
Impact of Non-stationary Workload on Resource
Reservation Based Slack Reclamation

Technical Report CU-CS-1053-09
May 2009

Wang-ting Lin and Gary Nutt
Department of Computer Science

University of Colorado
Boulder, Colorado 80309

Email: {linwt, nutt}@colorado.edu

Abstract—In open real-time systems with a non-stationary
workload, tasks can be dynamically mapped to servers. If a
server-based, slack reclamation scheduler is used, each task
reserves a fraction of the bandwidth based on its resource esti-
mation. However, the slack time scheduler makes no guarantee
to a task beyond its processor capacity reserve, i.e., the scheduler
cannot guarantee that a soft real-time task will receive a higher
quality of service than is specified by its resource reservation.
Nevertheless users often assume that a desired quality of service
(QoS) can be achieved using an optimistic resource reservation.
Even though existing slack time schedulers perform well in a
closed real-time system (with well-behaved applications, station-
ary workloads, or excessive processor speed), their performance
can drop significantly when a task changes its workload. We
identify resource underbooking and overbooking problems in
non-stationary workloads, resulting in a denial of service (DoS)
phenomenon. We solve these problems by preventing DoS attack
on the slack time scheduler; we also allow any server to donate
slack time even when it is in an idle state. Finally, we introduce
a forward donation algorithm that helps existing slack time
schedulers reclaim extra slack time. By increasing the robustness
of the scheduler, it can be used with broader spectrum of
applications in an open real-time system.

I. INTRODUCTION

Our work focuses on systems such as cyber phyiscal sys-
tems (CPS) that support a hybrid workload composed of hard
real-time (HRT), soft real-time (SRT) and best effort (BE)
tasks. When a CPS relies on resource adaptive computation,
maps a BE task to its own server, or obtains SRT applications
from various vendors, its workload rarely remains stationary.
Reserving a fixed, periodic budget to process non-stationary
workloads imposes new challenges to the secondary slack time
schedulers.

In this paper we evaluate the performance of a non-
stationary workload by viewing the workload in phases. When
each task has a stationary workload at the same interval, the
system workload reaches the stationary state and the slack time
supply and demand reach an equilibrium state which supports
a constant level of QoS. By using the same statistical charac-
teristics of each workload in the short stationary timeframe, a

This is a longer version of a paper submitted for publication.

longer trace of workload with the same characteristics can be
generated for performance evaluation. If any task changes its
workload, the system enters a new stationary state providing
new QoS levels.

When a task overbooks resources, i.e. submits a lighter
workload, its less intense overruns lead to a low deadline miss
ratio (DMR) and a high QoS. When the slack time scheduler
produces a relatively high QoS system because of a light
system workload, it is difficult to identify any improvement
to the scheduler. I.e., scheduling slack time more effectively
and generating more slack time does not increase the QoS of
the system much when ample slack time is generated or tasks
are not asking for slack time.

We observe that when a non-stationary task changes its
workload by overloading its server, it does not change the
resource reservation of the other tasks but it may reduce
the QoS of all SRT tasks in the system. Since the slack
time scheduler tries to help SRT tasks beyond their QoS
resource reservations, such schedulers encourage SRT tasks to
underbook their resources in order to allow more tasks to be
admitted to the system. When a non-stationary task overloads
its server, it breaks the equilibrium state and decreases the QoS
of the system. We argue that any excess slack request due to a
significant resource underbooking should be controlled. If our
system detects that a task underbooks, it will not allocate slack
time to the task (although it still assures the reserve budget)
whose performance is excluded from system performance.
Otherwise, the performance comparison will be skewed.

Our experiments demonstrate cases where the previous slack
reclamation schedulers suffer from significant performance
drop due to a resource underbooking task; our DoS prevention
algorithm mitigates the performance degradation. We also
show that our forward donation algorithm reclaims additional
slack time compared to the existing slack reclamation al-
gorithm. As a result, when a task overbooks its resource,
forward donation can bring the system into an equilibrium
state with an increase in system QoS. The contribution of
this paper is to allow slack time algorithms to schedule non-
stationary workloads with a better performance by controlling
the damage caused by any task that exploits the fixed priority



vulnerability of the slack scheduler. By doing so, the scheduler
can be used in a broader range of systems.

II. RELATED WORKS

Mercer et al. used the computation rate ρ, expressed as
computation time C per duration of time T , to specify the
utilization, i.e. processor capacity reserve, instead of WCET

P
[1]. Each multimedia task specifies a range of computation
rates and a target rate, and the scheduler can vary its period
duration and/or its computation time as long as it maintains the
same utilization. As a result, the constraint of using WCET can
be removed. When a continuous media job overruns, its task
must wait until its next period for the budget replenishment.

In Deadline Deferrable Server (DSS), after a server’s budget
is exhausted it becomes idle until its deadline for replenish-
ment [2]. The bandwidth reservation of the Constant Band-
width Server (CBS) is similar to DSS but the budget can
be immediately replenished when it is exhausted [3]. Without
waiting for the budget replenishment like DSS, a CBS server is
more likely to meet the deadlines of the overrun jobs than DSS.
The resource isolation property allows CBS to deal with both
periodic HRT and aperiodic tasks in the same system. CBS is
similar to Total Bandwidth Server (TBS) except TBS requires
the exact knowledge of WCET for the correct behavior [4].

The Idle-time Reclaiming Improved Server(IRIS) [5] im-
proved CBS to allow the spare bandwidth to be distributed
more fairly among the SRT servers when the system is over-
loaded. Best-effort Bandwidth Server (BEBS) supports best-
effort tasks by processing them on an aperiodic server [6]. It
assigns priority to the legacy best-effort applications based on
run-time behavior of the tasks to make them more responsive.
BEBS assigns different period and utilization parameters to
the best-effort tasks to transform them into periodic tasks
based on whether they are I/O or computation bound tasks.
Whenever a slack time is generated, it will be used by the
any task that wants to use it. Greedy Reclamation of Unused
Bandwidth (GRUB) also dynamically allocates excess capacity
to the needy servers in direct proportion to their reservations
while maintaining a lower context switch count than CBS [7].
Since it requires very fine granularity of time while doing the
computation, the algorithm itself has large overhead.

HisReWri allocates spare CPU capacity (gain time) from
HRT and SRT tasks to other SRT tasks by monitoring the past
execution history and retroactively allocating the gain time to
tasks that executed using the fixed priority RM algorithm [8].

The BandWidth Inheritance (BWI) algorithm allows lower
priority tasks to inherit the priority from a higher priority task
which is blocked [9]. The CFA algorithm improves BWI by
monitoring the slack usage and allows the stolen slack time
to be recovered [10].

CASH extends CBS to allow slack time to be reclaimed
into the CASH queue where slack time are ordered by their
deadlines [11]. When an earliest deadline server is picked to
run, its deadline will be compared to the deadline of the slack
time in the CASH queue. The budget with the earliest deadline
will then be used first. The disadvantage is that a task which

needs more time to complete will have its deadline extended
before it completes and the task having slack time in the
CASH queue cannot release its next job until the slack time is
consumed. The Bandwidth Sharing (BASH) improved CASH
by reclaiming the slack time into the global BASH queue [12].
The slack can be donated to other tasks as early as possible,
e.g., to the job with the earliest deadline. The slack time in
the BASH queue is more resilient against idle intervals and is
independent of an idle interval length.

Except for the CBS style budget borrowing, BACKSLASH
adopts the back donation concept designed by HisReWri but
it integrates the back donation with EDF instead of RM [13].
BACKSLASH is similar in concept to CFA, but unlike CFA
it allows a SRT task to use a value lower than its WCET, e.g.
the mean execution time, for its resource reservation.

The four slack competition priority categories of BACK-
SLASH, in a descending priority ordering, are briefly re-
viewed as follows:

1) Donate to a server that has borrowed from its future
budget to finish its previous job and has the earliest
virtual (original) deadline in the back donation queue.

2) Donate to a server that has borrowed from its future
budget to process its current job and has the earliest
virtual (original) deadline.

3) If no server has borrowed from its future budget, donate
to a server that has the earliest deadline.

4) If no server is ready to run, donate to the idle task.
Caixue Lin designed SMASH that simultaneously supports

the hybrid workload by using Rate-Based Earliest Deadline
(RBED) [14] enhanced through Taxed-based Resource Allo-
cation Policy (TRAP) and EDF-based scheduling enhanced
through SMASH slack reclamation [15]. SMASH improves
the performance of BACKSLASH by using slack preservation
algorithm of BASH. For easier discussion, the irrelevant mod-
ules like the BASH slack preservation algorithm, TRAP, and
the Rate-Based mapping of the best-effort tasks are separated
from SMASH.

III. DOS ATTACK TO THE SLACK SCHEDULER

We call the preemptive earliest deadline first (EDF) al-
gorithm safeguarded by an admission manager the primary
scheduling policy, which guarantees resource isolation be-
tween servers [16]. In order to conserve the server budget for
jobs that arrive later than the periodic server activation points,
both BASH and BACKSLASH change the periodic behavior
of the primary scheduler causing the server period to drift.
They allow server activation to be delayed to the next job
release in order to provide a full budget to the job.

If a server’s reserved budget is not used by its job, slack time
is generated and it can be donated to other servers according
to a secondary, slack, scheduling policy that is independent
of the primary scheduling policy. The secondary policy is
activated only when slack time is generated by the primary
policy, hence it cannot change the feasible EDF schedule.

Using a self-reserved future budget changes the deadline
and the borrowing state of a server, so it can influence the



decisions of the secondary scheduler. But, consuming slack
time (donated by peers) does not have the same side-effect.
Therefore, we distinguish budget borrowing from slack time
scheduling policy by identifying the former as the pacing
scheduling policy. The pacing policy allocates extra budget to
a server when the primary scheduler finds that it does not have
enough budget to finish its computation and the secondary
policy fails to provide it enough slack time from other servers.

There are two root causes of the DoS problem that can occur
in BACKSLASH. First, a server may constantly show the
need for slack time because its task underbooks the resource.
Second, when a server borrows from its future budget the slack
scheduler boosts its priority into a higher category. A task
can force its server into a higher priority state indefinitely by
submitting large jobs; we call this the fixed priority problem.
A server in a lower category always wins the slack time
competition against all servers in the higher categories. In our
earlier work in progress paper, we identified DoS attacks [17].
We refine those ideas by defining three levels of DoS attacks
on BACKSLASH in a descending priority ordering as follows:

Definition 1 (First Level DoS Attack). This attack is launched
by a server that enters into the BACKSLASH back donation
queue after it borrows from its future budget to complete a
job. It takes advantage of the first priority category and has
the strongest attacking power over the other slack reclamation
principles.

Definition 2 (Second Level DoS Attack). The second level
attack is waged by a server whose current job requires
enormous service time and the server continuously borrows
from its future budget in an attempt to complete the job. Even
though the second level DoS attack is not as strong as the first
level, it is the easiest to launch and it is very effective.

Definition 3. [Third Level DoS Attack] The third level attack
is waged by a server that tries to maximize its opportunities
to obtain slack donation in the third priority category.

A. First Level DoS Attack Example

Suppose three tasks, T1, T2, and T3, are submitted at time
t = 0 and three servers, S1, S2, and S3, with u1 = 8

48 , u2 =
33
99 , and u3 = 5

10 resource reservations are created to represent
the tasks respectively in figure 1. All jobs are released at the
beginning of each server period except that the second job of
T1, job1,2, is released at time r1,2 = 85. The first job of T1,
job1,1, overruns which needs 16 time units to complete, so it
causes the first level DoS attack to BACKSLASH. The first
job of T2 needs 35 units to complete, so job2,1 relies on 2
units of slack time to meet its job deadline at d2,1 = 99. Each
of the first four jobs released by T3 requires all 5 units of
time to complete, but each of the following jobs, from job3,5
to job3,9, requires only 4 units of reservation to complete.

Since S3 has the earliest server deadline dS3 = 10, it
executes job3,1 first. After job3,1 is completed, S1 executes
job1,1 for 5 time units until it is preempted by the release of
job3,2 on S3. When job3,2 completes at 15, S3 is set to the idle

S1 : u1 = 8
48 0 10 20 30 40 50 60 70 80 90 100

job1,1 ends
borrow

r1,2, dS1 = 133

S2 : u2 = 33
99 0 10 20 30 40 50 60 70 80 90 100

dS2 = 198
borrow

S3 : u3 = 5
10 0 10 20 30 40 50 60 70 80 90 100

Fig. 1. DoS by back donation

state. Since dS1 = 48 < dS2 = 99, S1 executes job1,1 until its
budget is depleted at 18. Because job1,1 is not completed, S1

borrows from its future budget with dS1 extended to 96. The
primary scheduler executes as usual until job1,1 is completed
at t = 36. S1 enters the back donation queue because it has
borrowed from its future budget to complete job1,1. After S2

executes job2,1 from 36 to 40, job3,5 arrives to S3 at 40
and it requires only 4 out of 5 units of budget to complete.
When S3 generates one unit slack time at 44, the secondary
scheduler kicks in, finds S1 in the back donation queue and
initiates the back donation process. From 44 to 45, both S2

and S3 spend one unit of budget each to run job2,1 for
one unit, so the other unit of time becomes slack time for
back donation to S1. Similar back donation continues until
job1,2 arrives at t = 85. The cross-hatched blocks mark the
slack back donations. The release of job1,2 at 85 activates S1

server with 8 units of budget and the server deadline is set
to dS1 = 133. After S2 executes job2,1 from 85 to 89 and
depletes its budget, the pacing policy allows it to borrow from
its future budget and extends its server deadline dS2 to 198.
Since dS1 = 133 < dS2 = 198, job1,2 runs from 89 to 90
and is preempted by the release of job3,10 at 90. After job3,10

completes at 95, job1,2 runs until 100 causing job2,1 to miss
its deadline d2,1 at 99. Please note that the server deadline
dS2 = 198 is different from job2,1’s deadline d2,1 = 99.

Even though S1 has no job to run from t = 36 to t = 85,
it still consumes slack time via back donation. If the back
donation does not occur, S2 could have obtained two units of
slack time from S1 to complete job2,1 before d2,1 = 99.

B. Second Level DoS Attack Example

Figure 2 is an example of a second level DoS attack on
the secondary scheduler of BACKSLASH where an enormous
job places its server in the second priority category for an
enormous duration. Suppose three tasks, T1, T2, and T3, are
submitted at time t = 0 and three servers, S1, S2, and S3, with
1
10 , 15

50 , and 60
100 resource reservations are created to represent

the tasks respectively. Further suppose that the DoS attacker
T1 requires 50 time units to complete each job. It may be
triggered by a programming error, a resource estimation error,
or a malicious client. Each job released by T2 requires 10 units
to complete, so it is a slack generator. Job3,1 slightly overruns
by 2 units and requires 62 time units to complete.

Since dS1 = 10 is the earliest deadline, S1 runs first until
it is preempted at time t = 1 where its reserved budget is



depleted. S1 borrows 1 unit of its future budget and extends its
server deadline dS1 to 20, so its original deadline dorigS1

= 10
will be used for the EVDF (earliest virtual deadline first) slack
competition. Since dS1 = 20 < dS2 = 50 < dS3 = 100, S1

uses its future budget from 1 to 2. The budget is depleted and
refilled as usual until t = 5 where S1’s server deadline dS1 is
extended to 60. Since dS2 = 50 < dS1 = 60 < dS3 = 100,
S2 executes job2,1 from 5 to 15. When job2,1 is completed
at 15, S2 generates 5 units of slack time and is set to the idle
state. The cross-hatched blocks represent the slack donations.
S1 wins the slack donation because it has the earliest original
deadline dorigS1

= 10 and there is no server in the back donation
queue to compete with it. Thus, S1 runs from t = 15 to 20
using the slack donation. Similarly, S1 dominates the slack
time from 60 to 65.

At t = 100, S3 has executed job3,1 for 60 time units using
its reserved budget. Even though 10 units of slack time is
generated, S3 does not receive any slack time because of the
DoS attack launched by S1. If the secondary scheduler can
prevent S1 from stealing the whole 10 units of slack time and
give 2 units to S3, S3 could finish job3,1 by its deadline at 100.
BACKSLASH can boost the priority of job3,2 in obtaining
slack time through back donation after job3,1 completes, but
the help comes too late for job3,1.

S1 : u1 = 1
10 0 10 20 30 40 50 60 70 80 90 100

borrow

EVDF

S2 : u2 = 15
50 0 10 20 30 40 50 60 70 80 90 100

donation donation

S3 : u3 = 60
100 0 10 20 30 40 50 60 70 80 90 100

miss

Fig. 2. Second level DoS before back donation takes place

Once a server borrows from its future budget, it can stay in
the second priority category as long as its job does not end. Its
virtual deadline remains at the fixed point and is very likely to
become the earliest if the server stays in the borrowing state
longer. Once its original deadline becomes the earliest, it only
loses the slack time competition to the servers in the back
donation queue. If a second level attacker finishes its job, it
enters into the back donation queue which gives it the highest
first level DoS attacking power.

C. Third Level DoS Attack Example

By reserving a relatively small period, a server’s deadline
can be relatively close to the time when the secondary sched-
uler kicks in. If it has the earliest deadline and there are no
servers in the first two slack competition priority categories,
it obtains the slack donation. It is difficult for a server to stay
at the pure third DoS attack level without entering the higher
priority levels, i.e. use more than the reserved budget without
borrowing. S2 of figure 3 represents an example of the third
level DoS attacker.

S1 : u1 = 3
6 0 10 20 30 40 505 15 25 35 45

donation

S2 : u2 = 2
10 0 10 20 30 40 505 15 25 35 45

donation

S3 : u3 = 3
16 0 10 20 30 40 505 15 25 35 45

S4 : u4 = 4.5
40 0 10 20 30 40 505 15 25 35 45

miss

Fig. 3. Third level DoS before back donation takes place

Even though this level of attack is not as strong as the first
two levels, this more subtle form of attack is more difficult to
identify and can remain stealthy. It is not easy to manipulate
the jobs to grab as much slack time as possible without ending
up borrowing from the task’s own future budget, i.e. remaining
as a pure third DoS level attacker. When a server borrows from
its future budget, its attacking power is upgraded to the first
and second level causing a mixed attack.

For simplicity, our example focuses only on the pure third
level DoS attack in figure 3 by carefully selecting service
times. Suppose four tasks, labeled T1, T2, T3, and T4, are
submitted at time t = 0 and four servers, S1, S2, S3, and S4,
with 3

6 , 2
10 , 3

16 , and 4.5
40 resource reservations are created to

represent the tasks respectively. Further suppose that job1,1,
job1,3, job1,4, and job1,5 donate 2, 2, 1, and 2 units of slack
time respectively, and job3,1 generates 1 unit of slack time. To
illustrate the pure third level DoS attack, T2 has a service time
pattern as 4, 5, 3, 4, and 3 units of time for job2,1 to job2,5.
A 5 units of service time means a 150% overrun. T4 reserves
4.5 units of budget for job4,1, but it requires 5 units of time
to complete. Since we already discuss this in our WiP paper,
we omit the detailed execution description of this example.
S2 is a pure third level attacker that steals slack time from

tasks with both shorter and longer periods, like S1 and S3. The
cross-hatched blocks mark the slack donations, and the dark
gray blocks mark the slack consumptions. If S4 needs 5 units
to complete its job before 40, it needs only 0.5 units of slack
time. Even though there are 8 units of slack time generated
before 40, S4 does not get any slack time because of the third
level DoS attack launched by S2.

D. DoS Prevention

We repeat the definition of estimation error from [17]:

Definition 4 (Estimation Error (EE)).

EE =
real service time of a job

estimated service time of a job
− 1

where “estimated service time” is used to reserve each task’s
budget per period.

A zero EE implies that the task has made a perfect
service time estimation. A positive EE indicates that the
task is underbooking the processor for this job, and thus is
a potential DoS attacker. A negative EE implies that the task
is overbooking processor time for this job.



A simple and effective solution to the slack scheduler DoS
attack is to prevent any job whose EE exceeds a threshold
from receiving slack time. During our experiments, we find
that a lookahead evaluation prevents a job from continuously
using the slack time after its EE exceeds the threshold. For
example, if a job’s EE exceeds the threshold after consuming
2 out of 10 units of slack time, a one-shot timer must be set
at 2 units from the beginning of the donation, otherwise the
job can consume all 10 units of slack time if there is no other
event that triggers the scheduler and preempts its execution.
The one-shot timer provides all other tasks a fair opportunity
to be reevaluated for the remaining 8 units of slack time. If
other events occurs before the timer expires, the superfluous
timer will be canceled.

We impose the following algorithm on the four slack
competition priority categories of BACKSLASH in order to
prevent the DoS attacks on its secondary scheduler.

1) For the first priority category, there is no job associated
with a server in the back donation queue, so EE is
calculated from a server’s previously completed job. The
slack time received through the back donation is counted
as the additional execution time of the previous job. Find
a server, whose EE is lower than the system specified
threshold, according to the EVDF ordering using the
first principle to receive the slack donation. If there is
no qualified server, try to find a server using the second
priority category.

2) For the second priority category, find a server whose
EE is lower than the specified threshold, according to
the EVDF ordering to receive the slack donation. If there
is no qualified server, try to find a server using the third
priority category.

3) For the third priority category, find a server, whose EE
is lower than the specified threshold, according to the
earliest deadline first ordering using the third category
to receive the slack donation.

4) If there is no qualified server in the above priority
categories, try to find the earliest deadline first server
which can be an idle server if there is no other waiting
server in the system.

IV. FORWARD DONATION

Definition 5 (Earliest Activation Time (EAT )). For a server
Si in the idle state, its EAT is defined as the earliest time for
the server’s lag — defined in RBED paper [14] — to become
zero or positive. If a server has a zero or positive lag, it can be
immediately assigned its full budget (cSi = Ri with deadline
one period away) and moved to the waiting state, where cSi
is the server budget and Ri is its resource reservation.

If a server, Si, is activated at its EAT by a timer and it
has no job to execute, its budget will be used to help other
servers as slack time. It is not a problem if the next job, which
requires Ri units of budget, is released on Si when the server’s
budget is replenished back to its full bandwidth. However,
any job which is released on Si and requires more than the

residual budget of Si after its budget is partially consumed by
other servers will miss the job deadline if there is no slack
time to help the job. Both BASH and BACKSLASH avoid the
problem by activating a server from the idle state when its job
is released.

Activating a server by using its job release solves the prob-
lem of wasting budget, but it introduces two other problems.
First, when a server Si receives a lighter workload than its
reservation and it is not activated, its budget cannot be donated
from the idle state. Second, the server may have consumed
slack back donation that moved its EAT backward to EAT ′

but jobi,j+1 does not arrive before EAT ′ which prevents the
slack time from being used to help other servers. Thus, using
a job release to activate its server prevents the server from
donating slack time or allows the server to waste precious
slack time through back donation in the idle state that can
otherwise be reclaimed to help other waiting servers.

We propose a forward donation algorithm that can be used
with slack reclamation algorithms, like BASH or BACK-
SLASH, to mitigate the resource overbooking problem. It
allows the reserved, but unused, budget to be donated when
its server stays in the idle state, without sacrificing the full
bandwidth reservation for a new job which is released later.

Definition 6 (Forward Donation (FD)). When a server enters
the idle state, a one-shot timer is set to its EAT for a
pseudo server activation. (If a back donation is used later
to move its EAT backward to EAT ′, the timer is reset to
EAT ′ which is no later than the current time.) If a forward
donation timer goes off and its associated server has no job
to execute, the server is inserted into the Forward Donation
Queue (FDQ) instead of the waiting queue and marked as
a forward donation server. The server is removed from the
back donation queue, if it had borrowed budget to complete
its previous job.

When a new job arrives, the server is activated based on
the chosen activation algorithm which assigns the budget and
deadline to the server.

1) If the new job arrives before the timer goes off, BACK-
SLASH enqueues the new job to the sever and delays
the server activation until the timer goes off. (The FD
timer is also used as the server activation delay timer.)

2) If the new job arrives after the timer goes off, i.e.
the server was enqueued into the FDQ, BACKSLASH
removes the server from the FDQ and then activates
the server immediately with cSi = Ri and dSi set to
one period from the job release time. Please note that
each server in the FDQ has its full reserved bandwidth
available at any moment.

The primary scheduler selects the earliest server from
the waiting queue for execution. If it is a slack server, the
secondary scheduler is triggered. After the server executes
from tstart to tend, whether it is a regular or slack server,
its server budget is deducted only by

l −
∑

Si∈FDQ
fi , where l = tend − tstart, fi = ui ∗ l



If a new job arrives at a forward-donating server at ri,j , the
server is activated into the waiting queue immediately at ri,j .
The server is removed from the FDQ, and its budget and
deadline are set to cSi = Ri and dSi = ri,j +Pi respectively.

Theorem IV.1. Given a feasible EDF schedule and valid sec-
ondary and pacing policies, adding forward donation policy
does not invalidate the schedule.

Proof: Even though a server has enough budget to be
activated at its EAT , BACKSLASH leaves it in the idle state
in order to conserve its budget for its up coming job. Since it
is valid to activate a server at its EAT , a one-shot timer in
the FD algorithm provides a fake workload to activated an
idle state server at its EAT .

Suppose that (n−1) forward donation servers are submitted
to the system at tstart, where the primary scheduler can
select a server for execution from the combination of the
waiting and forward donation queue until an interrupt occurs
at tend. Figure 4 depicts our assumption where S1 to Sn−1

represent all servers in the forward donation queue, Sn to
Sn+m represent all servers in the waiting queue, and Sn has
the earliest deadline among all waiting servers. We call this
the initial state of a forward donation process. We will prove
that the system will return to this state after each execution
and any budget spent during an execution interval [tstart, tend]
will not invalidate the given feasible schedule.

tstart tend dSn

l

Sn

FDQ

Waiting

Sn−1

FDQ

Waiting

S2
FDQ

Waiting

S1

FDQ

Waiting

Sn+m

dSn+m

Sn+2

dSn+2

Sn+1

dSn+1

...

...

Fig. 4. FDQ

Theorems in the RBED paper allow any server, Si, in the
idle state to be activated at its EAT , where lagSi = 0, with
its full reserved bandwidth ui = Ri

Pi
or Ri/h

Pi/h
, where 0 <

h < ∞, without invalidating a feasible schedule [14]. For
each server in the FDQ, its deadline is set to the deadline
dSn of the earliest waiting server Sn and its budget is set to
Ri ∗ dSn−t

start

Pi
by a prorated amount.

When the primary scheduler is triggered to select the earliest
server to run at tstart, any server with the same dSn deadline
can be scheduled first. The execution may be interrupted at
tend by a new arriving forward-donation server, a job release
on any forward-donating server, the end of job on Sn or
other events. Even though an unlimited number of feasible
scheduling sequences can happen in [tstart, tend], we list three
valid scheduling sequences here.

1) Sn is scheduled to run first and a timer is set by the
primary scheduler to prevent it from using more than its

current budget cSn . Thus, it is impossible to overload
Sn when it is interrupted at tend where cSn ≥ l =
tend−tstart. Si in the FDQ can be scheduled after tend.

2) Instead of letting Sn execute all the way through, the
processor sharing concept can be used to let Si spend
its Ri/h budget in very small intervals Pi/h, where 1 ≤
i ≤ n−1 and h→∞ in [tstart, tend]. The budget spent
by a forward-donating server in [tstart, tend] is∫ tend

tstart

Ri/h

Pi/h
dx =

Ri
Pi
∗ x |x=tend

x=tstart= ui ∗ l

where l = tend − tstart. Sn executes only when
those forward-donating servers are not executing in
[tstart, tend], so the budget spent by Sn is l−

∑
ui ∗ l.

3) Instead of matching dSn at tstart, each forward-donating
server can set its deadline to dSi = tend and their budget
will be prorated to cSi = Ri

Pi
∗ l. Since dS1 = . . . =

dSn−1 = tend < dSn , S1 to Sn−1 can be scheduled
in sequence. After each forward-donating server spends
ui ∗ l budget, Sn can be scheduled to run from (tstart+∑
ui ∗ l) to tend. Thus, Sn spends l −

∑
ui ∗ l budget

in [tstart, tend].
The first scheduling sequence represents the traditional EDF

scheduling and budget management that deducts l from cSn
after Si executes from tstart to tend. In contrast, the second
and third scheduling sequences execute the forward donation
servers for ui ∗ l units of time and only execute Sn for
l −

∑
ui ∗ l units of time in [tstart, tend]. Since the forward

donation servers do not have their own jobs for execution in
[tstart, tend], our FD algorithm uses their budgets to execute
the job on Sn. From the scheduler’s point of view, there is
no difference in running the idle process or the job of Sn.
Consequently, Si receives slack donation from those forward
donation servers.

Since all forward donation servers only spend budget at their
reserved rate, they can be considered leaving the system and
re-entering the system at tend, where lagSi∈FDQ = 0, using
theorems in the RBED paper [14]. Upon their reentrance, the
feasible schedule is maintained as long as their bandwidth
reservation ui = Ri

Pi
or Ri/h

Pi/h
remains unchanged, where 0 <

h <∞. Of course, a forward donated server Si activated into
the waiting queue by its new job at tend is assigned cSi = Ri
and dSi = tend +Pi and does not reenter the FDQ at tend. In
other words, a new job released on a forward donation server
will be given its full reserved budget to use with the deadline
one period away from the release time. The number of servers
in either forward donation or waiting queue vary from time to
time, but each tend can be considered as a new tstart. Thus,
the system returns to the initial state of the forward donation
process. When the number of servers in the FDQ reaches zero,
the FD performance degrades to the traditional EDF budget
consumption.

From the second and the third scheduling sequences, we find
that it is not necessary to assign server budget and deadline to
the servers in the FDQ because their deadlines can be redefined



to any value based on a fixed utilization reservation. Our FD
algorithm controls the execution rate of each forward donation
server at its reservation rate, so it neither overloads the primary
scheduler nor jeopardizes any new job released on a forward
donation server.

Theorem IV.2. Given a feasible EDF schedule and valid sec-
ondary and pacing policies, a server that forward donates its
budget is guaranteed to immediately provide its new released
job a full reserved bandwidth. (See proof for theorem IV.1.)

V. EXPERIMENTS

A. Performance Metrics

We use the same deadline miss ratio (DMR) and tardiness
(TRD) performance metrics as defined in BACKSLASH [13].
Suppose there are missi deadline misses among ni completed
jobs, and the accumulated lateness resulting from those dead-
line misses is latei, DMR and TRD are calculated as

DMR(Ti) =
missi
ni

; TRD(Ti) =
latei
ni ∗ Pi

The system wide deadline misses and tardiness for all m
SRT tasks can be calculated using average deadline miss ratio
(ADMR) and average tardiness (ATRD) defined as

ADMR =
∑m

1 DMR(Ti)
m

; ATRD =
∑m

1 TRD(Ti)
m

Except using exact WCET in each period, two BACK-
SLASH formulas are used to generate synthetic workloads for
our experiments.

NW (µ) =

{
1√
2π

exp−
(x−µ)2

2σ2 , 0 < x ≤ µ
0 , x ≤ 0 or x > µ

NA(µ) =

{
1√
2π

exp−
(x−µ)2

2σ2 , 0 < x

0 , x ≤ 0

Both NW (µ) and NA(µ) use a normal distribution with
mean µ and standard deviation σ = 0.1µ.

A trace of stationary job service times is generated for each
task using a random number generator. By changing seeds,
fifty workloads with the same statistical characteristics are
generated and scheduled with or without DoS prevention and
forward donation algorithms for two million time steps. After
the performance metrics, like DMR and TRD, are calculated
for each workload, the mean and the standard error of each
performance metrics is calculated from fifty workloads. As a
result, each data point in our experiment figures represents the
average of fifty workloads with the same statistical character-
istics with the error bars.

B. Effectiveness of DoS Prevention on Various Slack Amount

When adequate slack time is generated, BACKSLASH
outperforms other existing algorithms. However, when the
ratio of supply to demand is low, its performance may drop
sharply. Furthermore, any task can mislead the slack scheduler
by claiming that it needs the slack time the most. Despite

the difficulty of obtaining an accurate or appropriate resource
estimation the scheduler should not just ignore the problem.

The first experiment mimics one of BACKSLASH’s work-
loads with one additional small utilization task, ATK4, to
demonstrate the limitation of BACKSLASH and the effec-
tiveness of our DoS prevention algorithm. Each experiment
consists of two periodic HRT tasks, one periodic SRT, and one
potential attacker as shown in table I. When a task changes
its parameters in a new experiment run, its corresponding
server’s parameters are modified accordingly, i.e. RSi = ēTi .
To clarify, when HRT2 increases its ē by 7 and reserves 2%
more utilization, SRT3 decreases its ē by 9 and compensates
for this 2% increase in utilization. All periods remain fixed as
listed in table I.

Task Server Parameters Task Parameters ∆ Parameter
R PS uS e = f(ē) PT ∆ē ∆uS

HRT1 234 600 39% 234 600 0 0
HRT2 207 450 46% NW(207) 450 −9 −2%
SRT3 49 350 14% NA(49) 350 +7 +2%
ATK4 3 300 1% 3 or 30 300 3 or 30 0

TABLE I
WORKLOAD

Each job submitted by HRT1 consumes its WCET exactly
which is 234. The workload submitted by HRT2 is generated
by NW(ē) formula that is guaranteed to produce the service
times e no larger than ē; so HRT2 is a regular slack time
donor. SRT3 generates its workload using NA(ē) formula that
produces the service times e around a mean value ē, so the
average workload of SRT3 matches its server reservation. The
workload submitted by ATK4 depends on its role, e.g. attacker
or non-attacker. It requires its WCET = 3 to complete each
job as a regular HRT task, but it requires 10 ∗ WCET to
complete each job as an attacker.

By adjusting the utilization of HRT2 and SRT3, eleven
sets of workloads are generated. When they are scheduled
by BACKSLASH with a non-attacking ATK4, the results are
marked as “No Atk” in figure 5. ATK4 becomes an attacker
in all other workloads that are scheduled with various EE
thresholds. When there is no constraints on EE, i.e. EE =∞,
plain BACKSLASH is used and its results are marked as “No
EE”. When an EE threshold x is used to protect the system,
the results are marked as “EE = x”.

Because 50% of service times generated for SRT3 are
greater than its reservation, the primary scheduler without the
secondary and the pacing policies guarantees to meet only
50% of SRT’s deadlines. The “No Atk” case has the best
performance, because ATK4 behaves like a HRT task and does
not oversubscribe its server. Therefore, all slack time generated
by HRT2 can be used by SRT3. This case also demonstrates
the effectiveness of BACKSLASH which drops the DMR from
50% guaranteed by the primary policy to less than 5.2%.

When ATK4 becomes an attacker, it does not affect either
HRT1 or HRT2 because their reservations are guaranteed by
the primary policy. However, ATK4 competes with SRT3 for
slack time and changes the decision of the slack scheduler



0

5

10

15

20

25

14 16 18 20 22 24 26 28 30 32 34

D
M

R
%

SRT3 Utilization (%)

No Atk

No EE

EE=0

EE=0.2

EE=0.4

EE=0.6

(a) DMR as a Function of Load

0

1

2

3

4

5

6

14 16 18 20 22 24 26 28 30 32 34

T
R

D
%

SRT3 Utilization (%)

No Atk

No EE

EE=0

EE=0.2

EE=0.4

EE=0.6

(b) TRD as a Function of Load

Fig. 5. Effectiveness of DoS prevention on various slack amount

by underbooking resources. The “No EE” line depicts the
performance of BACKSLASH which does a very good job
in meeting SRT3’s demand before its load becomes greater
than 28%. After the utilization of SRT3 becomes greater than
28%, HRT2 with a lower utilization cannot generate adequate
amounts of slack time to meet the demand of SRT3 and ATK4.

When limited amounts of slack time are available and ATK4
dominates the slack consumption, BACKSLASH significantly
drops the performance of SRT3. When an EE threshold is
used to protect the secondary scheduler, EE = 0 overprotects
the system, strips down the effectiveness of the slack reclama-
tion, and produces the worst performance. Even though SRT3
can consume slack time before its job executes longer than its
reserved budget, the job is not eligible for slack consumption
in the first three steps of the DoS prevention algorithm after
its elapsed execution time exceeds its reserved budget. When
the EE threshold equals 0.2, 0.4 or 0.6, i.e. limiting the slack
consumption of ART4, the performance of SRT3 is restored
back to very close to the “No Atk” case. For example, when
SRT3 has a 30% load, its DMR is 3.2% without an attacker
which increases to 19.8% when BACKSLASH is under attack.
When an EE = 0.4 protection is used, the DMR of SRT3 is
significantly reduced to 4.8% which is very close to 3.2%.

Since the purpose of the EE threshold is to make each
task responsible for its resource estimation, it does not make
sense to set a very high value. If a task decides to extremely
underbook its resource, it can rely on its future budget and
wait for the leftover slack time.

C. Impact of DoS Attack to Multiple SRT Tasks
This section demonstrates the impact of the slack DoS

attack on several SRT tasks in the system and how effectively
our DoS prevention algorithm can protect the system against
the attack. The workload consists of two HRT tasks, four
SRT tasks, and one all time attacker ATK7 as summarized
in table II. HRT1 and HRT2 are all time slack donors. Any
SRT task can overload is server by about 2%. For example,
an average workload mean(NA(33))

150 is equivalent to 102% of
SRT3’s reserved server utilization 30

150 . In each experiment,
only one of the four SRT tasks submits an average workload
which exceeds its reserved server utilization. When an exper-
iment contains a SRTn that overruns for m% is scheduled

with various EE thresholds, the results of the experiment are
drawn as a line marked as “SRTn m%” in figure 6.

Task Server Parameters Task Parameters
R P u e = f(ē) P ∆ē(∆uTask)

HRT1 38 200 19% NW(38) 200 0
HRT2 91 910 10% NW(91) 910 0
SRT3 30 150 20% NA(30) 150 3(2%)
SRT4 65 260 25% NA(65) 260 5(1.92%)
SRT5 81 540 15% NA(81) 540 11(2.03%)
SRT6 71 710 10% NA(71) 710 14(1.97%)
ATK7 3 300 1% 30 300 0

TABLE II
WORKLOAD FOR SYSTEM-WIDE SRT TASKS PERFORMANCE

Since HRT1 and HRT2 do not miss any deadline, their
results are omitted. When the system is protected by EE = 0.4
to EE = 1.2, all SRT tasks perform the best compared to other
thresholds. Within the reasonable range of the EE threshold,
say 0.4 to 1.2, the ADMR decreases for about 8%, and the
ATRD decreases for about 0.7% compared to EE = ∞,
i.e. BACKSLASH. If the EE threshold is lower than 0.2,
the functionality of the slack reclamation is restricted so the
ADMR are ATRD are increases. If the overloaded SRT task
is excluded in the performance measurement, the ADMR can
further decrease.

D. Forward Donation on Various Slack Amount

This experiment demonstrates that by increasing the uti-
lization ratio of one HRT and two SRT tasks, BACKSLASH
increases the performance of each individual SRT task because
more slack time is reclaimed from the HRT task and the SRT
tasks overrun less intensely. For a HRT task that releases less
than one job per period, we show that forward donation can
reclaim additional slack time from the task in the idle state.

This experiment consists of one periodic HRT task, two
periodic SRT tasks, and one potential attacker as shown in
table III. Besides submitting only HRT jobs, ATK4 further re-
duces its workload by submitting one job in three periods. The
results are plotted in figure 7. We intentionally overload each
SRT server by about one percent to show that the additional
slack time reclaimed by the forward donation algorithm can
further improved the performance of BACKSLASH. I.e., the



2

3

4

5

6

7

8

9

10

11

∞0 0.2 0.4 0.6 0.8 1 1.2

A
D

M
R

%

EE Threshold

SRT3 2%

SRT4 2%

SRT5 2%

SRT6 2%

(a) ADMR

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

∞0 0.2 0.4 0.6 0.8 1 1.2

A
T

R
D

%

EE Threshold

SRT3 2%

SRT4 2%

SRT5 2%

SRT6 2%

(b) ATRD

Fig. 6. Average performance when SRTn overloads by 2%

benefit of the extra slack time can be distinguished only when
the slack time reclaimed by BACKSLASH is not sufficient to
meet the requirements of the SRT servers.

Task Server Parameters Task Parameters ∆ Parameter
R PS uS e = f(ē) PT R ∆uS

HRT1 120 600 20% 120 600 0 0
SRT2 90 450 20% NA(R + 4) 450 +9 +2%
SRT3 70 350 20% NA(R + 3) 350 +7 +2%
ATK4 120 300 40% NW(120) 300 -12 −4%

TABLE III
WORKLOAD

ATK4 reserves 120
300 utilization and SRT2 and SRT3 reserve

90
450 and 70

350 utilization respectively to start with, where
RSRT2 = 90 and RSRT3 = 70. After fifty sets of job traces
are scheduled with and without forward donation, each SRT
task increases its server utilization by 2% in each of the
successive runs by increasing its reserved budget RSRT2 and
RSRT3 while keeping its server periods unchanged. In order to
keep the total server utilization fixed at the theoretical upper
bound 100%, the attacker ATK4 decreases its utilization by
4% when two SRT tasks together increase 4% utilization.

Each job released by HRT1 requires exactly its WCET
through out this experiment to provide some noise to the sys-
tem and to check for any violation of the server schedulability.
SRT2 and SRT3 use RSRT2+4 and RSRT3+3 respectively in
NW(ē) formula to generate their service times. Consequently,
their average service times are slightly larger than their server
reservations. Since the service time of ATK4 never exceeds its
WCET, it is a regular slack time donor. We only plot the DMR
and TRD of SRT2 and SRT3 in figure 7, because our forward
donation algorithm does not invalidate the feasible schedule of
BACKSLASH and HRT1 and ATK4 miss no deadline. When
the system is scheduled by BACKSLASH, the results for SRT2
and SRT3 are marked as “T2” and “T3” respectively. When
the system is scheduled with forward donation, the results are
marked as “T2Fd” and “T3Fd” respectively.

When ATK4 increases its utilization by reserving more
budget, its job service times generated by NW() formula
provides more slack time to help SRT2 and SRT3. Moreover,
SRT2 and SRT3 overrun less intensively when they reserve

less budget and use the smaller values in NA() formula to
generate their job service times. Not surprisingly, the result
conforms to a similar experiment of BACKSLASH. When the
utilization of ATK4 increases from 16 to 40 percent in the
BACKSLASH scheduler, the DMR drops from about 15% to
about 7% in figure 7(a) and their TRD drops to about 1.5%
in figure 7(b).

We next demonstrate the effectiveness of forward donation
on top of BACKSLASH. Even though ATK4 releases only
one job in every three periods, BACKSLASH cannot donate
slack time from the idle state. With forward donation, those
budgets can help SRT2 and SRT3 without jeopardizing any
forthcoming jobs of ATK4 or any WCET jobs of HRT1.
I.e., any job released by ATK4 or HRT1 will be immediately
granted a full bandwidth when it is released. In figure 7(a),
forward donation decreases the DMR of SRT2 and SRT3 from
about 14% to about 3% when the utilization of ATK4 equals
16%. Their DMR further decreases to very close to 0 when the
utilization of ATK4 increases. In figure 7(b), forward donation
decreases the TRD of SRT2 and SRT3 from about 2.7% to
about 0.4% when the utilization of ATK4 equals to 16%. Their
TRDs further decrease when the utilization of ATK4 increases.

By changing the utilization ratio of one HRT task and
two SRT tasks while keeping their periods unchanged, we
demonstrate the effectiveness of BACKSLASH in scheduling
slack time collected from the residual budget of the non-idle
server ATK4. Using it as a benchmark, we demonstrate that
forward donation collects additional slack time from ATK4 in
the idle state.

E. Impact of Forward Donation on Multiple SRT Tasks

Four sets of experiments shown in table IV demonstrate that
forward donation improves the system-wide performance of
all SRT tasks in various workload compositions and overload
situations. The total server utilization always remains at 100%.
Submitting a job in ∞ periods means that the task never
submits after the first job is done. Even numbered periods
are skipped simply to cut the simulation runtime. Since HRT1
and ATK7 do not miss any deadline, we only plot the ADMR
and ATRD of all SRT tasks in figure 8.

We arbitrarily pick one HRT task, four SRT tasks and one
potential resource overbooking attacker ATK6 in experiment



0

2

4

6

8

10

12

14

16

16 20 24 28 32 36 40

D
M

R
%

Utilization of ATK4

T2Fd

T3Fd

T2

T3

(a)

0

0.5

1

1.5

2

2.5

3

16 20 24 28 32 36 40

T
R

D
%

Utilization of ATK4

T2Fd

T3Fd

T2

T3

(b)

Fig. 7. Effectiveness of forward donation on various slack amount (ATK4 releases one job in every three server periods)

Exp Task Server Parameters Task Parameters
ID R P u e = f(ē) P Period Per Job

G1 HRT1 42 350 12% 42 350 1
SRT2 54 360 15% NA(57) 360 1
SRT3 72 450 16% NA(75) 450 1
SRT4 90 500 18% NA(93) 500 1
SRT5 114 600 19% NA(117) 600 1
ATK6 126 630 20% NW(126) 630 1,3,5,7,9, or ∞

G2 HRT1 81 675 12% 81 675 1
SRT2 96 640 15% NA(99) 640 1
SRT3 96 600 16% NA(99) 600 1
SRT4 99 550 18% NA(102) 550 1
SRT5 95 500 19% NA(98) 500 1
ATK6 90 450 20% NW(90) 450 1,3,5,7,9, or ∞

G3 HRT1 42 350 12% 42 350 1
SRT2 90 360 25% NA(93) 360 1
SRT3 72 450 16% NA(75) 450 1
SRT4 90 500 18% NA(93) 500 1
SRT5 114 600 19% NA(117) 600 1
ATK6 63 630 10% NW(63) 630 1,3,5,7,9, or ∞

G4 HRT1 42 350 12% 42 350 1
SRT2 90 360 25% NA(93) 360 1
SRT3 72 450 16% NA(76) 450 1
SRT4 115 500 23% NA(120) 500 1
SRT5 114 600 19% NA(120) 600 1
ATK6 15 300 5% NW(15) 300 1,3,5,7,9, or ∞

TABLE IV
WORKLOADS

G1. The 20% server utilization of ATK6 generates plenty of
slack time when it releases less than one job per period. We
will demonstrate that the slack time cannot be reclaimed by
BACKSLASH from ATK6 when it is in the idle state, but
forward donation can. Experiment G2 keeps the same server
utilization for each server from G1, but it changes the period
length from ascending to descending ordering. G3 increases
the server utilization ratio of SRT2 and ATK6 from G1, so
ATK6 produces less slack time. In addition to increasing the
workload of SRT4 and SRT5, G4 further increases the server
utilization of SRT2 and ATk6.

When ATK6 submits a lighter workload in G1, G2, and
G3, our forward donation reduces ADMR by about 5% to 8%
across the board. In some cases, the ADMR is very close to
0. If the overloaded SRT tasks are excluded from the ADMR
calculation, the ADMR will be lower than those reported
results. Since ATK6 reserves less utilization and the SRT tasks
overload more intensively, the ADMR is very high at 16% to
18%. Our forward donation algorithm reduces the ADMR by

8% to 11%. We see a similar improvement for the ATRD.

F. Non-stationary Workload

Finally, we demonstrate how non-stationary loads influence
maximum QoS level in local steady states. Table V represents
11 stationary stages in a non-stationary system. Figure 9 shows
100 service time samples of SRT5 in each stationary stage and
the ADMR for each stage. The first 5 experiments use DoS
prevention with EE threshold at 0.5, the next 5 experiments
use forward donation, and the last experiment uses both algo-
rithms. The results are compared with BACKSLASH results
drawn in a dashed line.

In Exp1 (stage 1), the average workload of each task equals
its resource reservation. Since there is no significant resource
over- or under- booking, the ADMR is about 1%. Both SRT4
and SRT5 reduce their average workload but ATK7 increases
its average workload in Exp2 (stage 2). AMDR increases to
2% in BACKSLASH, because it allows ATK7 to dominate
the slack time. With DoS prevention, ADMR drops to 0.2%.
SRT4 and SRT5 gradually increase their workloads from Exp3
to Exp5, so ADMR continues to increase with or without DoS
prevention. However, the DoS prevention algorithm always
produces a lower ADMR than does BACKSLASH.

In Exp6, ATK7 stops its resource underbooking attack while
the servers of SRT4 and SRT5 remain overloaded. The system
is less overloaded than Exp5, so the ADMR drops with or
without DoS prevention. ATK7 stops submitting jobs from
Exp7 to Exp10. From Exp8 to Exp10, HRT1 reduces its
workload by submitting 1 job in every 2 periods and SRT4
and SRT5 gradually reduce their average workloads. Since
forward donation reclaims extra slack time from ATK7 and
HRT1, it outperforms BACKSLASH from Exp6 to Exp10.

In Exp11, HRT1 overbooks its resource by submitting 1 job
in every 3 periods but ATK7 underbooks its resource by asking
for 10 times of its WCET to complete a job. In the mean time,
SRT4 and SRT5 overloads their server. With the combination
of DoS prevention at EE = 0.5 and forward donation, it’s
AMDR is 7.7% lower than BACKSLASH’s.

VI. CONCLUSION

In general, we show that when the system workload reaches
a stationary state and the slack time supply and demand reach



0

2

4

6

8

10

12

14

16

18

20

∞1 3 5 7 9

A
D

M
R

%

Periods Per Job

G1Fd

G2Fd

G3Fd

G4Fd

G1

G2

G3

G4

(a)

0

0.5

1

1.5

2

2.5

3

3.5

4

∞1 3 5 7 9

A
T

R
D

%

Periods Per Job

G1Fd

G2Fd

G3Fd

G4Fd

G1

G2

G3

G4

(b)

Fig. 8. Effectiveness of forward donation when various slack time is reclaimed from the idle state

Task Server Task service time generation
ID R P u Exp1 Exp2 Exp3 Exp4 Exp5 Exp6 Exp7 Exp8 Exp9 Exp10 Exp11

HRT1 38 200 19% NW(R)
1 Job/(2 Periods) 1J/3P

HRT2 91 910 10% NW(R)
SRT3 30 150 20% NA(R)
SRT4 65 260 25% NA(R) NA(R-5) NA(R) NA(R+5) NA(R) NA(R+10)
SRT5 81 540 15% NA(R) NA(R-10) NA(R) NA(R+11) NA(R) NA(R+11)
SRT6 71 710 10% NA(R)
ATK7 3 300 1% R R*10 R Stop job release R*10

Attack Type - Underbooking Overbooking Both

TABLE V
DOS PREVENTION AND FORWARD DONATION)

S
R
T

5

71

92 92

R
81

63
0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11
0 0

2 2

4 4

6 6

8 8

10 10BACKSLASH

∆7.7%

A
D

M
R

(%
)

1

Fig. 9. Sample workload for SRT5 and system performance results

equilibrium, the system supports a specific level of QoS. In a
non-stationary open system, any task can exploit its vulnerabil-
ity and dominate slack consumption. Our work demonstrated
that when the secondary scheduler uses an EE threshold, the
secondary scheduler can alleviate the performance degradation
caused by a resource underbooking task. Both BASH and
BACKSLASH intentionally use a job release to activate its
server, so the server budget is not lost at its EAT . Our Forward
Donation effectively reclaims the slack time from any full
bandwidth server from the idle state without jeopardizing any
upcoming jobs that require WCET to complete on a forward
donated server. It can cooperate with the DoS prevention to
stabilize the QoS of a non-stationary system as demonstrated
by the flatter curve of ADMR in figure 9.

REFERENCES

[1] C. Mercer, S. Savage, and H. Tokuda, “Processor capacity reserves: Op-
erating system support for multimedia applications,” in In Proceedings
of the IEEE ICMCS, 1994, pp. 90–99.

[2] T. M. Ghazalie and T. P. Baker, “Aperiodic servers in a deadline
scheduling environment,” Real-Time Systems, vol. 9, no. 1, pp. 31–67,
July 1995.

[3] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard
real-time systems,” The 19th IEEE RTSS, pp. 4 – 13, 1998.

[4] M. Spuri, G. C. Buttazzo, and F. Sensini, “Robust aperiodic scheduling
under dynamic priority systems,” in IEEE RTSS, 1995, pp. 210–221.

[5] G. Marzario, L.and Lipari, P. Balbastre, and A. Crespo, “IRIS: a new
reclaiming algorithm for server-based real-time systems,” The 10th
RTAS, pp. 211 – 218, 2004.

[6] S. Banachowski, T. Bisson, and S. A. Brandt, “Integrating best-effort
scheduling into a real-time system,” 25th IEEE RTSS, December 2004.

[7] G. Lipari and S. Baruah, “Greedy reclamation of unused bandwidth in
constant-bandwidth servers,” The 12th ECRTS, pp. 193–200, 2000.

[8] G. Bernat, I. Broster, and A. Burns, “Rewriting history to exploit gain
time,” 25th IEEE Real-Time Systems Symposium, pp. 328 – 335, 2004.

[9] G. Lamastra, G. Lipari, and L. Abeni, “A bandwidth inheritance algo-
rithm for real-time task synchronization in open systems,” 22nd IEEE
Real-Time Systems Symposium, pp. 151–160, 2001.

[10] R. Santos, G. Lipari, and J. Santos, “Scheduling open dynamic systems:
The clearing fund algorithm,” The 10th RTCSA, 2004.

[11] M. Caccamo, G. Buttazzo, and L. Sha, “Capacity sharing for overrun
control,” The 21st IEEE RTSS, pp. 295 – 304, Nov 2000.

[12] M. Caccamo, G. C. Buttazzo, and D. C. Thomas, “Efficient reclaiming
in reservation-based real-time systems with variable execution times,”
IEEE Transactions on Computers, vol. 54, no. 2, pp. 198–213, 2005.

[13] C. Lin and S. A. Brandt, “Improving soft real-time performance through
better slack reclaiming,” in The 26th IEEERTSS, 2005, pp. 410–421.

[14] S. Brandt, S. Banachowski, C. Lin, and T. Bisson, “Dynamic inte-
grated scheduling of hard real-time, soft real-time, and non-real-time
processes,” The 24th IEEE RTSS, pp. 396 – 407, 2003.

[15] C. Lin, “Unified and effective soft real-time processing in integrated
systems,” Ph.D. dissertation, University of California at Santa Cruz,
2006.

[16] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard real-time environment,” Journal of ACM, vol. 20, no. 1,
pp. 46–61, 1973.

[17] W. Lin and G. Nutt, “Detecting and preventing dos attacks in slack
scheduling,” 28th IEEE RTSS, WiP, December 2007.


