panies typically require a lifetime battery system guarantee,
battery storage capacity, cost, and lifetime reliability have
become the primary challenges for PHEV adoption and mar-
ket penetration. The challenges of battery system design are
summarized as follows:

e Battery system cost is currently the primary concern of
PHEV penetration. For instance, in a 50 mile PHEV,
the battery system contains over 1,000 Lithium-ion
rechargeable electrochemical battery cells, with a to-
tal cost over $38,000 USD [3]. Battery system cost is
in turn affected by the following two parameters, run-
time charge-cycle efficiency and long-term cycle life.
The former determines run-time fuel savings, and the
latter evaluates the battery system overall lifetime re-
liability, and long-term financial return. Therefore, ac-



curate battery system modeling is essential to evaluate
the feasibility of PHEV technologies.

e Battery system run-time performance and lifetime reli-
ability is directly affected by the run-time usage, which
in turn is determined by the user’ driving behavior.
User-specific run-time driving patterns, e.g., speed, ac-
celeration, road conditions, and traffic conditions, di-
rectly affect the battery system usage, current charge
and discharge, hence battery system performance and
fuel efficiency. In addition, the run-time charge and
discharge current generates heat and governs the bat-
tery system run-time profile. It is known that, the
dominant aging effects, e.g., cell oxidation, are strong
function of temperature [2] [5]. Therefore, character-
izing user driving behavior is important to understand
the battery system usage, i.e., run-time battery system
performance and long-term cycle lifetime.

This work investigates the battery system of emerging PHEVSs.

It first presents a modeling and analysis framework, which
can efficiently and accurately characterize the battery sys-
tem run-time charge-cycle efficiency, and long-term cycle
life. A PHEV battery system consists of a large number
of battery cells. The overall battery system performance is
then constrained by the battery cell with minimal capacity.
The proposed modeling tool can model the run-time usage
and capacity fading of individual battery cells, thereby ac-
curately characterizing intra-battery system variation and
the overall system lifetime. Next, this paper presents an
embedded monitoring system, consisting of smart phones
carried by drivers, and on-board diagnostics (OBD) devices
deployed in HEVs and PHEVs, which can monitor users’
driving behavior and battery usage at real time. Using the
proposed modeling and monitoring solutions, we conduct
user study to investigate battery system run-time usage,
characterize user driving behavior, and study the impact
of user driving patterns on battery system run-time charge-
cycle efficiency, capacity variation and reliability, and life-
cycle economy. In summary, this work makes the following
contributions.

1. A Battery system modeling and analysis framework to
characterize battery system usage, including run-time
charge-cycle efficiency and long-term capacity aging,
from individual battery cells to the overall battery sys-
tem. The battery system modeling framework is vali-
dated against physical measurements and user studies.

2. An embedded monitoring system for run-time data
acquisition of user driving patterns and battery sys-
tem usage. A set of user studies have been conducted
with users with distinct driving behavior under differ-
ent road conditions.

3. Detailed data analysis to quantitatively characterize
user driving patterns, and their impact on battery sys-
tem run-time performance and lifetime reliability. An
analytical economic study is then conducted to inves-
tigate battery system lifetime economy and the eco-
nomic benefit of the emerging green-energy transporta-
tion technologies.

The rest of the paper is organized as follows: Section 2 sur-
veys related work. Section 3 introduces the proposed battery
system model. Section 4 describes the embedded monitor-
ing system and the user study we have conducted. Section 5
presents the results and analysis of experiments. We con-
clude in Section 6.

2. RELATED WORK

This section summarizes the current status of battery mod-
eling and user driving analysis, and indicates the challenges
of system-level battery system modeling and the impacts of
user driving effects on battery system performance.

2.1 Battery Modeling and Analysis

Driven by portable electronic system design, rechargeable
electrochemical battery technologies, in particular, Lithium-
ion batteries, have been actively studied in the recent past.
Due to the small form factor of portable devices, the battery
component used in a portable device only consists of one or a
few battery cells. Therefore, most work on battery analysis
focuses on individual battery cells.

A variety of empirical and analyical techniques have been
developed in the past to understand the battery charge—
discharge behavior and lifetime aging effects. Rakhama-
tov et al. presented a battery lifetime prediction numeri-
cal model which closely matches Dualfoil simulation results
and experimental measurements [14] [15]. This work, how-
ever, ignores the thermal effects, which have signicant im-
pact on battery aging (see Section 3). Santhanagopalan
et al. [17] developed two empirical electrochemical models
to characterize Lithium-ion battery aging process occurred
during battery charge—discharge cycles. The battery aging
models focus on the cell oxidation process, an dominant bat-
tery aging effects [2]. J.Vetter et al. [5] conducted detailed
physical analysis of the Lithium-ion batteries electrochemi-
cal aging phenomenon, and modeled the aging effects. Peng
Rong et al. [13] proposed a battery cell model to estimate
battery capacity by considering battery cell cycle aging ef-
fects, such as temperature effects and capacity fading. This
model considers the impact of temperature and cycle aging
on the battery cell state of charge. However, this model con-
figuration requires many physical and empirical parameters
(over 15), and is difficult to adopt and calibrate in practise.

Limited work has considered battery system modeling tar-
geting clean-energy transportion. Recent studies by Na-
tional Renewable Energy Laboratory [21] and Argonne Na-
tional Laboratory [10] discussed the battery system model
using the equivalent circuit method to capture the battery
run-time charge-discharge cycle behavior. These battery
system models assume homogenenous conditions within a
battery system, and ignore inter-cell capacity variation and
heterogeneous thermal effects. As a result, these models are
unable to capture the intra-battery system heterogeneities,
and the impact on battery system run-time performance and
long-term life cycle.

2.2 User Driving Studies

Driving analysis has drawn significant attention in the past,
as user driving patterns directly affect traffic conditions,
fuel usage, and the corresponding CO2 emissions and en-
vironmental impact. The East-West Gateway Coordinating



Council was among the first to utilize GPS instrument in
user driving analysis [11]. In the 2002 St. Louis Regional
Travel and Congestion Survey, GPS devices were used to
investigate trip acquisition for a subset of the survey partic-
ipants. Lin et al. [7] collected vehicle data(speed and acceler-
ation) in three cities to study the driving behavior. In this
work, speed and acceleration intensity and duration were
considered to characterize various driving cycles in three
cities. From July 2001 to June 2003, Bor Yann Liaw col-
lected data from a fleet of 15 Hyundai Santa Fe electric SUVs
operated in Oahu, Hawaii. These data were collected by de-
ployed on-board data acquisition system [6]. He proposed
to use “Driving Pulse” [6] to segment trips and apply fuzzy
logic rules to set the boundaries for driving pattern recog-
nition. In 2004, United States Environmental Protection
Agency conducted a mobile source emission factors research
in Kansas City [16], including 5-summer day and 5-winter
day per dirver vehicles and 60 drivers were involved to study
the CO2 emissions and environmental impact.

Recently, user driving studies began to consider hybrid ve-
hicle technologies. In 2007, Gonder et al. [4] used the real-
world driving cycles from St. Louis Regional Travel and
Congestion Survey [11] to simulate the energy consumption,
battery system performance and operating characteristics of
PHEVs. Moawad et al.studied hybrid vehicle performance
under electrical dominant mode and blended mode com-
pared againest the conventional internal combustion engine
vehicles [9]. They also evaluated the control strategies and
their impact on energy usage. The drive cycles data they
used are measured by the U.S. EPA [16].

2.3 Challenges of Battery System Modeling &

User Driving Studies
The past studies highlight a number of challenges of bat-
tery system modeling and investigating the impacts of user
driving behavior on battery system performance.

1. Within (P)HEVs, the battery system consists of nu-
merious battery cells, organized in complex topologies.
In order to understand the overall battery system run-
time performance and lifetime reliability, battery sys-
tem modeling requires accurate and fast characteriza-
tion of all the battery cells, as well as inter-cell inter-
actions. More specifically, within a (P)HEV battery
system, the run-time usage and aging effects are het-
ergeneous, which directly affects the battery system
performance and reliability. Existing work however,
either focused on analyzing individual battery cell, or
assuming homogeneous battery conditions, is not suit-
able for large-scale battery systems.

2. User driving behavior has direct impact on (P)HEV
battery system run-time performance and lifetime re-
liability. User driving pattern analysis is thus essen-
tial for accurate battery system modeling and analysis.
Most recent work on user driving analysis focused on
conventional internal combustion engine vehicles. User
driving characteristics with direct impact on battery
system, e.g., acceleration, were mostly ignored in the
existing study. Data acquisition is another concern.
GPS and accelometer data are noisy. Data accuracy

was largely ignored in the past studies. Furthermore,
due to the technology limitation, data acqusition in the
past studies required complex and bulky equipments,
e.g., both intrusive and inconvenient to the partici-
pants, resulting in serious limitions to the scope of the
studies. User privacy concerns were largely ignored in
the existing studies.

3. BATTERY SYSTEM MODELING

This section presents system-level modeling and analysis
techniques targeting (P)HEV battery systems.

The battery systems in (P)HEVs are mainly based on Lithium-
Ion rechargeable electrochemical battery technology, which
is bulky, expensive, unreliable, and potentially dangerous.
They have become a primary barrier to (P)HEV adoption
and market penetration. The operation of PHEV and HEV
batteries are further affected by various user and environ-
ment dependent effects. Accurate battery system modeling
is thus essential for understanding (P)HEV battery system
performance, lifetime reliability, as well as the corresponding
fuel usage, and environmental impacts.

We propose to conduct battery system modeling and analy-
sis. Our goal is accurate and comprehensive characterization
of the battery system performance, including both run-time
charge-cycle efficiency, and long-term cycle life as a function
of the aging effects. The proposed battery system model-
ing, combined with user driving behavior modeling (see Sec-
tion 4), will further enable accurate characterization of the
impact of user driving patterns on battery system run-time
performance and life-cycle economy.

3.1 (P)HEV Battery System Overview

As illustrated in Figure 1, a (P)HEV battery system con-
sists of a large number of electrochemical battery cells (e.g.,
100s—1000s), connected in parallel and/or serial, providing

sufficiently high output voltage and driving current. A (P)HEV

battery system is typically characterized using the following
design metrics.

e Energy capacity: determines the maximum avail-
able energy that can be provided by the battery sys-
tem to a vehicle within a battery charging cycle, hence
the duration that the vehicle can operate in the elec-
tric mode and the corresponding fuel saving poten-
tials. Compared against other electrochemical storage
technologies, such as Nickel-metal-hydride, Lithium-
ion offers superb energy storage density (Wh/hg or
Wh/L), hence higher total energy capacity under the
same weight and form factor constraints, and thus have
become the mainstream battery solution in emerging
PHEVs.

e Peak power: determines the maximum instantaneous
power (W/kg or W/L) that can be delivered by the
battery system to the vehicle. Note that, energy ca-
pacity and peak power are two distinct performance
measures. Energy battery cells optimized for energy
storage capacity and power battery cells optimized for
peak power have been developed in the past. In this
work, we propose to integrate both energy cells and
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Figure 1: (P)HEV battery system architecture.

power cells in battery system design, thereby optimiz-
ing both energy capacity and peak power characteris-
tics of the battery system.

e Cost: The total cost of the battery system is con-
tributed by both the energy storage units and the power
electronics control components. Battery system cost
has been the primary challenge of the (P)HEV adop-
tion and market penetration. For instance, the bat-
tery system in a 50-mile PHEV contains over 1,000
Lithium-ion battery cells, with the total cost over $38,000.

e Safety: Electrochemical battery cells contain hazardous
chemical content. In particular, Lithium-ion battery
is chemically unstable under high temperature, which
may cause outgassing and risk of fire from damage or
heating. Safety is another important design issue.

e Lifetime: The battery system lifetime is character-
ized as long-term cycle life, i.e., the total number of
charge—discharge cycles before the battery system ca-
pacity permanently degrades below certain threshold.
(P)HEV imposes stringent lifetime constraint to bat-
tery systems. For instance, Automotive vendors typ-
ically targets a 15-year battery system life guarantee
with maximum allowed 20% capacity degradation.

3.2 Run-Time Charge-Cycle and Long-Term
Cycle Life Analysis

This section focuses on modeling and analysis of the run-
time charge-cycle performance and aging-induced battery
capacity fading effects.

A battery cell is the atomic energy storage unit, which con-
sists of a cathode and an anode embedded in electrolyte.
Battery run-time usage, i.e., charge and discharge, is a re-
sult of a series of electrical-chemical reactions — the anode
receives or releases electrons during charge and discharge.
The performance of battery cell can be characterized using
the following two metrics, run-time charge-cycle efficiency
and long-term cycle life. The former metric models battery
run-time usage or energy delivery. The later metric models
battery lifetime reliability due to run-time aging effects.

3.2.1 Run-Time Charge and Discharge Cycle Analy-

SLS
The run-time charge status, SOC;, of battery cell i, during
a run-time driving cycle, is defined as follows:

1 Nt .
S0C(t) = SRS ;(/t0 m><v,'(t)zi(t).dt—i—ci(to).wi(t)),
(1)

where ¢;(to) is the fully charged capacity of energy stor-
age unit ¢ at to; 4:(¢), v;(¢) and «;(t), are unit i’s run-time
current, voltage, and the corresponding DC-DC converter
efficiency. w (t) models long-term aging or capacity fading,
which will be explained next.

3.2.2 Battery Cell Long-Term Capacity Aging Effect
Capacity fading is a known effect that affects Lithium-Ion
rechargeable battery. Battery capacity fading is caused by
several aging effects, including self-discharge, electrolyte de-
composition, and cell oxidation [2] [5]. Among these, cell
oxidation is most significant, which leads to a film (called
solid-electrolyte interphase) gown on the electrode and in-
crease battery internal resistance, and thereby reducing bat-
tery capacity.

Vouti (t) = Voc; (t)*(nsai 77]sc,;)*(770hmai 7770h,mci)7(77d1?j_‘fa,; (?dzﬂci ),
2

where Voc; is unit ¢’s open-circuit voltage, Msa; (Mse; ), Nohma;
(Mohme; ) and Naiga, (Nasge,), are the surface overpotential,
ohm overpotential, and concentration overpotential of unit
©’s anode (cathode), respectively. Surface overpotential is
due to electrochemical reaction between the electrodes sur-
face and the electrolyte. Ohm overpotential and concentra-
tion overpotential are due to ion migration and diffusion in
the electrolyte. The above equation can be further simplified
as follows:

Vout, (t) = Voc, (£)—is (£) X Pinternat, (1) —Ai In(1—&; (£)w; (£)*1 ),
3)
where Tinternal; (t) is the battery cell internal resistance, \;
is an experimentally determined constant. &;(t) and x;(t)
denote the temperature dependence of the diffusion coeffi-
cient of the active material, which can be obtained using
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the Arrhenium temperature dependence equation [?]. w;(t)
models long-term aging, which follows:

wi(t) = 1-

1
0]
Z(t) X Tinternal; (t) — (VOCZ‘ (t) —
A

chtvﬁi) )} ml(t)(.4)

i
exp(

Recent study has shown that, the oxidation process has
strong temperature dependency [13]. When the battery sys-
tem is idle, the aging process is determined by the ambient
temperature. During run-time charge—discharge cycle, the
aging process is further accelerated due to the battery self-
heating effects. More specifically, both 7interna; and Voc are
temperature dependent, as follows:

dr t “Factive
%ﬂ() =k- Ne - € T +W7 (5)

where T'(t) is the run-time battery temperature profile. k
and n. are constant values. Eq,ctive is the activation energy,
and ¢ = E%Ci“;e, and T'er is the reference temperature.

In addition, Voc is also a function a temperature. Following
the Nernst equation, we have,

dVoc(t)
dt B Ne - Fcocfficient

_ Reoeyficient - Temperature (%)

In@Q  (6)

where n. is number of electrons transferred, Feoef ficient is @
Faraday’s constant, Rcoefficient and ) are constant values.

3.3 Battery System Architecture Model

A (P)HEV battery system consists of a large number of
energy-storage units. Manufacturing tolerance, and het-
erogeneous run-time usage and environment, in particular,
thermal effects, lead to significant degradation and varia-
tions among energy-storage units. Figure 2 shows the capac-
ity fading measurement results we conducted on 30 Lithium-
Ion battery system modules in a PHEV. It shows that, over
40% capacity variation is observed among the 30 modules.
As the overall system capacity in conventional battery sys-
tem is determined by the weakest cell, the heterogeneous
aging effects seriously affect battery system long-term cycle
life. Accurate battery system system-level modeling is thus
essential.

We propose to conduct battery system system-level model-
ing to characterize the overall battery system run-time per-
formance and long-term cycle life. Given an battery system

consisting of N energy storage units (Lithium-Ion and ul-
tracap cells), and the connectivity information, the battery
system run-time charge status is modeled as follows:

dCcﬁcr’L’c t —
lect d;NxN]() =Knxw < A l(t) x I(t) +

Celect'r‘ic[NXN] (to) X ds-zmd7><l\1](t)7 (7)
t

where matrix Ceeciric[n x N (t) is a diagonal matrix that mod-
els the run-time charge capacities of the N energy-storage
units. Matrix K|y n] models the battery system topology
and the corresponding current distribution I(¢) among the
N units. Matrix Qnxnj models the run-time aging of in-
dividual units. Matrix A(¢) models the DC-DC converter
efficiency of the N units.

The equation above allows us to characterize the battery sys-
tem run-time performance and aging effects by characteriz-
ing the charge—discharge current, depth of charge—discharge,
process variation of individual units, and thermal effects.
Since the aging effects have strong temperature dependency,
thermal modeling is critical for battery system system-level
modeling. Given the run-time current charge and discharge
profile, the battery system run-time thermal profile can be
modeled as follows:

Cheat[NxN] * dT[Ndi;”(t) = Gvxny - Tivxay(t) + Py (t),

(8)
where matrix Cpeqt[v x v) models the heat capacity of the IV
units. Matrix Gy« ) models the thermal conductance be-
tween adjacent units. Py1)(t) models the run-time power
dissipation of individual units.

3.3.1 Frequency-Domain Analysis

Computational complexity is the primary challenge for bat-
tery system system-level modeling. A (P)HEV battery sys-
tem contains a large number of energy storage units. The
run-time behavior of individual units must be accurately
modeled. The battery system run-time usage changes from
second to second, and the long-term aging effects vary from
month to month. Accurate and fast modeling of an battery
system consisting of a large number of units over such a large
time scale range is challenging. battery system modeling is
further complicated by thermal analysis, which is essential
for accurate battery system cycle life analysis. It is known
that thermal analysis has high computational complexity.

To address these challenges, we have develop a unified bat-

tery system modeling framework using novel multi-scale frequency-

domain analysis techniques.

Using Laplace transformation, Equation 8 follows:

q—1
Ki[lxN] Power[NXl]
T - :
(vx1) (8) (; s —pi ( p +
Cheatnx N - Tinx (0)) (9)

where p;is the ith order pole for the circuit, K;[;x yjare the
residues for all interested points of all the power numbers.
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Figure 4: Battery run-time charge-cycle modeling validation.

Next, we have:

~1/po —1/m —1/pg—1

k1, mo,;

DRV B v I
_1/178 _1/]9({ —l/pgi1 kq,j Mg—1,j
(10)

By calculating the poles and residues, we can transfer the
frequency-domain to time-domain, hence the temperature
function of time domain as:

T; () = Z kp-e”" - (Poweri (t) + Cheat - T3 (0))  (11)
=1

Using frequency-domain analysis, battery system’s run-time
charge-cycle efficiency and long-term cycle life can both be
modeled efficiently and accurately.

3.4 Battery System Model Evaluation
The proposed battery system model has been validated using
real-world measurement results.

3.4.1 Battery Aging Effect Validation

The proposed long-term cycle life modeling is validated against
the measurement results of Bellcore’s PLION battery [20][1][13].

we evaluate battery cell aging effect as follows:

e The impact of battery discharge rate: We consider dis-
charge current at {lC, %C} where 1C defines the
battery discharge rate at which the battery will be
discharged from full charge to zero in an hour at room
temperature. Given the target the battery cell, 1C
equals 42mA. This study considers both 1C' and %C
battery discharge rates. Figure 3 shows that the pro-
posed model can accurately characterize the battery
aging effects as a function of the discharge rate.

The impact of temperature: As described in this sec-
tion, thermal effects have direct impact on battery life.
In this study, we consider three different temperature
settings, from 20°C to 40°C. The simulation results
are shown in Figure 3, which is consistent with the
measurement results from the literature. As shown in
Figure 3, as the battery temperature increases, battery
cell capacity degrades more significantly.

3.4.2  Short-Term Energy Estimation validation

We validate the proposed battery run-time charge cycle mod-
eling by comparing it against the measurement results from
user studies.

Figure 4 shows that the battery run-time charge-cycle anal-
ysis accurately matches the measurement results of three
users’ driving profiles using EEtrex PHEVs. Overall, six
user studies have been conducted, and the other three stud-
ies show similar results.

In summary, these studies demonstrate that, the proposed



modeling and analysis framework can accurately character-
ize the run-time charge-cycle performance and long-term ag-
ing effects of battery systems.

4. USERSTUDY DESIGN & DEPLOYMENT

This section describes how our user study is designed and
conducted. This study targets run-time data collection of
user driving behavior and pertinent hybrid vehicle operation
information, as needed to investigate user driving patterns,
(P)HEV battery system performance, and gasoline usage.

As discussed in Section 2, the user study conducted in Kansas
city is one of the largest community based studies. This data
set is publicly released for research purposes. It contains
speed and gas usage in second by second time granularity,
and acceleration can be deduced from the speed informa-
tion. Using this data set, we have plotted the relationship
between user driving behavior and energy use. As shown in
Figure 5, vehicle energy use is potentially correlated with
user driving behavior. Thus, our proposed study is designed
to investigate the following key research questions:

e How does driving behavior differ between hybrid power
train, and conventional technologies? How to assess
the performance of hybrid power train in real-world
contexts?

e How do real-world gasoline, electricity consumption
and battery life vary with driving behavior in advanced
vehicles?

According to the literature survey, there have been some
works in fuel economy testing and modeling for certification
and comparison purposes. These works were based on a lim-
ited number of driving cycles designed to represent typical
profiles of speed and acceleration [19]. Researchers currently
use these same cycles in simulation and optimization studies
for advanced power train vehicles [18]. However, the stan-
dard cycles have been developed based on driving patterns
observed from conventional gasoline vehicles; their transfer-
ability to advanced vehicles is unknown.

To address this information gap, the primary objective of
our user study is to gather significant amount of real-world
driving behavior data, so as to (1) model the impact of driv-
ing behavior and other factors on battery systems based on
the data; and (2) increase drivers’ awareness of their eco-
nomic and environmental implications.

To gather real-time user driving data and energy use infor-
mation, we leverage both smart phones and on-board diag-
nostic devices (Figure 6, thus introducing minimal inconve-
nience to participants. Our data collection system consists
of three main components:

1. Vehicle run-time monitoring devices that will collect

data generated by the vehicle on-board diagnostics (OBD)

system, to gather data in real-time, at a second-by-
second time scale. OBD is a term to describe a ve-
hicle’s reporting capabilities and the OBD-II specifi-
cation has been made mandatory for all vehicles sold

in the United States since 1996. Vehicle owners can
access information on various vehicle sub-systems via
an OBD-II cable. The data gathered in our study in-
clude physical battery and gasoline usage data, such
as battery current and state-of-charge (SoC).

2. Personal mobile devices, such as smart phones, car-
ried by individual drivers to gather driving patterns
and trip information using built-in sensors, such as
GPS and accelerometer. These sensors can monitor
location, speed and acceleration.

3. A computer server to collect and store monitored infor-
mation for further analysis and exploration. The data
are gathered by the OBD devices and personal mobile
devices, then transmitted to the computer server by
the personal mobile devices.

Table 1 lists the specific types of information collected dur-
ing the user study and the corresponding collecting frequency.
In terms of battery system profile, related data are mon-
itored under the guidance of the proposed battery system
simulator which has been discussed in Section 3. Current,
ambient temperature and initial SOC need to be collected
at run-time to feed into the simulator. SOC values through
the whole trip are also collected for model validation. As for
user driving behavior, it can be described by acceleration
and speed values. Unlike previous user studies, acceleration
is monitored directly by accelerometer to avoid the accuracy
issue discussed in Section 2. Other related location informa-
tion, for instance, latitude, longitude and altitude, are also
captured to characterize the trip features, such as road con-
dition, trip length, etc.

Nowadays, mobile smart phones are equipped with multi-
ple functionalities including GPS, WiFi, Bluetooth and ac-
celerometer. Six HTC Hero and Magic smart phones are
used in the study. They are all based on the Android OS,
which supports a rich sensing framework. A software tool
has been developed on the Android platform to automati-
cally capture the information generated by built-in GPS, ac-
celerometer, and from Bluetooth connection with the OBD-
II interface. Volunteers were asked to take the smart phones
whenever they drive to collect related data. During each
trip, volunteers only need to press corresponding buttons to
record trip start and end. Timestamped information can be
delivered to the computer server automatically for further
processing and analysis. The user-friendly GUI of the tool
is shown on the right in Figure 6.

In total, six individuals from University of Colorado at Boul-
der participated in this study. One of them is a graduate
student and the other five are faculty members. Two of the
participants are female. Two different plug-in hybrid vehi-
cles were used for testing during the user study: one was
a Ford Escape and the other was a Toyota Prius. Both of
them used custom battery system. Data collection devices
were deployed on all of the vehicles. The central picture in
Figure 6 illustrates one example of the mobile phone deploy-
ment for a vehicle in the study. Two smart phones were used
at the same time for each vehicle, so we could compare the
gathered data afterwards and analyze data accuracy. Note
that in the current setup, the phones need to be fixed on the
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windshield inside the car and the screen need to face straight
to behind in order to minimize the noise of acceleration. We
are in the process of developing the next-generation setup,
which will not have this constraint.

S. EXPERIMENTAL EVALUATION

The data collected in our user study provide valuable insight
into users’ driving behavior, as vehicle design, acceleration,
speed, and slope are critical factors to determine the re-
quired power capabilities of the hybrid vehicle components.
In this section, we first conduct quantitatively analysis of
user driving behavior, then explore its impact on the energy
usage of battery system. We show that, variation of energy
usage profile is highly related to the driver’ specific driv-
ing behavior. Finally, we present the long-term economical
analysis for (P)HEV and provide optimization suggestions.

5.1 Driving Behavior Analysis

Figure 7 shows the routes taken by our six drivers in their
regular driving activities. These routes vary significantly
from driver to driver. For instance, our faculty participants
traveled more on highway and city roads, while the student
spent most of his driving time between home and points
of interest. The routes also vary in road condition, which
is primarily represented by slope and speed limit. Table 2
compares the driving trips of the six participants. As shown
in the table, users’ (daily and total) driving trips vary in
both time and distance.

Next, we plot the distribution of each participant’s driving
behavior as histograms in different measures. Specifically,
we compare the distributions of different drivers’ trips with

regard to speed, acceleration, slope, and time of day. Fig-
ure 8 compares the speed histograms of different drivers.
Since different types of road have different speed limits, peo-
ple who drive mostly on local or city roads (e.g., driver 5)
generally have a lower speed profile than people who drive
on freeway (e.g., driver 1, 4). A vehicle’s movement is di-
rectly affected by acceleration, i.e., change in speed in a
given amount of time. Here, we consider both the exact
value of acceleration and the change frequency of accelera-
tion (change of more than 0.5 meter/sec® in our analysis).
As shown in Figure 9 and Figure 10, different people drive
differently with regard to acceleration. Some drive more
aggressively, with higher acceleration values and more ac-
celeration changes, while others drive more smoothly, with
lower acceleration values and fewer acceleration changes.
Figure 11 shows for each driver the histogram of the slope
in his/her trips, measured as rad per minute. While some
participants drive mostly on level roads (e.g., driver 5, 6),
others also drive in the mountain with more diverse slopes
(e.g., driver 2, 3, 4). One other important factor in peo-
ple’s driving behavior is the time of day when they drive.
Figure 12 shows the corresponding distributions. The time
of day when a person drives depends primarily on his/her
professional identity and work schedule. For instance, our
faculty participants usually drive in the early morning and
late afternoon, while the student drives in late morning and
late evening. Time of day when people drive is also related
to traffic condition (e.g., morning rush hour), which should
be incorporated in user driving behavior analysis.

Based on the driving data we have collected in the user study
and the plots above, people’s driving behavior differ from
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Table 1: Information Collected from User Study

Battery system

User driving behavior

Type Frequency (Hz) Type Frequency (Hz)
Current Acceleration 3
SOC Speed T
Ambient temperature 1 Location T
Voltage Slope 1
Average system temperature Time n/a
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Table 2: Comparison of Different Participants’ Driving Trips
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Driverl | Driver2 | Driver3 | Driver4 | Driver5 | Driver6
Total time (s) 38,382 26,218 22,188 37,498 38,997 25,249
Total distance (mile) 318.55 | 177.76 | 166.53 | 322.42 | 168.28 39.93
Total days 14 9 5 9 11 4
Time per day (s) 2,742 2,913 4,438 4,166 3,545 6,312
Distance per day (mile) | 22.75 19.75 33.30 35.82 15.30 9.98
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Figure 12:

each other significantly. Not only do they vary in speed
and acceleration, they also vary in slope and time of day,
which are also related to road conditions, traffic conditions,
etc. Therefore, to gain a comprehensive understanding of
how battery systems perform in real-world scenarios, it is
essential that we obtain detailed driving behavior informa-
tion from individual drivers. In addition, the insights we
gain from people’s driving behavior can in turn be utilize in
better battery system design and run-time optimization.

5.2 Driving Mode Categorization

As shown in the driving behavior analysis, people drive very
differently. Such differences in people’s driving behavior in
turn affect vehicle battery energy use. To facilitate our anal-
ysis of vehicle battery energy use, it is beneficial if we could
extract and categorize coherent driving modes from people’s
driving data, which correlate directly with vehicle battery
energy use. Specifically, our goal is to categorize different
driving modes using speed, acceleration, and slope informa-
tion in people’s driving data, which correspond to different
current charge—discharge profiles (thus battery system en-
ergy use).

We first consider acceleration and slope using the formula
(a + g - sinf), where a is acceleration, g is gravity, and 6 is
slope. Therefore, this formula measures the combined accel-
eration by incorporating the acceleration caused by gravity
when driving along a sloped road. Using the combined ac-
celeration formula, we classify users’ driving trips into three
groups based on how much the combined acceleration has
changed: stable, mild, and dynamic, which correspond to
small, medium, and large acceleration changes, respectively.
The intuition is that how much the acceleration changes af-
fect how much the power demand changes, thus the current
profile. In the stable and mild scenarios, the current profile
roughly correlates with the acceleration profile; while in the
dynamic scenario, the current profile changes quickly and
there is less correlation with the acceleration profile. Be-
sides the combined acceleration profile, we also consider the
speed profile for each of the acceleration categories, as speed
is another factor that affects the current profile. Specifi-
cally, for each of the three categories of combined accelera-
tion, we consider three different speed groups: low, medium,
and high speed. In addition, we consider the “parked” sce-
nario, when speed equals to zero and there is no acceleration
changes.

Time of day histogram comparison of different drivers’ trips.

Therefore, we build up the ten modes to capture the rela-
tionship between current profile and acceleration, slope and
speed. Table 3 shows how the ten modes are defined, where
the boundary values are selected based on our analysis of
the six-user driving data set. Given the driving mode cat-
egorization, we can then classify each user’s driving traces
into the driving modes. Table 4 shows the composition of
each user’s driving modesl. As shown in the table, the per-
centage of specific driving modes in the six users’ driving
data vary significant, which in turn have very different im-
pact on the battery system.

5.3 Short-Term Energy Usage Analysis

Given users’ specific driving behaviors and the composition
of driving modes in their driving data, our next step is to
evaluate the impact of users’ driving behavior on PHEV bat-
tery system energy use. Specifically, we want to construct
a mapping from the speed, acceleration, and slope infor-
mation in users’ driving data to the corresponding PHEV
current charge—discharge profile. Our goal is to construct
one mapping for each driving mode, as the driving modes
vary significantly and their mappings can be very different
from each other.

We use a k-order polynomial regression model to construct
a mapping under each driving mode. We choose polynomial
regression based on the assumption and general observation
that the relationship between current and (speed, accelera-
tion, slope) is roughly polynomial with a relatively low order.
Specifically, for each driving mode, we consider the following
k-th order polynomial regression model:

ai-S" +b;i- A+ ¢ -G,

where I,S,A,G are the current, speed, acceleration, and
grade, respectively; and a;,b;, ci(i € [0,k]) are the polyno-
mial regression coefficients. In our experiments, we choose
k = 4, which produces regression models with small error.
As shown in Table 5, for three different users, using 4-th or-
der polynomial regression, we can achieve 15-18% regression
error, which are reasonably good given the relatively short
and noisy traces we have for each driver.

5.4 Long-Term Energy Usage Analysis



Table 3: Driving Mode Categorization

change of acceleration speed mode
a+ gsin (m/s2) (mph)

0 0 1

(0, 0.5 (0, 20] 2

(0, 0.5 (20, 50] 3
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(0.5,1.4 (0, 20] 5
(0.5,1.4 (20, 50] 6
(0.5,1.4 > 50 7

> 1.4 (0, 20] 8

> 1.4 (20, 50] 9

> 1.4 > 50 10

Table 5: Regression Error of Three Different Drivers
Driver | 2 | 3] 4
Regression Error | 15.23% [ 18.65% | 17.25%

Given users’ short-term driving behavior and their corre-
sponding battery energy usage, assuming users’ driving be-
havior do not change (significantly) over a longer period
of time, we can then estimate the long-term energy usage.
Since the cost of the battery system replacement is very high
(over tens of thousands of dollars), the long-term battery
system energy usage estimation can be used to determine
the cost effectiveness of a PHEV and how to make the best
use of the battery system.

Long-term thermal effect analysis is important because the
temperature distribution is nonuniform in a large-scale bat-
tery system. Usually, we can only measure the maximal and
minimal battery temperature, i.e., we cannot obtain detailed
thermal distribution information by measurement. In addi-
tion, since the individual battery cells have different aging
effect at different locations, the battery system thermal dis-
tribution analysis is a key problem for battery system long-
term energy usage analysis. Specifically, thermal effect of
the battery system depends on two factors: ambient temper-
ature and dynamic charging/discharging operations. Since
the dynamic charging/discharging operations have substan-
tial impact on the long-term thermal effect, we incorporate
the battery system thermal effect model to capture the ther-
mal distribution of the long-term battery system.

Table 6 shows the estimated thermal distribution (min, max,
mean, and variance) in a 15-year battery system for each of
the six drivers. As we can see in the table, different driving
behaviors lead to different long-time thermal distribution in
the battery system.

Table 7 shows the 15-year battery system capacity distri-
bution for the six different drivers. The inital battery sys-
tem capacity is 5.096 KW h. The table shows that the bat-
tery system aging varies significantly among the six drivers,
ranging from 13.9% to 38.7%. More importantly, due to the
heterogenous thermal distribution in a battery system, the
aging effects vary significantly among the individual battery
cells.

Table 4: Composition of Driving Modes in Different Users’
Driving Data

Driver 1 2 3 4 5 6
Mode 1 (%) 20.8 | 14.5 | 11.0 | 18.5 | 35.0 | 65.3
Mode 2 (%) 2.9 1.9 1.7 3.3 14| 23
Mode 3 (%) 42| 57| 44| 85| 6.1 | 80
Mode 4 (%) 9.5 9.7 | 11.5 731199 | 5.7
Mode 5 (%) 4.1 1269 | 13.7 | 24.7| 0.2 2.0
Mode 6 (%) 6.3 |23.7(21.1]204| 57| 6.3
Mode 7 (%) 22.8 | 11.6 | 25.1 6.7 284 | 34
Mode 8 (%) 0.8 | 4.2 39| 82 0.0 1.2
Mode 9 (%) 2.7 1.5 59| 23| 07| 4.5
Mode 10 (%) | 26.0 | 0.3 1.7 0.1 2.6 1.5

6. CONCLUSIONS AND FUTURE WORK

User-centric driving pattern and battery system energy us-
age analysis is critical for PHEV manufacturers, drivers and
potential consumers. In this paper, we have developed a
large-scale battery system model for PHEVs, which supports
short-term energy usage profile analysis, long-term thermal
distribution and lifetime estimation, based on heterogeneous
real-world user driving behavior. We have developed a real-
time user driving data acquisition system and conducted a
user study on six participants with diverse driving patterns.
Detained evaluation results have show that our batter sys-
tem model can accurately estimate real-world battery sys-
tem energy usage; user driving behavior affects battery sys-
tem usage significantly in both short term and long term.
Generally, steadier and smoother driving behaviors are bet-
ter for electric-drive vehicle lifetime and cost saving.

This work is a first step towards incorporating user driving
behavior into the modeling and analysis of battery system
energy usage analysis for emerging green-energy transporta-
tion. As our future work, we plan to further improve our
data acquisition system such that it imposes minimal ob-
struction or inconvenience on the drivers while collecting
real-time vehicle and user driving data with high accuracy.
We will also investigate techniques to automatically catego-
rize driving modes and improve the accuracy of the regres-
sion model.
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