

Local Path Planning in Image Space for Autonomous Robot
Navigation in Unstructured Environments

Michael W. Otte, Scott G. Richardson, Jane Mulligan, and Gregory Grudic

University of Colorado at Boulder
Technical Report CU-CS-1030-07

ir

Abstract—An approach to stereo based local path planning in
unstructured environments is presented. The approach differs
from previous stereo based and image based planning systems
(i.e. top-down occupancy grid planners, autonomous highway
driving algorithms, and view-sequenced route representation),
in that it uses specialized cost functions to find paths through an
occupancy grid representation of world directly in the image
plane, and forgoes the standard projection of cost information
from the image plane down onto a top-down 2D Cartesian cost
map. We discuss three cost metrics for path selection in image
space. We present a basic image based planning system, discuss
its susceptibility to rotational and translational oscillation, and
present and implement two extensions to the basic system that
overcome these limitations—a cylindrical based image system
and a hierarchical planning system. All three systems are
implemented in an autonomous robot and are tested against a
standard top-down 2D Cartesian planning system on three
outdoor courses of varying difficulty. We find that the basic
image based planning system fails under certain conditions;
however, the cylindrical based system is well suited to the task
of local path planning and for use as a high resolution local
planning component of a hierarchical planning system.

I. INTRODUCTION

UTONOMUS robot navigation aims to identify a series of

movements that, when executed in a sequence, will

translate the robot from a starting position to a goal position.

The search for this path is constrained by the robot’s sensor

information and its own kinematic limitations. Ideally, the

path is chosen to minimize (or maximize) some criteria, such

as energy expenditure. In highly structured environments,

such as those encountered by a manipulator arm on a factory

floor, an objective function can be found that describes the

manifold on which the arm is constrained in actuator space.

In this case, however, uncertainty about the world is limited.

On the other hand, in unstructured environments—

particularly outdoor environments beyond the city streets and

paths of human infrastructure—we do not have such high

confidence a priori knowledge about the relationship

between the appearance of a scene and its traversability.

Visual perception involves decoding the 2D projection of

3D Cartesian space as it is captured by a robot’s imaging

University of Colorado Technical Report CU-CS-1030-07. This work is

supported by DOD AFRL award no. FA8650-07-C-7702 (DARPA LAGR)
and NSF IIS-0535269.

M. W. Otte, S. G. Richardson, J. Mulligan, and G. Grudic are with the
Computer Science Dept., University of Colorado, Boulder, CO 80309 USA
(e-mail: Michael.Otte@colorado.edu, Scott.Richardson@colorado.edu,
Jane.Mulligan@colorado.edu, Gregory.Grudic@colorado.edu).

sensors [1], [2]. This 2D projection is referred to as image

space. Many approaches to path planning in unstructured

environments derive an obstacle vs. safe representation of a

scene—referred to as an occupancy grid—which is then

projected down from image space onto the ground plane and

inserted into an X-Y Cartesian map [3], [4]. Path planning

systems have also used 3D occupancy grids to represent the

world [5]. The A* algorithm [6] (or some variant [7]–[9]) is

then used to find a path through the occupancy grid between

the robot’s position and the goal [3]. Work has also been

done to model the path planning problem with various types

of potential fields, as in [10] and [11], and as a hybrid of A*

and potential fields, as in [12].

There are a number of advantages to planning a mobile

robot’s movement in a Cartesian map. However, this

representation is not ideal for near-field planning—in order

to maintain a map with a computationally feasible search

space, the world must be resampled at a non-native

resolution. This produces a projected image with low

fidelity. Although there are some planners that maintain a

higher resolution map for local path planning, e.g. [13], we

propose that transformation onto the Cartesian plane is

superfluous.

To the best of our knowledge, planning and actuation in

the image space has not been studied on a robot platform in

unstructured environments. There are, however, examples of

image based visual servoing in semi-structured and

structured environments.

Autonomous highway driving algorithms [14] such as

Navlab [15] and its many implementations [16]–[18] operate

in a semi-structured environment. Information from image

features such as lane markings, other automobiles, road

color/texture, etc, allow these algorithms to follow the road

while avoiding obstacles.

A robotic arm on a factory floor can be controlled via a

constraint optimization function that maps the current field

of view (FOV) to a reference or target frame through a series

of movements [19], [20]. This idea has been extended to

mobile robots in semi-structured environments in various

forms [21]–[23]. For instance, View-Sequenced Route

Representation (VSRR) is a mapless navigation technique

that calculates the displacement between a target image and

the current FOV [24], [25]. This displacement is then

translated into steering commands.

Both Navlab and VSRR type models develop a control

strategy as a function of the perceived scene. However, both

Local Path Planning in Image Space for Autonomous Robot
Navigation in Unstructured Environments

Michael W. Otte, Scott G. Richardson, Jane Mulligan, and Gregory Grudic

A

Navlab and VSRR make assumptions about the information

that is available to them from the scene; for instance, the

existence of lane markings or a clear view of a predefined

goal state, respectively. These may be reasonable constraints

in structured or semi-structured environments; however,

planning through ambiguous terrain renders them infeasible.

Our task involves not only identifying traversable terrain

from non-traversable terrain, but also finding and staying on

the optimal path to the goal. We present an approach to path

planning that allows local path search to take place directly

in the image plane, thereby preserving the flexibility of the

occupancy grid paradigm and avoiding the corresponding

transformation distortion induced by the projection into a

Cartesian coordinate system. In our scheme, a real-world

GPS coordinate is projected into image space as a goal.

Next, a variant of A* is used in image space to identify the

optimal path to the goal. Finally, robot servoing in the real

world is accomplished via the image space path that is found

by A*. Special attention must be placed on the run-time

complexity of the system to allow the robot a suitable

reaction time.

We call our basic image based planning system the Image

planner, and introduce it in Section III-A. We then discuss

its susceptibility to rotational and translational oscillations.

That is, because the Image planner lacks memory of the

world, planning can quickly degenerate into an infinite loop

of the form: move away from the goal to avoid an obstacle,

and then move back toward the goal (and thus the obstacle),

after forgetting that the obstacle exists. These limitations are

addressed with a series of extensions to the Image planner.

The Cylindrical planner, introduced in Section III-B, is

created by augmenting the rotational memory of the Image

planner to include the world beyond its FOV, and a hybrid

hierarchical planner, introduced in Section III-C, combines

the strengths of a local image planner with those of a global

Cartesian planner. In Section IV we describe our

experiments, and in Section V we discuss our results.

II. EXPERIMENTAL APPARATUS

Our mobile robot platform is provided in conjunction with

the DARPA Learning Applied to Ground Robotics (LAGR)

program. It measures roughly 1m x 1.5m x 1.5m. Its sensors

include: two forward facing Point Grey BumbleBee 2 stereo

cameras, a Garmin GPS receiver, a magnetic compass, and

wheel odometers. Translation and rotation are achieved via

two independently driven front wheels. The wheels are

located on either side of the vertical axis that passes through

the midpoint of the sensor mast, thus rotation around the

mast axis is achieved by driving the wheels in opposite

directions at the same speed.

III. PLANNING SYSTEMS

A. Image Planner

Let R denote the 3D Cartesian real-world space. Our work

focuses on navigation through R toward a goal via paths

found in image space. The robot perceives R as a stereo

disparity image S, provided by a pair of stereo CCD cameras.

We build an occupancy grid O in image space based on S,

and then find the path Poptimal in the set of paths P through O

that minimizes a quantity W that is analogous to mechanical

work (i.e. force multiplied by distance). See Fig. 1. Because

any path found in O is a projection of some path existing in

R, it is possible to navigate through R using P. This can be

done directly, or via a projection of P from image space to R.

S is organized in an h by w Cartesian grid based on the

camera's physical pixel layout. We define the traversability

of R with an occupancy grid O:

 On,m = f Sn,m()= Sn,m
flat − Sn,m

t , (1)

where n = 1…h and m = 1…w. Note that n = 1 and m = 1

correspond to the top row and left most column of O,

respectively. Sn,m
t is the disparity of pixel (n, m) in the scene

at time t and flat
mn,S is the nominal disparity of a flat ground

plane Rflat. In our experiments, the goal Rgoal is defined by a

GPS coordinate in R. Rgoal is mapped into O as Ogoal,

assuming that both Rgoal and the robot exist on Rflat. The

robot’s starting location in O is defined Ostart=Oh,w/2. We

interpret the traversability values stored in O as forces F that

impede robot progress, and we search for paths through O

that minimize the amount of work W that must be exerted to

reach Ogoal from Ostart.

 WP = F P()dP
Ostart

Ogoal∫ (2)

where dP is the differential of position along P. Ogoal and
Ostart are nodes in O that anchor the endpoints of P. P
contains ||P|| connected subsections i in O, each starting at
the center of a grid location Oj,k and terminating at On,m, one
of the 8-connected neighbors of Oj,k. Therefore, the work
required to traverse P is found by the summation of work
over its subsections.

 ∑ ∑
∈∀ ∈∀

==
Pi Pi

iiiP DFWW , (3)

where Wi is the work required to navigate path subsection i,
Fi is the force that impedes robot progress along i, and Di is
the length of i (i.e. the distance between Oj,k and On,m). In
order to find the optimal path, Poptimal, we implement a

Fig. 1. A path through O from the robot position to a goal in the far-
field, where light to dark corresponds to low to high cost (left). The path
projected into a black and white image of the scene (right).

version of the A* algorithm that uses W as its cost function.
The path returned by A* will have W=Wmin, where Wmin is the
minimum amount of work required to reach the goal.

 Wmin = FiDi

∀i∈P optimal

∑ (4)

In our implementation of A*, Fi=1+On,m to impose a
positive minimum force in the case of flat-ground traversal.

Any metric used to calculate Poptimal
 must account for the

fact that paths found in O will determine navigation through

R. Thus, care must be taken when choosing a distance metric

Di. We investigate three possible distance functions for Di.

The most straightforward method for calculating Di is to

project the endpoints of i into R, with the help of S, and then

use the standard Euclidian distance metric in 3-space. We

call this distance Di
R .

 Although this metric seems very appropriate, a problem

arises when the goal is projected into a high cost region (i.e.

an obstacle). The optimal path is often to traverse directly

through the obstacle. This is due to the fact that, as far as the

planner is concerned, the goal exists within the high cost

region in O and not behind the obstacle on Rflat. For instance,

if a tree is located between the robot and a goal, then it will

appear in O as if the goal has been projected onto the front

of the tree. Thus, the shortest path to the goal appears to

require climbing the tree.

The second function we evaluate,
flatR

iD , estimates the

Cartesian distance between 1 2, the endpoints of i

projected from the camera through the image plane and onto

Rflat. Refer to Fig. 2. Projecting i back to Rflat avoids the tree

climbing problem because the distance required to go up the

front of the tree is the same as the distance required to reach

the goal by traversing along Rflat. Note that the tree will be

avoided due to high Fi values.

Let 1 and 2 be the vectors that travel from the base of the

robot flat
focusR to 1 2, respectively.

flatR
iD is calculated as

follows:

 ()

−

2
sin4r 2

21
2

21

ψ
r+dd=D

flatR
i , (5)

where d1 and d2 are the magnitudes of 1 and 2, respectively,

and ψ is the angle between them. We develop equations for d

and ψ in the Appendix and show that, given certain

assumptions, a function exists for d that is dependent on grid

row (n or j) and four intrinsic values associated with the

robotic system in general. Likewise, a function exists for ψ

that is dependent on |m-k| and two intrinsic values. The

calculation of
flatR

iD can be performed offline, once for each

combination of n, j, and |m-k|, and stored for later use.

The final distance metric we investigate, O
iD , is the L2

norm between grid locations in O, assuming that horizontal

and vertical neighbors are spaced unit length apart.

 Di
O = n − j()2

m − k()2 =
1 j = n ±1

1 k = m ±1

2 j = n ±1,k = m ±1

 (6)

The calculation of O
iD forgoes the projection between image

space and Cartesian space, allowing O
iD to be calculated

relatively easily compared to
flatR

iD .

 The A* search algorithm finds a path to the goal that

minimizes the work expenditure as a function of both the

distance traveled and the difficulty of travel. However, this

model accounts for neither the physical extension of the

robot, nor its ability to rotate in place around its central axis.

As suggested by [4], [13], and [26], we increase the width of

obstacles in the occupancy grid as a function of robot width

, allowing the robot to be treated as a particle during path

search. Note that the apparent width of an obstacle in O is

related to the distance between the robot and the obstacle in

R. We approximate this relationship by assuming that

obstacles exist on Rflat. With this assumption, the distance to

an obstacle is dn,m, and obstacle dilation becomes a function

of n that can be calculated offline.

 ()kmnmn OO += ,, max (7)

where k is an integer such that 1 m + k) w and

 +
≤≤

 +
− −−

mnmn d
k

d ,

1

,

1

2
sin

w

2
sin

w ελ
θ

ελ
θ

 (8)

where is the angle of the camera’s FOV parallel to Rflat,

and is the minimum clearance allowed between the robot

and an obstacle. This assumes that each row in O represents

an approximately equal angle of . The assumption that

obstacles exist on Rflat is only valid for portions of obstacles

that are in direct contact with the ground plane (i.e. their

bases). In many environments navigation around the base of

an obstacle is sufficient to avoid collision; however, this is

not generally the case. The factor can be increased to

address this discrepancy as the operational environment

requires.

O is preprocessed to enable rotation around the central

axis of the robot by setting Oh,m=0. Pixels above the horizon

are ignored in O because sky traversal should be impossible.

The horizon is assumed to be generated from the ground

Fig. 2. Calculation of
flatR

iD . Rfocus is the focal point of the robot’s

1 2 are the endpoints of i projected onto Rflat.

plane Rflat at infinity.

Servoing is accomplished by steering toward a target

location Ptarget= PnTarget,mTtarget located some predetermined

distance along P in O. This is either achieved by mapping

Ptarget into Rflat from O and then steering toward the resulting

location, or by implementing the servoing function directly

in O. We use the latter method in our experiments to

calculate steering angle and speed where

()

() ()22
2/h2/w

h

−−−

−=
nTargetmTarget

/2nTargetmaxSpeed
speed , (9)

()

w

2w/mTarget
Angle steering

−= θ
. (10)

We assume that the robot has reached the goal when

Ptarget=Oh,w/2. If Ptarget=Oh,m w/2, then there is only a rotational

component to movement. If Ptarget=On h,w/2, then there is only

a translational component to movement. Otherwise,

movement consists of a combination of translation and

rotation.

B. Cylindrical Planner

The Cylindrical planner is created by adding additional

elements to O that allow for storage of information that has

passed outside of the robot's field of view in R. The model

uses a cylindrical representation of O that can be thought of

as a radially panoramic mosaic of what the robot has

experienced. Radially panoramic mosaics have been used in

the past for landmark detection and pose estimation [25],

[27], [28]. For implementation purposes, O is represented as

a simple 2D grid C, with the added requirement that Cn,1 is

considered a neighbor of Cj,p, and Cj,1 is considered a

neighbor of Cn,p, for all rows n and j in C, where j =

{n+1,n,n-1} and p is the number of columns in C.

Information is added to C by:

 ()
t

mn,
flat
mn,f+mn SS=C −ϕ, . (11)

That is, information destined for storage in C is offset

horizontally by a function of , robot yaw relative to North.

f() is calculated as:

 () ()()() 12
2

p +

 −=f modπϕ

π
ϕ , (12)

In other words, stereo disparity data is placed into C as a

function of the compass direction that the robot is facing

when the image is captured. This implies that the cardinal

directions South, West, North, East, and South, will be

mapped from R into the following columns of C: 0, p/4 ,

 p/2 , 3p/4 , and p, respectively.

f() is calculated ignoring the distortion that is caused by

approximating multiple planes as a cylinder, and ignoring the

fact that the image plane is not parallel to the cylinder’s

longitudinal axis. If the FOV is such that these distortions

cannot be ignored, then two possible solutions exist; either a

projection can be used that reconstructs the image plane

correctly on the cylinder, or the FOV can be restricted in

width such that the distortion is no longer a problem.

The A* search algorithm is modified for use on C by

allowing path sections to exist across the South-South

border, and by setting the robot’s location in C according to

its pose: Crobot=Ch,f(ϕ). The goal is projected into C based on

the distance between the Rfocus
flat and the goal on Rflat and the

compass heading of the goal relative to the robot. (21),

derived in the Appendix, defines this projection. Fig. 3

depicts a typical search through C.

A function exists that describes how elements in C should

be updated for any combination of translation and rotation

that the robot executes in Rflat. However, we find that it is

computationally prohibitive to calculate within the robot’s

reaction time.

An alternative memory-updating scheme is implemented

by having C gradually forget information outside of the

robot’s FOV as a function of the distance that the robot has

traveled,

() ()

 ∆+∆−
=+

forget

forget
tt

d

NorthEastd
CC

22

1 ,0max , (13)

where dforget is the distance required to erase all rotational

memory in a single update [26]. In this scheme, no

translational updating takes place, and the values in C

outside of the FOV will decay toward zero. We manually

tune dforget to mimic the information loss observed in the

translation scheme.

C. Hierarchical Planner

A hierarchical planner attempts to solve the path planning

problem by dividing it up into the parallel problems of global

and local planning. The local planner is charged with

obstacle avoidance and navigation toward sub-goals.

Meanwhile, the global planner concerns itself with a coarse

representation of the world and returns appropriate sub-goals

to the local planner. Hierarchical planners have been used in

a variety of robot path planning schemes [29], [30]. For

instance, [31] models the global world as a graph of

connected nodes, in which, each node acts as the local map.

[13] also models the global world as a graph of connected

nodes, but views the local world in top-down Cartesian

space. In [32], both the local and global planners are

versions of the top-down occupancy grid model. In standard

hierarchical Cartesian planners, the local cost-map is high

resolution, fixed in size, and remains centered on the robot;

the global cost-map maintains a lower resolution, expands

Fig. 3. A path from the robot position to a goal located at the base of a tree
through the Cylindrical planner’s occupancy grid. Light to dark
corresponds to low to high cost.

 Fig. 4. Course 1: obstacles of small radii.

 Fig. 5. Course 2: obstacle of 10 meter girth.

 Fig. 6. Course 3: two adjoining long thin obstacles.

 Fig. 7.
flatR

iD performance on Course 3.

with exploration, and remains fixed to some global frame of

reference.

We implement a hierarchical planner that uses a top-down

occupancy grid for the global planning component and the

Cylinder planner for the local planning component. This

configuration combines the local path planning strengths of

image based path planning—high resolution obstacle

avoidance and servoing—with the global strengths of the

birds-eye view occupancy grid—translational memory. Data

is stored in the global planner’s occupancy grid, B, as a

projection of t
mn,

flat
mn, SS − onto Rflat. In our experiments, the

resolution of B is 0.5 meters. Path planning through B is

accomplished via a version of the work minimization A*

search algorithm (4), where Di is the Euclidean distance

between grid locations in B. Sub-goals are chosen to be 5

meters to 10 meters away from the robot.

IV. EXPERIMENTS

We compare implementations of our three planning systems

that use the O
iD distance metric (described in section III-A)

to a baseline top-down planner on three courses in
unstructured outdoor environments. Courses 1, 2, and 3 are
depicted in Fig. 4 through Fig. 6, respectively. The actual
paths that the robot took are overlaid on a top-down
occupancy grid map of the environment. All maps were
generated independent of the test runs by teleoperation. The
granularity of each occupancy grid is 500 centimeters.
Course 1 is a simple course that consists of randomly placed
obstacles with radii of 100 centimeters to 1 meter. Courses 2
and 3 are similar to Course 1, except that Course 2 adds an
obstacle of 10 meter girth, and Course 3 contains two
adjoining obstacles each 1 meter wide and approximately 30
meters and 10 meters long, respectively.
 A version of the hierarchical planner implemented to use

the
flatR

iD distance metric was also tested on course 3. The

rout taken by this system is depicted in Fig. 7.

V. DISCUSSION AND RESULTS

Path planning for robot navigation is a real-time system in
which the robot must be able to observe the world and react
quickly enough to guarantee safety and reliability. At the
robot’s minimum speed (approximately 0.125 m/s), robust
navigation requires that the robot perceive the world and
react at least every quarter meter, or 0.5 Hz. Ideally, we
would like the robot to translate at a rate of 0.5 m/s or
greater, which means the robot must plan at least 2 Hz.
Improving frame-rate beyond this is not unreasonable given
state of the art CPUs. Nonetheless, care is taken to limit the
time complexity of our algorithms, particularly the distance
calculations.

We found that the
flatR

iD distance metric causes the path

to be extremely sensitive to noise. When noise occurs in an
otherwise traversable area, it creates a pseudo-obstacle that
the planning system attempts to avoid like any other high

Fig. 9. Translational oscillation induced in the Cylindrical planner by
a long thin wall. The initial path around the wall (top), and the path at
a later time (bottom).

Fig. 8. Distortion ratio (
flatR

iD for vertical neighbors divided by
flatR

iD

for the bottom two vertical neighbors. Note that this is proportional to

O
i

R
i DD

flat

.) as a function of occupancy grid row (top). Close up of

distortion ratio (bottom).

cost region.
flatR

iD mandates that the cost associated with

traveling between neighboring grid locations decreases as a
function of occupancy grid row (Fig. 8). Thus, the least
expensive path around an obstacle will take action to avoid
the obstacle in the near field—often by an immediate
rotation. This would not be a problem in the absence of
noise. However, because pseudo-obstacles pop in and out of
existence, erratic behavior is induced by the planning
system’s continuous attempts to avoid new pseudo-obstacles.
Fig. 6 and Fig. 7 show, respectively, the performance of the

hierarchical planner using the O
iD and

flatR
iD metrics on

Course 3. The route taken by the hierarchical planning
system in Fig. 6 is much smoother than the one in Fig. 7.

O
iD tends to distort Rflat distances, especially in the far

field (Fig. 8). However, O
iD works well in practice. By

defining the distance between neighbors to be invariant of
grid location, it avoids the near-field noise sensitivity

observed with
flatR

iD . This is because paths are penalized

equally for near and far field detours, so the path is free to
follow the geodesic around an obstacle or pseudo-obstacle
without making an immediate correction. Also, because the
range of our stereo sensors is effectively 12 meters, severe
far-field distance distortion is somewhat irrelevant. Note that
in Fig. 8 the distortion ratio is less than 2 for nearly half of
the occupancy grid.

We found that the basic Image planner is able to navigate

through simple courses, such as Course 1; however, it is not

a robust planning system. For instance, when Rgoal is not in

the robot's FOV it cannot be mapped into O. This will

happen if the robot starts in such an orientation, is close to

the goal, or has rotated away from Rgoal in order to avoid an

obstacle. Consequently, the Image planner fails unless some

predefined course of action is hard-coded into the system.

The first case is solved by requiring the robot to rotate in the

direction of the goal upon start-up. The second case can be

ignored because it will only happen once the robot has

completed its task. The final case is non-trivial and plans of

action must involve movement containing a translational

component and a rotational component. Without both

components, the robot risks never finding a path to the goal.

Purely forward movement will carry the robot away from the

goal indefinitely, whereas movement in the reverse direction

risks obstacle collision. Pure rotation may induce oscillatory

behavior, as the robot alternately rotates away from the

obstacle and then back toward the goal after forgetting that

the obstacle exists. We observed the Image planner

displaying this behavior on Courses 2 and 3, Fig. 5 and Fig.

6, respectively—note that each test was manually aborted

after the robot oscillated for two minutes. A naive procedure

that translates some distance before allowing rotation in the

direction of the goal may perturb the system enough to

overcome this condition. However, this does not address the

deeper problem at the heart of rotational-oscillatory

behavior—namely, the lack of rotational memory. The

rotational memory of the Cylindrical planner allows it to

remember the obstacle's existence, even when the obstacle is

outside the robot’s field of view. Note that in Fig. 5 the

Cylindrical planner navigates around the obstacle to the goal.

The Cylindrical planner was able to find the goal in all

three tests. However, on Course 3 (Fig. 6) it was the only

planning system that opted to travel around the lengthier of

the two obstacles. We speculate that this behavior would

have degenerated into translational oscillation if the obstacle

had been longer. Consider the case of Fig. 9, top. A goal is

placed directly North of the center of a long thin wall that

runs East to West (e.g. the length of the wall is 1km and the

width of the wall is 1m). The robot starts South of the center

of the wall. At first, given the information in C, it will appear

possible to navigate around the wall in either direction.

However, as the robot moves toward one end of the wall, the

goal will appear to move toward the opposite end of the wall

from the robot’s point of view (Fig. 9 bottom). Eventually, it

will appear cheaper to reverse direction and attempt to reach

the goal by going around the opposite end of the wall. This

will repeat each time the robot travels a certain distance

away from the goal in either direction.

The only way to avoid this problem is to introduce some

form of global translational memory, such as a global 3D or

2D top-down Cartesian planner. Local versions of these

planners do not suffice—they are, by definition, only

concerned with portions of the world near the robot and will

always be vulnerable to translational oscillation induced by

obstacles larger than their translational memory. The

hierarchical planner, on the other hand, if confronted with a

large obstacle, will eventually find a way around it—if one

exists. However, solutions can be suboptimal. For example,

the robot may backtrack many times as it explores for a way

around the wall [33]. This is observed in Fig. 6 for both the

baseline planner and the hierarchical planner. This

suboptimal behavior can be described as translational quasi-

oscillatory, and is related to (but not identical to) the

translational oscillatory problem previously addressed. Any

planning system that must make decisions based on limited

information is susceptible to quasi-oscillatory behavior

because any currently optimal solution may change as new

information is discovered. Work has been done on this

complex global planning phenomenon by [34].

If the system has sufficient prior knowledge of the domain
(e.g. a map) then the planner is able to make piece-wise
optimal decisions that form a globally optimal decision.
Highly structured environments, for instance those
encountered by systems like Navlab, may contain sufficient
information to use a local planner in a global setting.
Similarly, the Cylindrical planner is equipped to navigate
through environments similar to Courses 1 and 2 without the
help of the hierarchical planner.

VI. CONCLUSION AND FUTURE WORK

We have demonstrated the efficacy of using image based
path planning. However, any robust path-planning algorithm
must address two environmental scenarios: those that lead to
rotational oscillation and those that lead to translational
oscillation. Our Image planner is susceptible to both, a
limitation not shared by the traditional top-down Cartesian
planners. We address these situations with a series of
extensions to the Image planner. By augmenting the memory
of the Image planner to include the world beyond the FOV,
the Cylindrical planner is capable of overcoming rotational
oscillations and reducing translational oscillations. We find
that, in general, the translational oscillation problem can only
be solved by a planner that maintains global translational
memory. Although planning in image space does not
displace the Cartesian planner, it does relegate it to the more
aptly suited function of global planning. Local planning in

image space is robust, and provides a simple framework for
maintaining a high resolution world-view. A hierarchical
planner combines the strengths of both systems and is able to
plan a more natural path, which can then be executed more
fluidly.

The high fidelity occupancy grid used in image space
planning provides a natural framework to include more
sophisticated models about the traversability of terrain. Color
and texture models could be combined with stereo
information to allow for more robust path planning. One
unaddressed limitation of the Cylindrical planning system is
its inability to plan behind obstacles; this is one of our
current research focuses. The end goal of our efforts is a
principled interaction between Cylindrical and Cartesian
path planning. This paper proposed the first such successful
framework, and sets the stage for future research efforts.

VII. APPENDIX

A. Derivation of dn,m

 Assume that the robot is on Rflat at Rfocus
flat and that its FOV

is oriented such that the center pixel in the image is below

the horizon (Fig. 10). Let Rfocus be the focus of the camera in

R 0 be the first point on Rflat that is visible in the

camera’s FOV. Let V 0 and is

parallel to the image plane. y is the unit vector associated

with the vertical length of a pixel in the image plane, and u is

the projection of y through Rfocus onto V in R. qcenter(n) is a

function that maps pixels’ centers from the center column of

the image plane onto points on V contained in R. gcenter(n) is

a function that maps pixels’ centers from the center column

of the image plane onto points on Rflat. Note that

−=

−=

2
h

2
h0

yy
centercenter gq . (14)

Let a be the vector between Rfocus and qcenter(h/2) and let b

be the vector between Rfocus and qcenter(n). is the angle

between a and b

() ()

 −−−

a
u

n
=

h2/h
tan 1 (15)

where h is the number of rows in the image plane and

 () ()d
d+d

c
c cos

cos
0 −=a . (16)

dc is the measured distance from 0 to gcenter(h/2), d0 is the

measured distance from Rfocus
flat to 0, and is the angle

between a and Rflat.

 ()()0
1 /tan d+dd= cv

− (17)

where dv is the measured distance between Rfocus
flat and Rfocus.

We can now calculate dn,w/2, the distance between Rfocus
flat

and gcenter(n).

 () ()
() 02/w,

2/sin

2/sin
d

+
nh=dn +

−
−−u , (18)

Fig. 10. FOV and accompanying variables used to calculate d and .

where is the angle between V and Rflat,

 = −2/ , (19)

and the magnitude of u is calculated by:

 ()= c sin
h

2d
u . (20)

The inverse function to (18) is given by

() ()()

()()

+

+−
−

−= −

−

2

1

/tan2/sin

/tansin

2/w,
1

2/w,
1

02/w,

σπ nv

nvn

dd

dddd
hn

u
, (21)

If the image distortion caused ignored, e.g. if

() ()2/sin2/tan θθ ≈ , then

 2/w,, nmn dd ≈ . (22)

B. Derivation of

Let be the angular distance in Rflat associated with the

Rflat projection of the endpoints of i. If the endpoints of i

exist in columns m1 and m2 in O, then given (22)

| |

w
12 θmm

=
−

, (23)

where w is the number of columns in O.

ACKNOWLEDGMENT

We would like to thank Dan Lee for providing a top-down

Cartesian global planner.

REFERENCES

[1] D. Murray and C. Jennings, “Stereo vision based mapping and
navigation for mobile robots,” in Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA ’97), New Mexico, pp. 1694-1699,
April 1998.

[2] W. van den Mark, F. Groen, and J. C. van den Heuvel, “Stereo based
navigation in unstructured environments,” at IEEE Instrumentation
and Measurement Technology Conference, Budapest, Hungary, 2001.

[3] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” in IEEE Computer, pp. 46–57, June 1989.

[4] S. Kolski, D. Ferguson, M. Bellino and R. Siegwart, “Autonomous
driving in structured and unstructured environments,” Lausanne,
Switzerland & Pittsburgh, USA, in IEEE Intelligent Vehicles
Symposium, 2006.

[5] M. Herman, "Fast, three-dimensional, collision-free motion planning"
in IEEE Proc. Int. Conf. Robotics Automat., 2, pp. 1056-1063, April
1986.

[6] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” in IEEE Trans. On System
Science and Cybernetics SSC-4, 2, pp. 100-107, July 1968.

[7] E. Dijkstra, “A note on two problems in connection with graphs,” in
Numer. Math. 1, pp. 269-271, 1959.

[8] G. Krishnaswamy and A. Stentz, “Resolution independent grid-based
path planning,” Tech. Report CMU-RI-TR-95-08, Robotics Institute,
Carnegie Mellon University, April 1995, unpublished.

[9] Anthony Stentz, “The focussed D* algorithm for real-time
replanning,” in Proc. of the Int. Joint Conf. on Artificial Intelligence
(IJCAI), 1995.

[10] O. Khatib, “Real-Time obstacle avoidance for manipulators and
mobile robots,” in The Int. Journal of Robotics Research, 5(1), pp.
90-98, Spring 1986.

[11] Y. Koren, J. Borenstein, “Potential field methods and their inherent
limitations for mobile robot navigation,” in Proc. IEEE Int. Conf.
Robotics and Automation, 1991.

[12] D. Murray and J. Little, “Using real-time stereo vision for mobile
robot navigation,” in Proc. of the IEEE Workshop on Perception for
Mobile Agents, Santa Barbara, CA, June 1998.

[13] M. Sugiyama, Y. Kawano, M. Niizuma, M. Takagaki, M. Tomizawa,
and S. Degawa, “Navigation system for an autonomous vehicle with
hierarchical map and planner,” in Proc. of the Intelligent Vehicles '94
Symposium, pp. 50 – 55, 24-26, Oct. 1994.

[14] S. Tsugawa, T. Yatabe, T. Hirose, and S. Matsumoto, “An automobile
with artificial intelligence,” in Proc. Sixth Int Joint Conf. Artificial
Intelligence, pp. 893-895, 1979.

[15] C. Thorpe, M. H. Herbert, T. Kanade, and S. A. Shafer, “Vision and
navigation for the Carnegie-Mellon Navlab,” in IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 10, no. 3, pp. 362-372, May
1988.

[16] D. Mateus, G. Avina, and M. Devy, “Robot visual navigation in semi-
structured outdoor environments,” in ICRA, 2005.

[17] D.A. Pomerleau, “ALVINN: An autonomous land vehicle in a neural
network,” Technical Report CMU-CS-89-107, Carnegie Mellon
Univ., 1989, unpublished.

[18] T.M. Jochem, D.A. Pomerleau, and C.E. Thorpe, “Vision-based
neural network road and intersection detection and traversal,” in Proc.
IEEE Conf. Intelligent Robots and Systems, vol. 3, pp. 344-349, Aug.
1995.

[19] N. Cowan, I. Weingarten, and D. Koditschek, “Visual servoing via
navigation functions,” in IEEE Transactions on Robotics and
Automation, 18(4), pp. 521-533, 2002.

[20] J. Feddema and O. Mitchell, “Vision-guided servoing with feature-
based trajectory generation,” in IEEE Trans. Robot. Automat., vol. 5,
pp. 691–700, Oct. 1989.

[21] H. Zhang and J. Ostrowski, “Visual motion planning for mobile
robots,” in IEEE Trans. Robot. Automat., vol. 18, pp. 199–208, April
2002.

[22] R. Vidal, O. Shakernia, and S. Sastry, “Formation control of
nonholonomic mobile robots omnidirectional visual servoing and
motion segmentation,” in Proc. IEEE Conf. Robotics and
Automation, pp. 584–589, 2003.

[23] N. Winters, J. Gaspar, G. Lacey, and J. Santos-Victor, “Omni-
directional vision for robot navigation,” at IEEE Workshop on
Omnidirectional Vision (OMNIVIS’00), Hilton Head, South Carolina,
June 2000.

[24] Y. Matsumoto, K. Sakai, M. Inaba, H. Inoue, “View-based approach
to robot navigation,” in Proc. of IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS 2000), vol 3, pp. 1702 – 1708.

[25] P. Gaussier, C. Joulain, S. Zrehen, J. P. Blanquet, A. Revel, “Visual
navigation in an open environment without map,” in Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS’97), Grenoble, pp. 545-550, 1997.

[26] A. Kelly. “Adaptive perception for autonomous vehicles,” Tech.
Report CMU-RI-TR-94-18. The Robotics Institute, Carnegie Mellon
University, 1994, unpublished.

[27] A. Kelly. “Mobile robot localization from large-scale appearance
mosaics,” in Int. Journal of Robotics Research, 19, pp. 1104–1125,
2000.

[28] A. Argyros, K. E. Bekris, S. C. Orphanoudakis, and L. E. Kavraki,
“Robot homing by exploiting panoramic vision,” in Autonomous
Robots, 19(1), pp. 7–25, 2005.

[29] S. Chen, “A spherical model for navigation and spatial reasoning,”
1990.

[30] B. H. Krogh and C. E. Thorpe, “Integrated path planning and dynamic
steering control for autonomous vehicles,” in Proc. IEEE Int. Conf.
Robotics and Automation, San Francisco, CA, pp. 1664–1669, 1986.

[31] J. Hong, X. Tan, B. Pinette, R. Weiss, and E. M. Riseman, “Image-
based homing,” in Proc. IEEE Int. Conf. on Robotics and
Automation, New York, pp. 620–625, 1991.

[32] E. Gat, M. Slack, D.P. Miller and R.J. Firby, “Path planning and
execution monitoring for a Planetary rover,” in IEEE Int. Conference
on Robotics and Automation, Cincinnati, USA, 1990.

[33] K. N. Kutulakos, V. J. Lumelsky, and C. R. Dyer, “Vision guided
exploration: A step toward general motion planning in three
dimensions,” in Proc. IEEE Robotics Automat. Conf., pp. 289-296,
1993.

[34] B. Nabbe, “Extending the path-planning horizon,” Ph.D. dissertation,
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, July
2005.

