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Abstract 
Contemporary computer systems often mix real-time and non real-time (best effort) work, due 
to the increasing range of applications.  Contemporary scheduling algorithms in such an 
environment may use earliest deadline first scheduling along with slack time scheduling.  This 
paper describes some additions made to the BACKSLASH slack time scheduling algorithm.  
It introduces the idea of early release of work under certain circumstances.  The paper also 
introduces a refined measure of the deadline attainment performance of tasks in such a 
system.  Finally, we address a problem in which tasks that dramatically under book their 
actual processor needs can produce the effect of a denial of service attack on the other tasks in 
the system. 
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1. Introduction 
Contemporary desktop computing systems support increasingly diverse types of applications, processing 
diverse types of information. A dozen years ago, these systems focused on document publishing, decision 
support tools, rudimentary web browsers (no applets), etc.  Since 1995, these desktop computers have 
increasingly supported applications that playback streaming media data, enabling users to listen to audio 
data (such a MP3 data) and view audio/video streams (such as MPEG data).   

This changing character of the applications’ demand for various system resources has influenced OS 
resource management policies.  Whereas conventional applications can use the computer’s resources under 
the traditional best effort (BE) resource allocation policies, many of the new applications rely on certain 
assurances of service rates for resource usage.  BE resource policies are intended to optimize allocation 
based on one or more traditional performance metrics such as throughput, turnaround, equity, or utilization, 
but not to provide any assured rate of service.  

As long as the computer is operating with excess resource capacity, applications can deliver acceptable 
behavior even if the system does not meet all of the applications’ rate-based resource requirements.  
However, when the system approaches saturation, rate-based applications will begin to fail.  Real-time 
systems are designed with resource allocation policies that accommodate rate-based resource usage.  In a 
strict sense, hard real-time (HRT) tasks require that the associated jobs never underestimate their resource 
needs, and that the system always be able to fulfill the specified needs.  Soft real-time (SRT) applications 
also pre specify their resource needs, but they are able to tolerate a variety of situations in which the system 
is unable to meet some of the rate-based resource requirements; SRT tasks may also underestimate their 
resource requirements.  That is, the SRT strategy is an instance of quality of service (QoS) computing 
strategies.  In QoS systems, the OS makes an assurance regarding the rate that it can provide resources to a 
task over several different jobs within the task.  The details of the assurance may differ across the spectrum 
of QoS algorithms. 

Today many computers support SRT and BE applications (usually with only best effort assurances for 
the SRT applications, meaning that all applications are managed under a BE policy).  However there is also 
a class of computers that simultaneously support HRT, SRT, and BE tasks.  For example a desktop 
computer may have an HRT task that monitors and controls the power usage in a residence; it may have 
SRT tasks for playing back movies; and it may have BE tasks such as spreadsheet and publishing 
programs.  The work described in this paper focuses on resource strategies for such systems. 

Since approximately 1990, people have studied various resource management strategies to support 
combined HRT, SRT, and BE tasks, particularly for CPU scheduling.  Various camps have formed to focus 
on one approach or another, based on different criteria for evaluating acceptable performance.  One camp 
has adopted the earliest deadline first (EDF) scheduling policy, with supplementary mechanisms to address 
cases where one or more of the SRT application tasks exceeds their service time estimates within particular 
periods and thereby fail to complete the work for that period.  In 1992, Lehoczky and Ramos-Thuel 
introduced the idea of using slack time – or time that was reserved for another job, but which was not used 
to fulfill its service time in a period – to handle these tasks overruns [20].  Since that time many others have 
refined this basic idea, including [1, 6, 10, 11, 15, 31].   

Within this framework, Brandt, et al. showed how BE tasks could utilize slack time created by HRT 
and SRT jobs scheduled using EDF [4]. Lin and Brandt refined the technique to enable SRT jobs to utilize 
the slack time in their SRAND, SLAD, SLASH, and BACKSLASH algorithms.  The research described in 
this paper builds on their work.  They describe four principles for managing slack time [23]: 

1. Allocate slack as early as possible, with the priority of the donating job. 
2. Allocate slack to the job with the highest priority (earliest original deadline). 
3. Allow tasks to borrow against their own future resource reservations to complete their current job. 
4. Retroactively allocate slack to jobs that have borrowed from their current budget to complete a 

previous job. 
 

Our work first reexamines the performance metrics used to evaluate algorithms, and then adds two new 
scheduling principles for this class of scheduling algorithms: 

5. Reevaluate job EDF priorities at the moment the slack time becomes available. 
6. Suppose that a job misses its deadline: then let the release time for jobi+1 be redefined to be R’i+1 = 

di+Δt; i.e., R’i+1 is a pseudo release time for period i+1 when the job misses deadline di for Δt.  
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Suppose that the scheduler attempts to satisfy both jobi and jobi+1 service times prior to di+1 (which 
is the same as Ri+2).  If it succeeds, the task is back on schedule when jobi+2 is released; if it fails, it 
can again adjust the release time to catch up in period i+2, etc. 

  
In the next section we provide a more complete description of slack time scheduling, including a 

discussion of related work in the area.  In Section 3 we describe our improvements to Lin and Brandt’s 
work in detail.  In the final section we summarize the work. 

2 Background 
Scheduling policies for contemporary systems may support a mixed workload of HRT, SRT, and BE tasks.  
The basic premise of the work is that HRT tasks are conservative and will reserve excessive CPU that can 
be used to accommodate other task executions (in every period).  Service time estimates for the jobs in a 
HRT task are normally the worst case execution time (WCET) for any execution of the job in any period.  
Depending on the variance of the individual job service times from the WCET, it may be that the 
scheduling algorithm will reserve excessive amounts of time for this worst case, but actual execution will 
not use all of the reserved time.  SRT jobs will also normally execute in less time than is reserved for their 
execution.  However SRT tasks may also overrun their service time reservation, since their service time 
estimates are typically not as conservative as HRT estimates, i.e., when a job actually uses the worst case 
execution time, any reservation that is less than the WCET will be insufficient.  There is an opportunity for 
a system to utilize unused but reserved time – slack time – to execute SRT jobs that overrun their 
reservation. 

2.1 Processor Capacity Reserves 
As mentioned in the introduction, SRT scheduling relaxes the requirements compared to those for HRT, 
e.g., by allowing a percentage of a computation’s tasks to miss their deadlines, perhaps by a bounded 
amount of computation time.  An interesting aspect of SRT is the spectrum of techniques that have been 
used to relax resource requirements.  This, of course, leads to a spectrum of metrics for comparing different 
SRT approaches. 

SRT began to grow in importance when general purpose computers began to support multiple media 
types, particularly streaming media.  Besides the obvious focus on SRT, researchers began to consider 
strategies for supporting a mix of HRT, SRT, and BE applications.  For example, Berkeley researchers saw 
the need to support continuous media applications in the DASH processor [2]; researchers at CMU began 
to consider ways to modify Mach so that it could accommodate mixed classes of applications, e.g., see [27, 
37]; Fall and Pasquale described in-kernel modules to support multimedia playback [14]; Microsoft 
researchers developed Rialto for multimedia support [18]; and the SMART scheduler was designed to 
accommodate multimedia in a mixed system [28].  The need for mixed class scheduling was well 
established by 1997. 

The processor capacity reserves work established a new model for thinking about mixed load 
environments [26].  Briefly, this approach employs a quality of service (QoS) approach for admitting tasks 
to the system.  Each task executes on an abstract machine – a server – that expects to use a fractional 
amount of the physical processor.  That is, each task uses a server that has a processor requirement, C, that 
represents the amount of time required to execute each of the task’s jobs during a period of the 
computation, T.  The fraction of time that the server requires is then 

 
ρ = C/T 

 
HRT tasks are theoretically characterized by a processor time estimate of C = WCET and T = period for 
each task.  However, a fraction of the ongoing processor time for a HRT task can be specified using ρ and 
T (rather than C and T).  For example a periodic task with a 50 msec period may require 20% of the 
processor.  BE tasks that have no deadline can also be assigned to a server with some ρ, but without 
specifying T.  If the BE task exceeds ρ over any specified time T’, then the task has exceeded its 
reservation and it should be temporarily suspended until it replenishes its processor reservation by the 
passage of time.  
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2.2 EDF versus RM Scheduling 
Liu and Layland established admission requirements for rate monotonic (RM) and earliest deadline first 
(EDF) scheduling.  They showed that  RM tasks uses static priorities determined as a function of 1/T – the 
smaller the value of T, the higher the task’s priority [21].  Besides showing that RM & EDF algorithms 
produce optimal schedules, they showed that a system can use RM to assure that a collection of n tasks 
receive service provided that 

Σi=1
n Ci / Ti ≤ n(21/n – 1) 

 
As n increases indefinitely, the bound approaches 0.693, meaning that the admitted tasks can be scheduled 
with RM provided that they do not reserve more than 69.3% of the processor.  EDF uses dynamic priorities 
– the nearness of a task’s deadline; this allows the admission bound to be 100%. 

Mercer, et al., consider some pros and cons of RM versus EDF algorithms.  Although EDF allows for a 
higher admission bound, the requirement for managing dynamic priorities can introduce enough scheduling 
complexity to offset its value.  In general, most real-time system developed from 1973 to the late 1990s use 
RM because of its known admission criteria and its simple implementation.   

By the 1990s, researchers began to reconsider EDF because of the possibility of higher processor 
utilization in saturated systems.  In the 1970s, EDF was defined in terms of nonpreemptable tasks, meaning 
that:  
• If the job finished earlier than its reserved execution time in a period, the server (and processor) 

became idle and no other jobs in other tasks were able to run within that reserved time frame. 
• If the task overran its reserved time, it used the original deadline to compete with other tasks which 

caused a “domino effect” whereby the task that missed its deadline continued to have high priority, 
thereby continuing to use the CPU at the expense of all subsequent tasks – frequently causing all 
subsequent jobs within a task to miss their deadlines. 
 
Buttazzo conducted a careful comparison of RM and EDF in 2003 [9]. He observed that RM only 

guarantees that the highest priority (highest rate) task will never miss the deadline, but make no guarantee 
on all the other tasks in the system.  On the other hand, the tasks start to behave like they are submitting 
jobs at a lower rate when EDF is overloaded. This suggests that RM is not predictable for all tasks, only the 
one with highest priority. Another problem with RM is that the processor utilization tends to be lower than 
that of EDF.  Buttazzo argued that EDF perform no worse than RM in many aspects while EDF yields 
higher processor utilization. 

2.3 Handling Job Overruns 
In SRT systems, including ones that use processor reserves, SRT jobs will sometimes attempt to use more 
than their server reservation amount: this is referred to as an overrun situation.  Gardner and Liu identified 
two general strategies for handling overruns (and processor overloading) [15].  First, then identified a class 
of algorithms that are optimal and have no particular mechanism for addressing overloads, e.g., deadline 
monotonic (DM), RM, and EDF, is used as the baseline for comparison.  This class of algorithms is used to 
establish a benchmark for comparing the two new strategies.  The first strategy for handling overrun is (1) 
to detect an overrun when it occurs, and (2) to reschedule the remaining work of the overrunning job on a 
distinct server that has capacity reserved without concern for deadlines – an aperiodic server.  These 
algorithms are said to use the Overrun Server Method (OSM).  The second strategy – the Isolation Server 
Method (ISM) – detects a server reserve overrun when it occurs, but reschedules the remaining work using 
that server’s future processor reservations.  For example, the algorithm might slip the deadline of all 
subsequent jobs in the task by one period, thereby allowing the overrunning job to use the budgeted 
processor reserve originally intended for the next job in the task.   As one might expect, the relative 
behavior of the approaches is influenced by the nature of the workload. 

This led to a spectrum of OSM refinements: for example, Sprunt described a Sporadic Server (SS) 
rather than an aperiodic overrun server [33].  In SS the overrun portion of the job is given a static priority 
when it is assigned to the overrun server, thereby completing the overrun processing in a predictable 
amount of time in a server environment that admits sporadic jobs.  CUS [13] uses the idea of an OSM 
server, but consider dynamic priority algorithms for scheduling the work on the overrun server.  Ghazalie 
and Baker refined the SS work by using EDF (rather than RM) [16].  
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2.4 Exploiting Slack Time Donation 
The idea of using slack time to address SRT overruns stimulated considerable work in SRT scheduling.  In 
systems that support HRT and SRT, some of the tasks must behave stably over time, e.g., physical system 
components must be scheduled by HRT scheduling algorithm to assure their correct control.  Because of 
the computational complexity, the HRT portion of the workload is simplified into periodic tasks using 
WCET.  This, in turn, is likely to introduce slack time that can be used to handle SRT task overruns.  
Several systems provide innovative ways of using slack time: within the same task (e.g., see [29, 34, 35]), 
across tasks (e.g., see [3, 4, 6, 17, 19, 24, 25, 31]), and across servers (e.g., see [10, 12]). 

Recently Lin and Brandt described the BACKSLASH algorithm [23] that uses the idea of a task 
donating slack time backward to jobs that have already missed their deadlines [6, 31].  When a job 
overruns, it will be processed on the same server with the replenished budget and the extended deadline 
(the ISM technique).  It also allows the overrun to be processed by using an OSM -like slack time donation.  
However, rather than using WCET, BACKSLASH uses mean execution time for the SRT resource 
reservation.  As noted in Section 1, the BACKSLASH work establishes the foundation used for the work 
described in this paper.  Specifically, we presume the four principles for managing slack time [23]: 

1. Allocate slack as early as possible, with the priority of the donating job. 
2. Allocate slack to the job with the highest priority (earliest original deadline). 
3. Allow tasks to borrow against their own future resource reservations to complete their current job. 
4. Retroactively allocate slack to jobs that have borrowed from their current budget to complete a 

previous job. 
Our early release and slack time refinements are built on these principles, suggesting the need for 
refinements in performance metrics.  

3 Early Release 
BACKSLASH represents the state-of-the-art in ISM EDF scheduling [23].  We observed that 
BACKSLASH’s workload does not allow the SRT jobs to be released early, which lowers the potential 
throughput.  In this section we propose an algorithm in which jobs may be released early, thereby enabling 
a job that misses a deadline to recover, possibly by the time that the next job in the task completes.   

Suppose that job1 in a SRT task misses its deadline at the end of phase p1 (see Figure 1).   Further 
suppose that job1 is able to finish its overrun processing soon after p2 begins – in sufficient time for job2 to 
start after its normal release time, yet still complete its processing before its deadline (and the release of 
job3).  That is, after a deadline is missed, the successive job should have a chance to be released as early as 
the finish time of its previous job within period p2. The extreme case of the early release is that all jobs in 
the system do not overrun, so they can be released at the period where they were originally intended. We 
argue that releasing the next job early after a deadline miss improves the overall system throughput.   
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Figure 1: Early Release of a Job 

 
However, there are several cases to consider prior to adopting this early release strategy.  First, should 

the job always be released as early as possible? Second, if the early release causes a deadline miss again, 
should the next job be released as early as possible and create the effect of period shifting?  Third, what is 
the best choice when a system is overloaded and the task itself is overloaded?  Fourth, the early released 
job may win the competition over other jobs for the slack time donation, which causes those jobs to have 
higher potential to miss the deadline.   

Here is one early release strategy:  
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• Give the option of early release to the user who can make the decision depending on the 
application requirements.  

• A job is released early only after an earlier job has missed a deadline, but has completed prior to 
the next deadline. The early released job keeps the deadline defined by the execution time 
replenishment (i.e., the end of the next period) as well as the leftover execution time not used by 
its predecessor.  This prevents a task from processing jobs faster than its predefined pace, e.g., it 
prevents such behavior as playing a ten minutes movie in thirty seconds.  

• When a task is admitted, a portion of CPU time is reserved; even so, it may actually overload itself 
by overrunning often. If more than one SRT job overruns at the same time, the system may be 
overloaded and we can do nothing to remedy the situation.  However, the early released job may 
receive the slack donation or have a shorter execution time to complete the job in time and catch 
up with its original pace. After a few deadline misses the application may start to show a 
reservation deficit, i.e., the application may need to consider dropping a job or lowering the task’s 
quality of service.  

• The early release may cause more deadline misses than without early release.  However, the 
deadline misses alone do not really reflect the performance of the system. Without early release, 
there is no chance at all to complete all possible jobs in time. All tasks can still receive their 
reservation with early release enabled, but the early release significantly prevents the processor 
from idling by not sleeping voluntarily.  As a result, all jobs can be completed relatively closer to 
the predefined period and the overall system throughput can be higher. Even though it will not 
interfere with other RT tasks’ resource reservation, it may affect the amount of slack time that can 
be freely reallocated to help other tasks. Temporary system overload is allowed and cannot be 
avoided if we want to raise the system throughput/utilization, but we must prevent the system 
from long term overloading and minimize the impact of the short term overloading. 

 
Some tasks need to process external-event driven workload generated by periodic interrupts from input 

devices. The device determines the period, and controls the job release times. When the next period starts, 
the device interrupts the processor to notify it the job arrival. If the previous job is not yet completed, it 
misses the deadline. For HRT systems, the deadline miss ordinarily triggers a failure recovery routine. A 
simple example would be using a robotic arm to assemble products on a transport belt in a factory. If the 
arm misses the target, the transport belt may be stopped by the recovery routine, waiting for a person to 
remove the product and restart the system. For SRT systems, double or triple buffers are often used to store 
the input data when deadlines are missed.  

It is very likely that the interrupt handler will use one of the following methods to deal with an 
overrun. First, it may continue to process the current job and queue the new job. The current job can be 
handled on the same task server (ISM) or separate overrun server (OSM) (see Section 2.3). Second, it 
continues to process the current job and skips the new job. Third, it abandons the current job to process the 
new job. However, abandoning the current job or skipping the next job may not be the best choice because 
it may leave the system in an inconsistent state. Thus, the strategy choice depends on the nature of 
application, so we advocate giving the user the option to deal with the dilemma. 

Another type of SRT task is that the application defines its own period and processes data according to 
that period to provide a certain level of QoS.  For example a media player, like open source MPlayer, 
should play audio and video at the proper pace on machines with different speed and workload. If thirty 
frames per second are required, a job should be processed within one thirtieth of a second. However, the 
duration of decoding each frame varies. A scene cut or a key frame may take a longer time to decode, and 
skipping the current big frame may cause longer rippling effect on subsequent update frames. To solve the 
previous problem, it is better to try to finish processing the key frame using ISM even though it missed the 
deadline instead of abandoning it. To migrate the overrun job to an OSM server may delay completion of 
the job even further. After a deadline is missed, the new data should be buffered and wait for decoding. 
Even though the next job arrives at the time a deadline was missed, the media player usually deals with the 
problem by sleeping until the beginning of the next period or simply skipping the forthcoming job.  A 
wait_for_next_release() system call can be provided to the regular real-time applications, so the 
developer does not need to check the deadline miss and to calculate the duration of sleep. They can simply 
call wait_for_next_release() and let the scheduler determine if an early release can be issued. 
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3.1 Preliminary Experimentation with Early Release 
Lin and Brandt modified the Linux kernel to implement the BACKSLASH scheduler, and then tested it 
with an experimental workload [23].  We used a similar workload that reserves 2% of the processor cycles 
for BE tasks, leaving up to 98% to run real-time jobs. Three SRT jobs with utilization u1 = e1/p1 = 160/400 = 
0.4, u2 = e2/p2 = 150/500 = 0.3, and u3 = e3/p3 = 168/600 = 0.38 respectively are executed concurrently in the 
system for about seventeen seconds.  For this workload, u1 = 160/400 means that the period is 400μs and the 
execution time is 160μs. Since SRT tasks are used, the ei < WCET values were used for the execution time 
reservation. We generate the normally distributed execution time using N(e, 0.1e), where mean = e1 = 160 
for u1 = e1/p1 = 160/400 case, and use u1 for resource reservation. The same method is used for u2 and u3 
reservations. Thus those tasks will overrun about 50% of the time. 

The detailed traces of the execution of the above workload using pure BACKSLASH are shown in 
Tables 1-3, and the results of using BACKSLASH with early release are shown in Tables 4-6.  In these 
experiments, the period i = 0 started at release time = 0, and the “release”, “deadline”, and “finish” fields in 
each table represent the relative time to the beginning of the first period. The “exe_time” represents the 
execution time generated by the normal distribution as described above, and the “x” in the status filed 
marks a deadline miss. Since the same workload uses the same seed for generating the execution time, we 
can use the same exe_time trace for comparison.  

If we compare the first three periods of Tables 2 and 5, we observe that early release actually finished 
the second job (i = 1) within the second period corresponding to the example shown in Figure 1.  A similar 
situation happens again at i = 31, so only 41 out of 43 jobs period are completed without early release as 
shown in Table 1.  Table 4 shows that the system completes 43 jobs in 43 periods with early release.  Table 
3 shows that i = 34 completed the job whose execution time was 150790.30, but the same job can be 
completed at i = 30 in the corresponding early situation (see Table 6).  We will provide additional 
interpretation of this data after introducing additional metrics in Section 4. 
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i Release Period Deadline Finish Exe_time Status 
0 0 399852 399852 494417 176018 X 
1 - - - - - X 
2 799704 399852 1199555 954039 152930 . 
3 1199555 399852 1599407 1367958 168032 . 
4 1599407 399852 1999259 1871471 168554 . 
5 1999259 399852 2399111 2146608 147121 . 
6 2399111 399852 2798963 2577074 176761 . 
7 2798963 399852 3198814 3001548 131172 . 
8 3198814 399852 3598666 3518419 165013 . 
9 3598666 399852 3998518 3751712 152063 . 

10 3998518 399852 4398370 4194220 194530 . 
11 4398370 399852 4798222 4521656 122416 . 
12 4798222 399852 5198074 4961035 161966 . 
13 5198074 399852 5597925 5435848 172123 . 
14 5597925 399852 5997777 5820645 180372 . 
15 5997777 399852 6397629 6146472 142044 . 
16 6397629 399852 6797481 6677230 163282 . 
17 6797481 399852 7197333 6951701 152726 . 
18 7197333 399852 7597184 7360912 163158 . 
19 7597184 399852 7997036 7739315 140757 . 
20 7997036 399852 8396888 8150649 153310 . 
21 8396888 399852 8796740 8557288 159152 . 
22 8796740 399852 9196592 9017870 178108 . 
23 9196592 399852 9596443 9515151 171782 . 
24 9596443 399852 9996295 9731681 134167 . 
25 9996295 399852 10396147 10340849 193630 . 
26 10396147 399852 10795999 10677197 164621 . 
27 10795999 399852 11195851 10955202 158298 . 
28 11195851 399852 11595702 11401133 165889 . 
29 11595702 399852 11995554 11742982 146523 . 
30 11995554 399852 12395406 12486380 173934 X 
31 - - - - - X 
32 12795258 399852 13195110 12963798 160843 . 
33 13195110 399852 13594961 13380421 183055 . 
34 13594961 399852 13994813 13779302 154789 . 
35 13994813 399852 14394665 14167769 172571 . 
36 14394665 399852 14794517 14532401 137358 . 
37 14794517 399852 15194369 15035532 144072 . 
38 15194369 399852 15594221 15392946 159258 . 
39 15594221 399852 15994072 15740103 144731 . 
40 15994072 399852 16393924 16136795 141577 . 
41 16393924 399852 16793776 16616445 167322 . 
42 16793776 399852 17193628 16965667 170864 . 

Table 1: No Early Release: Service Time = 160, Period = 400, and Utilization = 0.4 
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i Release Period Deadline Finish Exe_time Status 
0 0 499815 499815 504262 165017 X 
1 - - - - - X 
2 999630 499815 1499444 1144187 143372 . 
3 1499444 499815 1999259 1861673 157530 . 
4 1999259 499815 2499074 2350282 158019 . 
5 2499074 499815 2998889 2864314 137926 . 
6 2998889 499815 3498703 3508163 165713 X 
7 - - - - - X 
8 3998518 499815 4498333 4312100 122974 . 
9 4498333 499815 4998148 4763508 154699 . 

10 4998148 499815 5497962 5258449 142559 . 
11 5497962 499815 5997777 5999036 182372 X 
12 - - - - - X 
13 6497592 499815 6997407 6612686 114765 . 
14 6997407 499815 7497221 7149519 151843 . 
15 7497221 499815 7997036 7839932 161365 . 
16 7997036 499815 8496851 8352984 169099 . 
17 8496851 499815 8996666 8834487 133166 . 
18 8996666 499815 9496480 9166467 153077 . 
19 9496480 499815 9996295 9788433 143181 . 
20 9996295 499815 10496110 10666757 152960 X 
21 - - - - - X 
22 10995925 499815 11495739 11229993 131960 . 
23 11495739 499815 11995554 11847233 143728 . 
24 11995554 499815 12495369 12309153 149205 . 
25 12495369 499815 12995184 12663860 166976 . 
26 12995184 499815 13494999 13173078 161046 . 
27 13494999 499815 13994813 13836473 125782 . 
28 13994813 499815 14494628 14344398 181528 . 
29 14494628 499815 14994443 14885071 154332 . 
30 14994443 499815 15494258 15178984 148405 . 
31 15494258 499815 15994072 15812678 155521 . 
32 15994072 499815 16493887 16269008 137365 . 
33 16493887 499815 16993702 16775055 163063 . 
34 16993702 499815 17493517 17270217 150790 . 

 
 

Table 2: No Early Release: Service Time = 150, Period = 500, and Utilization = 0.3 
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i Release Period Deadline Fnish Exe_time Status 
0 0 599778 599778 523698 184819 . 
1 599778 599778 1199555 762245 160577 . 
2 1199555 599778 1799333 1542641 176433 . 
3 1799333 599778 2399111 2194442 176981 . 
4 2399111 599778 2998889 2729002 154477 . 
5 2998889 599778 3598666 3503000 185599 . 
6 3598666 599778 4198444 3886919 137731 . 
7 4198444 599778 4798222 4611054 173263 . 
8 4798222 599778 5397999 5118171 159666 . 
9 5397999 599778 5997777 5797611 204256 . 

10 5997777 599778 6597555 6272533 128537 . 
11 6597555 599778 7197333 6998217 170065 . 
12 7197333 599778 7797110 7539528 180729 . 
13 7797110 599778 8396888 8185278 189391 . 
14 8396888 599778 8996666 8703932 149146 . 
15 8996666 599778 9596443 9502701 171446 . 
16 9596443 599778 10196221 9951648 160362 . 
17 10196221 599778 10795999 10678752 171315 . 
18 10795999 599778 11395777 11100477 147795 . 
19 11395777 599778 11995554 11559659 160975 . 
20 11995554 599778 12595332 12481800 167109 . 
21 12595332 599778 13195110 13014324 187013 . 
22 13195110 599778 13794887 13558450 180372 . 
23 13794887 599778 14394665 13980737 140876 . 
24 14394665 599778 14994443 14733357 203312 . 
25 14994443 599778 15594221 15513892 172852 . 
26 15594221 599778 16193998 15981692 166213 . 
27 16193998 599778 16793776 16606447 174184 . 
28 16793776 599778 17393554 17120401 153849 . 

 
Table 3: No Early Release: Service Time = 168, Period = 600, and Utilization = 0.28 
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Table 4: Early Release: Service Time = 160, Period = 400, and Utilization = 0.4 

i Release Period Deadline Fnish Exe_time Status 
0 0 399852 399852 494394 176018 X 
1 399852 399852 799704 647281 152930 . 
2 799704 399852 1199555 1305054 168032 X 
3 1199555 399852 1599407 1649524 168554 X 
4 1599407 399852 1999259 1947192 147121 . 
5 1999259 399852 2399111 2445739 176761 X 
6 2399111 399852 2798963 2576883 131172 . 
7 2798963 399852 3198814 3073384 165013 . 
8 3198814 399852 3598666 3390120 152063 . 
9 3598666 399852 3998518 3884049 194530 . 

10 3998518 399852 4398370 4145427 122416 . 
11 4398370 399852 4798222 4624632 161966 . 
12 4798222 399852 5198074 4979267 172123 . 
13 5198074 399852 5597925 5435863 180372 . 
14 5597925 399852 5997777 5741665 142044 . 
15 5997777 399852 6397629 6162686 163282 . 
16 6397629 399852 6797481 6605725 152726 . 
17 6797481 399852 7197333 6969967 163158 . 
18 7197333 399852 7597184 7478474 140757 . 
19 7597184 399852 7997036 7781403 153310 . 
20 7997036 399852 8396888 8156512 159152 . 
21 8396888 399852 8796740 8576252 178108 . 
22 8796740 399852 9196592 9051344 171782 . 
23 9196592 399852 9596443 9371293 134167 . 
24 9596443 399852 9996295 9838901 193630 . 
25 9996295 399852 10396147 10165134 164621 . 
26 10396147 399852 10795999 10555427 158298 . 
27 10795999 399852 11195851 10977960 165889 . 
28 11195851 399852 11595702 11434959 146523 . 
29 11595702 399852 11995554 11895670 173934 . 
30 11995554 399852 12395406 12157134 160843 . 
31 12395406 399852 12795258 12830206 183055 X 
32 12795258 399852 13195110 13310752 154789 X 
33 13195110 399852 13594961 13656303 172571 X 
34 13594961 399852 13994813 13943532 137358 . 
35 13994813 399852 14394665 14140300 144072 . 
36 14394665 399852 14794517 14563885 159258 . 
37 14794517 399852 15194369 15062654 144731 . 
38 15194369 399852 15594221 15368936 141577 . 
39 15594221 399852 15994072 15882111 167322 . 
40 15994072 399852 16393924 16219350 170864 . 
41 16393924 399852 16793776 16693467 153574 . 
42 16793776 399852 17193628 17013549 157298 . 
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i Release Period Deadline Finish Exe_time Status
X0 0 499815 499815 659331 165017

1 499815 499815 999630 802669 143372 .
X2 999630 499815 1499444 1795180 157530

3 1499444 499815 1999259 2284816 158019 X
4 1999259 499815 2499074 2422748 137926 .
5 2499074 499815 2998889 2901940 165713 .
6 2998889 499815 3498703 3191836 122974 .
7 3498703 499815 3998518 3844326 154699 .
8 3998518 499815 4498333 4283248 142559 .
9 4498333 499815 4998148 4801947 182372 .

10 4998148 499815 5497962 5249919 114765 .
11 5497962 499815 5997777 5928833 151843 .
12 5997777 499815 6497592 6447506 161365 .
13 6497592 499815 6997407 6770006 169099 .
14 6997407 499815 7497221 7237860 133166 .
15 7497221 499815 7997036 7867069 153077 .
16 7997036 499815 8496851 8359739 143181 .
17 8496851 499815 8996666 8873316 152960 .
18 8996666 499815 9496480 9178557 131960 .
19 9496480 499815 9996295 9800067 143728 .
20 9996295 499815 10496110 10309254 149205 .
21 10496110 499815 10995925 10806878 166976 .
22 10995925 499815 11495739 11282866 161046 .
23 11495739 499815 11995554 11876536 125782 .

X24 11995554 499815 12495369 12660548 181528
25 12495369 499815 12995184 13142633 154332 X
26 12995184 499815 13494999 13450884 148405 .

X27 13494999 499815 13994813 14261437 155521
28 13994813 499815 14494628 14399205 137365 .

X29 14494628 499815 14994443 15070570 163063
15079030 14994443 499815 15494258 15222063 .

31 15494258 499815 15994072 15869352 171614 .
32 15994072 499815 16493887 16359277 145115 .
33 16493887 499815 16993702 16850182 161785 .
34 16993702 499815 17493517 17297022 128773 .

 
Table 5: Early Release: Service Time = 150, Period = 500, and Utilization = 0.3 
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i Release Period Deadline Fnish Exe_time Status 
0 0 599778 982564 184819 X 599778
1 599778 599778 1199555 1293182 160577 X 
2 1199555 599778 1799333 1629452 176433 . 
3 1799333 599778 2399111 2584015 176981 X 
4 2399111 599778 2998889 2738848 154477 . 
5 2998889 599778 3598666 3532184 185599 . 
6 3598666 599778 4198444 4020071 137731 . 
7 4198444 599778 4798222 4620028 173263 . 
8 4798222 599778 5397999 5136809 159666 . 
9 5397999 599778 5997777 5779615 204256 . 

10 5997777 599778 6597555 6446708 128537 . 
11 6597555 599778 7197333 7106534 170065 . 
12 7197333 599778 7797110 7562815 180729 . 
13 7797110 599778 8396888 8218267 189391 . 
14 8396888 599778 8996666 8722978 149146 . 
15 8996666 599778 9596443 9487070 171446 . 
16 9596443 599778 10196221 9997504 160362 . 
17 10196221 599778 10795999 10642320 171315 . 
18 10795999 599778 11395777 11123377 147795 . 
19 11395777 599778 11995554 11593458 160975 . 
20 11995554 599778 12595332 12481698 167109 . 
21 12595332 599778 13195110 13473396 187013 X 
22 13195110 599778 13794887 13973610 180372 X 
23 13794887 599778 14394665 14258474 140876 . 
24 14394665 599778 14994443 14914610 203312 . 
25 14994443 599778 15594221 15539140 172852 . 
26 15594221 599778 16193998 16045798 166213 . 
27 16193998 599778 16793776 16537151 174184 . 
28 16793776 599778 17393554 17168931 153849 . 

 
Table 6: Early Release: Service Time = 168, Period = 600, and Utilization = 0.28 
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4 Refining the Deadline Miss Ratio Metric 
The deadline miss ratio is often used to evaluate performance.  However it uses a metric that may not be 
suitable for some workloads, including ones that incorporate early release.  In many SRT algorithms, once 
a job completes a task it sleeps until the beginning of the next period.  When the next period begins, the 
task’s next job is released whether or not the earlier job missed its deadline. This approach is also used in 
other conventional software, e.g. the open source MPlayer has a function named usec_sleep() that 
takes a similar action.  The idea is that when a job misses its deadline, the task is blocked until its next 
release. This means that subsequent jobs may be delayed for a full period.  This situation is illustrated in 
Figure 2, which shows three periods (p1, p2, and p3), where each period would normally have a job released 
at the beginning of the period.  However, during p2 no new job will be released because the task sleeps after 
its previous job overruns its service time during p1, thereby forcing the job that would normally execute 
during p2 to be released during p3.  Traditionally the deadline miss ratio (DMR) is calculated as  
 

number of deadlines missed / jobs released 
 
where a job that spans n periods counts for n − 1 deadline misses. As suggested by Figure 2, one could also 
interpret this situation as two deadline misses because the second job also missed its deadline because of 
the first job missed its deadline.  Similarly, if a job spans three periods and delays its successor to the forth 
period, it could be counted as three misses. In other word, the number of the deadline misses could be 
calculated as the number of period a job spans if the task postpones the next job release by sleeping until a 
later period, i.e., a job spans n periods counts for n deadline misses instead of n − 1, where n > 1. 
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Figure 2: Traditional Deadline Miss Count 

 
Another problem with the traditional DMR is that it uses the number of jobs actually released, instead 

of the number of possible jobs released, in the denominator. After a deadline miss, a task releases fewer 
jobs than it would have otherwise, and the metric reduces the DMR. For example, if a scheduler failed to 
schedule a task for 10 periods after it finished its first job prior to the deadline, it should have a DMR = 10/11 
instead  of 0/1 = 0.  

Further, suppose that an algorithm allows an SRT job to be released early: then there is no clear 
definition of traditional DMR.  Notice that the DMR could be refined so that an additional metric such as 
throughput is used in conjunction with DMR.  Then if early release of a job is allowed, the traditional DMR 
cannot be used as a metric. The traditional DMR in Figure 3 is 1/3, but the DMR values for Figure 4 and 
Figure 5 are not defined. If the early release is considered as a normal release at the previously predefined 
time, the DMR for Figure 4 and Figure 5 may be calculated as 2/4 and 2/3 respectively. Since 1/3 < 2/4 < 2/3, 
so the conclusion would then be that Figure 3 is better than Figure 4 which in turn is better than Figure 5. 
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Figure 3: Deadline Miss Count without Early Release 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Deadline Miss Count with Early Release 
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How can the case shown in Figure 4 (which completed four jobs in four periods) be worse than Figure 

3 that completed only three in the same amount of time? Based on this reasoning, we define the Improved 
DMR (IDMR) as 

  
IDMR = deadline misses / maximum possible jobs 

 
and use it together with the throughput for a more comprehensive comparison. The deadline misses are 
defined so that when a jobs spans n periods, there are n deadline misses instead of n − 1, where n > 1. The 
throughput is defined as  
 

Throughput = jobs completed  / maximum possible jobs 
 
The three examples have the same IDMR = 2/4, so throughput is used for the further comparison. The 
example in Figure 4 completed four jobs in four periods, so it is better than the other two that completed 
three jobs in four periods.  
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Figure 5: Deadline Miss Count with Early Release 

 
In Table 7 IDMR is used to highlight that fact that early release results in improved performance.  The 

table indicates the alternative measure of deadline misses as well as noting that the throughput of the 
individual task is higher (because early release does not waste CPU cycles by sleeping).  The jobs are 
completed very close to the predefined pace without skipping or fast-forwarding with early release and the 
overall system throughput reaches 100% which is 5.66% better than no early release. 
 

Measure No Early Release Early Release 
Period (μs) 400 500 600 400 500 600 
Budget (μs) 160 150 168 160 150 168 
Utilization (%) 40 30 38 40 30 38 
Max Possible 
Jobs 

43 35 28 43 35 28 

Jobs Completed 41 31 28 43 35 28 
Deadline Misses 4 8 0 7 7 5 
IDMR (%) 9.3 22.85 0 16.28 20 17.86 
Throughput (%) 95.35 85.57 100 100 100 100 
Total Throughput 94.34 100 

 

Table 7: Early Release Increases the Throughput 

 
Having higher overall IDMR is not really a bad thing from the throughput point of view. We ran 

several experiments with different mixture of tasks, and found that the result of early release depends 
strongly on the workload; we will investigate this phenomenon further in future work.  If a system contains 
only HRT tasks, the early release will not change the behavior of EDF scheduling because no job can 
overrun by definition. When there are many SRT tasks with no HRT or far less HRT tasks, the system can 
be either long-term or transiently overloaded. For long-term overload, all real-time tasks can still get their 
reserved resource and the overloaded SRT task may behave like submitting jobs in a lower rate. 

5 Refining Slack Time Scheduling Policies 
In the BACKSLASH algorithm, slack time donation is based solely on the earliest original deadline [23].  
In this section we demonstrate that in some cases performance can be improved by using slightly more 
general criteria for managing slack time.  This points out the need to consider other importance/urgency 
criteria to generalize the approach. 

Figure 6 illustrates the problems of both poor utilization estimation and an unfair slack time 
competition that can occur. The beginning of the shaded block marks the beginning of a period and the 
deadline of the previous period, and a gray block reflects the service time reserved for the task in a period. 
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The reserved service time is guaranteed within any period, but the actual usage depends on its dynamic 
priority. If the first job of task1 requires much longer service time as illustrated by the first rectangle in 
Figure 6, it cannot finish the job at the original deadline, d1,2, d1,3, d1,4, and so on. After the budget is 
exhausted in a period, it will be replenished with an extended deadline. If the extended deadline has highest 
priority, the job can be scheduled to run.  Otherwise, it will wait for the slack donation from other tasks. 
Thus, its priority will eventually get lower and lower by deadline extensions and still desperately needs 
slack time.  Its original deadline remains unchanged and is used to potentially compete with d2,1, d2,2, and 
d2,3 of task2 and d3,1 of task3 when slack is generated.  The cross-hatched block pattern marked as “Slack” in 
Figure 6 represents the potential slack consumption.  Task1 will always win the slack time competition 
using BACKSLASH algorithm, because it has the earliest original deadline, d1,1. In this situation, one 
rationale is for task1 to be responsible for its own poor estimation of the service time (or intentional denial 
of service – DoS – attack) and should not prevent other tasks from fair slack time competition. For 
example, a task can submit the resource requirement of 5/100 (WCET/P), enter an infinite loop after a job 
release, and always obtain the slack donation because of its earliest original deadline. 
 

Real service time for a job in task1

Task2

Task1

Task3

d1,1 d1,2 d1,3 d1,4 d1,5 d1,6 d1,7 d1,8

d2,1 d2,2 d2,3

d3,1

Slack

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Non-fair Competition of Task 1 S Marks the Slack Time Competition Pattern 

 
This can be addressed by monitoring task execution, and then choosing the best task for slack time 

donation using more information than the earliest original deadline. Besides providing the functionality of 
early release, the wait_for_next_release() system call is used to identify the boundary between 
jobs released by the same task.  Because the user application calls the wait_for_next_release() 
after a job is completed, it does not need to manually calculate the sleep time and call the sleep function.  
Once the boundary of the jobs can be identified, the ratio 

 
 

real service time of a job / est. service time of a job 
 
can be calculated to identify extreme underbooking, i.e. a DoS attack. The higher ratio tells us that the task 
may be underbooking processor time. Even though its job has the earliest original deadline, the slack time 
will not be donated to it unless there is nothing else waiting for slack time. Another purpose of this API is 
for gathering the statistics, because the periodic server has no idea that the real-time job is enqueued by a 
new release or coming back from preemption without this API. 

The problem can be viewed from another angle. If the slack is available and two jobs are waiting for 
the slack, we may choose the one that pays more money for the service or the one that is more likely to 
finish on time. The BACKSLASH algorithm schedules the overrun jobs using earliest original deadline as 
the dynamic priority for slack time, so it tries to meet the earliest deadline while giving the jobs with later 
deadlines more chances to compete for the slack time donation.  

There are still problems with this approach (which we expect to address in future work).  For example, 
since this approach does not use the earliest original deadline, there is no assurance that the scheduling 
algorithm is optimal.  
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6 Conclusion 
This work builds on the work of Brandt, et al. relating to slack time scheduling.  The technical report 
describes our first results in this extended work. 

Early release is intended to take advantage of variation in the amount of time required to execute jobs 
within a task, thereby allowing a job that overruns to temporarily propagate missed deadlines within the 
task, but to also give the task an opportunity to get jobs back onto their original schedule.  Our preliminary 
results on early release are encouraging. 

The early release study indicates that the traditional deadline miss ratio does not necessarily measure 
the complete performance of the set of tasks.  The IDMR measure, along with throughput, sheds additional 
light on early release performance.  Like the ongoing work on early release, the work on performance 
metrics will also evolve. 

Slack time scheduling could use arbitrary policies.  Of course as policies become more complex, they 
are less attractive for scheduling due to their overhead.  This work is inspired by the idea of generality, and 
by the problem of a task underbooking its reservation – effectively launching a denial of service attack on 
the other tasks in the system.  This leads us to consider policies of measuring the amount of underbooking, 
and for penalizing tasks that dramatically underbook their reservation.  This too is ongoing work. 
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