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Abstract
Single-core performance increases have stalled. To in-

crease available cycles, microprocessor designers have
shifted to chip-multiprocessor (CMP) designs. Unfor-
tunately, the additional processors provided by CMPs
may remain idle because most applications lack data-
parallelism and task-parallelism is unlikely to saturate
future CMP designs. The systems community needs to
rethink how systems are structured to fully utilize CMPs.

We propose that operating systems be adapted to har-
ness CMP resources by leveraging recent results in Con-
current Threaded Pipeline (pipeline-parallel) organiza-
tions. This paper discusses potential performance im-
provements of CTPs and the necessary OS support.

1 Introduction

Traditionally, increases in transistors and fabrication
technology have led to increased performance. However,
these techniques are showing diminishing returns due
to limitations arising from power consumption, design
complexity, and wire delays. In response, designers have
turned to chip-multiprocessors (CMPs) that incorporate
multiple cores on a single die. While CMPs are a boon
to throughput driven applications such as web servers,
single-threaded applications’ performance remains stag-
nant. This is because the typical approach to paralleliz-
ing software (data-parallel or task-parallel) has been to
find, extract, and run nearly independent code regions on
separate processors [24]; a difficult task for general pur-
pose applications [2].

An alternative and more promising approach is to
use a pipeline-parallel organization. This is accom-
plished by decomposing a task into a series of sequen-
tial stages connected by a data-forwarding mechanism.
Data-dependencies are easily handled, provided each da-
tum only references previous data. Further, throughput
may increase proportionally to the depth of the pipeline
with a short completion interval. For these reasons, mod-
ern hardware systems, from microprocessors to routers,
are built on a pipeline design. While software-based
pipelines have been proposed in the past, only today’s
CMPs deliver the resources to capture the performance
benefits of software pipeline-parallel organizations.

Superficially, CMP systems may appear equivalent to
traditional SMP systems. However, CMPs exhibit suffi-

cient differences in the details to warrant a closer exami-
nation, similar to the CISC→RISC transition discussed
by Anderson [3]. First, cores on a CMP die may be
heterogeneous in function and performance. General
purpose cores may be packaged together with graphics
and other specialized processing units [1]. Asymmet-
ric cores that support the same instruction set with dif-
ferent performance characteristics may also be included
[15]. Second, communication latencies between cores
will be asymmetric if two cores are communicating on-
die or off-die, presently up to 10x. Operating systems
will need to be updated to efficiently support the hetero-
geneous and asymmetric systems of the near future.

The third difference is the most fundamental change
for general purpose operating systems. Systems with
eighty sophisticated general purpose cores per system are
expected within five years [7]. No longer will the oper-
ating system be required to time-share every processor
in the system. It will be possible to run applications to
termination on bound processors without impacting the
overall responsiveness of the system.

Leveraging CMP systems, recent work in Concurrent
Threaded Pipelining (CTP) has shown that it is now pos-
sible to capture the performance benefits of software
pipeline-parallel organizations [11,20,21,24]. Addition-
ally, this recent work shows that sequential applications
that do not exhibit high-level pipeline-parallelism can
still benefit by introducing fine-grain CTP optimizations
operating at time-scales comparable to main-memory la-
tency. These pipelines will be flexible analogs of hard-
ware pipelines implemented on general purpose com-
modity systems.

Therefore, we propose that CTP organizations be em-
braced as a means to capture the performance potential
of CMP systems by parallelizing most sequential appli-
cations. However, supporting CTPs in a general purpose
OS is not straightforward.

The rest of this paper is organized as follows. Sec-
tion 2 explains why CMP could revive pipeline-parallel
organizations. Section 3 discusses CTPs on CMP hard-
ware and provides a summary of initial results. Sec-
tion 4 discusses how a CTP application differs from nor-
mal applications and thus requires a different applica-
tion model. Section 5 discusses the additional research
needed to optimally support CTP applications. Section 6
concludes.
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Figure 1: Pipeline Timing

2 Classic Pipelining

Pipelining as a software architecture has been exten-
sively studied and is visible in some systems, including
Unix pipes [25] and the Click Modular Router [14]. Syn-
thesis, a direct ancestor of CTPs, used concurrent lock-
free queues to implement efficient data passing [18, 19].

Despite the existence of efficient pipelining systems,
pipelines have not made significant inroads to production
systems beyond Unix pipes. This may be because pre-
vious systems optimized for obsolete architectural lim-
itations or focused on software engineering advantages.
The limited number of processors previously available
per system (1-4) created an oversubscription scenario ne-
cessitating work on improved scheduling [17, 29]. How-
ever, no matter how efficient one makes the scheduling
and communication components [4, 8, 13, 18, 22], they
can never be faster than direct procedure calls.

To understand why additional computational resources
may revive pipeline-parallel designs, contrast a two stage
pipeline where both stages are scheduled on 2 processors
for simultaneous execution (scheduled concurrently) to a
scenario where they are not. In the concurrent schedul-
ing scenario, throughput is one datum per timestep (Fig-
ure 1.a). However, in an oversubscribed scenario (Fig-
ure 1.b), where both stages cannot be scheduled con-
currently, the application degenerates into a sequential
application with half the throughput. Therefore, if the
all stages in a pipeline-parallel application are run se-
quentially, the communication and scheduling overhead
may cause the pipeline application to perform worse than
the sequential version. Further, in longer pipelines, bub-
bles introduced by stalled stages will temporally move
through the remainder of the pipeline, resulting in further
delays. Therefore until now, pipeline-parallel architec-
tures have provided only software engineering benefits
to system architects.

3 Concurrent Threaded Pipelining

Concurrent Threaded Pipelining is a generalized perfor-
mance oriented extension of prior work on pipelined

software architectures that relies on concurrency. The
performance focus of CTPs permits the harnessing of
previously inaccessible thread-level parallelism in com-
mon applications by software architects or optimizing
compilers. However prior work has shown that exploit-
ing CTPs for a wide range of common applications re-
quires the underlying OS and communication primitives
to provide for very fine-grain stage-to-stage interactions.
In many cases, observed processor-to-processor commu-
nication latencies must be less than half the latency of a
single main-memory access [20, 26].

One example of such prior work is the Decoupled
Software Pipelining (DSWP) work by the Liberty group
at Princeton. They show that it is possible to automat-
ically find and extract CTP parallelism from sequential
applications, gaining 9.2% mean performance improve-
ments [20, 21, 24]. Note, however, that to achieve these
performance gains, the Princeton work requires very
low-cost communication and synchronization which they
implement in hardware.

Fortunately, our recent work has shown that by care-
fully managing threads it is possible to achieve and main-
tain the requisite performance in software [11]. This re-
sult is critical because it demonstrates that it is possi-
ble to maintain the flexibility of software without rely-
ing upon custom hardware. Further, since our communi-
cation library has an inexpensive polymorphic interface,
pipeline stages can be interconnected using the most ap-
propriate software or hardware primitive. This flexibility
allows one to link in any system component as a pipeline
stage, be it a user-space thread, an OS service, software
on a specialized core, a hardware accelerator, or a pro-
grammable gate array.

Note that the above software communication system
cannot be realized by a straightforward application of
prior classic pipeline communication approaches to mod-
ern systems. For example, Synthesis style queues [18]
result in cache-thrashing yielding unacceptable perfor-
mance1 [11]. Our solution eliminates the cache-line
thrashing by enforcing a temporal slip between the pro-
ducer and consumer to ensure that their enqueues and

1The Synthesis quamachine was cacheless with zero-wait memory.
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Figure 2: Performance of Software Communication

dequeues are separated by at least a cacheline (see Fig-
ure 2 for performance comparisons). Therefore, the
performance requirements of CTPs can be met while
only mildly increasing latency. Furthermore, the result-
ing queues are compatible with any memory consistency
model2 as they rely only upon cache-coherence [10, 11].

While the aforementioned work addresses most of the
organizational problems in CTPs, Section 5 describes
many OS challenges, some of which stem from the na-
ture of CTP applications that are described in the follow-
ing section.

4 Multi-domain CTP Applications

Concurrent Threaded Pipelines, and to a lesser extent
classic pipelines, fundamentally challenge the OS con-
cept of an application. Section 2 argued that full con-
currency is necessary to realize the potential of any
pipelined application. To properly manage a pipeline it
must be treated as a single object and not merely a col-
lection of stages (i.e., plain threads). Handling a pipeline
that is fully contained within an application, as in DSWP,
is relatively straightforward. Recall, however, that a
pipeline may require services from another application
or from the OS (e.g., input or output). In the CTP model,
these service stages are not independent of other applica-
tion pipeline stages. Thus, with this organization the ex-
isting OS single-domain application model breaks down.
The model breaks down further if pipeline stages are im-
plemented as a hardware resource that is not a general
purpose execution unit.

To address this, the OS definition of an application
should be extended so that the application is defined as
the collection of its pipeline stages. Figure 3 depicts
a multi-domain application (gray) that is composed of
operating system services and two different applications
connected by shared memory. Observe that each applica-
tion keeps its own protected memory space separate from
the shared pipeline application’s memory.

This new multi-domain model is fundamentally dif-
ferent from previous models. Previous work focused on
either bringing everything into a single address space [5]

2The Synthesis quamachine had sequential consistency, modern ar-
chitectures support weaker models such as weak or release consistency.
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Figure 3: Multi-domain Pipelining

or allowed data to flow between domains under very con-
trolled situations [4, 8, 9, 13]. Synthesis demonstrated
that significant performance improvements were possi-
ble with careful tuning while maintaining the single do-
main application model, though the model is blurred by
threads crossing the application/kernel boundary to han-
dle tasks on behalf of the operating system [16]. The
multi-domain application model respects the private data
model implicit in single-domain applications while pro-
viding first-class naming for multi-domain pipelines.

Motivating Example: To understand the multi-
domain nature of pipeline applications consider the
following example based on a CTP network application
we constructed [11]. The performance goal was to
support the processing of all frames at all frame sizes
on a 1,000 Mbps Ethernet network in user-space on
commodity hardware. The initial implementation used
libpcap and libdnet to move network frames in and
out of the application. Unfortunately, the system call
overhead of these interfaces was too large to support the
smallest sized frames. The solution was to manually
segment the application into three sequential pipeline
stages: input, user-space application processing, and
output. The input and output stages were implemented
inside the kernel and attached directly to the network
devices. The three stages were then connected by a
shared-memory region and our software communication
mechanism. In this system, the new kernel I/O services
do not belong entirely to the OS or to the application in
the classic sense. This CTP application is the sum of its
pipeline stages but not the union of the two processes
that contain the stages. Other multi-domain pipeline
applications are no different.

5 Research Opportunities

Reorganizing operating systems to optimally support
Concurrent Threaded Pipelines will not be straightfor-
ward given the performance requirements and the special
nature of pipeline applications. The non-exhaustive list
below may serve as a starting point for discussion on this
reorganization.

Pipelineable OS Services are the crux of this line of re-
search. Without them one is relegated to basic CTPs. A
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set of basic OS services is needed to permit a CTP ap-
plication to directly link kernel resources as a pipeline
stage, similarly to the prior motivating example. These
services must provide a virtualized interface for shared
resources without impacting the overall performance of
pipeline or traditional applications.

Resource Allocation in a heterogeneous environment is
difficult as the demands of competing long running appli-
cations must be balanced. Asynchronous memory access
latencies (on- and off-die) suggest that pipelines should
be allocated on as few dies as possible. However, on
systems with asymmetric access to I/O devices (Hyper-
Transport) it might be beneficial to schedule the input
and output stages closer to the I/O devices, even if this re-
quires the use of more dies. Additionally, some CMP or-
ganizations have shared cache hierarchies between cores
on a single die, therefore scheduling needs to minimize
cache conflicts [27]. Thus, algorithms for proper alloca-
tion and transparent migration of stages among hetero-
geneous resources are required.

Timesharing may unfortunately be necessary if a sys-
tem becomes oversubscribed. However, classic priority,
proportional [28], and fine-grain [17] scheduling tech-
niques are insufficient as stages with no available work
may be accidentally scheduled (since sleep-based block-
ing may lead to overly long latency). Scheduling de-
cisions need to be made with full awareness of each
pipeline and the status of the associated communication
primitives. If a single stage is idle, starvation will cas-
cade through the remainder of the pipeline.

Stage Fusion is related to the above scheduling prob-
lems and provides an alternative recourse to timeshar-
ing in oversubscribed scenarios. It would be useful to be
able to shrink the pipeline depth by transparently fusing
stages [23] into a single unit, thereby freeing computa-
tional resources. Thus, algorithms to find and fuse ap-
propriate stages may be fruitful. These algorithms must
decide if it is preferable to fuse stages so that they run
round-robin (ABAB) or in stage batches (AABB).

Memory Management is made harder by the tight per-
formance constraints of CTPs. Since communication
buffers are shared across domains in multi-domain CTP
applications, the system must decide upon a static or
dynamic allocation strategy for buffers. Furthermore,
buffer tracking, sharing, migration, and reclamation must
be considered in light of performance constraints.

Memory Consistency is a critical consideration when
building CTPs using shared-memory. Our previous work
shows that Synthesis style queues [11, 18] can be used
with any consistency model [10], provided each datum
fits in a cacheline. However, when each datum is larger

than a cache line (ex., network frames) attention must be
paid to consistency. On sequential or processor consis-
tency models (x86), consistency is ensured by queuing
after all writes are completed. On weak or release con-
sistency models (Itanium), this is not the case and appro-
priate ordering instructions need to be introduced. Main-
taining correct consistency semantics without impacting
overall performance is an open problem.

Safety is trivial in the simple case where bounds check-
ing on pointers suffices. However, there are entire classes
of problems that can be avoided by using sandbox tech-
niques and typesafe languages to enforce correct opera-
tion [12]. Enforcing enhanced safety requirements with-
out impacting performance is also an open problem.

CTP libraries will be critical to assisting programmers
to construct CTP pipelines in the most efficient manner
possible. Reasoning about parallel applications is diffi-
cult; therefore, providing a robust set of library routines
that provide pipeline-parallelism from a sequential inter-
face would be of significant value. Examples include
mathematical operations and routines to traverse recur-
sive data structures (e.g., searching and iteration).

Pipeline Extraction is generally beyond the scope of
the operating system. However, extracting pipelines
from sequential applications or algorithms is non-trivial
and warrants further investigation. Promising avenues
of research include compiler extraction [20], special pur-
pose languages, language extensions [6], and runtime de-
composition of sequential applications.

6 Conclusion

Concurrent Threaded Pipelines have shown positive re-
sults in harnessing the computation power of chip-
multiprocessors in ways not previously possible with
symmetric-multiprocessors. This is possible because the
increasing number of cores per system will permit oper-
ating systems to selectively disable time-sharing to con-
currently run all stages of a pipeline-parallel application.
The close coupling of cores on a single die provides a
fast core-to-core path enabling the fine-grain optimiza-
tions required for CTP conversion of many sequential ap-
plications. Finally, the heterogeneity of CMP cores will
permit pipeline stages to be run on the task optimal core.

To optimally harness these new resources we proposed
that operating systems be adapted to treat CTP applica-
tions as first-class citizens. We argued that the definition
of an application needs to be extended so that a CTP ap-
plication is the collection of its pipeline stages, whether
the stages are from a single or multiple domains. Finally,
we presented a list of future research topics that will
be important for the success of CTPs: (1) pipelineable
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OS services; (2) resource allocation; (3) timesharing; (4)
stage fusion; (5) memory management; (6) memory con-
sistency; (7) safety; (8) CTP libraries; (9) pipeline ex-
traction. Finally, we believe that it is possible to archi-
tect a system that simultaneously supports CTP and tra-
ditional applications without sacrificing performance.
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