
Calvin: A System for Automating 

Cosmogenic Isotope Dating

Laura Rassbach

University of Colorado at Boulder

Technical Report CU-CS 1040-08

March 2008



1. Introduction 

Scientific reasoning is a complex process, alternately requiring flashes of insight and tedious

analysis. This dichotomy is evident in constructing a geologic timeline for a landform using

cosmogenic isotope dating. Experts in this field frequently spend months on repetitive

mathematical tasks, until they have gathered enough information to suddenly understand the

data. The Calvin project1 is aimed at understanding and automating this process, particularly

the semi-mechanical analysis tasks that must be performed on every new problem instance.

Having this analysis done quickly and automatically will free experts for the more difficult and

creative tasks in the field. Furthermore, it is my hope that Calvin’s architecture can eventually

be applied to other fields with similar challenges.

The aims of the project are challenging because the science of cosmogenic isotope dating is

quite new. There is only a relatively small number of completed, detailed analyses from which

one can draw knowledge. Therefore, it is necessary to build a knowledge base through

interaction with experts. Unfortunately, as is often the case, it is difficult for these experts to

clearly articulate how and why they come to specific conclusions. I have been working with

experts in this field for more than two years, but the knowledge base I have so far developed is

still very incomplete. Complicating the difficulty of acquiring the knowledge used by experts, few

theories in the area are completely formed or fully understood. As a result, most expert analysis

relies on vague heuristics that are frequently contradictory. Finally, as is common in most

scientific fields, observed data is typically noisy, often sparse, and not completely trustworthy.

Any system that automates the timeline construction process, then, must be able to handle

contradiction, uncertain heuristics, and untrustworthy inputs gracefully.

Argumentation is an elegant and intuitive framework for automating this quixotic type of

reasoning. It is a symbolic logic, which has a number of advantages. In particular, rules

acquired from experts can be input directly into the system in a format that closely mirrors their

original form, and answers generated by the system can be justified using human-readable

explanations. Presenting the system’s reasoning to the user in a legible format facilitates

engagement and helps to speed further knowledge engineering. In the argumentation

architecture used by Calvin, conclusions can receive partial support (modeling uncertain

1.Named for the character in the Calvin & Hobbes comics, who often starts arguments just for the sake of 
having an argument.



heuristics), and support for a conclusion can be defeated by contrasting evidence or rules

(handling contradiction gracefully). 

Figure 1 shows an example rule from

Calvin. The architecture is discussed in

more detail in Section 7; this short

introduction is intended to provide a basis

for discussion. As with most symbolic AI

systems, Calvin’s knowledge base is

encapsulated in rules. These rules are

implicitly Horn clauses, where the

conclusion is implied by the conjunction

of the premises. In addition to these

usual features, a Calvin rule may have a

guard that prevents the rule from being

used in inappropriate circumstances. The rule in Figure 1, for instance, can only be used when

the landform under consideration is a moraine. Finally, because Calvin is an argumentation

system, its rules are not absolute. All evidence (including arguments) has a confidence value so

that the relative strengths of arguments can be compared. Every rule contains instructions for

how to combine the confidence in its premises to obtain a confidence for its conclusion.

This proposal presents the prototype version of the Calvin system along with some preliminary

results, and describes how I will complete this thesis. My current results, though sparse, show

significant initial success in accurately modeling the reasoning process of isotope dating

experts. Section 2 details the process of constructing a timeline for a landform using

cosmogenic isotope dating. Section 3 discusses the particular challenges that arise in

attempting to automate the type of quixotic reasoning used by experts in this field. Section 4

presents specific architectures that I have rejected as unsuitable for the problem. Section 5

advances argumentation as an elegant and intuitive solution to these challenges. Section 6

covers related work not addressed in Section 4. Section 7 elaborates on the Calvin architecture.

Section 8 walks through concrete examples of the working prototype. Section 9 summarizes

and presents my plan of work.

Figure 1: Anatomy of a Calvin rule. This rule expresses the idea
that when an area is not cold, snow cover is a much less likely
explanation (when the area is cold, snow cover is a slightly
more likely explanation for a sample set).



2. Cosmogenic Isotope Dating

2.1. What is isotope dating?

Cosmogenic isotope dating is a method for computing the age of a landform using radioactive

isotope measurements of samples taken from that landform. This dating procedure is based on

the knowledge that cosmic rays hit the earth at a fairly constant rate. When these rays come

into contact with certain naturally occurring isotopes, they can cause a nuclear reaction that

forms specific isotopes that must be formed by nuclear reactions (e.g. Chlorine-36 or

Aluminum-26). Like with the process of radioactive decay, these isotopes are created at a

calculable rate. Most types of cosmic rays penetrate only a few inches, so these cosmogenic

isotopes are generated almost exclusively at the surface. This knowledge enables a geologist

to determine how long a particular sample has been at the surface based on the number of

cosmogenic isotopes present and the sample’s chemistry.

Unlike the process of radioactive decay, however, the production rate of new isotopes varies

over time, significantly, due to a number of factors. These include changes in the level of

background cosmic radiation, changes in the location of the earth’s magnetic pole, and

variations in sea level. As a result, the mathematics involved are quite complicated. Currently

these complex calculations are performed in Microsoft Excel; the ACE project (Anderson et al.

2007) is aimed at developing a dynamic application to perform these calculations in a more

standardized and structured way. Calvin will eventually be integrated with ACE, since it is

intended to reason about samples whose ages have already been calculated by ACE.

For many landforms, the length of time that a sample has been at the surface is actually a

measure of the age of the landform. Moraines are an excellent example of this. When a glacier

forms a glacial valley, it carves rock from deep underneath the original surface. This rock then

becomes part of the glacier, along with soil and other debris. When the glacier begins to melt

and retreat back up the valley, it deposits this soil and rock in one or more moraines. Because

the boulders were shielded from cosmic rays by the rock above them, and later by the ice of the

glacier itself, they are first exposed when the moraine is formed. Thus the surface exposure

times of the boulders in a moraine are good measures of when the moraine was actually

formed. One common and important application of isotope dating is to construct a complete

timeline for a glacier using the ages of the moraines it deposited and samples from the walls of

the glacial valley.



Although cosmogenic isotope dating is used primarily to estimate the ages of suddenly-

created landforms, it can also yield information about landforms formed over a longer period of

time, or from rock that was at the surface prior to the landform’s formation. One example of

such a landform is an alluvial fan, which is formed over many years by soil deposits from a river,

typically at the point where it flows into the sea. Information about the range of sample ages in

such a fan can help a scientist understand both when it began to form and how long the

formation took.

2.2. The Process of Isotope Dating

An expert who wants to determine the age of a landform using cosmogenic isotope dating will

begin by taking samples of surface rock (generally thin chips from several boulders) from the

landform. How many samples he/she takes is often completely determined by the number of

surfaces that are adequate to sample. If there are many surfaces suitable for sampling, he/she

will generally take as many samples as possible, although the number of samples actually

analyzed may be limited by financial constraints. Significant expertise is needed to choose good

samples—those whose apparent ages are most likely to be the age of the landform: sample

boulders should not be excessively weathered, should show no signs of having been rolled or

turned, should usually be of similar composition to the surrounding surface, etc. In many cases

it will only be possible to take a small number of samples that meet these requirements. I have

seen a number of example studies performed with only three or four samples, simply because

no more acceptable samples were available. When taking samples, experts record as much

data as possible about the location and status of the samples. This includes the sizes of the

boulders they are collected from, the amount of visible sky, and the exact location where the

sample was taken. Anything unusual about the sample site (such as a weathered boulder, or

distance from/proximity to other samples) is especially important to record. Knowing that a

sampled boulder had significant signs of weathering, for example, allows experts to correct for

erosion in their calculations from the outset.

After collection, the expert sends the samples to an accelerator mass spectrometry (AMS) lab

that measures the chemical properties of the samples, specifically the chemical composition

and the percentage of the isotope of interest for dating (e.g. Chlorine-36 compared to overall

Chlorine). The lab’s report includes these numbers with a margin of error for each item. These

services are extremely costly, further limiting the number of samples for which data are

available. 



Using the AMS measurements, information about where the sample was taken, and a large

(5-10 sets of data of 300-400 datapoints each) amount of background knowledge, the expert

calculates preliminary (or “apparent”) ages for the samples. There are three major classes of

background knowledge: “worldwide” data, localized information, and chemical information.

“Worldwide” data is general information about changes that affect the number of cosmic rays

hitting the earth during any given period, such as background radiation information and sea

level. Localized information includes the amount of visible sky and local snowfall, which affect

the exact number of cosmic rays hitting any particular sample site. Finally, knowledge about

chemistry is required to understand the odds of the isotope in question being formed when a

cosmic ray hits the sample (including secondary production from chain reactions) (Lal 1958),

(Gosse and Phillips 2001). For some of the “worldwide” data, multiple measurements are

available and will yield slightly different results. These datasets are being collected and collated

as part of the CRONUS Earth project (CRONUS 2007). Handling these calculations and

organizing background data is the task of the ACE project (Anderson et al. 2007). Although

Calvin is involved only after these initial ages are calculated, it is critical that the system have

knowledge about the subtleties that can affect initial ages in complex ways, as I will show in the

next section.

2.3. Deriving a Landform Age

After obtaining an exposure age for each sample taken from a landform, the expert needs a

single age (or age range) for the sampled landform, with a small enough margin of error that the

age is trustworthy. After running the ACE system on the chemical data from the AMS lab, all he/

she knows is an age for each individual sample, with individual margins of error calculated

based on the reported margin of error from the AMS process. The expert’s next step is to

calculate the average age and the average margin of error over the entire sample set. Using the

age range specified by these two averages (average age +/- average error), he/she now checks

that all of the calculated sample ages for this landform fall inside this range. If so, then the age

of the landform is the average sample age, +/- the average error.

Unfortunately, this happy situation rarely occurs. Instead, it is much more common that the

initial sample ages will be spread over a much wider range than that defined by the two sample

averages, often as much as 10,000 years (Shanahan and Zreda 2000). In this case, it is

necessary to construct an explanation for the spread in apparent ages, usually involving a

geologic process acting on the sample set. Once a process that explains the data has been



found, experts can use further calculations to remove its effects from the sample set and

(hopefully) arrive at a single age for the landform. 

Even this slightly less happy situation—

ending with a single explanation after only

one round of sampling—is relatively unusual.

Often there is no good explanation for the

data, or there are several explanations that

explain the data equally well. Occasionally

the final explanation will involve a significant

leap of insight resulting in a completely novel

explanation. Generally, the result of the first

round of analysis is the conclusion that more

samples are needed. This leads to a trip back

to the original site to collect more samples with the specific questions left by the first analysis in

mind. Guided by the first round of analysis, experts can focus on samples more likely to

determine which candidate process is responsible for the skew in the data. For example, if the

landform is a moraine and both inheritance (previous exposure) and erosion of the matrix

(gradual exposure of previously buried boulders) are suspected, a soil sample can generally

distinguish between these two processes. If the experts suspect that they have inadvertently

sampled two landforms, they might take several more samples physically close to each of their

initial samples, both to clearly distinguish the boundaries between the two landforms and to

confirm the initial results (by ruling out lab error and mistaken sample identification). In those

cases where experts suspect an unusual explanation will best fit their data, they must

completely rule out other, better-understood processes before a novel explanation can be

accepted by their research community. This usually requires a larger number of samples and a

statistical demonstration that the more common processes are extremely unlikely to have

produced the calculated set of ages. Figure 2 illustrates this cyclic process. 

The purpose of the Calvin system is to automate the process described in the previous two

paragraphs: finding an appropriate explanation for the age spread in a given set of samples. In

order to do this I have focussed primarily on reproducing the heuristic reasoning used by

experts to determine what processes are most likely, given an initial set of sample ages and

other knowledge about the landform in question. The general knowledge and observations used

in this process are heterogeneous, from detailed numeric information about a sample’s

Figure 2: The cyclic process of cosmogenic isotope dating.
Portions of this process automated by ACE and Calvin are
outlined.



chemistry to a general observation that a boulder showed signs of weathering. In addition, as

discussed in Section 3, the heuristics used by experts are traditionally difficult issues for AI

systems.

3. Quixotic Reasoning

Most explanations for spread in apparent ages used by experts come from a list of about

fifteen geologic processes that affect the actual exposure times of samples from a single

landform. The two most common of these are erosion and inheritance2. Erosion is a process

that gradually exposes new surfaces, so that the apparent age of a sample is younger than the

whole landform (i.e. younger than the length of time that the landform’s surface has been

exposed). Inheritance is a term for situations where landforms are formed from rock that had

been previously exposed at the surface. For example, a moraine might contain boulders that

were not carved from far enough below the surface to be wholly unexposed to cosmic rays

before the formation of the moraine. Inheritance causes the apparent ages of samples to be

older than the actual age of the landform. Other processes that may explain apparent age

spread include cover from snow or vegetation, gradual formation such as from soil deposits, or

earthquakes, which may suddenly expose large amounts of rock at the surface. Statistical

“processes” may also explain the data from a particular landform: perhaps the age spread is a

result of lab error or some form of mis-sampling. 

Despite the relatively small number of candidate processes, selecting an explanation for the

apparent age spread of a particular landform is not a simple task. Available data are noisy and

may not be trustworthy. Experts have been known to mis-identify the kind of landform under

consideration, or to sample two landforms believing they were a single landform. Multiple

processes may have acted on the samples. The manifestation of one process may be quite

similar to the manifestations of other processes. For instance, gradual formation and erosion

result in data that appear very similar. Finally, it is important not to forget that some

explanations do not come from this set list, and instead require a leap of creative insight.

2.These two processes are so common that even when all samples from a landform have the same 
apparent age they are often considered as a matter of general procedure.



3.1. Mathematical Models

Most of the processes that affect apparent ages

of samples are expected to result in a

characteristic distribution of apparent ages vs.

number of samples. For example, erosion looks

something like a skewed bell curve with the

peak towards the older end of the scale.

Inheritance, on the other hand, usually involves

a simple uniform distribution over an age

range3. Figure 3 shows some examples of these

distributions. Unfortunately, it is difficult to

diagnose the process that affected a particular landform from the distribution of apparent ages

because one rarely has enough samples to see the distribution shape. Furthermore, these

expected distribution shapes are less useful than one might expect because the mathematical

models that produce them are generally inaccurate or incomplete. 

The model for inheritance presupposes that every sample was exposed to some cosmic rays

before coming to rest in the landform of interest. This exposure is expected to be distributed

evenly over a closed range of sample ages. When this is true, a set of samples with a single

age (or Gaussian age distribution, after error) will be spread out to an approximately linear

distribution. However, it is certainly possible that all samples in a landform received about the

same amount of previous exposure, or that some samples have significant inheritance and

others none. If the boulders sampled in a moraine originally came from a fault scarp, for

example, then the amount of inheritance would be in several distinct clusters, rather than a

uniform distribution. The simple expectation of a uniform or approximately uniform distribution

fails to capture these complexities.

From discussions with experts, it appears that there are indeed multiple types of inheritance,

but this distinction has been extremely difficult to isolate. When discussing inheritance in

abstract, experts will generally predict a simple linear distribution of ages among a set of

samples subject to inheritance. (In fact, the experts that I am consulting with are currently

working on a combined model of inheritance and erosion that uses this assumption.) However,

when discussing particular landforms, “inheritance” is considered a good explanation when

3.The distribution is actually a Gaussian that is so spread out it appears uniform

Figure 3: Distribution of sample age (x) vs. number of
samples (y) expected for various geologic processes.



there is a gap between two groups of samples and the older group is much smaller than the

younger group. The ideal model of inheritance makes no mention of any such gap, implying a

significant failure of the model.

Two distinct kinds of erosion exist. On a hard surface like exposed bedrock or a boulder, the

top surface of the rock will wear away gradually. Sometimes this wear is uneven due to weather

conditions and the exact composition of the rock. On moraines, there is a different kind of

erosion called “matrix erosion.” Moraines are composed of a soil matrix with embedded

boulders. Since the soil matrix is relatively soft, it erodes away much more quickly than the

boulders, gradually exposing new boulders at the surface of the moraine, as in Figure 4.

Despite the significant differences between these two types of erosion, experts have told me

that only one mathematical model exists to describe both of them. 

A final, even more worrying example is that, although vegetation cover is believed to affect

apparent ages, no good model exists for this process. Perhaps because of this, experts prefer

not to sample from areas covered by vegetation, but sometimes this is not possible; either way,

this strategy does not account for areas that were once covered by vegetation but are not

covered now. 

Although experts are constantly working to improve their ability to explain and model various

geologic processes, progress is slow and sporadic. Given these issues, it is obviously difficult

even for human experts to select the best possible (or sometimes any) explanation for the

spread in apparent sample ages using these mathematical models.

3.2. Heuristic Reasoning

Clearly there are major gaps in available knowledge. However, despite the incompleteness of

mathematical models, isotope dating experts routinely reason about the modeled processes.

Figure 4: Matrix erosion gradually exposes previously buried boulders in a moraine. The exposure ages of all but the
green boulder in this diagram would be younger than the true age of the moraine. Since the boulders’ depths are
evenly distributed, their apparent ages will be evenly distributed as well.



Because the models involved are known to be problematic, they cannot be relied upon

exclusively. Instead, experts typically use these models to provide corroboration for the belief

that a particular process explains their data, rather than as a method for choosing which

process has affected the data. Despite the existence of mathematical models, then, Calvin will

be unable to rely on these equations to provide trustworthy results. This is unusual in a scientific

field; generally when a model exists it is accurate enough to provide useful results, and the

knowledge embedded in the model can provide insight into the process being modelled. The

incompleteness of mathematical models in the field of isotope dating makes reproducing expert

reasoning an especially difficult process.

In part because of the gaps in formal understanding, some explanations are chosen by

experts as a matter of convenience, rather than because of some objective value of the

explanation. As in many fields, outliers are often removed from a dataset simply because they

appear, statistically, to be outliers. Although experts prefer to find some valid explanation for the

existence of the outlier (for example, a theory that it came from a nearby landform and was

moved), no explanation seems to actually be required. Similar factors apply to the “lab error”

explanation, which is generally used when no other explanation for a complete sample set

seems reasonable. However, these poorly supported explanations are only used when no other

explanation seems to apply, implying some general ordering on explanations that should be

assigned to a dataset.

Because few samples are available to match the imprecise models, deciding what (non-

convenience) explanation applies to a particular sample set is primarily done using a variety of

heuristics. Some of these heuristics are based on a variety of knowledge about how particular

types of landforms form and how each geological process affects different landforms (such as

the difference between “regular” erosion and matrix erosion). Other heuristics concern

distribution shapes and are applied to the apparent distribution of the small number of samples.

These heuristics are not consistent: for instance, a set of three samples that are approximately

evenly spaced will cause an expert to identify erosion as the most likely process affecting the

sample distribution—not inheritance, as one would expect based on the a priori knowledge of

sample distributions. This heuristic directly contradicts the “ideal” model of inheritance. It is

apparent, then, that the knowledge base for cosmogenic isotope dating includes both vague

knowledge and internal contradictions.



3.3. Solution Requirements

As discussed in Sections 3.1 and 3.2, many processes have similar manifestations in the data.

This is true not only in the (imprecise, incomplete) mathematical models, but also in the

heuristics used to diagnose various problems. Therefore, there is generally a fair amount of

evidence both for and against several of the processes under consideration for explaining the

data, which is a major challenge for automatic analysis. From my observation of experts in this

field, it appears that a standard approach to this problem is to select one process and look for

evidence both for and against that process. If it is possible to gather enough evidence in favor of

a process and not possible to gather a similar or greater amount of evidence against the

process, then it is considered a good candidate for explaining the data. 

Any system that automates this reasoning must gracefully handle all of these problems. It will

need to cope with imprecise, noisy, and incorrect data. Since mathematical models are

generally incomplete or nonexistent, it must be capable of reasoning with heuristics applied to

small amounts of data. Given the nature of the existing heuristics, an automated system will

have to deal with uncertain heuristics that may contradict each other or support several different

conclusions. This is a significant artificial intelligence challenge: most AI architectures are

poorly suited to handling contradiction and uncertainty in their knowledge base4.

In addition to these technical issues, experts are unlikely to agree with any conclusions made

by Calvin unless they understand the reasoning behind those conclusions. Thus it is also critical

to the usefulness of Calvin that it be capable of convincingly presenting the reasons for its

conclusions. This capability will provide the additional benefit that students of geology can

examine the reasoning and heuristics that are used in selecting a process. Although presenting

a system’s reasoning in a useful, human-readable form is not a new task for AI, this requirement

does limit the types of reasoning appropriate to use in addressing the problem.

Although a perfect system would also be able to perform the leaps of insight involved in

arriving at completely new explanations, this feature is a tall order for automatic reasoning and

not a goal for Calvin. However, most of these leaps of insight involve the recognition of

particular patterns in the data, and it is my intention for Calvin to assist in the recognition of

these patterns. For example, the insight in (Zreda, Phillips, and Elmore 1994) required

recognizing that a group of samples that did not fit the expected distribution were all taken from

4.Machine learning and other statistical systems might allow me to bypass these problems, but are 
unsuitable for other reasons: see Section 4.



boulders less than a particular size. Calvin may be able to find patterns like this, e.g. by using

clustering techniques to identify what might be unusual about a problematic group of samples.

4. Rejected Approaches

4.1. Machine Learning

Although machine learning would allow me to solve the problems of building an automated

system for cosmogenic isotope dating analysis quickly and without having to work so hard,

machine learning requires training data. Lots of data. As discussed in Section 3, cosmogenic

isotope dating is a comparatively new field and relatively little analysis data is available for

learning. Generation of new data in this field is also comparatively slow. For example, during his

more than twenty-year career in this field, Marek Zreda has dated only around a hundred

landforms. Because of the scarcity of data, a knowledge-based system is a much better idea

(Gaines 1989).

The other important reason not to apply machine learning to cosmogenic isotope dating is that

few machine learning architectures are designed to present the reasoning behind their results

to the user. Instead, they simply present an answer based on internal black magic. My

experience with experts in this field indicates that no system for automating the analysis

process will be acceptable unless experts can look under the hood and understand why the

system has arrived at some particular conclusion. Therefore it seems clear that machine

learning is not an acceptable architecture for Calvin.

4.2. Fully Symbolic Logics

Given that Calvin should be implemented using some sort of knowledge-based architecture, I

considered a strictly symbolic system, such as first-order logic. Unfortunately, fully symbolic

logics are notoriously bad at handling contradictions and partial support. Contradiction is

especially troublesome, since in first-order logic any conclusion may be proven if there is a

contradiction in the set of premises (rules). Some architectures do attempt to handle these

weaknesses, but they are unfortunately insufficient for the purposes of the Calvin system. The

symbolic architectures I have considered and rejected for Calvin include simple kinds of

defeasible reasoning, truth maintenance systems (TMSs), and causal reasoning (e.g.,

counterfactuals).



Defeasible reasoning is a symbolic logic based on the premise that contradiction does not

imply any fact about the world to be true. Instead, when a defeasible reasoning system proves a

contradiction, it returns to the contradictory proofs. The weaker of the two proofs is defeated,

and the system removes that proof from its knowledge about the world. Most systems of

defeasible reasoning use systems of absolute proof and absolute defeat (Lucas 1997).

However, the experts I am working with appear to reason using a system of partial support and

defeat: one example of this is that they tend to demand less evidence for a conclusion that a

moraine is eroding than they need to conclude that a lava flow is eroding. It is simple and

intuitive, in view of this, to model moraines as partially supporting erosion and lava flows as

partially defeating it.

A TMS uses a set of assumptions about what properties of the world are in force or not in force

to handle contradiction. When the system arrives at some contradiction, it examines the

assumptions that led to the proofs on both sides of the contradiction, alters the assumption set,

and tries again. Some TMS architectures are able to model partial support and defeat in a

probabilistic way (Forbus and De Kleer 1993). To use this architecture for Calvin, the TMS

would need to contain one assumption for every possible rule in the system. The system would

then determine all the subsets of rules that do not result in a contradiction, and the correct

conclusion would be the one with the largest number of possible worlds supporting it (or

possibly the largest probability sum over the possible worlds). Although this architecture might

work, it seems convoluted and unintuitive. Furthermore, it does not appear to be an accurate

model of how experts think: like most people, they appear to reason in terms of better or worse

evidence for some conclusion, rather than according to sets of possible worlds. Presenting the

reasoning of such an architecture in a comprehensible way also appears to be a significant

challenge, since the system would somehow have to explain the reasoning about all the many

possible worlds in a coherent and manageable way.

A final symbolic tactic to consider is an architecture focused around causal reasoning. This

approach would still need to handle issues of partial support, but the amount of explicit

contradiction might be less. The specific method of causal reasoning I considered is

counterfactuals, which convert the causal assertion “A caused B” to the statement “if it were not

for A, then B would not be so” (Pearl 1999). Since it is my goal to not only “solve” the problem of

isotope dating, but to do so in a way that accurately models expert reasoning, this model is

inappropriate. Experts approach their task from a diagnostic perspective, reasoning backwards

from sample data rather than forwards from geological processes. Furthermore, a causal



architecture suffers even more from the incomplete understanding of various processes: it is

difficult to state the result of, e.g., cover by vegetation, since experts have no definitive model of

how it works.

4.3. Bayesian Networks

Bayesian networks are often presented as

solutions for various problems in artificial

intelligence, particularly the problems of partial

support and contradiction (Pearl 1988). However,

Bayesian networks are aimed specifically at

problems where multiple prior and conditional

probabilities are known and defined. In the case

of cosmogenic isotope dating, I do not know these

various probabilities. Rather, I have general

heuristics and vague knowledge about weights. In

fact, it seems unreasonable to represent certain expert tendencies as probabilities. For

instance, some explanations of data lead to a choice of a single sample, youngest or oldest, as

representative of the correct age of the landform (all other samples are discarded). However,

given a sample distribution like the one in Figure 5, experts are reluctant to choose an

explanation that requires them to select the youngest sample because it is so distant from the

other samples, which are near each other. Although this pseudo-statistical reasoning could be

represented probabilistically, doing so is unintuitive because the reasoning is inherently not

probabilistic. Finally, my attempt to organize the rules in the prototype version of Calvin into a

Bayesian network led to a network with several cycles and some nodes with many paths in or

out. A network representing all the knowledge of isotope dating experts would likely be difficult

to maintain and computationally complex to use. For all of these reasons, it seems that

Bayesian networks are not an appropriate solution for Calvin.

4.4. Schemas/Case-based Reasoning

One final architecture to consider for Calvin is a form of case-based reasoning (Kolodner

1993), (Cunningham, Bonzano, and Smyth 1995), and (Clark 1989). The reasoning from a

previously solved case is presented, largely intact, as applicable to the case under

consideration. Like machine learning, pure case-based reasoning requires a large number of

Figure 5: A possible set of samples from a single
landform. Using pseudo-statistical reasoning, experts
prefer not to choose the left most sample as the age of
the landform, because the other two are so distant
from it and close to each other.



fully-analyzed cases so that any new case presented to the system resembles some previous

case closely enough to draw conclusions based on known cases. Modifications to case-based

reasoning exist that attempt to allow its use in situations where an insufficient number of

previous cases exist (Surma and Vanhoof 1995), (Turner 1992). 

(Turner 1992) uses abstracted cases called schemas to perform diagnosis. In his system, a

number of default or prototypical cases are defined that cover any normal problems that the

system is likely to encounter. When a symptom is unique to a particular type of disease, the

system considers diagnosing that disease. If the symptoms expected for that disease are

observed, then it is considered a correct diagnosis. Abnormalities are defined by hand, usually

by writing exceptions to the expected symptoms. His system’s results can be presented to the

user as the text written by experts who analyzed the original schemas, along with any

exceptions used by the system for that case.

Although a schema-based system would solve many of the problems important to Calvin, I do

not feel it is an adequate solution. In particular, the analyses shown to me by experts include so

many exceptions to any “normal” case that it seems impossible to define what cases might be

normal in this field. Since every new problem is likely to contain multiple exceptions to any

schemas I could define, most of the knowledge used by the system would be in individual,

hand-written exceptions. I feel it makes more sense to instead use an architecture that involves

only individual rules, removing the need to identify “normal” situations in addition to the

individualistic exceptions.

5. Intuitive Solution: Argumentation

Argumentation is a good solution to the challenges of automating cosmogenic isotope dating.

Argumentation systems are symbolic, so I need experts (which I have) instead of data (which I

don’t have) to write a complete system. Because it uses symbolic logic, an argumentation

system can present the reasoning behind its conclusions in a clear and comprehensible way.

Reasoning in an argumentation system can use weights, allowing the system to elegantly

represent partial support. In addition, argumentation systems are explicitly designed around the

idea of contradiction, so contradictory solutions do not present them with any challenge

(Krause, Ambler, Elvang-Gøransson, and Fox 1995) (Doyle 1983). Unlike in a Bayesian

system, the weight associated with any particular piece of evidence is not understood as a

probability, so there is no need to extract probabilities from vague heuristics. Argumentation



does not require me to define what is “normal” and what is “exceptional” in any particular case,

only what pieces of evidence are more compelling, so it does not have the failings of a schema-

based system. Finally, the structure and reasoning of an argumentation system appears to

closely match the reasoning of experts in the field, making it an intuitive and easily understood

architecture for the problem at hand.

Several different logical systems have been labelled “argumentation logics” by various

authors, for instance (Dung 1995), (Farley 1997), (Prakken 1996), and (Vreeswijk 1991 and

1993). These systems are discussed in Section 6.2. In general, the term is applied to a symbolic

logic built explicitly around the idea of contradiction among rules and/or evidence. All

argumentation systems contain the notion of an argument, akin to a proof in first-order logic,

along with some mechanism for defeat among arguments. Argumentation systems may also

contain mechanisms for defeating rules and input data. Most argumentation systems deal in

absolute support and defeat: if an argument exists for a conclusion the conclusion is believed,

until the argument is defeated. Typically, if an argument is defeated, it is defeated absolutely,

but some architectures do contain mechanisms for both partial support and partial defeat.

Defeat in argumentation systems typically comes in two flavors: undercutting and rebuttal.

Undercutting refers to the case in which the premises one argument is based on are attacked

(contradicted) by another argument. Rebuttal is the direct attack of one argument on the

conclusions of another.

The argumentation framework used by Calvin is based on the Logic of Argumentation (LA)

introduced by Krause et al. (Krause, Ambler, Elvang-Gøransson, and Fox 1995), which defines

an argumentation logic that allows for both partial support of conclusions and partial defeat of

arguments. Rules and input data are not explicitly defeasible in this system. It is implemented

as a labelled logic: rules and data are labelled with a confidence level that is used to determine

which of two arguments is stronger. It is important to note that these confidence levels need not

be continuous or numeric—Krause et al. use the set {certain, confirmed, probable, plausible,

supported, open}, with optional negative terms such as opposed or doubted as an example set

of confidence values. In this case, the confidence in an argument is related to whether it is

internally consistent and whether undercutting or rebutting arguments for it also exist. As

arguments are built from rules and input data, confidences propagate to their conclusions using

some system of combination. The labelled logic allows the definition of an appropriate set of

confidence values and combinations for each individual application. Conclusions in the system

are labelled with the arguments for and against them, so that as new information is discovered,



the arguments about a conclusion can be examined and possibly defeated, possibly leading to

an overall defeat of the conclusion they supported. 

LA uses a version of first order logic allowing only the And and Implication operators (Or and

Not are not used). Calvin uses this same extremely simple logical system, so all rules are

expressed as a conjunction of literals implying some conclusion. When Calvin generates

conclusions, it labels them with the rules and input data used to create them. I have also

implemented a Not operator for Calvin by using negative confidence values. In contrast to LA,

however, Calvin does not currently use an explicit notion of confidence for rules, only

constructed arguments and conclusions have actual confidence values. Rules contain

information about how to translate confidence in their premises into confidence in their

conclusions rather than a direct confidence value. Finally, Krause et al. do not give a

mechanism for combining confidence in several arguments into overall confidence in a

conclusion that is well suited to the problem solved by Calvin.

A good metaphor for the way the prototype version of Calvin treats arguments for and against

conclusions under consideration is the idea of grains of sand on a scale. Every argument for or

against a particular conclusion, no matter how weak, adds some weight to its side of the scale.

A large enough number of very weak arguments can overpower and defeat a smaller number of

stronger arguments. Intuitively, an argument is stronger if experts will find it more believable. I

have chosen this metric over some more objective measure such as truth or likelihood because

the field of isotope dating is so new; few absolute truths exist, and it makes more sense to rely

on expert judgement. This means that arguments formed from rules and input data with higher

confidence values should be stronger than data and rules in which the system has less

confidence. In a break from the scale metaphor, the strengths of arguments added to one side

are not precisely additive. Instead, Calvin uses a system of diminishing returns so that every

additional argument of the same independent strength adds less absolute weight to its side of

the conclusion. The idea here is that every additional argument for or against a conclusion adds

its confidence to the confidence “unclaimed” by other arguments. Given two arguments for the

same conclusion of strength 0.4, the total confidence in the conclusion is 0.4 + 0.4 * (1 - 0.4) =

0.64. Thus two arguments of strength 0.4 are not as strong as one argument of strength 0.7,

although three 0.4 arguments would be stronger than one 0.7 argument. The goal here is to

allow weaker arguments to eventually overpower stronger ones while being mindful of the fact

that stronger arguments are stronger for a reason. (It should take a great deal of minor

nitpicking around the edges to overcome one very strong argument!) 



Calvin currently uses a confidence set of continuous values in the range [-1, 1]. Rather than

using explicit negation of conclusions, negative values imply confidence in the negation of the

conclusion to which they refer. Thus a confidence value of -1 implies absolute confidence

(certainty) in the negation of some literal, and a confidence value of 1 indicates absolute

confidence in the literal to which it is attached. A confidence value of 0 means that the system

has no knowledge whatsoever about some literal, and thus has no opinion either way. It is not

my intention to present these numeric confidence values to the user in the final form of Calvin

lest they be interpreted as probabilities (or otherwise independently significant numbers). In

addition, since these numbers have essentially no significance except in relation to each other,

they are somewhat difficult to enter into the system initially. There is some evidence that

precisely what numbers are chosen has little effect on system behavior (Doyle 1983). A better

method for handling confidence values and combinations is a major future milestone for this

work. It is likely that a symbolic confidence mechanism will be able to give the same results as

the current system in a less contrived way. More detail on possible solutions is discussed in

Section 9 with my plan of work.

6. Related Work

Many diagnostic systems solve problems similar to the one addressed by Calvin, in which

there is some normal, expected behavior and the causes of divergences from this behavior

must be diagnosed. In isotope dating, the expected pattern is that all samples have the same

apparent age, and the task is to diagnose what process has caused a spread in apparent ages.

The predominant paradigm in medical diagnosis is to build a complete model of a system and to

use that model to make predictions about what symptoms are expected from what diseases

(Lucas 1997), (Struss 2004), and (Santos 1991). (Santos 1991) uses a model-based approach

that can present multiple possible diagnoses generated by trying different assumption sets

within the model. A model-based methodology is not suited to my particular domain because

complete models of most geologic processes simply do not exist. In addition, model-based

systems are not as well suited to handling contradiction, especially if it occurs within the model.

It is difficult for a model to predict a set of symptoms from a disease when some symptoms are

predicted to both occur and not occur!

Diagnosis systems that handle contradiction do exist, for example (Doyle 1983) and (Gaines

1996). (Doyle 1983) uses a rule scheme with default rules and explicitly defines under what



situations the default rules do not apply. (Gaines 1996) is designed around the idea of

representing knowledge as trees instead of rules. The root node of the tree is the default

situation or diagnosis. When a parent node is true (the condition in the node is met), child nodes

are explored to see if their conditions are also met. Some nodes will then give an output, but no

output is reported to the user until all allowable paths have been explored. 

Even the diagnosis architectures that handle contradiction use “absolute” rules—it is not

possible to express the idea that some data may only partially support a conclusion, or that a

previously found conclusion may be only partially defeated. Instead, the conditions under which

a rule does not provide support are explicitly encoded in the system, and rules must be

absolutely defeated or not defeated at all. Calvin, in contrast, must have rules that partially

support conclusions in order to accurately reflect the reasoning process used by experts. For

instance, experts are more likely to accept (and require more evidence to reject) an “erosion”

conclusion for a moraine than for other landform types. Trying to model this behavior without an

ability to express partial support would be extremely difficult. On the other hand, all of these

diagnosis systems are capable of presenting their reasoning to the user to help convince

experts of initially rejected conclusions, an important feature of Calvin.

Several authors have discussed the virtues of presenting the reasoning behind a system’s

conclusions in the form of trees or graphs, including (Bouwer and Bredeweg 2002) and (Gaines

1996). (Bouwer and Bredeweg 2002) observe that a system’s complex results are much more

easily understood in a structured, visual format such as a state transition graph. (Gaines 1996)

explicitly represents the entire rule set of a system as a set of trees. The system can present

answers in terms of these trees, leading to more-comprehensible results. Other characteristics

of a system’s presentation of results are also important. (Boy and Gruber 1990) and others

discuss the importance of keeping a human “in the loop.” They argue that systems that

automate some but not all of the tasks performed by a user are more useful than systems that

attempt to automate all tasks. In addition, such systems are much more likely to enhance a

user’s learning. (Puyol-Gruart, Godo, and Sierra 1992) points out that even when a particular

conclusion cannot be reached by a reasoning system, it is likely that presenting what the

system has managed to determine will be useful to the user. Although the current output of

Calvin is text-based, it is my intention to eventually present the system’s reasoning to the user

in a tree-based format to mirror the arguments’ internal structure. My plan for the user interface

is discussed in detail in Section 9.



6.1. Various nonmonotonic logics

Several kinds of defeasible reasoning besides argumentation have been put forth by various

authors. These include circumscription (McCarthy 1980), (McCarthy 1986), default reasoning

(Reiter 1980), (Doyle 1983), and other forms of nonmonotonic reasoning (Pereira, Alferes, and

Apar’icio 1991), (Gaines 1996). While each of these is useful for many problems, none of them

solves all of the issues involved in cosmogenic isotope dating analysis. Furthermore, many

nonmonotonic logics are unsound in some way, making their use problematic (Etherington,

Kraus, and Perlis 1991).

Circumscription allows the definition of normal situations and all the cases in which they might

be circumscribed. It requires the definition of specific aspects that are abnormal only in

abnormal situations, so that it is necessary to create a large number of “aspect” variables to

express all of the possible abnormal situations. It only allows for complete defeat of any

particular rule—a rule is defeated and replaced by some other rule precisely when one of the

abnormal situations holds, and never otherwise.

Default reasoning uses rules with default conclusions and then defines specific exceptions

where they do not apply. This is similar to circumscription in that every situation in which a rule

does not apply must be defined, and in that rules are always defeated absolutely. The primary

difference between default reasoning and circumscription is that default reasoning does not

require that a rule be replaced by another when it is defeated; the rule is simply no longer

available for reasoning about the current case. The guards on Calvin rules are reminiscent of

this method of defeat, since the guards define cases when a rule is not applicable and should

be functionally removed from the database for the current problem.

The nonmonotonic logic defined in (Pereira, Alferes, and Apar’icio 1991) allows exceptions to

rules in a number of ways. Rules may be absolutely, normally, or possibly true in the rule

database. Rules that are normally true can be defined with exceptions either to the conclusion

of the rule or to the rule itself. Rules that are possibly true allow their conclusion to be drawn or

not drawn as the situation appears to dictate (generally the choice that avoids a contradiction in

reasoning is used). Although several kinds of defeat are allowed (including the defeat of

exceptions to rules), defeat is once again absolute and cases where rules do not apply are

generally explicitly defined. Possibly-true rules do not require the definition of specific

exceptional cases, but a system written with only possible rules may find it difficult to reach any

conclusions at all.



As discussed above, (Gaines 1996) uses a tree structure for rules with default conclusions at

the root and repeated refinements or rejections of the initial conclusion(s) as the tree is

descended. The resulting logic is similar to the other nonmonotonic logics discussed above:

exceptions to rules are explicitly defined and defeat is generally absolute. The primary

distinction is in the visual structure of the rules rather than a functional difference in logic.

(Pollock 1994) also uses a visual, graph-based system of logic. A reasoning graph is

composed of nodes representing literals and two kinds of directed edges. These edges capture

cases where the literal of one node is needed to conclude the literal of the other and where the

literal of one node forbids (defeats) the literal of the other. If every consistent status assignment

(defaulting to undefeated) fails to defeat a node, then that literal is accepted in the final result.

The two common themes among these various defeasible reasoning systems are a need to

explicitly define situations when rules do not apply and an absolute defeat system for rules,

conclusions, or both. Explicit definition of exceptional situations is beneficial from a purely

theoretical standpoint because it allows experts to define the situations in which they know that

a rule does not apply, rather than having to make up a number out of thin air for every situation.

However, when the knowledge base in a field is still enormously incomplete, experts are less

likely to know of all the possible exceptions, and simply picking a confidence number (or simple

symbolic value) is a more practical choice when defining rules that do not always apply.

Absolute defeat of a rule or conclusion is also problematic for Calvin. As a practical example, I

have observed that experts are unlikely to prefer an erosion conclusion on lava flows. Therefore

I believe that the fact that the landform under consideration is a lava flow is somehow evidence

against erosion. On the other hand, erosion on a lava flow is certainly possible. I need a way to

represent the fact that “landform = lava flow” is a small piece of evidence against erosion, but

does not absolutely defeat erosion as a conclusion. The logics discussed above are unsuited to

a reasoning process built around this kind of supporting and detracting evidence. 

6.2. Argumentation

There appears to be no consistent definition of the term argumentation. It may be applied to

systems that aid in human discussion (Brashers, Adkins, Meyers, and Mittleman 1995),

systems that arbitrate between agents (Parsons, Sierra, and Jennings 1998), or systems that

do automatic problem solving like Calvin. Within the field of argumentation as an automatic logic

system, an impressive variety of subtly different logics have been defined. Most of their

differences revolve around the question of when an argument should be defeated. As with the



nonmonotonic logics discussed in Section 6.1, most argumentation systems require a single

rule to absolutely defeat a rule, rather than allowing a set of rules to collectively overwhelm

another rule or conclusion. Also variable is whether argumentation is viewed from a dialectical

standpoint or as an extension of first-order logic.

(Dung 1995) takes a dialectical approach to the problem of argumentation. Arguments in his

system are defeated on the basis of which side “has the last word.” In other words, one party in

the dialog presents a premise. It is then the goal of the other party to attack that premise with

some other argument, defeating it absolutely unless the new argument can be defeated. The

original arguer then attacks the attack, and so on until one party has no available attacks. When

one chain of argument is finished, the losing side has the option to branch out from some state

further up the tree and make a second attacking argument against a previous argument by the

opponent. The side with the last standing argument is the winner, with the conclusion accepted

or defeated appropriately.

(Prakken 1996) also casts argumentation as a dialectical process involving two parties. Here it

is the case that the conclusion under consideration is by default rejected. Thus it is the goal of

the proponent party to prove the conclusion, and the goal of the opponent to prevent the

acceptance of the proponent’s arguments. The burden of proof is on the side of the proponent,

allowing the opponent to win simply by finding a single attack on the proponent’s argument that

cannot be defeated. Arguments are explicitly based on assumptions and rules. An argument

can be attacked by either via its assumption or via the rule on which it is based.

The logical argumentation system in (Vreeswijk 1991 and 1993) is based on the idea that

when arguments exist both for and against a conclusion, the strongest single argument should

win. Arguments come in two types: statistically based and generically based. Statistically based

arguments will always defeat any opposing generically based arguments. However, among a

set of generic arguments, the author argues that no reasonable system of defeat can be

defined. Rather, a set of mutually contradictory generic arguments allow a split into two equally

believable possible worlds. This situation comes about because all generic arguments are

taken to have precisely equal force. In Section 4.2 I discussed some problems with generating

sets of possible worlds; these problems are even more pronounced since the system in

(Vreeswijk 1991 and 1993) does not even give a relative ranking of the possible worlds it has

generated.

(Farley 1997) uses argumentation as a method for performing qualitative simulation in the

presence of conflicting indications. His system allows three different modes: accept all



arguments, accept the side with more arguments, and accept all defeaters. In the first mode, no

conclusion can be defeated. Every conclusion is accepted if there is any undefeated argument

for it. This mode allows a user to explore all the possibilities of a system and might guide

experimentation. In the second mode, all arguments have the same strength, and the side with

more undefeated arguments “wins.” Finally, in the third mode, a conclusion is accepted if and

only if there is an undefeated argument for it, and all arguments against it are defeated. This is

reminiscent of the requirement in law that a person must be proven guilty beyond all reasonable

doubt. Three classes of arguments are defined, with a hierarchical defeat mechanism between

them. Arguments are explicitly defeated only when they are attacked by an argument with a

higher type in the hierarchy; cases with arguments of the same strength are handled by the

system modes.

All of the above systems use some form of absolute defeat of an argument. Again, this

mechanism is unsuitable for my problem for the reasons discussed in Section 6.1. However,

Calvin does resemble several of these systems in various ways. For example, like the system

presented in (Vreeswijk 1991 and 1993), Calvin chooses to present all arguments to the user

rather than declaring an argument defeated and ignoring it. In contrast to the approach in that

paper, however, Calvin arguments are presented with some measure of how strong each

argument is, so that the user does not need to filter among a large number of arguments. The

hierarchy of rules defined in (Prakken 1996) has much the same effect as the confidence

system currently being used in Calvin, especially in rules with a scalar-type confidence

combination. Rules with larger absolute confidence values are implicitly higher in the Calvin

hierarchy, since rules with larger scalars will defeat those with smaller scalars, presuming they

are using knowledge with the same confidence values. (Prakken 1996) does not take into

account the possibility of better knowledge being used in a rule, as Calvin does. The second

acceptance mode of (Farley 1997) bears an interesting resemblance to the fact that Calvin

conclusions gain more confidence as more arguments for them are constructed. On the other

hand, (Farley 1997)’s arguments all have the same weight, whereas Calvin arguments can

have a range of weights, allowing the system to differentiate between the quality of arguments.

It should be noted that all of the papers referenced in this section simply define systems of

logical argumentation. Although some of these papers give small examples showing how their

logic can be used, few results exist for applying argumentation to large problems. Calvin will be

a large-scale, practical analysis system built using argumentation, not another floating system

of argumentation logic without an implementation.



7. System Design

7.1. The Engine

Calvin takes as input all the data the expert has collected about a set of samples. This

includes the chemical composition data from the AMS lab, the apparent ages of the samples

(which are calculated by ACE), and all the observational data from the sample site. This

includes both qualitative and quantitative data. The qualitative data includes observations such

as the type of landform where the samples were collected and the color of the sampled

boulders. Quantitative data includes information such as latitude and longitude, the elevation of

each sample, the calculated apparent sample ages, etc. Although it is not part of the current

implementation, future implementations of Calvin may also request additional data about the

sample site, such as the average annual temperature or snowfall. Some of this extra

information may be costly or difficult to obtain, so Calvin should request it only if it is likely to

improve the system’s results. Since single landforms are not necessarily dated in isolation,

input may also include information about nearby landforms.

Calvin considers a list of processes that may have affected the landform. Currently the engine

assumes that any process may affect any landform; this assumption may change as more

knowledge is added to the system. Processes that are more common (according to experts),

such as erosion and inheritance, are considered before less-common processes like snow

cover. The current Calvin engine considers processes in groups, and only goes on to the

processes in a lower group if the arguments for the higher groups are considered insufficiently

convincing, based on the confidence in each process. The top group contains the possible

conclusions “no process,” “erosion,” and “inheritance,” all of which experts tell me must always

be considered for every set of samples. The other processes the engine may argue about are

“snow cover” and “outlier,” respectively, in two separate groups. Since the current

implementation of Calvin is a prototype, this list is not yet complete. As more processes are

added, the “outlier” explanation will remain in its own group so that it is always considered last,

and only if all other explanations have failed. This is intended to prevent Calvin from overusing

the outlier process.

When a sufficiently convincing argument is built for some process, the engine does not move

on to the next group (although it will finish building arguments for the current group). Instead,

the engine presents its completed arguments to the user. Users can choose to have the system



generate more arguments if this set is deemed insufficient. This feature is predicated on the

assumption that Calvin will occasionally be wrong, and expect the user to be convinced by an

argument that is invalid in some way5. When the user requests that additional arguments be

built, the engine simply moves down the priority list from its previous halting point, and presents

the arguments for each process in the next group. The user is then given the option to finish or

continue building additional arguments.

The Calvin engine builds arguments in a top-down manner, working from the conclusion (such

as a particular process) under consideration. Rules that apply to this conclusion are found in the

rule database (just a list of rules; described in Section 7.3), and unification is applied to find the

second level of conclusions to be considered. This process continues until the information

required for unification is in the data initially input by the user. If the required data is not in the

inputs, the engine assumes that the rule or rules under consideration are not applicable in this

case. A list of these rules might later be used to request additional data from the user, although

this feature is not implemented in the prototype. Currently, Calvin builds the most complete

argument set possible from its rule database and input data for every conclusion. However, as

more knowledge is added to the system I am alert to the possibility of performance problems,

and I have features in place in the current system to allow Calvin to build less-complete

arguments, avoiding the most computationally-intensive rules unless they are needed. This

functionality is discussed in Section 7.4.

7.2. Arguments

Rules in Calvin are designed on the standard Horn clause structure of first-order logic. The

primary portion of a Calvin rule is an implication of the form A=>C, where A may be a single

literal or the conjunction of several literals. Since classical first-order logic systems are built

around a set of rules written in the form of an implication, it makes sense that their general goal

is to prove the premises of the implication true to prove the conclusion true. When they are able

to do this, the conclusion is known to be absolutely true and can never be rescinded. Calvin

works in an analogous fashion, except that it allows for the possible eventual defeat of any

conclusion. When there are arguments for the antecedents of a rule, Calvin combines them with

the rule to obtain an argument for the conclusion of the rule. However, Calvin does not believe

5.This option also supports users who are simply curious about what arguments exist for conclusions the 
system has not yet considered.



the conclusion with absolute confidence—stronger arguments against it (or against the

conclusions used to form it) may be found, and the current argument overturned.

An argument for some conclusion C is a collection of trees built from these rules. The top node

of each tree is a rule whose conclusion is C, such as the rule A=>C. The children of this node

are each a complete argument for one of the literals in A. The leaves of the argument trees are

taken directly from the data entered by the user. Each tree in the argument has a confidence,

derived from the rules and input data in the entire tree. The confidence in the overall argument

is a function of the confidences in the individual trees. As described in Section 5, “pro”

arguments are placed on one side of a balance and “con” arguments on the other to see how

convincing the overall argument is for the conclusion. When building arguments, the

backwards-chaining engine makes no distinction among confidences. Thus a rule of the form

A=>C may still be used in the arguments for C when A has a negative confidence value.

However, because of the way the rules and confidence combinations are written, this situation

will generally result in a tree that argues against C rather than for it. Many of the “con” trees in a

typical argument are created in this way.

Figure 6 shows an example collection of argument trees in Calvin which might be translated

into English as: “Erosion is a supported by the fact that moraines are likely to erode and this

landform is a moraine. However, there is no visual evidence of erosion such as a flat crest or

weathering, making erosion a less convincing conclusion.” The final system will present output

in a tree format, making the structure of the arguments readily apparent. Arguments presented

in English would be exciting, and I will implement them if time allows.

Figure 6: An example set of Calvin argument trees. At the top is the conclusion being argued about. Applied
rules are in boxes; input data is in ovals. My prototype system contains more rules than are shown regarding
erosion; these trees are a subset for illustration.



7.3. Confidence

Calvin's confidence values are 2-dimensional vectors containing a 'Match' and a 'Quality'

value. Match values express how closely the actual input data matches the proposition in a rule.

They are composed of two components, a direction and a degree. The degrees are ‘somewhat,’

‘no modifier,’ and ‘very,’ and the directions are true and false. These degrees are used to

handle noisy input values and vague knowledge. For example, consider the rule 'x > 10 => y.' It

is not necesarily clear why the value 10 is important, rather than 9.9 or 10.1; for many real-world

rules, such a threshold is only a guess. In addition, when x is noisy and its true value is close to

10, the observed value may fall on either side of the cutoff. As a result, x values near 10 result

in 'somewhat' true or false matches. The further the observed value of x is from 10, the more

extreme the match component of the system's confidence in y. In principle, Calvin could use

more match levels, but these three have so far been sufficient in practice. This mechanism

provides functionality similar to fuzzy logic.

The Quality component of a confidence value captures the fact that some rules are better than

others. That is, some rules are derived from generally accepted theories, whereas others may

be derived from an expert's experience with a single past case. Calvin uses four levels of

quality: poor, okay, good, and definite. Two quality values are assigned to each rule based on

experts' judgments of the quality of their own knowledge. One value is used if the premises in

the rule’s implication are true, and the other if they are false. In the example, the quality

dimension of the confidence in y is directly related to one of qualities of the rule

Confidence values are used in three different situations: when a chain of arguments is

constructed for a conclusion, when two arguments apply to the same conclusion, and when

comparing the confidence in different conclusions. The first situation occurs when Calvin is

considering a proposition z, and knows that x > 10 => y and y => z. Calvin determines its

confidence in y using the match value for x > 10 and the quality of the first rule. The confidence

in z is the same match value and the lower quality of the second rule or the confidence in y, so

that the argument for z is only as high-quality as the least trustworthy rule used in creating it.

Confidences are combined when multiple arguments can be built for the same conclusion. In

this case, the confidence with the single highest quality is selected as the overall confidence. If

multiple confidences have the same quality and the same match direction, the one with the

most extreme match is chosen as the overall confidence. The most complicated case is when

arguments with the same quality and opposite match directions exist. In this case, Calvin takes



a vote among arguments of the highest quality to determine its confidence in the conclusion.

When the vote is a tie, arguments at the next lowest quality level are considered. An overall tie

is considered slight evidence against the conclusion (because there is apparently no convincing

evidence for it). Otherwise, the final confidence has a match value based on the margin of

victory and quality level where the voting ended.

Finally, confidence levels are compared to present a final conclusion to the user. Higher-

quality conclusions are considered better, with better matches breaking ties.

7.4. Rules

In addition to the implication that is the main part of the rule, a Calvin rule contains guards to

keep it from being used when it is inappropriate, as well as instructions for how to combine the

confidences in its antecedents when building an argument using the rule. Many rules contain

elements that act as internal variables to pass data to the next conclusion or among the

conclusions of the rule. These internal variables may hold temporary values, such as a mean

sample age, or they may be parameters to the conclusion of the rule, for example a variable

that identifies which sample is a possible outlier in a rule whose conclusion deals with an outlier.

The guards on Calvin rules prevent the system from building arguments using rules that are

not applicable to the current case. An example of where this feature is needed is in the case of

snow cover. Calvin has a rule that snow cover is more likely if calculated sample ages are

younger at higher elevations. This is based on the knowledge that snow cover blocks cosmic

rays and more snow falls at higher elevations. Obviously the rule only makes sense for sample

sets with elevation ranges that are large enough to have different levels of snow cover at the

opposite ends of the range. The guard on the rule enforces that this precondition always holds

when the rule is used.

7.5. Evidence

The data Calvin uses to draw its conclusions is referred to as evidence. The antecedents in a

rule’s implication are patterns, or templates, for evidence—they indicate what evidence will be

needed to satisfy the rule. These patterns tell the backwards-chaining engine where to look for

information that will allow it to use the rule (whether to build an argument or look in the input

data, for example). The actual data found by the engine is the evidence. The system has four

different kinds of evidence (and therefore four types of patterns for evidence): observations,

simple calculations, complex calculations, and arguments. The distinction between these types



of evidence is inspired by the PRET (Stolle and Bradley 1996) system. The separation allows

less computationally intensive rules to be considered first.

7.5.1. Observations: Observations are direct uses of data that was entered by the user.

Usually an observation is some binary quantity—for example, whether a sample has an

apparent age less than a certain value, or whether the landform type is a moraine. Because the

user’s quantitative observations are generally assumed to be noisy, the system has more

confidence in a given observation when the values in the relation are farther apart. This makes

sense: when a noisy observation is quite close to some cutoff value, it is more likely that the

actual relation to the cutoff is reversed (the noise has moved the observation across the cutoff).

More concretely, for an antecedent like “elevation < 10000 ft.,” the system will be much more

confident that the condition has been met with an elevation value of 7000 ft. than a value of

9999 ft. Observations may also take the form of a quantifier such as for-all or there-exists.

These are handled by selecting the highest (for there-exists) or lowest (for for-all) individual

confidence value among the quantified entities. I am still considering how to handle the potential

untrustworthiness of qualitative evidence, so Calvin currently has absolute confidence in

qualitative considerations.

7.5.2. Simple Calculations: Simple calculations are generally calculations of simple statistical

properties of entered data. They are used solely for the purpose of generating the calculation’s

results and all simple calculations have a confidence value of 1. A simple calculation might find

the mean of all apparent sample ages and assign it to a variable that can be used in another

part of the rule. This other part of the rule could then perform some other check using this data,

such as ascertaining whether all apparent sample ages fall within a certain distance of this

mean. Because all simple calculations have the same confidence value, their confidences are

ignored in determining the confidence of the overall argument using the rule. The purpose of the

confidence value is to make all types of evidence behave in a similar manner.

7.5.3. Simulations: More complex calculations are called “simulations” because many of the

complex calculations used by experts involve simulating a possible situation to see how closely

it matches the current data. The most common type of complex calculation implements a

simulation of this variety. Other types of complex calculations in Calvin include checking for

correlations between two fields and analyzing the similarity between two different samples’

chemistries. 



Unlike simple calculations, simulations have varying confidence values based on their results.

For example, when checking for a trend between elevation and age, the confidence of the

simulation will be higher when the trend is stronger. Some simulations may also provide a

return value for use by other parts of the rule. For instance, a simulation that determines the

annual amount of erosion most likely to produce the actual sample distribution would return the

calculated erosion level so that the feasibility of that erosion level could be checked.

Simulations are implemented as procedures called by the engine as it examines the rules,

allowing them to be as complex as necessary. As an example of this complexity, one simulation

examining inheritance removes older samples from the input data and then calls the engine to

build arguments about this changed input data. When only a few of the oldest samples need to

be removed for the engine to build a good argument for “no process,” inheritance affecting only

a few samples is a likely conclusion. One drawback of this mechanism is that, although Calvin is

designed to allow the easy addition of new rules as new methods are found for reasoning about

isotope dating, adding new simulations will require actually writing the code that performs the

simulation.

7.5.4. Arguments: Sometimes the antecedents of a rule cannot be directly gleaned from the

input data. In this case it is necessary to build a sub-argument for an antecedent and to use the

sub-argument as evidence. For example, snow cover is much less likely in areas that are not

cold. Calvin can build a sub-argument for whether the sampling area is cold as part of an overall

argument about snow cover. As with the top-level argument about snow cover, the argument

about whether the sample site is cold is currently built to be as complete as possible. Once

again, this may change as more knowledge is added and performance becomes an issue.

8. Calvin in Action

The prototype version of Calvin incorporates only a small subset of the existing body of expert

knowledge in isotope dating. Specifically, it contains rules that reason with sample ages, error

quantities, location, boulder size, and elevation. Experts record and reason with many more

observations about samples, including their precise chemistry, angle of the sampled surface,

where exactly from the surface the sample was taken, shielding from other landforms, and

exact sample dimensions. Sample chemistry seems to be especially useful in some cases for

determining what process has affected a given landform. In addition to information about

specific samples, experts record (and Calvin takes as input) general information about the



landform being sampled, such as the landform type, its location in relation to other landforms,

and whether it shows visual signs of erosion (e.g., a flat moraine crest). It is my aim to

incorporate as many of these expert observations and reasoning tools as possible into Calvin.

Because it does not yet contain rules for much of the data experts have about samples, the

prototype version of the system is only able to reason about comparatively simplistic cases.

Most of the system’s current rules deal with the distribution of sample ages, size of errors, and

trends relating these properties to other observations. This is not an unreasonable first step,

since experts usually present this information first and argue primarily about these properties

when demonstrating to me what process has affected a given landform. Test cases handling

only these observations are nonetheless quite simplistic compared to real-world cases, which

have more and richer data to guide reasoning and conclusions. The general reasoning methods

of experts appear to be the same regardless of the level of detail they are presented with about

a dataset. The same should be true of the Calvin architecture.

As a baseline, I constructed several simple test cases to be ideal versions of the ages and

errors expected in datasets affected by a specific process. For each test case I selected a

process and designed a sample distribution that closely matched examples I had seen of the

results of that process. I then added additional information that had sometimes surfaced when

discussing real-world cases with experts, such as visual indications of erosion or distant sample

locations. These test cases address some of the challenges of real-world problems in the field

(small number of samples, unimportant data included) while ignoring others (little noise, support

for correct process is strong). 

To verify my constructed test cases, I presented them as a visual plot of the sample age

distribution to one of the experts I am working with, Chris Zweck, and asked him to identify what

process seemed most likely, based on the small amount of data available. In each case he

identified the process I had constructed the test case around, despite the small amount of

information available. Unsurprisingly, his reasoning was fairly simplistic since the test cases

themselves are fairly simplistic. Chris reached the same conclusion about the process affecting

the sample set when presented with the additional information in the test case (rather than only

the sample age distribution), but he seemed more confident in his conclusions when he could

also use the extra information. This information is intended to argue against other processes

and/or provide added support for the “correct” process. A plot of each of the four test cases,

along with the represented process, is shown in Figure 7.



Sections 8.1 and 8.2 contain the details of test cases two and four, the idealized examples of

an outlier and erosion. For test case number two, Chris felt that the only reasonable explanation

is an outlier. No other explanation accounts for the single sample much younger than the other

three. This conclusion is supported by the fact that the outlier sample has a much larger error,

noticeably different chemistry, was not embedded in the soil matrix of the moraine, and was

physically far away from the other samples. Interestingly Chris’s first statement about the

process involved for this case was “two landforms,” not only identifying one sample as an outlier

but providing a theory that the outlier came from a different landform originally. For test case

four, Chris was extremely confident that the correct process was erosion because of the linear

sample distribution. The fact that the samples are from a moraine with a flat crest and fairly old

provides good supporting evidence. When asked why inheritance was not a correct choice, he

stated that there was no strong evidence for inheritance, although there is also no strong

evidence against it. I then ran Calvin on the same data. The system’s inputs and outputs for

these two cases are presented below, along with a translation of the output and a discussion of

how the system produces this reasoning.

Figure 7: The four test cases used to validate the Calvin prototype. Each is labeled with the process represented
by the samples. The system outputs the correct process for each of these cases.



8.1. Test Case 2 (Outlier)

Input:

Landform Type: Moraine

Output:

Calvin’s full output can be found in Appendix B. Calvin produces its output by printing simple

representations of the rules contained in all the arguments it has produced. This output tends to

closely resemble the source code, with some variable names replaced by values. This output is

extremely difficult to read (and requires an examination of the code to fully understand); I will

give a detailed text description of the output instead. I am currently working on a user interface

that will contain output readable by ordinary users.

An outlier, the correct answer for this

sample set, is a “low-priority” process

(examined last by the engine), so Calvin

produces arguments for all the processes

currently implemented in its knowledge

base. The engine always begins by

examining “no process,” erosion, and

inheritance. “No process” is simple: this

conclusion applies iff all samples are close to

the mean sample age (where close is

defined by the mean sample error). The next

rule used takes the mean sample age and

mean error and determines if all samples fall

within the range determined by these two values. These rules are shown in Figure 8. Since the

answer is no, this is a good argument against “no process.” Calvin’s confidence in this

Sample Age Error Chemistry Location Boulder 
Size In Matrix? Elevation

0 105000 5000 A A 5 yes 3000

1 110000 4000 A A 10 yes 3000

2 109000 7000 A A 3 yes 3000

3 50000 15000 B B 7 no 3000

Figure 8: Rules in the prototype version of Calvin
expressing knowledge that “No process” applies iff all
sample ages line up and that sample ages line up when all
sample ages are within the mean error of the mean age.

(
none
((argument

ages-line-up))
(scalar .95)

)

(
ages-line-up
((calculation

mean := calculate-mean age)
 (calculation

std-dev := calculate-mean error)
 (argument

all-within-range mean std-dev age))
 (selector 3 1)
)



argument is about -0.25; this is a case where the negative confidence in an argument should be

much stronger.

Next Calvin considers erosion. Two rules in the database provide some evidence for erosion:

the landform is relatively old and it is a moraine (see Figure 9). However, neither of these

observations is especially strong evidence for erosion. On the other hand, several rules in the

database allow the system to build stronger evidence against erosion. Specifically, the sample

ages for this landform cannot be evenly spaced along a straight line and the moraine does not

show visual signs of erosion (viz., it does not have a flat crest). Erosion is not strongly ruled out,

however; this is a case where the ultimate version of Calvin might advise taking more samples

to provide stronger evidence against a linear trend in ages.

The last process that Calvin must always consider is inheritance. Once again there is some

support for this conclusion: inheritance is also somewhat more likely on a moraine, and the

difference between the youngest and oldest samples does not exceed a theoretical maximum

amount of inheritance (Lal 1991). On the other hand, if inheritance is affecting only a few

samples, then it ought to be possible to remove these older samples and arrive at a “no

process” conclusion on the modified dataset by simply building an argument for no process

using the modified sample set. The system finds that this is not possible to do without removing

most of the samples in the input set.

Since it has not yet found a convincing argument for some process, Calvin now considers the

possibility that snow has caused the sample distribution. However, the system finds no

evidence for snow and some evidence against it. In the case of snow falling on a moraine, it is

expected that smaller boulders will have younger initial ages because their tops will be covered

by snow for more of the year. The sample set does not follow this trend, so snow is determined

to be an unlikely explanation.

Finally, Calvin considers each sample in turn as a possible outlier. The only evidence that the

first sample might be an outlier is the fact that its error is significantly different from the average

Figure 9: Rules providing evidence that the landform in Test Case 2 may have eroded because it is
relatively old and because it is a moraine.

(
erosion
((calculation

max-age := calculate-max age))
 (observation 

max-age > 50000)
(selector 2 .3)

)

(
erosion 
((observation 

landform-type = moraine))
(asymmetric-scalar (.2 . 0))

)



error of all the samples (this is because there are so few samples, and is not very compelling

evidence). In contrast, this sample appears to have come from the same origin as most of the

other samples in the set, because it is embedded in the soil matrix of the moraine and has the

same general chemistry. Finally, removing only this sample does not allow the system to make

a good argument for “no process,” so it is highly unlikely to be an outlier. The arguments

considering the next two samples as possible outliers are extremely similar.

When Calvin considers the final sample as a possible outlier it finds quite a bit of evidence in

support of this conclusion. Not only is the error for sample 3 significantly different from the other

samples, it also has a different chemistry and is not embedded in the soil matrix of the moraine,

making it quite likely to have come from a different source after the initial formation of the

moraine. Finally, removing this sample from the set allows the system to argue successfully for

“no process,” a powerful argument that this sample is a lone outlier. Thus the system concludes

that the most convincing process is that sample 3 is an outlier, probably having come from a

different landform after the initial formation of the moraine.

8.2. Test Case 4 (Erosion)

Input:

Landform Type: Moraine

Flat Crest

Output:

The full output for this test case can be found in Appendix C. As before, the Calvin engine

considers the “no process” explanation first. Using the same procedure from test case 2, this

conclusion is ruled out because the samples are distributed over a wider range than the

average sample error. Erosion is considered next. In this test case there is significant evidence

for erosion and no evidence against it. Rules in the system capture the fact that a linear pattern

in the sample ages and a relatively old landform are good evidence for erosion. Also helpful is

Sample Age (yrs) Error (yrs) Chemistry Elevation
0 95000 5000 A 4000

1 100000 6000 A 4000

2 105000 4000 A 4000

3 110000 4500 A 4000

4 115000 5500 A 4000



the fact that this landform is a moraine. The system has also built a sub-argument that states

that experts found visual signs of erosion while collecting samples, in this case that the crest of

the moraine was flattened.

Although it has a strong argument for erosion, Calvin must still consider the evidence for and

against inheritance. The fact that this landform is a moraine and that the inheritance amount is

less than the theoretical maximum make inheritance a possibility. However, inheritance is

unlikely since Calvin cannot remove only a small number of the oldest samples and then argue

successfully for “no process.” Therefore erosion is by far the most reasonable conclusion for

this sample set. Because the system can build an argument for erosion with a confidence

higher than 0.5 (a value I have defined arbitrarily because it will not be needed once

confidences are symbolic), it does not need to examine any further conclusions in this case.

One important weakness in both test cases is that the negative confidences are often too high

(too small an absolute value). That is, even when experts would strongly reject some

conclusion, Calvin may only weakly reject it. It is my belief that a well organized, symbolic

system of confidence levels will ameliorate this problem.

9. Conclusion

Calvin is an argumentation system that will automate parts of the reasoning process of experts

in cosmogenic isotope dating in an elegant and intuitive way. This is a challenging problem that

has never before been addressed by a reasoning system of any kind. Although there is still

much work to be done, the prototype version of the system is able to produce promising results. 

The reasoning methods used by experts in isotope dating are informal and quixotic. They are

generally heuristic-based and involve both contradictory data and contradictory knowledge.

Furthermore, many of the heuristics used by experts seem to express tendencies and

preferences rather than definite facts about the world. This type of reasoning is not especially

difficult for human beings (though any given problem instance may be quite challenging), but it

is extremely difficult for an automated system. Argumentation provides a flexible framework for

accurately reproducing this type of reasoning. It is able to model uncertain heuristics and

contradictory knowledge in a graceful way that closely mirrors the reasoning process that

experts appear to use (and Calvin will be much more graceful once the confidence system is

fixed).



There is still significant work to do to finish this thesis. As discussed in Sections 7 and 9, the

system of confidence in use in the prototype system has significant weaknesses and should

probably be completely replaced. This overhaul is probably the most difficult piece of work

remaining, but I am making progress and have some ideas for a final confidence system. Also,

more knowledge needs to be added to the system to completely capture experts’ reasoning,

and other improvements are needed before Calvin is finished.

The final version of the system will be useful to experts in isotope dating because it will reduce

the effort they need to spend on redundant and boring work. Students of geology will be able to

make use of the final version of the system to better understand how to reason about problems

in isotope dating, especially by observing the reasoning process used by Calvin. The final

system will demonstrate that the style of reasoning used by experts, difficult to model in a

traditional AI framework, can be cleanly and clearly encapsulated in an argumentation system

in a form that closely mirrors experts’ internal knowledge representations.

10. References

Anderson, K., Bradley, L., Zreda, M., Rassbach, L., Zweck, C., and Sheehan, E. 2007. ACE: 
Age Calculation Engine—A Design Environment for Cosmogenic Dating Techniques 
(Forthcoming). In Proceedings of the First International Conference on Advanced Engineering 
Computing and Applications in Sciences. Tahiti. 

Bouwer, A. and Bredeweg, B. 2002. Aggregation of Qualitative Simulations for Explanation. In 
Proceedings of the Sixteenth International Workshop on Qualitative Reasoning. Barcelona.

Boy G. and Gruber, T.R. 1990. Intelligent Assistant Systems: Support for Integrated Human-
Machine Systems. In Proceedings of 1990 AAAI Spring Symposium on Knowledge Based 
Human-Computer Communication. Stanford University.

Bradwell, T. 2001. A New Lichenometric Dating Curve For Southeast Iceland. Geografiska 
Annaler: Series A, Physical Geography 83(3): 91-101.

Brashers, D., Adkins, M., Meyers, R., Mittleman, D. 1995. The Facilitation of Argumentation in 
Computer Mediated Group Decision-Making Interactions. In Proceedings of the Third ISSA 
Conference on Argumentation.

Cem Say, A.C. 1999. Using Inter-Behavior Contradictions for Modeling and Diagnosis. In 
Proceedings of the Thirteenth International Workshop on Qualitative Reasoning. Loch Awe, 
Scotland.

Clark, P.E. 1989. Exemplar-Based Reasoning in Geological Prospect Appraisal, Technical 
Report, 89-034, Turing Institute, University of Stratchclyde.



CRONUS 2007. Information about the CRONUS Earth project is available at: http://
www.physics.purdue.edu/cronus/index.shtml

Cunningham, P., Bonzano, A., and Smyth, B. 1995. An Incremental Case Retrieval Mechanism 
for Diagnosis. Technical Report TCD-CS-95-01, Department of Computer Science, Trinity 
College.

Desilets, D. and Zreda, M. 2006. Elevation Dependence of Cosmogenic 36Cl Production in 
Hawaiian Lava Flows. Earth and Planetary Science Letters 246: 277-287.

Doyle, J. 1983. Methodological Simplicity in Expert System Construction: The Case of 
Judgments and Reasoned Assumptions. AI Magazine 4(2): 39-43.

Dung, P.M. 1995. On the Acceptability of Arguments and its Fundamental Role in 
Nonmonotonic Reasoning, Logic Programming, and N-Person Games. Artificial Intelligence 
77(2): 321-357.

Etherington, D., Kraus, S., and Perlis, D. 1991. Nonmonotonicity and the Scope of Reasoning. 
Artificial Intelligence 52(3): 221-261. 

Farley, A.M. 1997. Qualitative Argumentation. In Proceedings of the Eleventh International 
Workshop on Qualitative Reasoning. Cortona, Italy.

Forbus, K.D. and De Kleer, J. 1993. Building Problem Solvers. MIT Press.

Gaines, B.R. 1989. An Ounce of Knowledge is Worth a Ton of Data: Quantitative Studies of the 
Trade-off Between Expertise and Data Based on Statistically Well-Founded Empirical Induction. 
In Proceedings of the Sixth International Workshop on Machine Learning,156-159.

Gaines, B.R. 1996. Transforming Rules and Trees into Comprehensible Knowledge Structures. 
In Advances in Knowledge Discovery and Data Mining, 205-226. Cambridge, MA: MIT Press.

Gosse, J. C. and Phillips, F. M. 2001. Terrestrial Cosmogenic Nuclides: Theory and Application. 
Quaternary Science Reviews 20(14): 1475-1560.

Kolodner, J. 1993. Case-Based Reasoning. Morgan Kaufmann.

Krause, P., Ambler, S., Elvang-Gøransson, M., and Fox, J. 1995. A Logic of Argumentation for 
Reasoning Under Uncertainty. Computational Intelligence 11: 113-131.

Lal, D. 1958. Investigation of Nuclear Interactions Produced by Cosmic Rays. Ph.D. diss., 
University of Bombay.

Lal, D. 1991. Cosmic Ray Labeling of Erosion Surfaces: In Situ Nuclide Production Rates and 
Erosion Models. Earth and Planetary Science Letters 104: 424-439.

Lucas, P.J.F. 1997. Symbolic Diagnosis and its Formalisation. The Knowledge Engineering 
Review 12(2): 109-146.

McCarthy, J. 1980. Circumscription—a Form of Non-Monotonic Reasoning. Artificial 
Intelligence 13(1,2): 27-39, 171-172.



McCarthy, J. 1986. Applications of Circumscription to Formalizing Common Sense Knowledge. 
Artificial Intelligence 26(3): 89-116.

McIlraith, S. and Reiter, R. 1992. On Tests for Hypothetical Reasoning. In Readings in Model-
Based Diagnosis, 89-96. San Mateo, CA: Morgan Kaufman.

Parsons, S., Sierra, C., and Jennings, N. 1998. Multi-context Argumentative Agents. In 
Proceedings of the Fourth International Symposium on Logical Formalizations of 
Commonsense Reasoning. London.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. 
Morgan Kaufmann.

Pearl J. 1999. Reasoning with Cause and Effect. In Proceedings of the Sixteenth International 
Joint Conference in Artificial Intelligence, 1437-1449. Stockholm, Sweden.

Pereira, L.M., Alferes, J.J., and Apar'icio, J.N. 1991. Nonmonotonic Reasoning with Well 
Founded Semantics. In Proceedings of the Eighth International Logic Programming 
Conference, 475-489. Paris: MIT Press.

Pollock, J.L., 1994. Justification and Defeat. Artificial Intelligence 67(2): 377-407.

Prakken, H. 1996. Dialectical Proof Theory for Defeasible Argumentation with Defeasible 
Priorities. In Proceedings of the Biannual International Conference on Formal and Applied 
Practical Reasoning Workshop, 202-215. Bonn.

Puyol-Gruart, J., Godo, L., and Sierra, C. 1992. A Specialization Calculus to Improve Expert 
Systems Communication. In Proceedings of the European Conference on Artificial Intelligence, 
144-148.

Reiter, R. 1980. A Logic for Default Reasoning. Artificial Intelligence 13: 81-132.

Santos, E. 1991. On the Generation of Alternative Explanations with Implications for Belief 
Revision. In Proceedings of the Seventh Conference on Uncertainty in Artificial Intelligence, 
339-347. San Mateo, CA: Morgan Kaufmann.

Shanahan, T.M. and Zreda, M. 2000. Chronology of Quaternary Glaciations on Mount Kenya 
and Kilimanjaro. Earth and Planetary Science Letters 177: 23-42.

Shaw, M.L.G. and Gaines, B.R. 1986. Interactive Elicitation of Knowledge from Experts. Future 
Computing Systems, 1(2): 151-190.

Stolle, R. and Bradley, E. 1996. A Customized Logic Paradigm for Reasoning about Models. In 
Proceedings of the Tenth International Workshop on Qualitative Reasoning. Stanford Sierra 
Camp, CA.

Struss, P. 2004. Deviation Models Revisited. In Proceedings of the Eighteenth International 
Workshop on Qualitative Reasoning. Evanston, IL.

Surma, J., and Vanhoof, K. 1995. Integrating Rules and Cases for the Classification Task. In 
Proceedings of the First International Conference on Case-Based Reasoning, 325-334. Berlin: 
Springer Verlag.



Turner, R.M. 1992. A View of Diagnostic Reasoning as a Memory-Directed Task. In Proceedings of the 
Fourteenth Annual Conference of the Cognitive Science Society. Bloomington, IN: Cognitive Science 
Society.

Vreeswijk, G. 1991. The Feasibility of Defeat in Defeasible Reasoning. In Proceedings of the Second 
International Conference on Principles of Knowledge Representation and Reasoning, 478-483. Morgan 
Kaufmann.

Vreeswijk, G. 1993. Defeasible Dialectics: a Controversy-Oriented Approach Towards Defeasible 
Argumentation. Journal of Logic and Computation 3: 317-334.

Zreda, M.G., Phillips, F.M., and Elmore, D. 1994. Cosmogenic 36Cl Accumulation in Unstable Landforms. 
Water Resources Research 30: 3127-3136.


	Calvin: A System for Automating Cosmogenic Isotope Dating
	Laura Rassbach
	1. Introduction
	Figure 1: Anatomy of a Calvin rule. This rule expresses the idea that when an area is not cold, snow cover is a much less likely explanation (when the area is cold, snow cover is a slightly more likely explanation for a sample set).

	2. Cosmogenic Isotope Dating
	2.1. What is isotope dating?
	2.2. The Process of Isotope Dating
	2.3. Deriving a Landform Age
	Figure 2: The cyclic process of cosmogenic isotope dating. Portions of this process automated by ACE and Calvin are outlined.


	3. Quixotic Reasoning
	3.1. Mathematical Models
	Figure 3: Distribution of sample age (x) vs. number of samples (y) expected for various geologic processes.
	Figure 4: Matrix erosion gradually exposes previously buried boulders in a moraine. The exposure ages of all but the green boulder in this diagram would be younger than the true age of the moraine. Since the boulders’ depths are evenly distributed,...

	3.2. Heuristic Reasoning
	3.3. Solution Requirements

	4. Rejected Approaches
	4.1. Machine Learning
	4.2. Fully Symbolic Logics
	4.3. Bayesian Networks
	Figure 5: A possible set of samples from a single landform. Using pseudo-statistical reasoning, experts prefer not to choose the left most sample as the age of the landform, because the other two are so distant from it and close to each other.

	4.4. Schemas/Case-based Reasoning

	5. Intuitive Solution: Argumentation
	6. Related Work
	6.1. Various nonmonotonic logics
	6.2. Argumentation

	7. System Design
	7.1. The Engine
	7.2. Arguments
	Figure 6: An example set of Calvin argument trees. At the top is the conclusion being argued about. Applied rules are in boxes; input data is in ovals. My prototype system contains more rules than are shown regarding erosion; these trees are a subset...

	7.3. Confidence
	7.4. Rules
	7.5. Evidence
	7.5.1. Observations: Observations are direct uses of data that was entered by the user. Usually an observation is some binary quantity—for example, whether a sample has an apparent age less than a certain value, or whether the landform type is a mo...
	7.5.2. Simple Calculations: Simple calculations are generally calculations of simple statistical properties of entered data. They are used solely for the purpose of generating the calculation’s results and all simple calculations have a confidence ...
	7.5.3. Simulations: More complex calculations are called “simulations” because many of the complex calculations used by experts involve simulating a possible situation to see how closely it matches the current data. The most common type of comple...
	7.5.4. Arguments: Sometimes the antecedents of a rule cannot be directly gleaned from the input data. In this case it is necessary to build a sub-argument for an antecedent and to use the sub-argument as evidence. For example, snow cover is much less...


	8. Calvin in Action
	Figure 7: The four test cases used to validate the Calvin prototype. Each is labeled with the process represented by the samples. The system outputs the correct process for each of these cases.
	8.1. Test Case 2 (Outlier)
	Figure 8: Rules in the prototype version of Calvin expressing knowledge that “No process” applies iff all sample ages line up and that sample ages line up when all sample ages are within the mean error of the mean age.
	Figure 9: Rules providing evidence that the landform in Test Case 2 may have eroded because it is relatively old and because it is a moraine.

	8.2. Test Case 4 (Erosion)

	9. Conclusion
	10. References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


