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Abstract

We propose two new methods for performing local path search directly in the
image space of a camera sensor. The first technique utilizes a high-resolution
local image space subsystem to determine the farthest point along a global
Cartesian path that can be reached along an unobstructed heading, thereby
short-cutting as much of the global path as possible. To the best of our knowl-
edge, this is the first image space planning technique that is both suitable for
navigation in unstructured environments and does not use a graph-search al-
gorithm in the image space subsystem. The second technique that we propose
improves the local image space subsystem of a hierarchical image/Cartesian
space planner by determining when it is safe to translate at full speed. Both
techniques are implemented on an autonomous robot and experimentally eval-
uated against a hierarchical top-down Cartesian planner and a previously pro-
posed hierarchical image/Cartesian space planner. Each system is tested three
times on three different course layouts. The first proposed method performs
comparably to existing systems when evaluated on the criteria of path length
and total runtime. The second technique consistently outperforms the other
three systems with respect to total runtime.

1 Introduction

Path planning is the task of finding a sequence of actions that will allow a robot to achieve a
goal state given a representation of the environment and a predefined set of state transition
constraints. In the context of robotic rovers, the environmental representation often includes
a map and a set of sensor inputs. The map may be predefined and/or modified as the robot
explores the environment. It is common to store the map in a discretized Cartesian model
of the world, although many other representations have been proposed ([1–8]). The sensor
input set is determined by the sensors available to the system and may include anything
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from measurement readings (GPS, velocimeter, thermometer, manometer, etc.) to image
sensor data (ladar, sonar, camera, etc.).

There has recently been an interest in path planning directly in the array-based projections
of the world that are captured by an image sensor ([9,10]). This type of planning is referred
to as image space planning, and the space in which the path search occurs is called image
space. There is typically a one-to-one mapping between image space array locations (i.e.
pixels) and image space occupancy grid locations. Image space planning contrasts with the
more traditional practice of projecting environmental data into a separate Cartesian space
map prior to path-planning ([11–15]).

Image space planning avoids the localization errors and systematic information distortions
caused by projecting data into a model with resolution and/or coordinate system different
than that of the sensor. However, image space planning still assumes the existence of a
transformation function between robot and image space coordinates. This can be achieved
directly if distance data is available; however, it is also common to approximate the trans-
formation by assuming the robot exists on a flat ground plane. In either case, the relative
positions of the camera and robot are assumed to be known.

Image space planning is unique among other image-based approaches. View-Sequenced
Route Representation ([4–6, 8, 16–18]) uses the relationship between a target image and the
camera’s current image to calculate servoing commands, while autonomous highway driving
algorithms ([19–23]) utilize environmental features that are extracted from the image—such
as lane markings, prior vehicle tire tracks, or footprints. These techniques make assumptions
about the existence of predefined information or scene appearance that prohibit their use
in unknown/unstructured terrain. In contrast, image space planning makes no assumptions
about environmental appearance or the existence of other prior knowledge.

Image space planning is distinct from reactive local planning techniques that use 1D vectors
of sensor data [24] or similar 1D histograms of global Cartesian map data [25] to determine
safe directional headings. The height-distance dimension of 2D image-space maps allows
image planners to find more complex paths than those available to reactive local planners.

To date, image space path planning in environments that are both unknown and unstructured
has been accomplished by modifying existing graph-search algorithms to work in image
space. For instance, path-planning directly in a panoramic cylinder of cost-from-disparity
images to achieve high-resolution local planning [9], or path-planning within a cost-from-
color image in order to find superior long-range paths [10]. The cost-from-color image is
obtained by passing an RGB image pixel-wise through a learned safe-vs.-obstacle model of
the environment. In both of these methods, the image space planner operates in conjunction
with a more traditional Cartesian space planner (i.e. a 2D top-down map of the world). In [9]
the Cartesian space planner acts as a global subsystem that feeds sub-goals to the local image
space subsystem. In [10] the robot follows paths from the Cartesian space planner by default,
incorporating waypoints from image space paths that are determined to be sufficiently good.

A hierarchical planner consists of two or more subsystems that operate in parallel, often using
separate models of the environment ([4–8]). A common arrangement consists of a global



subsystem and a local subsystem. The global subsystem maintains a coarse representation
of the entire environment, while the local subsystem models an immediate region of the
environment in high resolution. The global and local subsystems are charged with finding a
complete path to the actual goal and a near-field path to a subgoal, respectively; where the
local subgoal is determined from the global path.

In this paper we propose two new techniques for merging image space and Cartesian space
planning methods in a hierarchical planner. We refer to the two proposed methods as Image
Space Verification of Global Planning (IVG) and Fast Local Cylindrical Planning (FLCP).
IVG and FLCP both consist of a local image space subsystem and a global Cartesian space
subsystem.

IVG differs from previous image space planning techniques that have been designed for use
in unstructured environments in that the local image space subsystem does not use a graph-
search algorithm. Instead, IVG projects the global path provided by the global Cartesian
space subsystem into image space. Next, IVG uses high-resolution image space data to
determine the furthest point along the global path that the robot can move toward safely
and directly. IVG encourages a robot to avoid unnecessary detours in the near-field by
short-cutting the global path whenever possible.

If the local image space subsystem finds that a global path is impassable, IVG propagates
this information back to the global Cartesian space subsystem. If the entire Cartesian path
is determined to be invalid by the image space subsystem, then a message is sent to the
Cartesian space subsystem and a high cost is inserted into the global map at the beginning of
the invalid path. This form of subsystem interaction has previously been used in hierarchical
planners ([26–28]).

IVG is similar to the system described in [29], in which candidate movement trajectories
are projected into image space and then evaluated for quality based on image data. The
technique proposed in [29] evaluates a fixed sized set of possible trajectories and assumes
the existence of scene information such as prior vehicle tire tracks, pedestrian footprints, or
predefined cost from color information. In contrast, IVG evaluates trajectories determined
by the dynamic set of currently visible global path coordinates and does not make scene-
appearance assumptions.

IVG is also similar to reactive local planning ([30–32]) in that the robot may deviate from
a high-level Cartesian path as a result of online sensor observations. The main difference
between reactive planning and IVG is that the former causes the robot to modify the global
Cartesian path when an immediate obstacle is detected, while the latter encourages the robot
to modify the global path in the absence of obstacles.

FLCP is a modified version of the panoramic cylindrical image space system proposed in [9],
except that the servoing function is modified to allow the robot to travel at full speed
whenever the high resolution image space map is free of robot-blocking obstacles. In [9] the
robot’s speed is adjusted as a function of the contour of the local image space path—even if
the path in front of the robot is obstacle free. This causes the robot to move unnecessarily
slow in safe environments.



The implementation details of IVG and FLCP are presented in Section 2, and our robotic
apparatus and system parameters are outlined in Section 3. In Section 4 we describe three
experiments in which we compare the proposed systems against two other planning systems.
A discussion of the results is given in Section 5, our conclusions are presented in Section 6,
and directions for future work are outlined in Section 7.

2 Methodology

We now describe the implementation details of all four planning systems that are experimen-
tally evaluated in Section 4. These include the two methods proposed in this paper, Image
Space Verification of Global Planning (IVG) and Fast Local Cylindrical Planning (FLCP), as
well as two comparison planning systems including the hierarchical image/Cartesian space
method from [9] and a double top-down Cartesian-based system. We refer to the latter
two systems as Local Cylindrical Planning (LCP) and Double Top-Down Planning (DTP),
respectively.

All four planning systems are hierarchical with self-contained local and global subsystems.
The two subsystems run in parallel, on separate processing cores, and communicate via
a message-passing protocol. All four planners use identical global subsystems, with the
exception that IVG can send lethal coordinates from the local subsystem to the global
subsystem.

2.1 IVG Local Image Space Subsystem

The image-based subsystem of IVG attempts to find the farthest point along the global path
that the robot can navigate toward directly. This allows the robot to short-cut unnecessary
parts of the global path and reach the goal with as little movement as possible. ‘Unneces-
sary’ global path sections include detours around obstacles that have disappeared since the
creation of the global path, as well as places where the coarse granularity of the global map
has prohibited it from noticing a safe passage.

Let S represent the current image (i.e. output) of an image sensor. S is h pixels high and w
pixels wide. Let Sn,m denote the image pixel that exists at row n and column m of S. Note
that 1 ≤ n ≤ h and 1 ≤ m ≤ w. We adopt the convention that pixel S1,1 is located in the top
row and left-most column of S. Let O represent an image-space occupancy-grid cost-map
that is derived from S. Let On,m represent the value stored at row n and column m of O.
Note that there is a one-to-one and onto mapping from image pixels in S to occupancy grid
locations in O.

On,m = f(Sn,m) (1)

IVG can be used with any form of image sensor data, as long as useful cost information
can be obtained from S. In the context of this paper, S is defined to be a stereo disparity
image and O is calculated using a simple heuristic cost function based on a similar heuristic
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Figure 1: Image space occupancy grid O, left, and the corresponding grayscale image, right.
The quadrilateral outlined by the solid line is the image space projection of the uninhibited
terrain surface required for safe navigation to the last coordinate of the global path. The
quadrilateral displayed here is not safe because it contains an obstacle.

proposed in [9].

On,m = 1 + cscale

∣

∣

∣Sn,m − Sflat
n,m

∣

∣

∣ (2)

Sflat
n,m is the disparity image that would be returned from a horizontal flat ground plane, and

cscale is a scaling constant. Equation 2 has the desirable quality that cost increases as the
environment deviates from a horizontal flat surface.

Assume that the Cartesian-based subsystem has found a path P from the robot’s current
location to the goal; where P is defined by l GPS coordinates. P is sent to the image-based
subsystem in a message. Let Pi represent the ith GPS coordinate along the path. Note
that 1 ≤ i ≤ l. The most recent P is actively maintained in the image-based subsystem
by periodically truncating it based on forward robotic movement. This is accomplished by
removing points Pj for 1 ≤ j ≤ k, given that Pk is the closest point along the path to the
robot’s current location.

The image space planning subsystem consists of three different states of operation:
ImageP lan, Scan, and Blocked. State ImageP lan and State Scan utilize the subroutine
ApprovePoint(Pi) to determine if it is safe to travel directly toward the path coordinate
Pi given the information in O. State ImageP lan is initialized by default and determines
what visible point (if any) the robot should drive toward. State Scan is used if all of the
currently visible coordinates Pi are determined to be unsafe. If the entire path P is found
to be unsafe, then state Blocked is invoked. State Scan causes the robot to rotate toward
unchecked Pi, while State Blocked sends a message to the global Cartesian subsystem and
waits for a new global path.

2.1.1 Subroutine ApprovePoint(Pi)

Let cwidth be the actual width of the robot, and let csafety be the minimum safety clearance
allowed between the robot and an obstacle. The robot is assumed to exist on a flat plane
for the purposes of projecting points between real-world coordinates and their corresponding
image space locations.

ApprovePoint(Pi) operates by checking the image space projection of a swath of terrain



surface of width (cwidth + 2csafety) along the direct path from the robot’s current location
to Pi (see Figure 1). This represents the unoccupied space required for safe navigation to
Pi. Let the boundary of this area be defined by the four image space coordinates [vl, ul],
[vr, ur], [dl, cl], and [dr, cr]. Let [vl, ul] and [vr, ur] be associated with the left and right path
boundaries at Pi, respectively, and let [dl, cl] and [dr, cr] be associated with the left and
right path boundaries at the robot’s current location, respectively. If the orientation of the
camera is fixed, relative to the robot, then [dl, cl] and [dr, cr] are constant. Together, the
four points describe a quadrilateral in image space. Note that portions of the quadrilateral
corresponding to places outside of the field-of-view will be located outside of O.

For the sake of computational ease, the quadrilateral is redefined by making the top edge
parallel to an image row.

vl = vr = min (vl, vr) (3)

Note that the area of the resulting quadrilateral is always greater than the original quadri-
lateral.

The interior of the quadrilateral is checked for cost values greater than ccost, where ccost is
the per-grid maximum cost value that the robot is allowed to traverse. If such a value is
found, then the subroutine returns false because it is unsafe to travel directly toward Pi.
Otherwise, the path coordinate can be reached safely and the subroutine returns true.

2.1.2 State ImageP lan

As previously mentioned, this state is initialized by default. State ImageP lan is responsible
for determining which currently visible GPS coordinate along P, if any, the robot should
travel toward.

IVG attempts to minimize the distance and time required to reach the goal by short-cutting
the Cartesian path. It attempts to minimize the time required to reach the goal by traveling
at the maximum speed cmax whenever possible. This is accomplished by finding the maximum
i (i.e. the index of the most distant GPS coordinate) for which ApprovePoint(Pi) returns
true, given the subset of P that is currently visible. In order to prevent the image subsystem
from leading the robot toward subgoals that are blocked by obstacles beyond the robot’s
sensor range, path coordinates are only considered if they are within sensor range. If such
an i can be found, then translational and angular velocity servoing commands are defined
as follows:

trans = cmax (4)

angular =
θ (u − w/2)

w
(5)

where θ is the horizontal field-of-view of O, and u is the column of the image-space projection
of Pi.

The frame rate of the image space subsystem is assumed to be sufficiently high that a point
will remain invalid (as defined by ApprovePoint(Pi) = false) for the duration of a control
loop iteration. If a valid target point cannot be found, then the image subsystem transitions
to State Scan.
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Figure 2: Image space occupancy grid O, left, and the corresponding grayscale image, right.
Top to bottom: State ImageP lan checks the visable points along the global path until it
finds a coordinate that is safe to travel toward along a straight trajectory.
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Figure 3: Image space occupancy grid O, left, and the corresponding grayscale image, right.
None of the currently visible global path points are safe; therefore, the system will transition
to State Scan.

2.1.3 State Scan

This state is invoked if a safe straight-line path cannot be found to any currently visible Pi

(as is the case in Figure 3). State Scan attempts to locate a valid Pi by causing the robot
to look at the points in P that have not yet been checked by ApprovePoint(Pi).
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Figure 4: Image space occupancy grid O, left, and the corresponding grayscale image, right.
None of the global path points are safe; therefore, the system will transition to State Blocked.

Let Pvisible be a boolean vector that defines whether or not points in P are visible given the
camera’s current position and orientation. If Pi is visible, then Pvisible

i is defined to be true,
otherwise Pvisible

i is defined to be false. Let Pchecked be a boolean vector that keeps track of
whether or not points in P have ever been checked with ApprovePoint(Pi). If Pi has been
checked, then Pchecked

i is set to true otherwise it is set to false. If State Scan is invoked,
then all of the currently visible points have already been determined to be invalid; therefore,
Pchecked is initialized to Pvisible. When all currently visible points have been checked, the
robot rotates toward the unchecked point, Pchecked

i = false, that requires the least amount
of rotation to observe.

State Scan loops until either a valid point can be found or all Pi have been determined to
be invalid. During each loop iteration ApprovePoint(Pi) is used to check any previously
unchecked points that are now visible. If such a point is found to be valid, then servoing is
performed using Equations 4 and 5 and the system returns to State ImageP lan. Otherwise,
Pchecked

i is set to true. If all of the points in path P have been checked and no valid points
exist (that is, if Pchecked

i = true for all i), then State Blocked is invoked.

2.1.4 State Blocked

This state is used when every point in P is invalid. State Blocked is charged with telling
the Cartesian subsystem about the unusable path, and then waiting for a new path to be
provided. This is accomplished by sending a message to the Cartesian subsystem containing
the GPS coordinates of P1 (the first point in P and the beginning of the old path), as well
as a unique key value. Upon receiving this notification, the Cartesian subsystem inserts a
high cost at P1, calculates a new path, and then sends this new path to the local image
space subsystem. The local subsystem remains in State Blocked until a new path arrives
from the global subsystem that is tagged with the appropriate key value. This ensures that
control will only be passed back to State ImageP lan once information about P1 has been
incorporated into the global path plan.



2.2 FLCP and LCP Local Image Space Subsystems

The FLCP image space subsystems is nearly identical to the LCP system proposed by [9].
Both model the world with an image-space cylindrical occupancy grid map C. Assuming
that the field-of-view of the camera sensor is less than 2π radians, C simulates a 2π radian
panorama of the world in memory. C is fixed in orientation and populated by inserting
values from O based on the robot’s compass heading. C contains p columns and h rows.

The A* search algorithm is used to find a local image-space path between the image-space
projections of the robot’s current location and a subgoal; where the subgoal is obtained from
the global path. In practice, the robot’s location in C is defined to be the bottom (i.e. closest)
row of C along with the column corresponding to the robot’s current compass heading.
Because the robot is represented as a point-particle during path search, C is preprocessed
with a row-wise dilation to account for robot width. Dilation width is defined by the image-
space projection of robot half-width cwidth/2 plus a safety buffer csafety, assuming a flat
ground plane. Due to perspective, the column width of dilation is a function of occupancy
grid row.

Servoing commands are calculated based on the position of a target point Ct located a
predetermined distance dt along the local path. In the case that the path is shorter than dt,
Ct is defined to be the final path coordinate. Note that the frame rate is sufficiently high
that the local subsystem will generate a new local path before the robot reaches the real
world projection of Ct. Let vt and ut be the image space row and column of Ct, respectively,
and let h and p1 be the image space row and column of the robot’s starting location in image
space, respectively. FLCP and LCP both control the robot’s angular velocity as follows:

angular =
θ ((ut − p1) mod p)

w
(6)

LCP controls the robot’s translational velocity as follows:

trans=
cmax (h − vt)

√

(((p/2 + ut − p1)mod p)− p/2)2+ (h − vt)
2

(7)

Let A be a point that is a predefined distance directly ahead of the robot. FLCP differs
from LCP in that the servoing function is modified to allow the robot to travel at maximum
speed whenever ApprovePoint(A) returns true. Thus, if ApprovePoint(A) returns true or
false, FLCP uses Equation 4 or 7 to determine the robot’s speed, respectively. Cost-map
dilation expands obstacles across the direction of travel, and each column of C represents
a unique compass direction. Therefore, ApprovePoint(A) only needs to check cost values
stored in the specific column of C that A is projected into, when used in conjunction with
FLCP.

2.3 DTP Local Cartesian Space Subsystem

The DTP system is a hierarchical planner composed of local and global subsystems that
both use 2D top-down Cartesian models of the world. The local subsystem represents the



world with a robot-centric fixed-size map that has a relatively fine granularity. As with the
other local subsystems, DTP’s local subsystem searches for a path to a subgoal, where the
subgoal is a function of the global path. The rest of the DTP local Cartesian subsystem is
identical to the Global Cartesian space subsystem described in the next section.

2.4 Global Cartesian Space Subsystem

All four planning systems use identical global subsystems, with the exception that IVG allows
the global subsystem to receive lethal coordinates from the local subsystem. The Cartesian
space subsystem models the world as a 2D top-down occupancy grid map G. The map G

expands with robot exploration, is fixed to a global coordinate system, and has a relatively
coarse resolution. Cost information is inserted into G based on the relationship between
stereo disparity and distance. Cost has the same definition as in Equation 2, except that
movement between diagonal neighbors is multiplied by

√
2 to account for distance.

Paths through G are found using the A* algorithm ([33]), although any similar graph-search
algorithm could also be used ([34, 35]). When a path is found, the G-based coordinates
are translated into real-world GPS coordinates and then sent to the image subsystem via a
message.

The IVG message also includes the most recent key value received from the image subsystem
(a key value of null is sent if no messages have been received). The list of lethal coordinates
from the local subsystem is maintained separately from the map, and then superimposed on
the map prior to path search. The list is updated with new GPS coordinates as they arrive
from the image-based subsystem. To account for dynamic environments, points are removed
from the list after moving a predefined distance away from the robot.

To account for the point-particle robot representation used for path search, the map (includ-
ing IVG lethal list) is dilated by robot half-width as a preprocessing step ([2, 7, 22]).

3 Apparatus and Implementation Details

We use the DARPA Learning Applied to Ground Robotics (LAGR) platform for the experi-
ments presented in this paper. The dimensions of the robot are approximately 1.2 x .8 x 1.2
meters (length x width x height, respectively). Relevant hardware includes: two Point Grey
Bumblebee 2 stereo camera pairs, a Garmin GPS receiver, and wheel odometers. The cam-
era pairs output stereo disparity and RGB color information (RGB is unused in this work).
We have found disparity to be accurate up to 15 meters. However, this range is often less
depending on environmental conditions. Translation and rotation are achieved via two inde-
pendently controlled wheels located on either side of the sensor mast. There is one computer
dedicated to each of the camera pairs, another for the planning system, and a fourth that
functions as a servo controller. The camera and planner computers have dual-core pro-
cessors. Camera data is sent from the camera computers to the planning subsystems via
network messages.
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Figure 5: Experiment 1, a scattering of small obstacles on a field.

The image space occupancy grid used in the local subsystem of IVG contains h = 240 rows
and w = 320 columns. The cylindrical image space map used in the local subsystems of
FLCP and LCP contains h = 40 rows and p = 200 columns. The local Cartesian map used
in the local subsystem of DTP is 18 meters North by 18 meters West and has a resolution
of 0.2 meters. The subgoal used for local search in FLCP, LCP, and DTP is defined to be
the first point along the global path that is at least 5 meters away from the robot. The
target point used for the servoing functions in FLCP and LCP is chosen to be the twelfth
node along the local image space path. The point A, used in FLCP to determine the safety
of driving at the maximum speed, is defined to be 3 meters directly ahead of the robot.
The global Cartesian subsystem uses a global map with a resolution of 0.5 meters. The
IVG global Cartesian subsystem removes points from the lethal list if they are more than 15
meters away from the robot.

4 Experiments

All four planning systems are implemented on an autonomous robot and evaluated on three
outdoor courses. Each planning system is tested three times per course. The maximum speed
of all systems is set to 1 meter per second. GPS-based paths for each run are displayed in
Figures 5-7, and the corresponding distances and runtimes are displayed in Tables 1 and 2,
respectively. Traversal distance is calculated from the list of actual GPS coordinates that
the robot is believed to have traversed. However, due to GPS drift, this may vary slightly
from the actual path that was taken (within 8% for the experiments presented here). Note
that if GPS drift artificially shortens the length of a quick test run, then the average robot
speed may falsely appear greater than 1 meter per second.

Experiment 1 (Figure 5) is designed to test a planner’s ability to navigate around small
obstacles. The obstacles are arranged in a diamond pattern on a field.

Experiment 2 (Figure 6) contains 1.8 and 2.4 meter wide walls placed 10 and 20 meters
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Figure 6: Experiment 2, two wall like obstacles on a field.
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Figure 7: Experiment 3, slightly rolling terrain with natural obstacles such as trees.

in front of the robot, respectively. Experiment 2 is designed to test a planner’s ability to
navigate around medium-sized obstacles. The course is constructed such that that, after
avoiding the first obstacle, the straightest path to the goal is blocked by the second obstacle.

Experiment 3 (Figure 7) is performed on rolling terrain with natural obstacles such as trees.
This experiment is designed to test a planner’s ability to navigate in a natural environment.

5 Results

The average runtime of FLCP is consistently less than that of other systems; however,
it follows longer than average paths. In contrast, IVG requires more time to complete a
course, while moving along shorter than average paths. Although no system consistently



Table 1: Experimental Traversal Distances In Meters
Experiment 1

Run 1 Run 2 Run 3 Mean Std.
IVG 15.34 15.93 17.06 16.11 0.71

FLCP 17.91 15.96 16.00 16.62 0.91
LCP 16.38 16.88 16.67 16.64 0.20
DTP 17.20 16.86 16.55 16.87 0.27

Experiment 2
Run 1 Run 2 Run 3 Mean Std.

IVG 25.27 25.50 25.68 25.48 0.17
FLCP 27.34 27.50 27.03 27.29 0.20
LCP 27.44 27.97 27.03 27.48 0.38
DTP 25.03 26.62 23.86 25.17 1.13

Experiment 3
Run 1 Run 2 Run 3 Mean Std.

IVG 58.30 58.29 55.83 57.47 1.16
FLCP 58.99 59.60 60.39 59.66 0.57
LCP 58.81 60.57 60.59 59.99 0.83
DTP 55.42 57.08 55.48 55.99 0.77

Table 2: Experimental Runtimes In Seconds
Experiment 1

Run 1 Run 2 Run 3 Mean Std.
IVG 29.92 30.36 31.51 30.60 0.67

FLCP 26.37 15.66 15.41 19.15 5.11
LCP 28.90 24.15 20.16 24.40 3.57
DTP 24.74 25.88 24.25 24.96 0.68

Experiment 2
Run 1 Run 2 Run 3 Mean Std.

IVG 40.44 40.30 40.78 40.51 0.20
FLCP 26.05 30.37 25.57 27.33 2.16
LCP 30.79 31.56 30.54 30.96 0.43
DTP 33.01 37.88 31.61 34.17 2.69

Experiment 3
Run 1 Run 2 Run 3 Mean Std.

IVG 72.37 71.41 69.94 71.24 1.00
FLCP 59.06 61.29 61.29 60.55 1.05
LCP 63.85 78.15 72.67 71.56 5.89
DTP 64.23 66.00 64.92 65.05 0.73

takes shorter or longer paths than the other three, IVG uses the shortest paths of any
system with an image-space subsystem.

Even though both systems translate at the maximum speed whenever possible, IVG travels



at a slower average velocity than FLCP. We speculate that this result is caused by IVG’s
method of handling invalid global paths. If the local subsystem decides that none of the
coordinates along the global path can be reached safely, then the robot must halt until a
new global path can be found. This is evidenced by the fact that IVG has a relatively short
average runtime on Experiment 3, which contains fewer obstacles than Experiments 1 and 2.
On the other hand, the strategy of halting and waiting for a new global path conserves
distance whenever a more efficient path can be found. FLCP finds a local path regardless of
the validity of the global path. Even when it is dangerous to travel at the maximum speed
(i.e. ApprovePoint(A) returns false) the local path can still be used for navigation at a
reduced speed. This increases the average velocity of FLCP relative to IVG.

The average runtimes of FLCP are less than those of LCP, although their average path
lengths are within one standard deviation of each other. This suggests that FLCP is an
improvement over LCP.

6 Conclusions

We have proposed two new image space planning techniques: Image Space Verification of
Global Planning (IVG) and Fast Local Cylindrical Planning (FLCP). IVG uses a high-
resolution local image space subsystem to determine the furthest global path coordinate
that can be reached along an unobstructed heading, thereby short-cutting as much of the
global path as possible. IVG is the first image space planning technique suitable for navi-
gation in completely unstructured environments that does not use a graph-search algorithm
in image space. Using functionality borrowed from IVG, FLCP improves upon previous
cylindrical/Cartesian planners by determining when it is safe to translate at the maximum
speed.

IVG and FLCP are experimentally evaluated on an autonomous robot and compared
against a double 2D top-down Cartesian planner and a previously proposed hierarchical
image/Cartesian space planner. All four systems are tested three times per course on three
different course layouts. We find that IVG tends to follow shorter than average paths but
requires more time to reach the goal. FLCP has consistently shorter runtimes than the other
systems.

7 Future Work

The current image-based subsystem of IVG only uses information from a single camera
pair. Given that many robotic platforms contain more than one imaging sensor, a natural
extension to this work simultaneously incorporates data from multiple sensors into the IVG
framework. Two possible ideas include:

1. Running one image-based subsystem per imaging sensor, and then defining GPS
coordinates as valid only if they are independently valid in each of the subsystems.

2. Fusing the cost information provided by each sensor into a single image space cost



map, and then using the combined map as input to an image space planner.

The average speed of IVG is considerably reduced by the current method of dealing with
invalid global paths. Another extension to this work involves creating a way for IVG to
handle blocked paths without stopping.
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