
A Consistency Checking Optimization Algorithm for Memory-Intensive
Transactions

Justin E. Gottschlich, Daniel A. Connors, Jeremy G. Siek

University of Colorado at Boulder

University of Colorado at Boulder
Technical Report CU-CS 1049-08

Dept. of Computer Science
Campus Box 430

University of Colorado
Boulder, Colorado 80309-0430

Dept. of Electrical and Computer Engineering
Campus Box 425

University of Colorado
Boulder, Colorado 80309-0425



Abstract
Transactional memory (TM), a recent parallel pro-
gramming concept, aims to simplify parallel program-
ming while simultaneously maintaining performance
benefits found in concurrent applications. Consistency
checking, the manner in which memory conflicts are
identified in transactional memory, is a critical aspect
to TM system performance. We present a theoretical,
analytical and empirical view of our novel consistency
checking algorithm which is optimized for spatially
wide transactional workloads. Initial tests show our al-
gorithm yields super linear performance improvements
over other alternatives as transaction size grows, re-
sulting in performance gains between 5x − 250x for
experimental benchmarks.

1. Introduction
Conventional parallel programming synchronization
mechanisms, such as locks, monitors and semaphores
are exceptionally difficult to program correctly [1, 2,
6, 8, 9, 11]. Yet, as computer manufacturers continue
to mass produce chip multi-processors (CMPs), more
parallel programming is needed to fully utilize CMP
resources [2, 6]. Without other parallel programming
alternatives, the nondeterministic nature of parallel pro-
gramming continues to be a prime deterrent to software
developers who must ensure their released software
does not exhibit some of the crippling behavior par-
allel programs are notorious for, such as deadlocking,
livelocking and lock convoys [5].

Transactional memory (TM) [12], a new alternative
for parallel programming, aims to reduce the complex-
ity of writing parallel code while simultaneously main-
taining the performance benefit found in multi-threaded
programs. Transactions, unlike other parallel program-
ming mechanisms, are easier for the programmer to
reason about and place the synchronization complex-
ity of the software into a system abstracted away from
the view of the programmer.

1.1 Optimizing Memory-Intensive Transactions
The focus of this paper is on the optimization of
memory-intensive transactions. We have found five
components which play a critical role in optimizing
large transactions. They are as follows.

(1) Primary: Consistency Checking. Consistency
checking is the way a transaction verifies its state is
consistent. Consistency checking plays a vital role in

making memory-intensive transactions fast. We are not
the first to make this assertion, Scott [17] and Spear et
al. [18] have also found consistency checking to play
a critical role in software transactional memory (STM)
performance.

There are two ways to perform consistency check-
ing: validation and invalidation. A validating STM sys-
tem requires a transaction check its own read and write
sets against global memory to verify it is consistent.
An invalidating STM system requires a transaction an-
alyze all other in-flight transactions and flag them as
invalid if they conflict with its state. Since TM systems
derived from database systems (which perform valida-
tion) most existing STM systems implement validation
as a means of consistency checking [13]. Our algorithm
uses invalidation consistency checking and is able to
achieve super linear performance improvements over
validation as explained in the following section.

(2) Conflict Detection. The time consistency check-
ing is performed is called conflict detection [13, 18].
Conflict detection can be performed at two times: prior
to a transaction committing or when a transaction is
committing (also known as commit-time). Most STM
systems require conflict detection be performed at least
at commit-time. Prior research of Marathe et al. [14]
has shown that performing conflict detection at vari-
ous times in addition to commit-time can yield per-
formance benefits. We do not contest these findings.
However, in a lock-based system where commit-time
invalidation is provably correct [7], we have found that
commit-time only conflict detection performs better
than other alternatives. The recent findings of Dice et
al. and their use of a commit-time validation locking
scheme within TL2 further supports this argument [3].

By performing conflict detection only at commit-
time, comparisons are reduced to O(N), where N is
the number of required comparisons for consistency.
Performing conflict detection any time prior to commit-
time requires ≥ O(N) operations.

(3) Updating. Updating is the process of committing
transactional writes to global memory [13] and is per-
formed in either direct or deferred manners. Deferred
updating creates a local copy of global memory, per-
forms modifications to the local copy and then writes
those changes to global memory if the transaction com-
mits. If the transaction aborts, no additional work is
done. Direct updating makes an original backup copy

2



of global memory and then writes directly to global
memory. If the transaction commits, the transaction
does nothing. If the transaction aborts, the transaction
restores global memory with its backup copy. Recent
TM systems are beginning to favor direct updating due
to its natural optimization of commits (BSTM [10],
McRT-STM [16] and LogTM [15]).

Our algorithm uses both direct and deferred updat-
ing, but performs best when using deferred updating
because deferred updating allows commit-time con-
sistency checking to proceed without speculative con-
tention management for faster committing, but later ar-
riving, writer transactions (not possible in direct updat-
ing).

(4) Synchronization. Our algorithm’s lock-based de-
sign uses thread-level locking, unlike all other lock-
based and non-blocking systems we are aware of, such
as: Ennals [4], TL2 [3] and RSTM [14] (to name a few),
which use memory-level locking (or CAS in the case of
RSTM). Thread-level locking is preferred to memory-
level locking for memory-intensive transactions as it re-
quires Fi atomic locking operations, where Fi is the
number of in-flight transactions when the ith trans-
action is committing. For committing transactions in
which ri + wi > Fi, where wi and ri are the com-
mitting transaction’s read and write set size and Fi are
the in-flight transactions when the ith transaction is
committing, thread-level locking requires less atomic
operations than memory-level locking. By our defini-
tion, memory-intensive transactions are ones in which
ri + wi > Fi and perform faster under thread-level
locking systems than under memory-level locking sys-
tems.

(5) Data Sets. Read and write sets are stored within
transactions, not within memory locations directly.
Storing reads and writes within the transaction reduces
cache pressure, indirection and maintenance time that
is otherwise necessary if transactional read and write
sets were stored and maintained directly within mem-
ory locations.

1.2 Contributions
The technical contributions of this paper are:

• The main contribution of this work is the introduc-
tion of our invalidation algorithm and a theoretical
and mathematical analysis of its behavior.

• A secondary contribution of this work is the presen-
tation of analytical and experimental results detail-
ing the performance of our invalidation algorithm in
contrast with DracoSTM’s and RSTM’s validation
algorithm.

2. Consistency Checking Theory
This section presents a theoretical and mathemati-
cal analysis of validation and invalidation consistency
checking.

Assumptions. We assume conflict detection is done
at commit-time and the updating policy of the system
is deferred. Furthermore, our equations use worst-case
complexity which (1) assumes no conflict or (2) that
conflicts are found during the last consistency checking
operation.

Figure 1. A commit-time validating system.

2.1 Validation
Validating STM systems ensure consistency by com-
paring transactional read and write data against global
memory [13]. Validating transactions use versioning
of memory to verify consistency. When the transac-
tion’s memory versions do not match global memory,

3



the transaction is aborted. When the transaction’s mem-
ory versions do match global memory, global memory
is updated with the transaction’s write data.

A high-level diagram detailing how an STM system
can implement validation is shown in Figure 1. Valida-
tion for read memory begins with storing a reference
to the read memory location and the current global ver-
sion number associated with it. When committing, the
transaction then verifies the global version number of
the read memory has not changed. This ensures the
read memory is in the same state as it was when the
transaction originally read the data. If the version num-
ber of the read data does not match global memory, the
transaction must restart as the transaction is inconsis-
tent. When a write is performed by a validating system,
written to memory is copied as is the version number
associated with it. When committing, the transaction
verifies the global version number has not changed and
updates global memory with its local changes. If global
memory has changed, as indicated by a version number
mismatch, the transaction restarts due to inconsistency.

Equation 1 (Validation). Given a non-unique series
of M committing transactions, where wi and ri are the
ith committing transaction’s write and read set size, the
commit-time consistency checking operations required
for validation.

c(M) =
M∑
i=1

wi + ri

(1)

2.2 Invalidation
Invalidating STM systems assume their memory is
consistent and flag conflicting in-flight transactions
as invalid [13]. Invalidation functions on the premise
that committing transactions not notified to abort are
consistent. Committing invalidating transactions must
guarantee conflicting in-flight transactions are identi-
fied as invalidated before they commit. As such, an in-
validating transaction does not check its own state for
consistency. Invalidating transaction only check other
in-flight transactions for conflicts with itself and flags
the conflicting transactions as invalid. Figure 2 illus-
trates the invalidation process. The difference in ap-
proach between invalidation and validation, leads to a

significant change in the operational overhead required
by each method.

Figure 2. A commit-time invalidating system.

For writing, the invalidating transaction copies the
data and writes to it – no version number is required.
Prior to committing, the invalidating transaction checks
to see if it has been notified to abort. If it has, it
restarts the transaction, otherwise, it begins the commit
phase. The commit phase of an invalidating transaction
is quite different from a validating transaction. Com-
mitting invalidating transactions check other in-flight
transactions for conflicts with its write data. If the com-
mitting, invalidating transaction locates another trans-
action that is reading or writing to data in its write set it
must flag the in-flight transaction as invalid (or it must
flag itself as invalid). The identified conflict requires
that at least one of the transactions abort. Without con-
sidering priority inversion or other consequences, the
committing transaction generally aborts the conflicting
in-flight transaction.

Consistency checking overhead for read data is zero
(optimal). The process of read data invalidation is
shown in Figure 2. Prior to a transaction committing,
the transaction checks to see if it has been flagged to

4



abort. If it has not been flagged to abort it begins the
commit phase. If the transaction is only reading, zero
consistency checking is performed - the transaction
simply commits. This is a key observation and a fun-
damental basis for high performance for invalidating
STM systems.

Equation 2 (Invalidation). Given a non-unique se-
ries of M committing transactions, where wi is the ith
committing transaction’s write set size, Fi are the in-
flight transactions at the time of the ith committing
transaction and wj and rj are the jth in-flight transac-
tion’s write and read set sizes, and s is the asymptotic
search function speed associated with the jth transac-
tion, the commit-time consistency checking operations
required for invalidation is shown in Equation 2.

c(M) =
M∑
i=1

 Fi∑
j=1

wi(s(wj) + s(rj))


(2)

Equation 3 (Optimized Invalidation). A naive imple-
mentation of Equation 2 is to implement the read and
write sets in linear-time algorithms, such as linked lists.
While the resulting performance of such an implemen-
tation can still outperform validation (Equation 1) and
is shown in the following section, a search optimal con-
tainer used for read and write sets can drastically re-
duce the overall required comparison operations of in-
validation. By using binary search trees to store read
and write sets for all transactions, Equation 2 can op-
timize the s search function from a linear-time opera-
tion to a logarithmic-time (log2()) operation as shown
in Equation 3.

c(M) =
M∑
i=1

 Fi∑
j=1

wi(log2(wj) + log2(rj))


(3)

2.3 Summary
The above differences in validation and invalidation
lead to the following observations.

• Invalidation consistency checking requires verifica-
tion of write sets. Validation consistency checking
requires verification of both read and write sets.

• Invalidation has optimal transactional consistency
checking (zero operations) for read-only transac-
tions. Validation requires N consistency checking
operations for the same transactions, where N is the
number of elements in the transaction’s read set.

• Invalidation has optimal transactional consistency
checking (zero operations) when no other in-flight
transactions exist, irrespective of the transaction’s
read and write set sizes. Validation requires N con-
sistency checking operations for the same transac-
tions, where N is the number of elements in the
transaction’s read and write sets.

• Invalidation has read and write set search-space op-
timizations. No counterpart search-space optimiza-
tion exists in validation; all transactional read and
write elements must be individually checked for
consistency.

3. Consistency Checking Analysis
We now analyze the application of the validation (1)
and invalidation (2) Equations on a linked list with two
transactions (T1 and T2) and two operations (insert and
lookup) on a pre-existing list containing ten nodes (0-9)
as shown in Figure 3.

Figure 3. Linked list example.

T1 inserts a node of value 10 by walking elements 0-9
and adding them to its read set. When T1 inserts ele-
ment 10 to the list, element 9 is promoted to its write

5



set. T2 performs a lookup of value 9 by walking ele-
ments 0-9 and adding them to its read set. T1 has 1 write
element and 9 read elements, while T2 has 10 read el-
ements. We assume both T1 and T2 complete all trans-
actional operations and just swap their commit orders:
T1 then T2 and T2 then T1. From Equations 1, 2 and
3, the T1, T2 commit order results in M = T1, T2, T2,
while the T2, T1 commit order results in M = T2, T1.
The non-unique M series is the same for both commit-
time validation and invalidation equations. The mem-
ory conflict when node 9 is updated on T1’s insert,
causes T2 to abort on the T1, T2 commit order, resulting
in the second T2 seen in the M series.

Figure 4. Validation operations for linked list.

For commit-time validation the T1, T2 commit order
results in M = T1, T2, T2. Applying Equation 1, 30
consistency checking operations are needed; w1 + r1

+ w2 + r2 + w2 + r2 = 30. When the T2, T1 commit
order occurs, M = T2, T1 and results in 20 operations
as shown in Figure 4.

Figure 5. Invalidation operations for linked list.

For commit-time invalidation (Figure 5) the T1, T2

commit order also results in M = T1, T2, T2. Apply-
ing Equation 2, 10 consistency checking operations
are needed: w1(1 × w2 + 1 × r2) + w2(0) = 10.
DracoSTM’s implementation optimizes Equation 2
by storing read and write sets in binary search trees
within the transactions (Equation 3), reducing their
search time from linear to logarithmic; resulting a re-
duction of the T1, T2 commit order to 4 operations
(w1(log2(w2) + log2(r2)) + w2(0) = 4). For the
T2, T1 commit order, where M = T2, T1, 0 consistency
checking operations are needed; when T2 commits, its
write set size is 0 and when T1 commits afterward, no
in-flight transactions exist and requires no operations.

Using DracoSTM’s invalidation for the linked list
with 101 elements, invalidation outperforms validation
by 7.5x (30/4) for T1, T2 commit order and infinitely
(20/0) for T2, T1 commit order. Yet, the performance
differential in validation and invalidation are not con-
stant as transaction size grows. The same T1, T2 com-
mit order for a linked list which has 103 nodes (in-
sert of 1000, lookup of 999), results in 3000 valida-
tions and 10 invalidations; 300x performance differ-
ence. The same scenario with a 105 sized linked list re-
sults in a 17, 650x performance difference. As memory

6



increases, the performance differential between vali-
dation and invalidation widens at a super linear rate
(7.5x, 300x, 17, 650x), leading to fast performance
for memory-intensive transactions when using Dra-
coSTM’s optimized invalidation algorithm.

4. Experimental Results
Our experiments compare DracoSTM’s deferred and
direct commit-time invalidation with RSTM’s (Uni-
versity of Rochester STM) eager validation and Dra-
coSTM’s commit-time validation. We compare Dra-
coSTM’s deferred commit-time invalidation, DracoSTM’s
deferred commit-time validation and RSTM’s eager
validation to analyze how DracoSTM’s commit-time
invalidation performs against its own validating sys-
tem and another validating system. We also compare
DracoSTM’s deferred updating system against its own
direct updating system to draw conclusions on which
type of updating policy usually performs better when
aligned with commit-time invalidation.

For small transactions with a low thread count,
RSTM is sometimes faster than DracoSTM. These re-
sults are as expected. According to Equations 1 and
3 transactions with small memory footprints show lit-
tle performance differences in their consistency oper-
ations - the logarithmic benefits of optimized-search
invalidation are not as visible until memory sizes grow.
Furthermore, for all of the below transactional data
structure algorithms many factors affecting speed. In
the linked list benchmark, the workload is clearly dom-
inated by the consistency checking algorithmic por-
tion of the transaction. As such, the linked list case
clearly illustrates the benefits of invalidation. However,
in both the red-black tree and the hash tables, the par-
allel distribution of the workload and the smaller read
and write set sizes, result in a reduced asymptotic al-
gorithmic data structure workload. The reduced work-
load caused by low worst-case asymptotic overhead
creates a nearly consistent performance differential for
the overall benchmark due to the consistency checking
performance playing a smaller role in overall perfor-
mance. These results do not suggest the consistency
checking algorithm is not bringing performance ad-
vantages, rather the performance advantages are not as
well exposed as they are in linear-time algorithms.

Overview. Our comparisons of DracoSTM’s various
configurations and RSTM consist of inserts and inserts
with lookups on three different data structures: red-

black trees, hash tables and linked lists. All tests were
performed on a 3.2 GHz 4-processor Intel Xeon with
16 GB of RAM. The graph data shows results for 4 and
8 threaded tests. In our benchmarks, we show commit-
time invalidation with DracoSTM using direct and de-
ferred updating, labeled iDraco dir and iDraco def, re-
spectively. DracoSTM using deferred updating with
validation is labeled vDraco def. Finally, RSTM’s al-
gorithm using the polka contention manager is labeled
RSTM pol.

Inserts. Inserts into the data structures (red-black
tree, hash table or linked list) are performed iteratively.
For example, if 100 elements are inserted into a red-
black tree, and the first element begins with a value of
0, then the next element’s value will be 1, and then 2
and so on. To guarantee uniqueness, each thread inserts
unique values of a specific range and the other threads
are guaranteed to not insert on this range. For example,
if thread 1 inserts elements 0-99, thread 2 will insert el-
ements 100-199, thread 3 will insert elements 200-299,
and so forth.

Lookups. Lookup operations are performed in an
identical fashion as inserts. Values are iterated through
sequentially as the values are known for each container.
No attempts to retrieve values which do not exist within
the containers are performed. While testing for non-
existing values is a good test for sanity checking, it is
not as importance for testing STM lookup time.

4.1 Data Interpretation
Each of the figures show a different container; red-
black trees in figure 7, hash tables in figure 8 and finally
linked lists in figure 6. Furthermore, each of the three
figures show four graphs: (1) 4 threaded insert-only
test, (2) 4 threaded insert + lookup test, (3) 8 threaded
insert-only test and (4) 8 threaded insert + lookup test.
The y-axis shows the transactions per second on a log-
arithmic scale, the x-axis shows the total number of el-
ements inserted into the container (not the number in-
serted per thread).

Linked Lists. The linked list data structure and exper-
imental results most clearly demonstrate the algorith-
mic performance differential of invalidation and val-
idation. Linked list performance results are shown in
figure 6. For the 4 threaded tests, DracoSTM’s invali-
dation, validation and RSTM start with nearly identical
performance. RSTM’s performance quickly degrades,

7



Figure 6. Linked List Benchmarks.

as does DracoSTM’s validation, while DracoSTM’s
invalidation performance degrades slowly. For the 8
threaded tests, DracoSTM’s invalidation and valida-
tion performance begins at roughly an order of magni-
tude faster than RSTM. However, as the linked list size
doubles, the DracoSTM’s validation slows significantly
while DracoSTM’s invalidation slows more gradually.

The resulting performance difference for the 4 threaded
tests leaves DracoSTM outperforming RSTM by ≈
250x. For the 8 threaded test, RSTM starts ≈ 10x
slower than DracoSTM and finishes ≈ 100x slower
than DracoSTM. The DracoSTM invalidation algo-
rithm also outperforms its own validation algorithm by
12x for the 4 threaded test and 13x for the 8 threaded
test.

Red-Black Trees. Figure 7 shows the red-black tree
performance of DracoSTM and RSTM. RSTM is faster
than DracoSTM for both initial 4 threaded tests. How-
ever, as the size of the container doubles, DracoSTM
widens the performance gap eventually leading to an
order of magnitude performance difference between
DracoSTM and RSTM. For the 8 threaded tests, RSTM
is slightly slower than DracoSTM’s deferred updating,
but faster than DracoSTM’s direct updating. At the final
test interval, DracoSTM is roughly an order of magni-
tude faster than RSTM. DracoSTM’s validating algo-
rithm performs roughly an order of magnitude slower
than DracoSTM’s invalidating algorithm, continually.
These results indicate that the workload overhead of the
red-black tree container are higher than the consistency

8



Figure 7. Red-Black Tree Benchmarks.

checking operations for DracoSTM transactions. How-
ever, for small red-black container sizes (1000 nodes
per thread), not shown here, the DracoSTM perfor-
mance difference between invalidation and validation
is less than 5x. The increased rate of difference for the
larger sized red-black trees demonstrates the affects of
the consistency checking algorithm’s logarithmic per-
formance.

Hash Table. Hash tables performance numbers for
DracoSTM and RSTM are shown in figure 8. For the
4 threaded tests, RSTM begins ≈ 5x faster than Dra-
coSTM and ends with DracoSTM ≈ 5x faster than
RSTM. For the 8 threaded test, DracoSTM begins≈ 2x
faster than RSTM and ends with DracoSTM ≈ 5x
faster than RSTM.

Hash tables as implemented by RSTM and Dra-
coSTM, are bucketed linked lists. As such, they are
innately parallel yielding low conflict rates and small
read and write sets, due to highly distributed small
containers. As such, the consistency checking algo-
rithmic affects are less visible in hash tables than the
others. Still, DracoSTM’s 5x performance difference
with RSTM is impressive for such an innately paral-
lel structure. Furthermore, DracoSTM’s invalidation al-
gorithm continues to perform 2x faster than its own
validation algorithm even for higher hash table work-
loads which are likely to remain highly distributed,
demonstrating that even in highly distributed work-
loads the performance savings of invalidation is visible
with large transactions.

9



Figure 8. Hash Table Benchmarks.

5. Conclusion
This paper presented a theoretical, analytical and ex-
perimental view of our optimized consistency check-
ing algorithm. Our high-level analysis of validation
and invalidation showed that invalidating systems: (1)
have read and write set search-space optimizations in
which no counterpart exists for validating systems, (2)
require zero consistency checking for reads, creating
optimally performing read-only transactions and (3)
require zero consistency checking for isolated trans-
actions. After presenting the theoretical and mathe-
matical view, we iterated through a linked list anal-
ysis, which revealed super linear performance differ-
ences for invalidation and validation as transactional
memory size increased. We then presented experimen-

tal data comparing our invalidation algorithm imple-
mented within DracoSTM against DracoSTM’s own
commit-time validation and RSTM’s eager validation.
For some small-memory footprint cases, all three sys-
tems perform similarly. As transaction size increases,
RSTM and DracoSTM’s commit-time validation per-
formance degrades at a quicker rate than DracoSTM’s
invalidation for algorithms with linear-time complexity
and at a more constant rate for algorithms with loga-
rithmic complexity while still performing universally
faster for all memory-intensive experiments. These ob-
servations suggest future STM systems which work
with memory-intensive transactions should consider a
similar approach to ours in order to reduce consis-

10



tency checking operations and optimize transactional
throughput.

References
[1] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E.

Leiserson, and S. Lie. Unbounded transactional mem-
ory. In Proceedings of the Eleventh International Sym-
posium on High-Performance Computer Architecture,
pages 316–327. Feb 2005.

[2] B. Carlstrom, J. Chung, H. Chafi, A. McDonald,
C. Minh, L. Hammond, C. Kozyrakis, and K. Oluko-
tun. Transactional execution of java programs, 2005.

[3] D. Dice, O. Shalev, and N. Shavit. Transactional
locking II. In S. Dolev, editor, Distributed Computing
(20th DISC’06), volume 4167 of Lecture Notes in
Computer Science (LNCS), pages 194–208. Springer-
Verlag (New York), Stockholm, Sept. 2006.

[4] R. Ennals. Software transactional memory should not
be obstruction-free. Technical report, Intel Research
Tech Report, Jan 2006.

[5] K. Fraser and T. Harris. Concurrent programming
without locks. ACM Trans. Comput. Syst, 25(2), 2007.

[6] C. Gniady, B. Falsafi, and T. N. Vijaykumar. Is SC +
ILP=RC? In ISCA, pages 162–171, 1999.

[7] J. E. Gottschlich. Exploration of lock-based software
transactional memory. Master’s thesis, University of
Colorado at Boulder, Oct. 2007.

[8] L. Hammond, B. D. Carlstrom, V. Wong, B. Hertzberg,
M. Chen, C. Kozyrakis, and K. Olukotun. Program-
ming with transactional coherence and consistency
(TCC). j-SIGPLAN, 39(11):1–13, Nov. 2004.

[9] T. Harris and K. Fraser. Language support for
lightweight transactions. j-SIGPLAN, 38(11):388–402,
Nov. 2003.

[10] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi.
Optimizing memory transactions. ACM SIGPLAN
Notices, 41(6):14–25, June 2006.

[11] Herlihy, Luchangco, Moir, and Scherer. Software
transactional memory for dynamic-sized data struc-
tures. In PODC, 2003.

[12] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
ISCA, pages 289–300, 1993.

[13] J. R. Larus and R. Rajwar. Transactional Memory.
Morgan & Claypool, 2006.

[14] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya,
D. Eisenstat, W. N. Scherer, III, and M. L. Scott. Low-
ering the overhead of nonblocking software trans-
actional memory. revised, University of Rochester,
Computer Science Department, May 2006.

[15] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and
D. A. Wood. Logtm: Log-based transactional memory.
In Proceedings of the 12th International Symposium
on High-Performance Computer Architecture, pages
254–265. IEEE Computer Society, Feb. 2006.

[16] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C.
Minh, and B. Hertzberg. McRT-STM: a high per-
formance software transactional memory system for a
multi-core runtime. In PPOPP. ACM SIGPLAN 2006,
Mar. 2006.

[17] M. L. Scott. Sequential specification of transactional
memory semantics. In Proceedings of the First ACM
SIGPLAN Workshop on Languages, Compilers, and
Hardware Support for Transactional Computing. Jun
2006.

[18] M. F. Spear, V. J. Marathe, W. N. Scherer III, and M. L.
Scott. Conflict detection and validation strategies for
softwaretransactional memory. In Proceedings of the
Twentieth International Symposium on Distributed
Computing, Sep 2006.

11


