
Exploring the Design Space of Higher-order Casts

Jeremy G. Siek
Dept. of Electrical and Computer Engineering

University of Colorado at Boulder
425 UCB

Boulder, CO 80309 USA

Ronald Garcia
Dept. of Computer Science

Rice University
Houston, TX 77005 USA

Walid Taha
Dept. of Computer Science

Rice University
Houston, TX 77005 USA

CU Technical Report CU-CS 1047-08
October 2008

Abstract

This paper explores the surprisingly rich design space for the simply typed lambda calcu-
lus with casts and a dynamic type. Such a calculus is the target intermediate language of the
gradually typed lambda calculus but it is also interesting in its own right. In light of diverse
requirements for casts, we develop a modular semantic framework, based on Henglein’s Co-
ercion Calculus, that instantiates a number of space-efficient, blame-tracking calculi, varying
in what errors they detect and how they assign blame. Several of the resulting calculi extend
work from the literature with either blame tracking or space-efficiency, and in doing so re-
veal previously unknown connections. Furthermore, we introduce a new strategy for assigning
blame under which casts that respect traditional subtyping are statically guaranteed to never
fail. One particularly appealing outcome of this work is a novel cast calculus that is well-suited
to gradual typing.

1

Contents
1 Introduction 3

2 From lazy to eager detection of higher-order cast errors 5

3 Blame assignment and subtyping 6

4 Space efficiency 8

5 Variations on the Coercion Calculus 9
5.1 Blame assignment strategies . 12

5.1.1 The UD blame assignment strategy . 13
5.1.2 The D blame assignment strategy . 14

5.2 An eager error detection strategy for the Coercion Calculus 15

6 A space-efficient semantics for λ〈·〉→(X) 16

7 Conclusion and future work 16

2

1 Introduction
This paper explores the design space for λ〈·〉→ , the simply typed lambda calculus extended with a
dynamic type and cast expressions. Variants of this calculus have been used to express the dynamic
semantics of languages that combine dynamic typing and static typing [2, 3, 5, 6, 8, 9, 10, 11].

The syntax of λ〈·〉→ is given in Fig. 1. The dynamic type Dyn is assigned to values that are tagged
with run-time representations of their types. The cast expression, 〈T ⇐ S〉le, coerces a run-time
value from type S to T or halts with a cast error if it cannot perform the coercion. More precisely,
the calculus evaluates e to a value v, checks whether the run-time type of v is consistent with T in
some sense, and if so, returns the coercion of v to T . Otherwise execution halts and signals that
the cast at location l of the source program caused a cast error.

Figure 1: Syntax for the lambda calculus with casts (λ〈·〉→)

Base Types B ⊃ {Int, Bool}
Types S, T ::= B | Dyn | S → T
Blame labels l ∈ L
Variables x ∈ V
Constants k ∈ K
Expressions e ::= x | k | λx : T. e | e e | 〈T ⇐ S〉le

The semantics of first-order casts (casts on base types) is straightforward. For example, casting
an integer to Dyn and then back to Int behaves like the identity function.

〈Int⇐ Dyn〉l2〈Dyn⇐ Int〉l14 7−→∗ 4

On the other hand, casting an integer to Dyn and then to Bool raises an error and reports the source
location of the cast that failed.

〈Bool⇐ Dyn〉l2〈Dyn⇐ Int〉l14 7−→∗ blame l2

We say that the cast at location l2 is blamed for the cast error.
Extending casts from first-order to higher-order (function) types raises several issues. For

starters, higher-order casts cannot always be checked immediately. In other words, it is not gener-
ally possible to decide at the point where a higher-order cast is applied to a value whether that value
will always behave according to the type ascribed by the cast. For example, when the following
function is cast to Int → Int, there is no way to immediately tell if the function will return an
integer every time it is used.

〈Int→ Int⇐ Int→ Dyn〉(λx : Int. if 0 < x then 〈Dyn〉True else 〈Dyn〉2)

So long as the function is only called with positive numbers, its behavior respects the cast. If it is
ever called with a negative number, however, its return value will violate the invariant imposed by
the cast.

3

The standard solution, adopted from work on higher-order contracts [1], defers checking the
cast until the function is applied to an argument and then checks the cast against the particular
argument and return value. This can be accomplished by using the cast as a wrapper and splitting
it when the wrapped function is applied to an argument:

(APPCST) (〈T1 → T2 ⇐ S1 → S2〉v1) v2 −→ 〈T2 ⇐ S2〉(v1 〈S1 ⇐ T1〉v2)

Because a higher-order cast is not checked immediately, it might fail in a context far removed
from where it was originally applied. To help diagnose such failures, dynamic semantics are
enhanced with blame tracking, a facility that traces failures back to their origin in the source
program [1, 4, 10].

Several dynamic semantics for casts have been proposed in the literature and their differences,
though subtle, produce surprisingly different results for some programs. Consider how five seman-
tics for λ〈·〉→ (Siek and Taha [8], Herman et al. [7] (both the lazy and eager variants), Wadler and
Findler [10], and Wadler and Findler [11]) produce different results for a few small examples.

The following program casts a function of type Int→ Int to Dyn and then to Bool→ Int. It
produces a run-time cast error using the semantics of Siek and Taha [8], Wadler and Findler [10],
and Herman et al. [7] (eager variant) but not using the semantics of Wadler and Findler [11] and
Herman et al. [7] (lazy variant).

(1) 〈Bool → Int ⇐ Dyn〉〈Dyn ⇐ Int → Int〉(λx : Int. x)

With a small change, the program runs without error for four of the semantics but fails under the
semantics of Herman et al. [7] (eager variant):

(2) 〈Bool → Int ⇐ Dyn → Dyn〉〈Dyn → Dyn ⇐ Int → Int〉(λx : Int. x)

It seems surprising that any of the semantics allows a function of type Int → Int to be cast to
Bool→ Int!

Next consider the semantics of blame assignment. The following program results in a cast
error, but which of the three casts should be blamed?

(3) (〈Dyn → Int ⇐ Dyn〉l3〈Dyn ⇐ Bool → Bool〉l2λx : Bool. x)〈Dyn ⇐ Int〉l11

Neither the semantics of Siek and Taha [8] nor Herman et al. [7] perform blame tracking. The two
semantics of Wadler and Findler [10, 11] blame l2. This is surprising because, intuitively, casting a
value up to Dyn always seems safe. On the other hand, casting a dynamic value down to a concrete
type is an opportunity for type mismatch.

In this paper we map out the design space for λ〈·〉→ using two key insights. First, the semantics
of higher-order casts can be categorized as detecting cast errors using an eager, partially eager,
or lazy strategy (Section 2). Second, different blame tracking strategies yield different notions
of a statically safe cast (a cast that will never be blamed for a run-time cast error) which are
characterized by different “subtyping” relations, i.e., partial orders over types (Section 3).

In Section 5 we develop a framework based on Henglein’s Coercion Calculus in which we
formalize these two axes of the design space and instantiate four variants of the Coercion Calculus,

4

each of which supports blame tracking. Two of the variants extend the eager and lazy semantics of
Herman et al. [7], respectively, with blame tracking in a natural way. The lazy variant has the same
blame assignment behavior as Wadler and Findler [11], thereby establishing a previously unknown
connection. The other two variants use a new blame tracking strategy in which casts that respect
traditional subtyping are guaranteed to never fail. Of these two, the one with eager error detection
provides a compelling semantics for gradual typing, as explained in Sections 2 and 3.

In Section 6 we show how the semantics of Herman et al. [7] can be used to obtain a space-
efficient reduction strategy for each of these calculi. In doing so, we provide the first space-efficient
calculi that also perform blame tracking. We conclude in Section 7.

2 From lazy to eager detection of higher-order cast errors
The λ〈·〉→ cast can be seen as performing two actions: run-time type checking and coercing. Under
the lazy error detection strategy, no run-time type checking is performed when a higher-order cast
is applied to a value. Thus, higher-order casts never fail immediately; they coerce their argument
to the target type and defer checking until the argument is applied. The semantics of Herman et al.
[7] (lazy variant) and Wadler and Findler [11] use lazy error detection, which is why neither detects
cast errors in programs (1) and (2).

Under the partially-eager error detection strategy, a higher-order cast is checked immediately
only when its source type is Dyn, otherwise checking is deferred according to the lazy strategy.
Both Siek and Taha [8] and Wadler and Findler [10] use the partially eager error detection strategy.
Under this strategy program (1) produces a cast error whereas program (2) does not.

Examples like program (2) inspire the eager error detection strategy. Under this strategy, a
higher-order cast always performs some checking immediately. Furthermore, the run-time check-
ing is “deep” in that it not only checks that the target type is consistent with the outermost wrapper,
but it also checks for consistency at every layer of wrapping including the underlying value type.
Thus, when the cast 〈Bool→ Int〉 in program (2) is evaluated, it checks that Bool→ Int is con-
sistent with the prior cast 〈Dyn → Dyn〉 (which it is) and with the type of the underlying function
Int→ Int (which it is not). The second semantics in Herman et al. [7] is eager in this sense.

For the authors, the main use of λ〈·〉→ is as a target language for the gradually typed lambda
calculus, so we seek the most appropriate error detection strategy for gradual typing. With gradual
typing, programmers add type annotations to their programs to increase static checking and to
express invariants that they believe to be true about their program. Thus, when a programmer
annotates a parameter with the type Bool → Int, she is expressing the invariant that all the run-
time values bound to this parameter will behave according to the type Bool → Int. With this in
mind, it makes sense that the programmer is notified as soon as possible if the invariant does not
hold. The eager error detection strategy does this.

5

3 Blame assignment and subtyping
When programming in a language based on λ〈·〉→ , it helps to statically know which parts of the pro-
gram might cause cast errors and which parts never will. A graphical development environment,
for instance, could use colors to distinguish safe casts, unsafe casts which might fail, and inadmis-
sible casts which the system rejects because they always fail. The inadmissible casts are statically
detected using the consistency relation ∼ of Siek and Taha [8], defined in Fig. 2. A cast 〈T ⇐ S〉e
is rejected if S 6∼ T . Safe casts are statically captured by subtyping relations: if the cast respects
subtyping, meaning S <: T , then it is safe. For unsafe casts, S ∼ T but S 6<: T 1.

Figure 2: The consistency relation

T ∼ Dyn Dyn ∼ T B ∼ B

S1 ∼ T1 S2 ∼ T2

S1 → S2 ∼ T1 → T2

Formally establishing that a particular subtype relation is sound with respect to the semantics
requires a theorem of the form:

If there is a cast at location l of the source program that respects subtyping, then no
execution of the program will result in a cast error that blames l.

Wadler and Findler [10, 11] prove this property for their two semantics and their definitions of
subtyping, respectively. Fig. 3 shows their two subtyping relations as well as the traditional subtype
relation with Dyn as its top element.

We consider the choice of subtype relation to be a critical design decision because it directly
affects the programmer, i.e., it determines which casts are statically safe and unsafe. The traditional
subtype relation is familiar to programmers, relatively easy to explain, and matches our intuitions
about which casts are safe. This raises the question: is there a blame tracking strategy for which
the traditional subtype relation is sound?

First, it is instructive to see why traditional subtyping is not sound with respect to the blame
tracking strategy of Wadler and Findler [11]. Consider program (3) again.

(〈Dyn → Int ⇐ Dyn〉l3〈Dyn ⇐ Bool → Bool〉l2λx : Bool. x)〈Dyn ⇐ Int〉l11

The cast at location l2 respects the traditional subtyping relation: Bool → Bool <: Dyn. The
following reduction sequence uses the blame tracking strategy of Wadler and Findler [11]. Their
semantics provides the expression DynG(v) to represent values that have been injected into the
dynamic type. The subscript G records the type of v, and is restricted to base types, the dynamic
type, and the function type Dyn → Dyn. Their interpretation of a cast is closer to that of an

1Subtyping is a conservative approximation, so some of the unsafe casts are “false positives” and will never cause
cast errors

6

Figure 3: Three subtyping relations

Traditional subtyping:

T <: Dyn B <: B

T1 <: S1 S2 <: T2

S1 → S2 <: T1 → T2

Subtyping of Wadler and Findler [10]:

B <: B Dyn <: Dyn
T1 <: S1 S2 <: T2

S1 → S2 <: T1 → T2

Subtyping of [11]:

B <: B Dyn <: Dyn
S <: G

S <: Dyn
T1 <: S1 S2 <: T2

S1 → S2 <: T1 → T2

where G ::= B | Dyn→ Dyn

obligation expression [1], so each blame label has a polarity, marked by the presence or absence
of an overline, which directs blame toward the interior or exterior of the cast.

(〈Dyn → Int ⇐ Dyn〉l3 〈Dyn ⇐ Bool → Bool〉l2λx : Bool. x)〈Dyn ⇐ Int〉l11

−→ (〈Dyn → Int ⇐ Dyn〉l3DynDyn→Dyn(〈 Dyn → Dyn ⇐ Bool → Bool〉l2λx : Bool. x))〈Dyn ⇐ Int〉l11

−→ (〈Dyn → Int ⇐ Dyn → Dyn〉l3 〈 Dyn → Dyn ⇐ Bool → Bool〉l2λx : Bool. x)〈Dyn ⇐ Int〉l11

−→ 〈Int ⇐ Dyn〉l3 (〈 Dyn → Dyn ⇐ Bool → Bool〉l2λx : Bool. x)〈Dyn ⇐ Dyn〉l3 〈Dyn ⇐ Int〉l11

−→ 〈Int ⇐ Dyn〉l3 (〈 Dyn → Dyn ⇐ Bool → Bool〉l2λx : Bool. x)〈Dyn ⇐ Int〉l11

−→ 〈Int ⇐ Dyn〉l3 〈Dyn ⇐ Bool〉l2 ((λx : Bool. x) 〈Bool ⇐ Dyn〉
l2 〈Dyn ⇐ Int〉l11)

−→ blame l2

The example shows that under this blame tracking strategy, a cast like l2 can respect traditional
subtyping yet still be blamed. We trace back to the source of the cast error by highlighting the
relevant portions of the casts in gray. The source of the cast error is the transition that replaces the
cast 〈Dyn ⇐ Bool → Bool〉l2 with 〈Dyn → Dyn ⇐ Bool → Bool〉l2 . This reduction rule follows
from restrictions on the structure of DynG(v): the only function type allowed for G is Dyn→ Dyn.
This choice forces casts to Dyn from function types to always go through Dyn → Dyn. However,
adding the intermediate step does not preserve traditional subtyping: S → T <: Dyn is always true,
but because of the contravariance of subtyping in the argument position, it is not always the case
that S → T <: Dyn→ Dyn. For instance, if S = Bool, then it is not the case that Dyn <: Bool.

It seems reasonable, however, to inject higher-order types directly into Dyn. Consider the
following alternative injection and and projection rules for Dyn:

〈Dyn⇐ S〉lv −→s DynS(v)

〈T ⇐ Dyn〉lDynS(v) −→s 〈T ⇐ S〉lv if S ∼ T

〈T ⇐ Dyn〉lDynS(v) −→s blame l if S 6∼ T

We define the simple blame tracking semantics, written −→s, to include the above rules together

7

with APPCST and the standard β and δ reduction rules. The following is the corresponding reduc-
tion sequence for program (3).

(〈Dyn→ Int⇐ Dyn〉l3〈Dyn⇐ Bool→ Bool〉l2λx : Bool. x) 〈Dyn⇐ Int〉l11
−→s (〈Dyn→ Int⇐ Dyn〉l3DynBool→Bool(λx : Bool. x)) 〈Dyn⇐ Int〉l11
−→s (〈Dyn→ Int⇐ Bool→ Bool〉l3(λx : Bool. x)) 〈Dyn⇐ Int〉l11
−→s (〈Dyn→ Int⇐ Bool→ Bool〉l3(λx : Bool. x)) DynInt(1)
−→s 〈Int ⇐ Bool〉l3((λx : Bool. x) 〈Bool⇐ Dyn〉l3DynInt(1))
−→s blame l3

Under this blame tracking strategy, the downcast from Dyn to Dyn → Int at location l3 is blamed
instead of the upcast at location l2. This particular result better matches our intuitions about what
went wrong, and in fact the simple blame strategy never blames a cast that respects the traditional
subtype relation.

Theorem 1 (Soundness of subtyping wrt. the simple semantics).
If there is a cast labeled l in program e that respects subtyping, then e 6−→∗

s blame l.

Proof. The proof is a straightforward induction on −→∗
s once the statement is generalized to say

“all casts labeled l”, since the APPCST rule turns one cast into two casts with the same label.

While the simple blame tracking semantics assigns blame in a way that respects traditional sub-
typing, it does not perform eager error detection; it is partially eager. We conjecture that the simple
semantics could be augmented with deep checks to achieve eager error detection. However, there
also remains the issue of space efficiency. In the next section we discuss the problems regarding
space efficiency and how these problems can be solved by moving to a framework based on the
semantics of Herman et al. [7] which in turn uses the Coercion Calculus of Henglein [6]. We then
show how the variations in blame tracking and eager checking can be realized in that framework.

4 Space efficiency
Herman et al. [7] observe two circumstances where the wrappers used for higher-order casts can
lead to unbounded space consumption. First, some programs repeatedly apply casts to the same
function, resulting in a build-up of wrappers. In the following example, each time the function
bound to k is passed between even and odd a wrapper is added, causing a space leak proportional
to n.

let rec even(n : Int, k : Dyn→Bool) : Bool =
if (n = 0) then k(〈Dyn⇐ Bool〉True)
else odd(n - 1, 〈Bool→ Bool⇐ Dyn→ Bool〉k)

and odd(n : Int, k : Bool→Bool) : Bool =
if (n = 0) then k(False)
else even(n - 1, 〈Dyn→ Bool⇐ Bool→ Bool〉k)

Second, some casts break proper tail recursion. Consider the following example in which the return
type of even is Dyn and odd is Bool.

8

let rec even(n : Int) : Dyn =
if (n = 0) then True else 〈Dyn⇐ Bool〉odd(n - 1)

and odd(n : Int) : Bool =
if (n = 0) then False else 〈Bool⇐ Dyn〉even(n - 1)

Assuming tail call optimization, cast-free versions of the even and odd functions require only
constant space, but because the call to even is no longer a tail call, the run-time stack grows with
each call and space consumption is proportional to n. The following reduction sequence for a call
to even shows the unbounded growth.

even(n)
7−→ 〈Dyn⇐ Bool〉odd(n− 1)
7−→ 〈Dyn⇐ Bool〉〈Bool⇐ Dyn〉even(n− 2)
7−→ 〈Dyn⇐ Bool〉〈Bool⇐ Dyn〉〈Dyn⇐ Bool〉odd(n− 3)
7−→ · · ·

Space efficiency can be recovered by 1) merging sequences of casts into a single cast, and 2)
checking for sequences of casts in tail-position and merging them before making function calls.
Herman et al. [7] define a dynamic semantics that does just this. These steps achieve space effi-
ciency so long as the size of a merged cast is bounded by a constant.

5 Variations on the Coercion Calculus
The semantics of λ〈·〉→ in Henglein [6] and subsequently in Herman et al. [7] use a special sub-
language called the Coercion Calculus to express casts. Instead of casts of the form 〈T ⇐ S〉e
they have casts of the form 〈c〉e where c is a coercion expression. The Coercion Calculus can be
viewed as a fine-grained operational specification of casts. It is not intended to be directly used by
programmers, but instead casts of the form 〈T ⇐ S〉e are compiled into casts of the form 〈c〉e. In
this section we define a translation function 〈〈T ⇐ S〉〉 that maps the source and target of a cast to
a coercion. We define 〈〈e〉〉 to be the natural extension of this translation to expressions. The syntax
and type system of the Coercion Calculus is shown in Fig. 4. We add blame labels to the syntax to
introduce blame tracking to the Coercion Calculus.

Figure 4: Syntax and type system for the Coercion Calculus.

Syntax: Coercions c, d ::= ι | T ! | T?l | c → d | d ◦ c | Faill

Coercion contexts C ::= � | C → c | c → C | c ◦ C | C ◦ c

Type system:

` ι : T ⇐ T ` T ! : Dyn⇐ T ` T?l : T ⇐ Dyn ` Faill : T ⇐ S

` c : S1 ⇐ T1 ` d : T2 ⇐ S2

` c → d : (T1 → T2) ⇐ (S1 → S2)
` d : T3 ⇐ T2 ` c : T2 ⇐ T1

` d ◦ c : T3 ⇐ T1

9

The coercion T ! injects a value into Dyn whereas the coercion T? projects a value out of Dyn.
For example, the coercion Int! takes an integer and injects it into the type Dyn, and conversely,
the coercion Int?l takes a value of type Dyn and projects it to type Int, checking to make sure the
value is an integer, blaming location l otherwise. Our presentation of injections and projections
differs from that of Henglein [6] in that the grammar in Fig. 4 allows arbitrary types in T ! and
T?l. When modeling Henglein’s semantics, we restrict T to base types and function types of the
form Dyn → Dyn. Thus, (Dyn → Dyn)! is equivalent to Henglein’s Func! and (Dyn → Dyn)?l

is equivalent to Func?. The calculus also has operators for aggregating coercions. The function
coercion c → d applies coercion c to a function’s argument and d to its return value. Coercion
composition d ◦ c applies coercion c then coercion d.2 In addition to Henglein’s coercions, we
adopt the Faill coercion of Herman et al. [7], which compactly represents coercions that are
destined to fail but have not yet been applied to a value.

In this section we add blame tracking to the Coercion Calculus using two different blame
assignment strategies, one that shares the blame between higher-order upcasts and downcasts,
thereby modeling the strategy of Wadler and Findler [11], and a new strategy that places respon-
sibility on downcasts only. To clearly express not only these two blame assignment strategies but
also the existing strategies for eager and lazy error detection [7], we organize the reduction rules
into four sets that can be combined to create variations on the Coercion Calculus.

L The core set of reduction rules that is used by all variations. This set of rules, when combined
with either UD or D, performs lazy error detection.

E The additional rules needed to perform eager error detection.

UD The rules for blame assignment that share responsibility between higher-order upcasts and
downcasts.

D The rules for blame assignment that place all the responsibility on downcasts.

Fig 5 shows how the sets of reduction rules can be combined to create four distinct coercion calculi.

Lazy error detection Eager error detection
Blame upcasts and downcasts L ∪UD L ∪UD ∪ E
Blame downcasts L ∪D L ∪D ∪ E

Figure 5: Summary of the Coercion Calculi.

All of the reduction strategies share the following parameterized rule for single-step evaluation,
where X stands for a set of reduction rules.

c ∼= C[c1] c1 −→X c2 C[c2] ∼= c′

c 7−→X c′

2We use the notation d ◦ c instead of the notation c; d of Henglein to be consistent with the right to left orientation
of our type-based cast expressions.

10

The above rule relies on a congruence relation, written ∼=, to account for the associativity of co-
ercion composition: (c3 ◦ c2) ◦ c1

∼= c3 ◦ (c2 ◦ c1). The reduction rules simplify pairs of adjacent
coercions into a single coercion. The congruence relation is used during evaluation to reassociate
a sequence of coercions so that a pair of adjacent coercions can be reduced. A coercion c is nor-
malized if 6 ∃c′. c 7−→X c′ and we indicate that a coercion is normalized with an overline, as in
c.

Figure 6: The core reduction rules (L).

B?l ◦B! −→ ι
ι → ι −→ ι
c ◦ ι −→ c
ι ◦ c −→ c

B′?l ◦B! −→ Faill

B?l ◦ (S1 → S2)! −→ Faill

(T1 → T2)?l ◦B! −→ Faill

d ◦ Faill −→ Faill

Faill ◦ T ! −→ Faill (FAILIN)
(d1 → d2) ◦ (c1 → c2) −→ (c1 ◦ d1) → (d2 ◦ c2)

The set L of core reduction rules is given in Fig. 6. These rules differ from those of Herman
et al. [7] in several ways. First, the rules propagate blame labels. Second, we factor the rule for
handling injection-projection pairs over functions types into UD and D . Third, we omit a rule of
the form

(FAILL) Faill ◦ c −→ Faill

This change is motivated by the addition of blame tracking which makes it possible to distinguish
between failures with different causes. If we use FAILL, then the optimizations for space effi-
ciency change how blame is assigned. Suppose there is a context waiting on the stack of the form
〈Faill2 ◦Int?l1〉� and the value returned to this context is 〈Bool!〉True. Then in the un-optimized
semantics we have

〈Faill2 ◦ Int?l1〉� 7−→ 〈Faill2 ◦ Int?l1〉〈Bool!〉True 7−→ 〈Faill2 ◦ Int?l1 ◦ Bool!〉True
7−→ 〈Faill2 ◦ Faill1〉True 7−→ 〈Faill1〉True 7−→ blame l1

whereas in the optimized semantics we have

〈Faill2 ◦ Int?l1〉� 7−→ 〈Faill2〉� 7−→ 〈Faill2〉〈Bool!〉True 7−→ 〈Faill2 ◦ Bool!〉True
7−→ 〈Faill2〉True 7−→ blame l2

On the other hand, the rule FAILIN is harmless because an injection can never fail. When we embed
a coercion calculus in λ〈·〉→ , we do not want an expression such as 〈Faill◦(ι → Int!)〉(λx : Int. x)
to be a value. It should instead reduce to blame l. Instead of trying to solve this in the coercion
calculi, we add a reduction rule (FAILFC) to λ〈·〉→ to handle this situation.

Fig. 7 shows a semantics for λ〈·〉→ based on coercion calculi (it is parameterized on the set of
coercion reduction rules X). We write λ〈·〉→(X) to refer to an instantiation of the semantics with the
coercion calculus X . The semantics includes the usual rules for the lambda calculus and several

11

rules that govern the behavior of casts. The rule STEPCST simplifies a cast expression by taking
one step of evaluation inside the coercion. The rule IDCST discards an identity cast and CMPCST

turns a pair of casts into a single cast with composed coercions. The APPCST rule applies a
function wrapped in a cast. The cast is split into a cast on the argument and a cast on the return
value. The rule FAILCST signals a cast error when the coercion is Faill.

Figure 7: A semantics for λ〈·〉→ based on coercion calculi.

Syntax:

Expressions e ::= x | k | λx : T. e | e e | 〈c〉e
Simple Values s ::= k | λx : T. e
Regular Coercions ĉ ::= c where c 6= ι and c 6= Faill

Values v ::= s | 〈ĉ〉s
Evaluation contexts E ::= � | E e | v E | 〈c〉E

Type system:

Γ ` x : Γ(x) Γ ` k : typeof (k)

Γ[x 7→ S] ` e : T

Γ ` λx : S. e : S → T

Γ ` e1 : S → T Γ ` e2 : S

Γ ` e1 e2 : T
` c : T ⇐ S Γ ` e : S

Γ ` 〈c〉e : T

Reduction rules:

(β) (λx : T.e) v −→ e[x 7→ v]
(δ) k v −→ δ(k, v)
(STEPCST) 〈c〉s −→ 〈c′〉s if c 7−→X c′

(IDCST) 〈ι〉s −→ s
(CMPCST) 〈d〉〈ĉ〉s −→ 〈d ◦ ĉ〉s
(APPCST) 〈c → d〉s v −→ 〈d〉(s 〈c〉v)
(FAILCST) 〈Faill〉s −→ blame l

(FAILFC) 〈Faill ◦ (c → d)〉s −→ blame l

Single-step evaluation:

e −→ e
E[e] 7−→ E[e′]

e −→ blame l
E[e] 7−→ blame l

5.1 Blame assignment strategies
In this section we present two blame assignment strategies: the strategy of Wadler and Findler
[10, 11], where upcasts and downcasts share responsibility for blame, and a new strategy where

12

downcasts only are responsible for blame. The first will be modeled by the set of reduction rules
UD (for upcast-downcast) and the second by the set of reduction rules D (for downcast).

5.1.1 The UD blame assignment strategy

As discussed in Section 3, the blame assignment strategy that shares responsibility for blame be-
tween upcasts and downcasts is based on the notion that a cast between an arbitrary function type
and Dyn must always go through Dyn → Dyn. As a result, at the level of the coercion calculus,
the only higher-order injection and projections are (Dyn → Dyn)! and (Dyn → Dyn)?l. The com-
pilation of type-based casts to coercion-based casts is responsible for introducing the indirection
through Dyn → Dyn. Fig. 8 shows the compilation function. The last two lines of the definition
handle higher-order upcasts and downcasts and produce coercions that go through Dyn → Dyn.
Consider the coercion produced from the higher-order cast that injects Bool→ Bool into Dyn.

〈〈Dyn⇐ Bool→ Bool〉〉l = (Dyn→ Dyn)! ◦ (Bool?l → Bool!)

The projection Bool?l in the resulting coercion can cause a run-time cast error, which shows how,
with this blame assignment strategy, higher-order upcasts such as Dyn ⇐ Bool → Bool share the
responsibility for cast errors.

Figure 8: The UD blame assignment strategy.

Compilation from type-based casts to coercions:

〈〈B ⇐ B〉〉l = ι
〈〈B′ ⇐ B〉〉l = Faill if B 6= B′

〈〈Dyn⇐ Dyn〉〉l = ι
〈〈Dyn⇐ B〉〉l = B!
〈〈B ⇐ Dyn〉〉l = B?l

〈〈B ⇐ S1 → S2〉〉l = Faill

〈〈T1 → T2 ⇐ B〉〉l = Faill

〈〈T1 → T2 ⇐ S1 → S2〉〉l =

ι c = ι and d = ι

Faill c = Faill or d = Faill

c → d otherwise
where c = 〈〈S1 ⇐ T1〉〉l, d = 〈〈T2 ⇐ S2〉〉l

〈〈Dyn⇐ S1 → S2〉〉l = (Dyn→ Dyn)! ◦ 〈〈Dyn→ Dyn⇐ S1 → S2〉〉l
〈〈T1 → T2 ⇐ Dyn〉〉l = 〈〈T1 → T2 ⇐ Dyn→ Dyn〉〉l ◦ (Dyn→ Dyn)?l

Reduction rules:
(INOUTDD) (Dyn→ Dyn)?l ◦ (Dyn→ Dyn)! −→ ι

The set of reduction rules for UD is given in Fig. 8. With UD, the only higher-order coercions
are to and from Dyn → Dyn, so the only injection-projection case missing from the L rules is the
case handled by the INOUTDD rule in Fig. 8.

The combination L ∪UD simulates the semantics of Wadler and Findler [11] using the Coer-
cion Calculus.

13

Theorem 2. If e −→∗ e′ using the reduction rules of Wadler and Findler [11] and e′ is a value or
blame l, then there is an e′′ such that 〈〈e〉〉 7−→∗

L∪UD e′′ and 〈〈e′〉〉 = e′′.

Proof. The proof is a straightforward induction on −→∗.

The combination L ∪UD can also be viewed as the natural way to add blame tracking to the lazy
semantics of Herman et al. [7], revealing an interesting and new connection between the work of
Herman et al. [7] and Wadler and Findler [11].

5.1.2 The D blame assignment strategy

To obtain a blame assignment strategy that coincides with traditional subtyping, we lift the restric-
tion on injections and projections to allow direct coercions between arbitrary function types and
Dyn, analogous to what we did in Section 3. With this change the compilation from type-based
casts to coercions no longer needs to go through the intermediate Dyn → Dyn. Fig. 9 shows the
new compilation function. Consequently the reduction rules for D need to be more general to han-
dle arbitrary higher-order projections and injections. The rule INOUTFF in Fig. 9 does just that.
The blame label l used to create the coercion on the right-hand side is from the projection. This
places all of the responsibility for a potential error on the projection.

Figure 9: The D blame assignment strategy.

Compilation from type-based casts to coercions:

... (same as in Fig. 8)
〈〈Dyn⇐ S1 → S2〉〉l = (S1 → S2)!
〈〈T1 → T2 ⇐ Dyn〉〉l = (T1 → T2)?l

Reduction rules:

(INOUTFF) (T1 → T2)?l ◦ (S1 → S2)! −→ 〈〈T1 → T2 ⇐ S1 → S2〉〉l

We now prove that the D strategy fulfills its design goal: traditional subtyping should capture
the notion of a safe cast, i.e., a cast that is guaranteed not to be blamed for any run-time cast errors.
It turns out that this is rather straightforward to prove because a cast from S to T , where S <: T ,
compiles to a coercion with no projection or failure coercions. In fact, the coercion will not contain
any blame labels.

Lemma 1 (Subtype coercions do not contain blame labels).
If S <: T then labels(〈〈T ⇐ S〉〉l) = ∅, where labels(c) is the labels that occur in c.

Proof. The proof is by strong induction on the sum of the height of the two types followed by case
analysis on the types. Each case is straightforward.

Next we show that coercion evaluation does not introduce blame labels.

14

Lemma 2 (Coercion evaluation monotonically decreases labels).
If c 7−→L∪D c′ then labels(c′) ⊆ labels(c).

Proof. The proof is a straightforward case analysis on 7−→L∪D and −→L∪D.

The same can be said of λ〈·〉→(L ∪D) evaluation.

Lemma 3 (λ〈·〉→(L ∪D) evaluation monotonically decreases labels).
If e 7−→ e′ then labels(e′) ⊆ labels(e), where labels(e) is the labels that occur in e.

Proof. The proof is a straightforward case analysis on 7−→ and −→.

Thus, when a cast failure occurs, the label must have come from a coercion in the original program,
but it could not have been from a cast that respects subtyping because such casts produce coercions
that do not contain any blame labels.

Theorem 3 (Soundness of subtyping wrt. λ〈·〉→(L ∪D)).
If there is a cast labeled l in program e that respects subtyping, then e 67−→∗ blame l.

Proof. The proof is a straightforward induction on 7−→∗.

5.2 An eager error detection strategy for the Coercion Calculus
To explain the eager error detection strategy of Herman et al. [7], we first review why the reduction
rules in L detect higher-order cast errors in a lazy fashion. Consider the reduction sequence for
program (2) under L ∪D:

〈〈〈Bool→ Int⇐ Dyn→ Dyn〉l2〈Dyn→ Dyn⇐ Int→ Int〉l1(λx : Int. x)〉〉
= 〈Bool! → Int?l2〉〈Int?l1 → Int!〉(λx : Int. x)

7−→ 〈(Bool! → Int?l2) ◦ (Int?l1 → Int!)〉(λx : Int. x)
7−→ 〈(Int?l1 ◦ Bool!) → (Int?l2 ◦ Int!)〉(λx : Int. x)
7−→ 〈Faill1 → ι〉(λx : Int. x)

The cast 〈Faill1 → ι〉 is in normal form and, because the Faill1 does not propagate to the top,
this reduction strategy does not signal a failure.

The eager error detection strategy therefore adds reduction rules that propagate failures up
through function coercions. Fig 10 shows the two reduction rules for the E strategy. Note that in
FAILFR we require the coercion in argument position to be normalized but not be a failure. These
restrictions are needed for confluence in the presence of blame tracking.

Figure 10: The eager detections reduction rules (E).

(FAILFL) Faill → d −→ Faill

(FAILFR) c → Faill −→ Faill where c 6= Faill′

15

Using the eager reduction rules, program (2) produces a cast error.

· · · 7−→ 〈Faill1 → ι〉(λx : Int. x) 7−→ 〈Faill1〉(λx : Int. x) 7−→ blame l1

The combination L ∪UD ∪E can be viewed as adding blame tracking to the eager semantics
of Herman et al. [7]. The combination L ∪ D ∪ E is entirely new and particularly appealing
as an intermediate language for gradual typing because it provides thorough error detection and
intuitive blame assignment. The combination L ∪ D is well-suited to modeling languages that
combine dynamic and static typing in a manner that admits as many correctly-behaving programs
as possible because it avoids reporting cast errors until they are immediately relevant and provides
intuitive guidance when failure occurs.

6 A space-efficient semantics for λ〈·〉→(X)

The semantics of λ〈·〉→(X) given in Fig. 7 is only partially space-efficient. Rule CMPCST merges
adjacent casts and normalization of coercions sufficiently compresses them, but casts can still
accumulate in the tail position of recursive calls. It is straightforward to parameterize the space-
efficient semantics of Herman et al. [7] on coercion calculi, thereby obtaining a space-efficient
semantics for λ〈·〉→(X).

Proving space-efficiency requires two properties that depend on the choice of X . First, when
a coercion is in normal form, its size must be bounded by its height. This property holds for all
coercion calculi introduced in this paper.

Lemma 4 (Coercion size bounded by height).
For each coercion calculus X in this paper, if ` c : T ⇐ S and c is in normal form for X , then
size(c) ≤ 5(2height(c) + 1).

The height of the coercions produced by compilation from type-based casts is bounded by the the
sum of the source and target type. This is true for both compilation functions defined in this paper.

Lemma 5. If c = 〈〈T ⇐ S〉〉l then height(c) ≤ max (height(S), height(T)).

Second, coercion evaluation must not change the height of a coercion.

Lemma 6 (Coercion size bounded by height).
For each coercion calculi X in this paper, if c 7−→X c′ then height(c′) ≤ height(c).

7 Conclusion and future work
In this paper we explore the design space of higher-order casts along two axes: blame assignment
strategies and eager versus lazy error detection. This paper introduces a framework based on Hen-
glein’s Coercion Calculus and instantiates four variants, each of which supports blame tracking
and guarantees space efficiency. Of the four variants, one extends the semantics of Herman et al.

16

[7] with blame tracking in a natural way. This variant has the same blame tracking behavior as
Wadler and Findler [11], thereby establishing a previously unknown connection between the work
of Herman et al. [7] and Wadler and Findler [11]. One of the variants combines eager error detec-
tion with a blame tracking strategy in which casts that respect traditional subtyping are guaranteed
to never fail. This variant provides a compelling dynamic semantics for gradual typing.

Our account of the design space for cast calculi introduces new open problems. The UD blame
strategy has a constant-factor speed advantage over the D strategy because D must generate co-
ercions dynamically. We would like to devise an implementation model for D that does not need
to generate coercions. We are also interested in exploring characterizations of statically safe casts
that achieve greater precision than the standard subtyping relations.

References
[1] R. B. Findler and M. Felleisen. Contracts for higher-order functions. In ACM International

Conference on Functional Programming, October 2002.

[2] Cormac Flanagan. Hybrid type checking. In POPL 2006: The 33rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 245–256, Charleston, South
Carolina, January 2006.

[3] Cormac Flanagan, Stephen N. Freund, and Aaron Tomb. Hybrid types, invariants, and refine-
ments for imperative objects. In FOOL/WOOD ’06: International Workshop on Foundations
and Developments of Object-Oriented Languages, 2006.

[4] Jessica Gronski and Cormac Flanagan. Unifying hybrid types and contracts. In Trends in
Functional Prog. (TFP), 2007.

[5] Fritz Henglein. Dynamic typing. In ESOP ’92: Proceedings of the 4th European Symposium
on Programming, pages 233–253, London, UK, 1992. Springer-Verlag.

[6] Fritz Henglein. Dynamic typing: syntax and proof theory. Science of Computer Program-
ming, 22(3):197–230, June 1994.

[7] David Herman, Aaron Tomb, and Cormac Flanagan. Space-efficient gradual typing. In Trends
in Functional Prog. (TFP), page XXVIII, April 2007.

[8] Jeremy G. Siek and Walid Taha. Gradual typing for functional languages. In Scheme and
Functional Programming Workshop, pages 81–92, September 2006.

[9] Jeremy G. Siek and Walid Taha. Gradual typing for objects. In ECOOP 2007, volume 4609
of LCNS, pages 2–27. Springer Verlag, August 2007.

[10] Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be blamed. In Workshop
on Scheme and Functional Programming, pages 15–26, 2007.

17

[11] Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be blamed. http:

//homepages.inf.ed.ac.uk/wadler/topics/links.html#blame-icfp, 2008.

18

http://homepages.inf.ed.ac.uk/wadler/topics/links.html#blame-icfp
http://homepages.inf.ed.ac.uk/wadler/topics/links.html#blame-icfp

	Introduction
	From lazy to eager detection of higher-order cast errors
	Blame assignment and subtyping
	Space efficiency
	Variations on the Coercion Calculus
	Blame assignment strategies
	The UD blame assignment strategy
	The D blame assignment strategy

	An eager error detection strategy for the Coercion Calculus

	A space-efficient semantics for "426830A "526930B (X)
	Conclusion and future work

