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Abstract 
  

This report describes theoretical work on the design of analog computers to solve discrete 

combinatorial problem.  The approach is to convert a combinatorial problem into a 

dynamic system that can be simulated by piecewise linear analog circuits.  Each instance, 

P, of a the original combinatorial problem corresponds to placing the analog computer in 

a particular known equilibrium state.  If the equilibrium is stable, that implies that P has 

no solution.  However, if the equilibrium is unstable, then the analog voltages along that 

instability (the “downhill” direction of the dynamical system) provide a solution to the 

problem P. 

 

In addition to the theoretical description of the analog approach, this report also provides 

a detailed analog schematic for one particular combinatorial problem: Exact-1-in-3-SAT 

(an NP-complete problem).  The design is modular, requiring O(n
2
) components for an n-

variable instance of Exact-1-in-3-SAT.  The construction of a prototype of this machine 

is underway for the 8-variable version of the problem, and this report describes some 

specific questions that can be answered by the prototype and a larger wire-wrapped 16-

and 24-variable versions. 
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1. Background 

 

During the age of transistor electronics, just at the birth of integrated circuitry, the design 

of analog computing components was motivated by analog computations in which 

voltages represent some physical quantity and the computing components manipulate 

voltages to carry out various numerical operations such as addition or definite integration.  

But by the time analog components—specifically the op-amps of the 1960s—had 

matured enough to implement such operations, it was already clear that digital 

components had the advantage in both speed and accuracy for the kinds of numerical 

problems that analog computer designers had hoped to solve.  This is underscored by the 

fact that principle texts on analog computer programming all date from the 1960s [9]. 

 

Digital algorithms have their limits, too, particularly in large, well-known combinatorial 

problems. The NP-complete problems [5] share the trait of having no known polynomial-

time algorithms despite decades of intense study.  Many other important combinatorial 

problems, such as prime factorization, graph isomorphism and various pattern matching 

problems also run up against combinatorial barriers.  These problems have motivated 

recent alternative computation proposals such as DNA computation [1] and quantum 

computers [3] that may take advantage of natural massive parallelism. 

 

This report describes theoretical work and one detailed design for analog computers that 

solve combinatorial problems.  The approach is promising because it explicitly does not 

depend on the relative inaccuracy of analog computations, but instead depends only on 

the ability of an analog computation to fall out of an unstable equilibrium. 

 

The analog work has its origins in a physical machine given by Anastasios Vergis, 

Kenneth Steiglitz and Bradley Dickinson [13].  Their idea starts with an instance of 

Boolean Satisfiability [10], and from the specification of the instance they describe how 

to build a contraption of gears and other mechanical parts.  One of the gears in the 

machine has a crank handle attached to it.  Their analysis shows how the ability or 

inability of the handle to turn provides an answer to the given instance of Boolean 

Satisfiability.  If the handle turns, we infer one answer to the problem; if it fails to turn, 

we infer a different answer. 

 

An analysis of the gear machine [7] shows that the machine is analogous to a ball that 

rests in equilibrium in a multi-dimensional dynamic state space.  The act of trying to turn 

the handle puts a downward force on the ball.  If the equilibrium is a local minimum in 

the state space, then this force cannot budge the ball (the handle does not turn).  On the 

other hand, if the equilibrium is not a local minimum, then the hope is that noise will 

soon jiggle the ball out of the equilibrium so that the downward force accelerates it away 

from the initial location (and the handle turns).   

 

In a perfect world, though, the handle would never turn. Trying to turn the handle is 

analogous to exerting a straight down force on the ball that is precisely balanced at the 

apex of a perfect hill: There is no sideways force to jiggle the ball off the hill.  The hope 

with the gear machine is that noise in the system will kick it into a downhill direction, 

even when the force is straight down and even when that downhill direction is 

exponentially small in terms of the total size of the state space.  The machine was never 
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built, so we don’t know whether the hope is valid or whether the expected time for that 

hope to occur is exponentially long. 

 

Building the actual gear machine would be hard to prototype and test, but an analogous 

electronic circuit, described in this report, is feasible. The analog machine simulates the 

state of the gear machine by voltages in a circuit.  The machine that is given here is to 

solve the NP-Complete problem, Exact-1-in-3-SAT, which we describe next. 

 

2. Exact-1-in-3-SAT 

 

The NP-complete problem, Exact-1-in-3-SAT [10] is defined here: 

 

Let V be a set of Boolean variables.  A 3-clause is any set of three of 

these variables.  An assignment for V is a function A:V�{true, false}.  

For an assignment A and a variable u in V, we say that u is a true 

variable if A(u) = true; otherwise, we say that u is a false variable. 

 

Exact-1-in-3-SAT: Given a finite set C of 3-clauses in which no two 

variables appear together in more than one clause, does there exist an 

assignment such that every 3-clause in C contains exactly one true 

variable? 

 

For an instance P of Exact-1-in-3-SAT, an assignment that results in exactly one true 

variable for each 3-clause is called a valid assignment.  If P has at least one valid 

assignment, then P is called satisfiable; otherwise it is unsatisfiable. 

 

3. Defining a Function fP from an Instance P of Exact-1-in-3-SAT: 

 

Let P be an instance of Exact-1-in-3-SAT with variables V = {x1, x2, …, xn} and clauses 

C.   From P, we can define a continuous piecewise quadratic function fP:R
n+1

�R (where 

R is the set of real numbers).  For this definition, let x ∈ R
n+1

 be a vector of n+1 real 

numbers.  We will use the notation x1, x2, …, xn for the first n components of x 

(distinguished from the elements of V by context only).  The n+1st component of x is 

denoted by w. 

 

3.1. The value of fP(x) is the sum of these pieces: 

 

a. For each xi ∈ V, fP(x) includes the sum of these four terms: 

 

0.5w
2
 - xi

 2
 

+ 

if (xi > 0) then 0.75 xi
 2

 else 0 

+ 

if (w - xi < 0) then 0.5(w - xi)
2
 else 0 

+ 

if (w + 2xi < 0) then 0.5(w + 2xi)
2
 else 0 

 

b. For each { xi , xj , xk } ∈ C, fP(x) includes the term ( xi +  xj +  xk )
2
 

c. fP(x) includes the single term -0.2w
2
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The function fP has a local minimum at the origin if and only if the instance P is 

unsatisfiable.  In fact, if P is unsatisfiable, then fP(0) is a global minimum; otherwise, any 

downhill direction away from the origin provides an assignment that satisfies P defined 

by A(xi) = (xi > 0) for all xi ∈ V. 

 

3.2. There are two dynamic systems that may be useful in determining whether fP has a 

local minimum at the origin.  The two systems are defined by the following differential 

equations.  

 

a. Gradient Dynamic: x’ = -δfP/δx.  Intuitively, the gradient dynamic is a system 

where the instantaneous velocity of a particle at position x is always equal to the 

direction of steepest descent. 

 

b. Mechanical Dynamic: x’’ = -δfP/δx.  Intuitively, the mechanical dynamic is a 

system where the instantaneous acceleration of a particle at position x is always 

equal to the direction of steepest descent. 

 

The idea is to build an analog computer in which voltage lines represent the components 

of a position x, and to allow the state of the machine to vary under one of these dynamics.  

If we start the machine at the origin, and the origin is not a local minimum, then noise in 

the system may eventually kick the machine into an path away from the origin.  The 

gradient dynamic is intuitively simpler, although in simulations, the additional variation 

in the mechanical dynamic caused it to move away from the origin more often than the 

gradient dynamic.  In any case, the hardware difference between the gradient and 

mechanical dynamics is small (replacing n  inverting integrators with n inverting adders), 

so both machines can be built and tested with the same basic design. 

 



Building a Prototype Analog Computer for Exact-1-in-3-SAT                                         4 

4. Schmatics for the Analog Machine (Mechanical Dynamic) 

 

This section provides schematics for a prototype analog computer that can simulate the 

mechanical dynamic for any 8-variable instance of Exact-1-in-3-SAT.  The design is 

modular, so that it can scale up to 16-, 24-, 32-… variable instances.  The prototype 

version is programmed for a particular instance P via manually set switches.  In the larger 

versions, these switches will be programmed by a microcontroller.  The format of the 

individual computing elements comes from [9]. 

 

4.1. Overall Structure 

 

The overall structure of the analog machine in shown in Figure 1.  Details of the separate 

block components are given in Sections 4.2 through 4.4. 

 

Figure 1: Block Diagram for 

the Mechanical Dynamic 
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For the prototype, n=8
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4.2. Subcircuit for Each Variable xi 

 

Each variable xi has circuitry from Figure 1.  The inputs to this circuitry are the current 

values of – xi, w, -w and bi. This circuitry, along with inverting integrators that compute 

xi’ and -xi , is shown in Figure 2.  Altogether, it produces outputs of  bi , ci , -xi and xi’ and    

Within the figure, the definitions of bi , ci and -xi’’ are given as: 

 

bi =
{ }
∑

∈

+
Cxxx

kj

kji

xx
,,

   This is the sum of all the variables that share a clause with xi. 

 

ci = the contribution of xi to δfP/δw 

   = w 

       + 

       if (w - xi < 0) then (w - xi) else 0 

       + 

       if (w + 2xi < 0) then (w + 2xi) else 0 

 

-xi’’ = δfP/δx
 

      = the sum of the following six pieces: 

 

1. 2m xi , where m is the number of clauses that contain xi 

2. -2xi 

3. if (xi > 0) then 1.5 xi else 0 

4. if (xi – w > 0) then (xi – w) else 0 

5. if (w + 2xi < 0) then (w + 2xi < 0) else 0 

6. 2bi 

 

The primary job of the circuit in Figure 2 is to maintain the value of  -xi via the inverting 

integrator A6, which continually integrates xi’ .  The value of xi’ is itself maintained by 

inverting integrator A5, which continually integrates -xi’’.  The inputs to A5 are the 

components of xi’’ , which are computed by the adders and rectifier circuits (1) through 

(6).  Also, two of the components ((5) and (4)) are combined in a differencing circuit A7 

to produce ci. 

 

The two switches at the top of the inverting integrators must be manually closed to 

discharge the capacitors before the circuit is run.  They are then opened for the actual 

computation.  In addition, the potentiometer P1 must be manually set to 2500mΩ, where 

m is the number of clauses that contain xi in the instance P. 
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4.3. Subcircuit for w 

 

The circuitry to maintain the value of w (and –w) is shown in Figure 3.  The use of the 

two inverting integrators A1 and A2 is similar to the use for the variables xi, so the output 

of A1 is w’ and the output of A2 is –w.  An inverter is used to also provide an output of 

w.

   

 



Building a Prototype Analog Computer for Exact-1-in-3-SAT                                         8 

4.4 The Switch Matrix 

 

Figure 4 shows the schematic for the n x n switch matrix from Figure 1 for the prototype 

case where n = 8.  The inputs are the n voltages –xi, and the outputs are the n voltages bj 

(which is the sum of all the variables that share a clause with xj.) 

 

The switch matrix contains n x n switches that will be set by hand in the prototype, but 

will be set by a microcontroller in a larger version.  Switch Si,j is closed if xi shares a 

clause with xj; otherwise it is 

open.
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5. Questions for the Study to Address 

 

These are some specific questions that building the hardware will answer: 

 

5.1. Does the analog computer always stay in a stable equilibrium for an unsatisfiable 

instance of Exact-1-in-3-SAT? 

 

5.2. Does the analog computer always fall off the equilibrium for a satisfiable instance of 

Exact-1-in-3-SAT?  If so, how quickly?  If not, what state is the machine in when it gets 

stuck? 

 

5.3. How does the time to fall off the equilibrium vary with increasing n.  For this 

question, 16-variable and 24-variable versions of the machine will be built, controlled by 

a microcontroller processor. 

 

5.4 How do the frequency responses and voltage supplies of the amplifiers affect the 

speed of falling off an equilibrium? 

 

In addition, the study will continue theoretical work to develop dynamic systems for 

other combinatorial problems.  Of particular interest are computing prime factorizations 

(a problem with a fast quantum algorithm [11]), large pattern matching problems 

(relevant, for example, in DNA analysis [4]), determining whether two given graphs are 

isomorphic (the fundamental I-complete problem [12]), linear programming problems [8] 

and convex quadratic programming [6]. 
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