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Abstract

As the demand for wireless networks grows, the research community continues to seek
methods for improving network performance. On method for improving network throughput
involves using directional antennas to increase signal gain and/or decrease interference.
The physical-layer models used in current networking simulators only minimally address
the interaction of directional antennas and radio propagation. This paper compares the
models found in popular simulation tools with measurements taken across a variety of links
in multiple environments. We find that the effects of antenna direction are significantly
different from the models used by the common wireless network simulators.

We propose a parametric model which better captures the effects of different propaga-
tion environments on directional antenna systems; we also show that the derived models
are sensitive to both the direction of signal gain and the environment in which the antenna
is used. Equally important, we demonstrate how researchers can use inexpensive equip-
ment to record data for their own environments. Although we use sensitive vector signal
analyzers in our measurements, we show that using commodity wireless networking cards
produces effectively equivalent models. We believe that a combination of the specific model
we propose and the process by which we gather data to derive that model will influence
the simulated performance of wireless network protocols that rely on directional antennas,
providing a more realistic assessment of those protocols. We also offer some general guid-
ance for researchers attempting to use directional antennas to modify a wireless network
topology or reduce interference.

1 Introduction

Computer network researchers are making use of increasingly sophisticated wireless networking
equipment in an effort to design robust wireless networks. While the limitations and problems of
modeling wired network devices is both well studied and well known to the networking research
community, the use of wireless networks introduces additional complexities, such as the effects
of radio propagation, that are unfamiliar to many computer scientists. As with the design
of most network protocols, much of the work in designing wireless networks uses simulation
and models of physical devices to evaluate the design of protocols. Accurately capturing the
behavior of the physical layer is essential in that it informs and influences the behavior of the
Media Access Control (MAC) layer. This paper examines the models for particular antennas
that are being adopted in wireless networks.

Increasingly, networks are using directional antennas to improve the throughput or reach of
networks [14] or to reduce interference between adjacent networks or from other noise sources.
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Figure 1: Sample directional antenna gain pattern displayed on a polar graph

A more recent development is the use of electronically steerable directional or phase array
antennas [10, 5, 16]. These antennas provide better network performance by controlling the
radiation pattern of the antenna, increasing the gain (strength of the transmitted and received
signal).

Figure 1 shows a common visualization used to understand the antenna gain pattern for a
particular highly directional antenna.1 The pattern shows a predominant main lobe along with
a number of “side lobes” interspersed with “nulls” or regions of strongly reduced gain. Fixed or
steerable directional antennas provide better network performance by controlling the radiation
pattern of the antenna, increasing the gain or alternatively reducing interference by “steering
a null” at a radio on the same channel.

In most analytical models, researchers use a very simplified version of these diagrams, typ-
ically a simple conic section. Different network simulators model such antennas with different
degrees of fidelity. In this paper, we argue that the commonly used models in the most common
network simulators make such simplifying assumptions that it is often difficult to draw strong
conclusions from the simulations derived using those models.

We demonstrate this using a series of measurements with several different and widely used
directional antenna configurations. We then develop a more accurate model based on mea-
surements and intuitions about radio propagation. We argue that this model captures more
about the uncertainty of the environment than the specifics of the antenna and that our results
should be generally applicable to many different directional antenna patterns with similar gain
characteristics.

Our measurement study uses sophisticated measurement equipment, including a $50,000
vector signal analyzer (VSA) and an equally expensive signal generator (VSG). Since the costs
of such equipment are prohibitive, we also developed a method that uses inexpensive equipment,
such as standard networking cards, to reproduce the data needed for the derived models.

This paper makes the following contributions to the state of knowledge of networking using
directional antennas:

1This particular example is the 2.4 GHz 19 dBi Die Cast Directional Reflector Grid Wireless LAN Antenna
Model: HG2419G by HyperLink Technologies.
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• We argue that it is important to characterize directional antennas for the environment in
which they are to be used.

• We develop a methodology for producing a parameterized model that better models an-
tennas and is as easy to use as existing models

• Based on our measurements, we offer some observations for research projects using direc-
tional antennas:

– Any algorithm using dynamic beam-steering should try to adapt to the deployed
environment rather than relying on prescribed beam patterns.

– Researchers using directional antennas for topology control or interference rejection
via null-steering should be particularly concerned with the fidelity of their modeling
environment.

In the next section of this paper, we go over the basics of radio propagation models to
demonstrate the general flavor of the solution we propose. We then describe what the various
simulation systems actually model. In §3 we propose our data collection method and in §4 we
describe the set of measurements that we use to derive our model. In §5 we analyze that data
and in §6 we fully develop our proposed model. Finally in §7, we conclude.

2 Background And Related Work

2.1 Path Loss Models

Figure 2: Simple path model

Wireless network simulators use a path loss model to model the degradation of a transmitted
signal; when a signal is too degraded, it cannot be received reliably. Consider the example in
Figure 2 with a transmitter and a receiver. Assuming a simplified (i.e., naive) model, energy
is propagated in all directions and the energy that actually strikes the receiver would seem to
be proportional to the square of the distance between the transmitter and receiver – the signal
is attenuated ∝ r2. This simple path loss model ignores the significant reflection, scattering,
refraction, and absorption effects as RF energy interacts with the earth, the atmosphere, and
other smaller features. One of the major effects is multipath interference, where the RF waves
bounce off objects in the environment and converge at the receiver after having traversed
different distances.

The top of Figure 3 shows a schematic of this effect, and this schematic is the basis for the
two ray model model. In that model, two rays are modeled from the transmitter to the receiver.
Because they are electromagnetic waves, they may destructively interfere, leading to a fade.
Overall, the signal is attenuated the further that it travels. The two-ray model uses a reflection
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from the earth and the heights of the transmitter and receiver to indicate the likely signal
strength at a given distance. This model is specific to the radio frequency used; Figure 3 is an
example of a two-ray calculation from an survey tutorial on antenna propagation models [11]
for a 900MHz signal for a 8.7m high transmitter and a 1.6m high receiver; the horizontal axis
is a logarithmic scale.

Figure 3: Example of two-ray model attenuation

This diagram shows that the signal strength decreases roughly as rk, 2 ≤ k ≤ 4, but that
there is considerable variation over short distances. Other models for such effects are based on
fitting empirical measurements rather than a-priori analysis. There are general-purpose models
such as the Hata / COST231 model and the Longley-Rice model [2, 12], and several specific
to the wavelength and operating characteristics of wireless LAN cards [7]. Additionally, the
propagation characteristics of indoor environments are sufficiently different from outdoors that
there a number of measurement studies [13, 15, 4, 20, 22] and models (See [3], [11] and [8] for
excellent surveys).

The preceding work describes relatively large-scale phenomena. In addition to whatever
long-range attenuation there may be, there is also small-scale fading, which is the result of
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multipath interference and occurs at the scale of single wavelengths. Though such interference
can theoretically be predicted analytically, it requires that the environment be known with a
level of detail that is generally impractical [19, 18].

A common way of address such situations is through statistical fading models. Rather than
determine the signal strength at any exact place or time, it is modeled as a random variable
with a known distribution. In general, the distributions are fairly well-established, but the
parameters are very environment-specific (see e.g. [6]). There are several common models,
among them Rayleigh fading which assumes that there are many comparable multipath signals,
and Rician fading which assumes a less “cluttered” environment in which line-of-site paths are
more important.

Our model for directional antennas adopts a similar approach to the empirical model and
the Rayleigh fading model – we use empirical measurements to identify the characteristics of
the random or stochastic process. Where we differ is that our model is primarily concerned
with effects on directionality.

2.2 Directional Models

The simulators commonly used in networking research do not consider antenna directionality
and radio propagation as interacting variables. This paper considers three widely-used simula-
tors, OpNet, QualNet, and NS-2. Each one supports several models of radio propagation, but
they all follow the same general model with regard to antenna gain: For any two stations i and
j, the received signal strength is computed according to the general form of equation 1:

Received Power = Ptx ∗Gtx ∗ |PL(i, j)| ∗Grx (1)

The received power Prx is the product of the transmitted power Ptx, the transmitter’s gain
Gtx, the magnitude of path loss between the two stations |PL(i, j)|, and the receiver’s gain Grx.

The transmitter and receiver gains are essentially constants in the case of omnidirectional
(effectively isotropic in the azimuth plane) antennas. For directional antennas, gain is an
antenna-specific function of the direction of interest. For some given zenith φ, azimuth θ, and
an antenna-specific characterization function fa tx(), the power transmitted in that direction is
given by equation 2:

Gain in direction(φ, θ) = fa(φ, θ) (2)

Combined gain = fa(φ, θ) ∗ fb(φ
′, θ′) (3)

Correspondingly, the receiver gain is modeled by a (potentially different) function of the
direction from which the signal is received. Besides being a source of interference for a dominant
signal, the energy traveling along secondary paths also carries signal. Network simulators model
the path loss using the difference in angles between the transmitter and receiver. However, if
one of the weaker signals for a transmitter happens to be aligned with a high-gain direction
of a receiving antenna, the received power from that path can be greater than that of the
primary path. Thus in environments with significant multipath, the gain cannot be determined
based solely on a single direction. This is easier to understand using figure 4, which combines
a transmitter (on the left) and a receiver (on the right).

In this figure, the transmitter gain is indicated by the (large) gain of the antenna pattern;
the receiver gain is indicated by the (much smaller) gain from the “side-lobe” that is linearly
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Figure 4: Illustration of the common path loss model for directional antennas

located between transmitter and receiver. The complex-valued path loss, PL(i, j), is related to
the length of the dark line separating the transmitter and receiver.

The above models describe the power emitted in or received from a single direction. In
reality, the transmitter’s power is radiated in all directions, and the receiver aggregates power
(be it signal or noise) from all directions. Although the simulators we are considering assume
that the single direction of interest for each station is precisely toward the other station, we
can generalize equations 1 and 3 to the case where there are multiple significant signal paths:

Prx =
∑

l∈paths

Ptx ∗ fa(φl, θl) ∗ PLl(i, j) ∗ fb(φ
′

l, θ
′

l) (4)

In Equation 4, note that that Prx is not necessarily all “signal”. It may be the case that
only one signal is decodable and the others destructively interfere in which case equation 5 is a
better model:

Prx = max
l∈paths

Ptx ∗ fa(φl, θl) ∗ PLl(i, j) ∗ fb(φ
′

l, θ
′

l) (5)

Both of these models assume that there is some way to describe available paths that a
signal may take. As with the Rayleigh and Rician fading models, it may be possible to build
a parameterized model of those paths for “cluttered” and “uncluttered” environments. This is
the approach we take, using measured data to determine the model.

With any of the three simulators we consider, the user has the freedom to provide any
type of mapping between gain and angle. This means that the user could conceivably make
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measurements with their desired hardware in their desired environment, much as we have done,
and then install this as the pattern. However, even though the antenna can conceivably be
modeled arbitrarily well, we will show that the directionality of the signal is an effect of the
interaction between antenna and environment and that modeling both in isolation, however well,
misses significant effects. We propose a combined empirical model which attempts to account
for both the pattern of the antenna and the deviation from this pattern due to environmental
effects.

3 Method

In this section we will describe the method we devised for deriving empirical models for antenna
patterns using commodity hardware and address any reservations about their accuracy by
providing a means for equipment calibration.

3.1 Data Collection Procedure

We use two laptops, one receiver and one transmitter. Each is equipped with an Atheros-based
MiniPCI-Express radio which is connected to an external antenna using a U.Fl to N pigtail
adapter and a length of LMR-400 low-loss antenna cable. The receiver laptop is connected to
a 7 dBi omnidirectional antenna on a tripod approximately two meters off the ground. The
transmitter laptop is connected to the antenna we intend to model on a tripod 100 feet from the
receiver and also two meters off the ground. The transmitter tripod features a geared triaxial
head which allows precise rotation.

The transmitter radio is put in 802.11x ad hoc mode on the least congested channel. The
transmitter’s ARP table is manually hacked to allow it to send UDP packets to a non-existent
receiver. The receiver is put in monitor mode on the same channel and logs packets with
tcpdump. Finally, both the receiver and transmitter must have antenna diversity disabled.
With the equipment in place, the procedure is as follows: For each 5 degree position about
the azimuth, send 500 un-acknowledged UDP packets. Without intervention otherwise, due
to MAC-layer retransmits, each will be retried k times (where k is radio-vendor and/or driver
implementation specific), resulting in k ∗ 500 measurements.

During the experiment, the researchers themselves must be careful to stay well out of the
near-field of the antennas and to move to the same location during runs (so that they, in effect,
become a static part of the environment). If additional data is desired for a given location,
multiple receivers can be used, provided the data from them is treated separately (as each
unique path describes a unique environment).

3.2 Commodity Hardware Should Suffice

To ensure that it is safe to use commodity 802.11x-based hardware to measure antenna patterns,
we calibrate the sensitivity of our radios and analyze losses in the packet-based measurement
platform.

In the process of collection, some packets will be dropped due to interference or poor signal.
In our experience, the percentage of dropped frames per angle is very small: the maximum
lost frames per-angle in our datasets is on the order of 5%, with less than 1% lost being more
common (the mean is 0.01675%). Moreover, the correlation coefficient between angle and loss
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percentage is -0.0451, suggesting that losses are uniformly distributed across angles. Given
that we have taken 4000 samples in each direction (k = 8 for our configuration), noise in our
measurements due to packet loss is negligible.
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Figure 5: Linear fit to RSS error observed from commodity cards during calibration.

To get an idea of how accurate our commodity radios are in measuring received signal
strength (RSS), we directly connected each of four radio cards (all Atheros-based Lenovo-
rebranded Mini-PCI express) to an Agilent E4438C VSG. The VSG was configured to generate
802.11 frames and the laptop to receive them. For each of the four cards we collected many
samples while varying the transmit power of the VSG between -20 dBm and -95 dBm (lower
than the receive sensitivity threshold of just about any commodity 802.11 radio) on 5 dBm
increments. The resulting data is plotted in figure 5 along with a linear fit with a slope of
0.9602 and adjusted R-squared value of 0.9894 (indicating a strong fit to the data). The
commodity radios perform remarkably well in terms of RSS measurement. To correct for the
minor error they do exhibit, we use the slope of this fit to adjust our measurements, dividing
each measurement by the slope value.
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Label Environment Line of Sight? Distance (ft) Samples Loss Rate (%)
Parabolic-Outdoor-A Open Field on Campus Yes 100 214471 24.81
Parabolic-Outdoor-B Empty Floodplain Yes 100 258876 7.05
Parabolic-Indoor-A Laboratory Yes 100 267092 2.21
Parabolic-Indoor-B Office Building Yes 200 268935 10.41
Parabolic-Indoor-C Office Building No 50 283104 5.12
Parabolic-Reference Empty Floodplain Yes 100 219 N/A
Patch-Outdoor-A Open Field on Campus Yes 100 455952 12.44
Patch-Outdoor-B Empty Floodplain Yes 100 278239 4.99
Patch-Indoor-A Laboratory Yes 100 290030 2.21
Patch-Indoor-B Office Building Yes 200 265593 7.40
Patch-Indoor-C Office Building No 50 278205 2.65
Patch-Reference Empty Floodplain Yes 100 219 N/A
Array-Outdoor-A Open Field on Campus Yes 100 475178 N/A
Array-Indoor-A Office Building Mixed Varies 2672050 N/A
Array-Indoor-B Office Building Mixed Varies 2708160 N/A
Array-Reference Open Urban Area Yes 5 360 N/A

Table 1: Summary of data sets

4 Measurements

In this section we will explain the datasets we collected, discuss our normalization procedure,
and give some high-level statistical characterization of the data.

4.1 Experiments Performed

In order to derive an empirical model that better fits real world behavior, we collected data in
several disparate environments with three different antennas. A high level summary of these
datasets is in table 1. With the exception of the reference patterns, all of the measurements were
made with commodity hardware by sending many measurement packets between two antennas
and logging received signal strength (RSS) at the receiver. The three antenna configurations
used include - a HyperLink 24dBi parabolic dish with an 8-degree horizontal beam-width, a
HyperLink 14dBi patch with a 30 degree horizontal beam-width, and a Fidelity Comtech Phocus
3000 8-element uniform circular phased array with a main-lobe beam-width of approximately
52 degrees. This phased array functions as a switched-beam antenna and can form this beam
in one of 16 directions (on 22.5 degree increments around the azimuth). For the HyperLink
antennas, we used the same antenna in all experiments to avoid intra-antenna variation due to
manufacturing differences.

In addition to the in-situ experiments, we have a “reference” data set for each configura-
tion. The Array-Reference data set was provided to us by the antenna manufacturer. Because
HyperLink could not provide us with data on their antennas, Parabolic-Reference and Patch-
Reference were derived using an Agilent 89600S VSA and an Agilent E4438C VSG in a remote
floodplain2 (see figure 10 for a photo of the receiver-side of this setup).

2We were unable to aquire access to an anechoic chamber in time for this study, but would like to make use
of one in future work, for even cleaner reference measurements.
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Figure 6: Comparison of signal strength patterns across different environments and antennas:
Parabolic dish indoor environments.
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Figure 7: Comparison of signal strength patterns across different environments and antennas:
Parabolic dish outdoor environments.
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Figure 8: Comparison of signal strength patterns across different environments and antennas:
Patch panel indoor environments.
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Figure 9: Comparison of signal strength patterns across different environments and antennas:
Patch panel outdoor environments.
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Figure 10: Receiver side of measurement setup in floodplain

14



Figure 11: Floorplan of office building used in Array-Indoor-A, Array-Indoor-B, Patch-Indoor-
B, Patch-Indoor-C, Parabolic-Indoor-B, and Parabolic-IndoorC.

Following is a brief description of each of the experiments3:

• Parabolic-Outdoor-A, Patch-Outdoor-A – A large open field on the University of
X campus was used for these experiments. The field is roughly 500-feet on a side and is
surrounded by brick buildings on two of the four sides. Although there is line of sight and
little obstruction, the surrounding infrastructure makes this location most representative
of an urban outdoor deployment.

• Parabolic-Outdoor-B, Patch-Outdoor-B – A large University-owned floodplain on
the edge of town was used for our most isolated data sets. The floodplain is flat, recessed,
and is free from obstruction for nearly a quarter mile in all directions. This location is
most representative of a rural backhaul link.

• Array-Outdoor-A – The same open field is used as in the Parabolic-Outdoor-A and
Patch-Outdoor-A data sets. The collection method here differs from that described in
section 3. A single phased array antenna is placed approximately 100 feet away from
an omni-directional transmitter. The transmitter sends a volley of packets from its fixed
position as the phased array antenna electronically steers its antenna across each of its
16 states, spending 20 ms in each state. Several packets are received in each directional
state. The phased array antenna is then manually rotated in 10 degree increments while
the omni-directional emitter remains fixed. The same procedure is repeated for each of
36 increments. Moving the emitter changes not only the angle relative to the antenna but
also the nodes’ positions relative to their environment. To address this confound, each
physical position is treated as a separate experiment. This means that the number of

3We will release our entire data set to the community[1] prior to publication.
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angles relative to the steered antenna pattern is limited to the number of distinct antenna
states (16). The tx-power of the radio attached to the directional antenna was turned
down to 10dBm to produce more tractable noise effects (for the purpose of modeling
small-scale behavior the default EIRP is much too high).

• Parabolic-Indoor-A and Patch-Indoor-A – For this data set we used the University
of X Systems Lab. The directional transmitter was positioned approximately 20 feet
from the receiver in a walkway between cubicles and desks. This is our most cluttered
environment.

• Parabolic-Indoor-B, Parabolic-Indoor-C, Patch-Indoor-B, and Patch-Indoor-

C – An indoor office space was used for this set of tests. See figure 11 for the floor-floorplan
of this office space. Two receivers were used here: one with line of sight and one without
line of sight, placed amidst desks and offices.

• Array-Indoor-A and Array-Indoor-B – Seven phased array antennas are deployed
in the same 25x30m indoor office space used for Parabolic-Indoor-B, Parabolic-Indoor-C,
Patch-Indoor-B, and Patch-Indoor-C. Data from two of the seven antennas are analyzed
here. Each antenna electronically steers through its 16 directional states, spending 20
ms at each state. Two mobile omni-directional transmitters move through the space and
transmit 500 packets at 44 distinct positions. For each packet received by a phased array,
the packet’s transmission location and orientation is recorded (i.e., which of the four
cardinal directions was the transmitter facing) along with the directional state in which
the packet arrived and the RSSI value.

• Parabolic-Reference and Patch-Reference – The large flood-plain is used here. An
Agilent VSA is connected to the omni-directional receiver and makes a 10-second running
average of power samples on a specific frequency (2.412 GHz was used). Three consecutive
averages of both peak and band power are recorded for each direction. The directional
transmitter is rotated in five degree increments and is connected to a VSG outputting a
constant sinusoidal tone at 25 dBm on a specific frequency. Before, after, and between
experiments we made noise floor measurements and as a post-processing step, we have
subtracted the mean of this value (-59.61811 dBm or 0.0011 µW) from the measurements.

4.2 Normalization

Our first task in comparing data sets is to come up with a scheme for normalization so that they
can be compared to one another directly. For each data set, we find the mean peak value which
is the maximum of the mean of samples for each discrete angle. This value is then subtracted
from every value in the data set. The net effect is that the peak of the measurements in each
data set will be shifted to zero.

4.3 Characterization

4.3.1 Error relative to the reference

Figures 6 through 9 show the normalized measured in-situ patterns and their corresponding
(also normalized) reference patterns. Recall that the reference pattern is generated and recorded
by calibrated signal processing equipment and the measured data is collected using commodity
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802.11 cards. As can be clearly seen there is much variation in the measured patterns and
in how much they differ from the reference (which we would typically classify as error). As
we would expect, the measurements in outdoor environments exhibit less noise due to less
clutter, but still deviate from the reference on occasion. As a further confirmation that our
measurement process works well, notice how well Parabolic-Outdoor-B and Patch-Outdoor-B
(figures 7 and 9) correlate with the reference pattern (recall that these experiments were done
in the same floodplain as the reference, indicating that the commodity hardware can compete
with the expensive specialized equipment in a similar environment).

4.3.2 Distribution of Error

Our foremost question in characterization is: is there a straight-forward explanation for error
in the measured patterns? Figure 12 provides a CDF of all error for each antenna. The three
antennas provide similar error distributions, although offset in the mean. The Array data is
the most offset from the others (presumably because its reference pattern is theoretical rather
than measured) and exhibits some bimodal behavior. The Patch measurements are closest to
the reference, showing a large kurtosis about zero.
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4.3.3 Patterns in error based on angles

Clearly, the antennas have different error characteristics. However, within each antenna, and
within each data set, it might be that the error in a given direction is correlated with that in
other directions – if this were true, we could use a single or small set of probability distributions
to describe the error process in a given environment, with a given antenna.

We used a Shapiro-Wilkes test on the per-angle error for each data set. The resulting p-
values are well under the α = 0.05 threshold, and in all cases we can reject the null-hypothesis
that the error is normally distributed; this means that standard statistical tests (and regression
models) which assume normality can not be used. Thus, we choose to use nonparametric
statistical tests. A pairwise Mann-Whitney U-test can be used to determine which pairs of
samples grouped on some criterion (in our case angle) are drawn from the same distribution.
Figure 13 plots a heatmap showing the interaction between angles for a representative data
set. Remarkably, all of our traces produce heatmaps with similar trends: in the majority of
pairs we reject the null hypothesis that their error process is drawn from the same distribution.
However, for angles near zero, we are unable to reject this hypothesis. This observation, that
measurements where the main-lobe of the directional antenna is pointed at the receiver may
exhibit correlated error processes, motivated another series of tests.

To further explore “possibly well behaved” error processes about the main lobe, we applied
a Kruskal-Wallis rank-sum test to two scenarios:

1. For angles near zero, are batches with the same antenna (but different environments)
equivalent?

2. For angles near zero, are batches with the same environment (but different antennas)
equivalent?

For 1, the null hypothesis is soundly rejected for all combinations. In fact, the maximum p-value
found is 1.990343e-40. For 2, the results still point strongly towards rejection (mean p-value =
0.0082), however there is one outlier - in the case of 355 degrees in the laboratory environment,
we achieve a p-value of 0.2097. One outlier, however, is not sufficient to derail the overwhelming
evidence that neither antenna configuration nor environment alone is sufficient to account for
intra-angle variation in error - even in the more seemingly well-behaved cone of the antenna
main-lobe.

4.4 Observations

There are several qualitative points which are worth bringing out of this data: (1) In the indoor
environments, none of the measured traces tracks the reference signal at all closely; (2) In all
environments, there is significant variation between data sets; (3) The maximum signal strength
is generally realized in approximately the direction of maximum antenna gain, but directions of
low antenna gain often do not have correspondingly low signal strength. This means that no
system for interference mitigation can safely rely on pre-determined antenna patterns.

5 A New Model of Directionality

We began this paper with the observation that path loss and antenna gain are typically regarded
as orthogonal components of the power loss between transmission and reception (Eq.s 1 - 3).
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Figure 13: Heatmap of p-values for the Mann-Whitney U-test which was run pair-wise against
the error from the reference pattern in each angle. This plot, which is for Patch-Indoor-A, was
chosen as a representative. All traces showed similar trends. Darker values indicate very small
p-values, meaning that the null-hypothesis can be rejected with confidence. In this case, the
null-hypothesis is that the samples come from the same distribution. The Patch reference
pattern is provided on the left for reference.
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In this section, we evaluate the best case accuracy of this approach, and suggest a new model
based on the limitations identified.

5.1 Limitations of Orthogonal Models

This section subsection formalizes the orthogonal antenna gain / path loss model and analyzes
the error associated with it. If transmit power and path loss do not vary with antenna angle,
the received power relative to antenna angle can be modeled as:

P̂rx = β0 ∗ f(φ, θ) (6)

This paper uses the convention of designating constants to be estimated (parameters) as
β0 . . . βn. In this case, β0 is a constant combining the path loss – however calculated – and the
gain of the non-rotating antenna. f(φ, θ) is a function describing the gain of the other antenna
relative to the signal azimuth θ and zenith φ. Without loss of generality, we will assume that
the antenna being varied is the receiver, and that the zenith, φ, is fixed.

To evaluate the accuracy of this model, we start by finding the estimate b0 for β0 which
minimizes the sum of squared error (SSE). In effect, this is assuming the best possible path loss
estimate, without specifying how it is determined. If the function f() correctly describes the
antenna, and if path loss and antenna gain are in fact orthogonal components of the received
signal strength, then the remaining error should be randomly distributed about 0.

Figures 14 through 19 depict the error of this orthogonal model for several data sets. There
are several qualitative observations to be made: First and most importantly, the error value
is not uniformly random, but rather correlated with direction. The variability within any given
direction is less than that for the data set as a whole. Second, the error is significant. In the
worst states, the mean error is between 8 and 10 dB, in either direction. Third, the model
overestimates signal strength in the directions where the gain is highest, and underestimates
in the directions where the gain is lowest. That is, the difference in actual signal strength
between peaks and nulls is less than the antenna in isolation would produce. This has significant
implications for systems that use null-steering to manage interference.

The data in figures 18 and 19 is aggregated from 36 distinct physical configurations. In each
configuration, the directional receiver was (electronically) rotated in 22.5 degree increments, and
between configurations, the omnidirectional emitter was physically moved around the receiver
by ten degrees. A consequence of this method is that these 10 degree changes represent not
only a change of the angle between the emitter and the antenna, but also a change of location
with the attendant possibility of fading effects. To account for this, we consider each of the 36
configurations individually. This gives less angular resolution, but also fewer confounds. Figure
5.1 displays each configuration as a separate line. The model accuracy is fairly consistent: The
residual standard error of the aggregate is 8 dB, and the individual cases range from 5.74 dB
to 11.4 dB with a mean of 7.6 dB.

This section presents the best possible case of the orthogonal model: The path loss value
used for each data set was the lowest-error fit for that specific data, and the antenna patterns
(f(θ)) for the patch and parabolic antennas were measured using the specific individual antenna
in question. Note also that error patterns differ from environment to environment: One could
derive an ex post facto f() to eliminate the error in single data set, but it would not be applicable
to any other.
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Figure 14: Differences between the orthogonal model and observed data in dB: P̂rx − Prx:
Patch-Outdoor-A
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Figure 15: Differences between the orthogonal model and observed data in dB: P̂rx − Prx:
Patch-Indoor-B
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Figure 16: Differences between the orthogonal model and observed data in dB: P̂rx − Prx:
Patch-Indoor-C

23



0 15 30 45 60 75 90 110 130 150 170 190 210 230 250 270 290 310 330 350

−
3

0
−

2
0

−
1

0
0

1
0

2
0

3
0

Normalized Differences of Observations from Reference Pattern

Azimuth Angle

N
o

rm
a

liz
e

d
 G

a
in

Figure 17: Differences between the orthogonal model and observed data in dB: P̂rx − Prx:
Parabolic-Indoor-C
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Figure 18: Differences between the orthogonal model and observed data in dB: P̂rx − Prx:
Array-Outdoor-A
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Figure 19: Differences between the orthogonal model and observed data in dB: P̂rx − Prx:
Array-Indoor-A
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Figure 20: Mean error of orthogonal model for each observation point in the Array-Outdoor-A
data set. The format is the same as in figures 14 through 19.
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The magnitude and systematic nature of the error suggest that the orthogonal model has
inherent limitations which cannot be alleviated by improving either the antenna model or path
loss model separately.

5.2 An Integrated Model

This section describes a new model for the interaction of antenna direction and the RF envi-
ronment. This integrated model addresses the systemic errors discussed above, while remaining
simple enough to use in analysis and simulations.

We address the environment-specific, direction-specific error show in figures 14 through
20 with the following environment-aware model, given in equation 7. The expected received
power is given by a constant β0, the antenna gain function f(), and a yet to be determined
environmental offset function x():

P̂rx = β0 ∗ f(φ, θ) ∗ x(φ, θ) (7)

As with the orthogonal model, we assume a constant zenith and consider f() and x() with
regard to the azimuth θ. Equation 7 can be converted to a form that lends itself to least-squares
(linear regression) analysis in the following way: First, we rewrite equation 7 as addition in
a logarithmic domain, and second we substitute a discrete version for the general x(). In the
discrete x(), the range of angles is partitioned into n bins such that bin i spans the range [Bi, Ti).
Each bin has associated with it a boxcar function di(θ) to be 1 if and only if the angle θ falls
within bin i (equation 8) and an unknown constant offset value βi. These transformations
yield the model given in equation 10.

di(θ) =

{
1, Bi ≤ θ < Ti

0, otherwise
(8)

x(θ) =
n∑

i=1

di(θ) βi (9)

f(θ)− P̂rx = β0 + β1d1(θ) + β2d2 + · · ·+ βndn(θ) (10)

If x() is discretized into n bins, the model has n + 1 degrees of freedom: One for each bin
and one for β0, the signal strength without antenna gain. For any given signal direction, exactly
one of the di() functions will be 1, so each prediction is an interaction of two coefficients: β0

and βi. Consequently, β0 could be eliminated and an equivalent model achieved by adding b0’s
value to each bi. Mathematically, this means that there are only n independent variables in the
SSE fitting, and the full set is collinear. In practice, we drop the constant bn, but this does not
mean that packets arriving in that bin are any less well-modeled. Rather, one can think of bin
n as being the “default” case.

The azimuth can be divided into arbitrarily many bins. The more finely it is divided, the
more degrees of freedom the model offers, and thus the more closely it can be fitted to the
environment. To investigate the effect of bin number, we modeled every data set using from
two to twenty bins. Figure 21 shows the residual standard error as a function of bin count. The
grey box plot depicts the mean and interquartile range for all of the data collectively, and the
foreground lines show values for links individually. In general, there appears to be a diminishing
return as the number of bins increases, with the mean remaining nearly constant above 16 bins.
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Figure 21: Effect of increasing bin count (decreasing bin size) on modeling precision.
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In discussing parameters for this model, we will use the 16-bin case specifically. We find
the same patterns across other numbers, though the actual coefficients are bin-count specific.
One result of note with regard to bin count is this: Several environments exhibit a “sawtooth”
pattern in which the odd bin counts do better than the even ones, or vice-versa. This appears
to be an effect of the alignment of the bins relative to environmental features, rather than the
number of bins as such.

Figure 22: Residual error of the discrete offset model with 16 bins.

This model has significantly less error than the orthogonal model: Across all data sets,
the mean residual standard error is 4.0 dB, (4.4dB indoors) compared to 6.15 dB (7.312 dB
indoors) for the orthogonal model. More importantly, the error remaining in the discrete offset
model is largely noise: The mean error is almost exactly zero for several ways of grouping the
data. Figure 22 depicts the error (predicted value minus observed value). While the outliers
reveal some direction-correlated effect that is not accounted for, this model is much better for
the bulk of the traffic. Over 99.9% of the traffic at every angle falls within the whisker interval.

5.3 Describing and Predicting Environments

The environmental offset function x(), or its bin-offset counterpart, models the impact of a
particular environment combined with a particular antenna. This can serve as an after-the-
fact description of the environment encountered, but it also has predictive value: If one knows
the offset function for a given environment, it is possible to more accurately model wireless
systems in that environment. We are not aware of any practical way to know the exact spatial
RF characteristics of an environment – and thus its offsets – without actually measuring it.
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Data Set Factor Coefficient P-value

Parabolic-Outdoor-A
Antenna Gain 0.185 1.02e-87
Obs. Angle 0.00301 5.1e-06

Patch-Outdoor-A
Antenna Gain 0.146 6.4e-50
Obs. Angle 0.00744 1.14e-17

Array-Outdoor-A
Antenna Gain 0.41 2.03e-206
Obs. Angle -0.0271 5.36e-188

Parabolic-Outdoor-B
Antenna Gain 0.0377 8.68e-05
Obs. Angle -0.00323 5.95e-05

Patch-Outdoor-B
Antenna Gain 0.00919 0.0492 4

Obs. Angle -0.00198 3.08e-06

Parabolic-Indoor-A
Antenna Gain 0.33 4.6e-102
Obs. Angle 0.00463 1.91e-05

Patch-Indoor-A
Antenna Gain 0.258 1.22e-122
Obs. Angle 0.00894 3.09e-24

Parabolic-Indoor-B
Antenna Gain 0.378 2.2e-134
Obs. Angle 0.00971 1.97e-16

Patch-Indoor-B
Antenna Gain 0.372 1.1e-81
Obs. Angle 0.014 3.87e-18

Parabolic-Indoor-C
Antenna Gain 0.668 1.39e-234
Obs. Angle -0.0146 4.15e-36

Patch-Indoor-C
Antenna Gain 0.703 0
Obs. Angle -0.0154 2.63e-48

Table 2: Factors influencing fitted offset values, 16-bin case.

However, our results suggest that it is possible to identify parameters generating the distribution
from which the offset values for a class of environments are drawn.

We analyzed a range of possible determining factors for the fitted offsets, across all traces
and a range of bin counts. A linear regression fit and ANOVA test found significant correlation
with two factors: The nominal antenna gain f(θ) and the observation point; none of the other
factors examined were consistently significant. Table 2 shows the regression coefficients and
P-values for both factors for a variety of traces. The observation angle was always statistically
significant, but the coefficient is constantly near zero. For each factor, the regression coefficient
describes the correlation between the fitted offset and the factor. That is, the coefficient shows
how much the actual signal strength can be expected to differ from the orthogonal model,
for any value of that factor. For example, the antenna gain coefficients of .668 and .703 for
Parabolic-Indoor-C and Patch-Indoor-C mean that in those data sets for every dB difference in
antenna gain between two angles, the-best fit difference in actual signal strength is only ≈ 0.3
dB.

There are two key results pertaining to the antenna gain regression coefficient: First, the co-
efficients for different antennas in the same environment are very close. Second, the coefficients
for distinct but similar environments are fairly close. This suggests that classes of environments
can reasonably be characterized by their associated coefficients.

4Marginally statistically significant.
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6 Simulation Process

The statistical model laid out in section 5 can be used as the basis for more realistic simulations.
It has long been recognized that radio propagation involves very environment-specific effects.
We identify three major ways of addressing such effects in modeling and simulation: The first
is to simply ignore the variability and use a single representative value in all cases. The second,
which goes to the opposite extreme, is to model specific environments in great detail. A third
approach is to randomly generate values according to a representative process and perform
repeated experiments.

Each approach has its benefits, but we are advocating the repeated-sample approach. Pre-
cisely modeling a specific environment probably has the greatest fidelity, but it provides no
information as to how well results achieved in a single environment will generalize to oth-
ers. Stochastic models have the advantage of being able to produce arbitrarily many “similar”
instances, and parametric models make it possible to study the impact of varying a given at-
tribute of the environment. Such approaches are frequently used to model channel conditions
[11], network topology [21, 17], and traffic load [9].

The following algorithms produce signal strength values consistent with our statistical find-
ings. The key parameters are the gain offset correlation coefficient Kgain, the offset residual
error Soff , and the per-packet signal strength residual error Spss. We computed these values
across many links for two types of environments in sections 5.3 and 5.2. Table 3 summarizes
these results.

Environment Kgain Soff Sss

Open Outdoor 0.01 - 0.04 1.326 - 2.675 2.68 - 3.75
Urban Outdoor 0.15 - 0.19 2.244 - 3.023 2.46 - 2.75
LOS Indoor 0.25 - 0.38 2.837 - 5.242 2.9 - 5.28
NLOS Indoor 0.67 - 0.70 3.17 - 3.566 3.67 - 6.69

Table 3: Summary of Data-Derived Simulation Parameters: Gain-offset regression coefficient
(Kgain), offset residual std. error (Soff ), and signal strength residual std. error (Sss).

Algorithm 1 is a one-time initialization procedure which computes the offsets between the
antenna gain in any direction and the expected actual signal gain.

Algorithm 2 computes the expected end-to-end gain for a given packet, not including fixed
path loss. Thus, the simulated signal strength would be determined by the transmit power,
path loss, receiver gain, fading model (if any), and the directional gain from algorithm 2. Note
that a fading model that accounts for inter-packet variation for stationary nodes might make
the random error ǫ in line 9 redundant.

7 Conclusion

In this paper, we have presented an empirical study of the way different environments and anten-
nas interact to affect the directionality of signal propagation. The three primary contributions
of this work are:

1. A well-validated method for surveying propagation environments with inexpensive com-
modity hardware.
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Algorithm 1 Compute Direction Gain

1: Kgain ← gain offset correlation coefficient
2: Soff ← offset residual std. error
3: procedure Direct-Gain

4: for Node n ∈ all nodes do

5: P ← partition of azimuth range [−π, π)
6: for pi ∈ P do

7: θi ← center angle of pi

8: X ← random value from (µ = 0, σ2 = Soff )
9: on,pi

← Kgain ∗ fn(θi) + X

10: end for

11: end for

12: end procedure

Algorithm 2 Compute Per-Packet Gain

1: Spss ← residual error of packet signal strengths
2: function Directional-Packet-Gain(src, dst)
3: θsrc ← direction from src toward dst

4: θdst ← direction from dst toward src

5: psrc ← partition at src containing θsrc

6: pdst ← partition at dst containing θdst

7: Gsrc ← fsrc(θsrc)− osrc,psrc

8: Gdst ← fdst(θdst)− osrc,pdst

9: ǫ← random value from (µ = 0, σ2 = Spss)
10: return(Gsrc + Gdst + ǫ)
11: end function
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2. A characterization of several specific environments ranging from the very cluttered to the
very open.

3. New, more accurate, techniques for modeling and simulating directional wireless network-
ing.

In addition to being described in this paper, the collected data sets and simulator code
implementing our model will be released to the research community.

Wireless signal – and interference – propagation is more complicated than common previous
models have acknowledged. Because our models of the physical layer guide the development and
evaluation of higher-layer systems, it is important that these models describe reality well enough.
Our measurements, and the resulting model, bring to light several important aspects of the
physical environment which previous models have failed to capture. The effective directionality
of a system depends not only on the antenna but is influenced by the environment to such a
large extent that many decisions cannot be made without in-situ measurements.
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G. Borriello, and R. Cáceres, editors, MobiSys, pages 192–205. ACM, 2007.

[11] A. Neskovic, N. Neskovic, and G. Paunovic. Modern approaches in modeling of mobile
radio systems propagation environment. IEEE Communications Surveys and Tutorials,
3(3), 2000.

[12] C. Oestges and A. J. Paulraj. Propagation into buildings for broad-band wireless access.
IEEE Transactions on Vehicular Technology, 53(2):521 – 526, March 2004.

[13] A. Plattner, N. Prediger, and W. Herzig. Indoor and outdoor propagation measurements
at 5 and 60 ghz for radio lan application. In Proc. IEEE MTT-S International Microwave
Symposium Digest, pages 853–856 vol.2, 1993.

[14] R. Ramanathan. On the performance of ad hoc networks with beamforming antennas. In
Proceedings of the 2nd ACM international symposium on Mobile ad hoc networking and
computing, pages 95–105, Long Beach, CA, USA, 2001. ACM Press.

[15] J. C. Stein. Indoor radio WLAN performance part II: Range performance in a dense office
environment. Technical report, Intersil Corporation, 2401 Palm Bay, Florida.

[16] A. P. Subramanian, P. Deshpande, J. Gao, and S. R. Das. Drive-by localization of roadside
wifi networks. In 27th Annual IEEE Conference on Computer Communications (INFO-
COM 2008), Phoenix, Arizona, April 2008.

[17] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W. Willinger. Network
topology generators: degree-based vs. structural. In SIGCOMM ’02: Proceedings of the
2002 conference on Applications, technologies, architectures, and protocols for computer
communications, pages 147–159, New York, NY, USA, 2002. ACM.

[18] R. Tingley and K. Pahlavan. Space-time measurement of indoor radio propagation. In-
strumentation and Measurement, IEEE Transactions on, 50(1):22 – 31, Feb 2001.

[19] G. Wolfle, R. Wahl, P. Wertz, P. Wildbolz, and F. Landstorfer. Deterministic propagation
model for the planning of hybrid urban and indoor scenarios. In Personal, Indoor and Mo-
bile Radio Communications, IEEE 16th International Symposium on (PIMRC), volume 1,
pages 659 – 663, Sept. 2005.

[20] T. A. Wysocki and H.-J. Zepernick. Characterization of the indoor radio propagation
channel at 2.4 ghz. Journal of Telecommunications and Information Technology, 2000.

[21] E. W. Zegura, K. Calvert, and S. Bhattacharjee. How to model an internetwork. In
Infocom. IEEE, 1996.

[22] H.-J. Zepernick and T. A. Wysocki. Multipath channel parameters for the indoor radio at
2.4 ghz ismband. In Vehicular Technology Conference (VTC), volume 1, pages 190 – 193,
Houston, TX, Jul 1999. IEEE.

34


