
1

Jamming and Sensing of
Encrypted Wireless Ad Hoc Networks

Timothy X Brown
Jesse E. James

Amita Sethi

University of Colorado at Boulder

Technical Report CU-CS-1005-06
Department of Computer Science

Campus Box 430
University of Colorado

Boulder, Colorado 80309

2

Jamming and Sensing of
Encrypted Wireless Ad Hoc Networks

Timothy X Brown, Jesse E. James, Amita Sethi
Electrical and Computer Engineering

Interdisciplinary Telecommunications Program
University of Colorado, Boulder CO 80309-0530

{timxb,jesse.james,amitha.sethi}@colorado.edu

ABSTRACT
This paper considers the problem of an attacker disrupting an
encrypted victim wireless ad hoc network through jamming.
Jamming is broken down into layers and this paper focuses on
jamming at the Transport/Network layer. Jamming at this layer
exploits AODV and TCP protocols and is shown to be very
effective in simulated and real networks when it can sense victim
packet types, but the encryption is assumed to mask the entire
header and contents of the packet so that only packet size, timing,
and sequence is available to the attacker for sensing. A sensor is
developed that consists of four components. The first is a
probabilistic model of the sizes and inter-packet timing of
different packet types. The second is a historical method for
detecting known protocol sequences that is used to develop the
probabilistic models, the third is an active jamming mechanism to
force the victim network to produce known sequences for the
historical analyzer, and the fourth is the online classifier that
makes packet type classification decisions. The method is tested
on live data and found that for many packet types the
classification is highly reliable. The relative roles of size, timing,
and sequence are discussed along with the implications for
making networks more secure.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Architecture and Design – Network communications,
wireless communication.

General Terms
Algorithms, Design, Experimentation, Security,

Keywords
Ad hoc networks, jamming, sensing, encryption.

1. INTRODUCTION
Ad hoc networks are envisioned as playing a significant
role in mission critical communication for the military,
utilities, and industry. An adversary may attempt to attack a
victim ad hoc network to prevent some or all victim
communication. Such denial-of-service (DoS) attacks have
been considered in ad hoc wireless networks at several
levels. A number of researchers have considered DoS
where the attackers are internal participants in the victim ad
hoc network (see e.g. [8]). Ad hoc networks require the
cooperation of peer nodes for their operation and are
especially susceptible to such peer-based attacks. In this
paper we consider encrypted victim networks in which the
entire packet including headers and payload are encrypted
and thus the attacker can not directly manipulate any of the
victim communication. In this case, the attacker must resort
to external physical-layer-based DoS, also known as
jamming.

Jamming can be as simple as sending out a strong noise
signal in order to prevent packets in the victim network
from being received. This method of jamming is not the
subject of this paper. This paper attempts to exploit the
protocols at various layers to get three advantages: jamming
gain; targeted jamming; and reduced probability of
detection. Jamming gain is the increase in efficiency from
exploiting features of the victim network relative to
continuous jamming. More precisely, it is the amount of
energy1 used to achieve a desired effect relative to the
amount of energy used to achieve the same effect with
continuous jamming. This gain translates directly into
reduced energy requirements for the attacker. At the link
level, corrupting a single bit in a packet will cause the
packet to fail its checksum and be discarded. For a 10,000
bit packet (1250 bytes) it implies that jamming gains as
high as 40dB are possible. Further, typical wireless packet
networks are lightly loaded so that jamming only when
packets are present has further jamming gains. These
examples make clear that there are significant jamming

1 or power as appropriate

3

gains possible. This concept is more fully explored later in
the paper.

Targeted jamming refers to jamming only specific victim
nodes, links, or flows. The attacker may be interested in
only certain parts of the victim network, and attacking only
these parts can lead to further jamming gains.

With reduced probability of detection, the victim network
may not realize that jamming countermeasures are
necessary. Targeting some TCP-DATA packets will cause the
TCP window to collapse and poor connection performance
that a user might attribute to network congestion or a low
quality wireless connection. Further, if ICMP packets are
not blocked the victim users will have contradictory views
of the network state. If jamming is discovered, lower
probability of detection jamming will be harder to detect,
localize, and suppress.

Jamming is not a transmit-only activity. It requires an
ability to detect and identify victim network activity, which
we denote as sensing. At the physical layer a sensor needs
to identify the presence of packets. Since the network is
encrypted, only the start time and size of the packet can be
measured. At higher layers a sensor needs to classify
packets using protocol information. In 802.11 for instance,
whether a packet is successfully jammed or not can be seen
by whether or not a node sends a short packet (i.e. the
ACK) within 10µsec.

The key insight in this paper is that encryption only
provides bit level protection of the data. This protection is
in the form of bit level operations to remove any exploitable
data structure. A packet network running protocols at
multiple layers reimposes structure on the data. Any
transmission follows specific patterns of DNS lookup, TCP
connection set up, IP ARP, AODV route requests, and
802.11 atomic data exchanges. While these do not
necessarily expose the bit-level data, they provide multiple
avenues for DoS attack.

1.1 A Layered Model for Jamming
Together jamming and sensing can be broken down into a
layered model similar to the OSI stack. We break it down
into three levels for convenience as shown in Figure 1. The
Link/Physical layer directly interacts with the media. If a
higher layer requests a packet to be jammed, then this lower
layer generates the physical signal and ensures that a packet
and each of its link layer retries are jammed. This layer also
provides the basic sensing capability of packet duration and
timing. If sophisticated enough it could shield the upper
layer from Link, MAC, and Physical layer control packets
such as RTS/CTS and only report the higher OSI layer
packets to the higher layer sensing and jamming.

The Transport/Network Layer interacts with the
corresponding Ad Hoc, IP, TCP, and UDP protocols. This
layer senses packet types and traffic flows which can then
be targeted by jamming.

The Application layer senses HTTP sessions, VoIP set up
and the like and targets specific user activities for jamming.
It also sets higher level policies that define when jamming
should take place and what targets in the victim network
should be jammed. Further, the goal may be purely to sense
the kind of network activity.

Each of these layers contributes to the overall performance
of the system so that each layer can provide its own
contribution to jamming gain, targeted jamming, and low
probability of detection.

This paper discusses exclusively the role of jamming at the
Transport/Network layer. The Link/Physical layer provides
a sensing and jamming service. The jamming service is
defined as jamming for a specified period, jamming a
specified number of packets, or to start jamming
continuously until a stop jamming request is made. This
protocol is described in more detail in Section 3. The
sensing provides a report on each packet observed at the
link layer. This report could conceivably include the
following information:

Size: The physical layer could measure the transmission
start and stop times or use other signal processing
techniques to estimate the packet size in bytes.

Timing: Similarly the packet start time can be estimated.

Source Token: While the actual address of the transmitter
source may not be known. Analysis of the transmitter signal
could distinguish different transmitters so that each
transmitter could be assigned a unique token.

Destination Token: As noted before, receiver ACKs can be
identified in many protocols by the unique timing. Similarly
by analysis of ACK transmitters the destination might also
be identified.

Application Sense Jam

Transport
Network Sense Jam

Link
Physical Sense Jam

Wireless Media

Figure 1: The sensing and jamming layered model

4

Unicast vs. Broadcast: In many MAC and Link protocols,
broadcast packets are not acknowledged while unicast
packets are acknowledged. This could be used to identify
whether a packet is unicast or broadcast.

While all of these are possible, only the first two Size and
Timing are assumed available since these make the fewest
assumptions about the underlying network.

The Transport/Network in turn provides jamming and
sensing services to the higher layers. The jamming service
can be as simple as to attack a target node at the greatest
jamming gain possible while avoiding detection. The
sensing service is to report on each packet seen adding to
the Link/Physical layer attributes a broad packet
classification into Data or Control and a narrow
classification into specific Data (TCP or UDP) and Control
(TCP-ACK, TCP-SYN, etc.) types.

It should be emphasized that this layered model applies to
the particular type of external DoS attack that is the subject
of this paper. As in the OSI model, the choice of layers is
not absolute and different architectures might have greater
or fewer layers. This layering provides the usual benefits of
decomposing the problem into manageable modules that
define layers in terms of services between layers and also
by allowing a layer to be combined interchangeably with
different layers. The modularity is in the sense that a single
Transport/Network layer might be reused with many
different Link/Physical layers to attack networks build on
protocols such as 802.11a or 802.16.

1.2 Sensing & Jamming in Ad Hoc Networks
In network protocols, certain critical packets are necessary
for operation. Jamming TCP-SYN, or TCP-SYN-ACK packets
will prevent a TCP connection from being established.
Jamming ARP-REQUEST or ARP-RESPONSE packets will
prevent IP from associating IP and MAC addresses. Ad hoc
networks add another protocol that can be attacked.
Jamming AODV-RREQ or AODV-RREP packets will prevent
ad hoc routes from ever being established. Jamming a few
protocol control packets can prevent or delay connections;
preventing the connection when the goal is to shut the
connection down and delaying the connection when the
goal is to inhibit communication without being detected.

As suggested from the above, knowing which packet to jam
is the key to getting significant jamming gains. A sensor
needs to identify the key control packets from different
protocols. Ad hoc network protocols add additional packet
types that can be detected. Sensing can be online or offline.
In online sensing packets are identified as they are received.
This can be difficult since in some cases a packet is
identified within a protocol sequence that has not yet
completed. Offline sensing is allowed to classify packets
received in the past based on packets received both before

and after the packet in question. These jamming and
sensing ideas are explored more in a later section.

By the time a sensor classifies a packet it is too late to be
jammed. Any jamming signal in response to the sensor
classification would arrive after the packet is received by its
intended receiver. This leads to the third role played by ad
hoc networks. In a multi-hop path, a packet is transmitted
and retransmitted several times. This provides an
opportunity for a packet to be identified on one hop and
jammed on the second hop. This idea is shown in Figure 2.

Finally, ad hoc networking could support a network of
attackers sharing sensing information and jamming attacks.
In this paper only a single attacker is considered

1.3 The Role of Encryption
MAC protocols can have various levels of encryption.
802.11 Wired Equivalent Privacy (WEP) and WiFi
Protected Access (WPA) both are designed to protect the
contents of the packet but not the control information in the
MAC header [17]. Some implementations go further and
also encrypt the entire MAC header [10]. In this paper, we
assume that the entire packet is encrypted and only size and
packet timing information can be measured. The main
difference then is that encryption may change the packet
size by an unknown amount and disrupt the
Transport/Network layer sensing. The above encryption
schemes add a fixed offset that, as we will see, do not
impose serious difficulties on the sensing. Another type of
encryption is exemplified by the 802.11i WPA2 protocol.
This protocol uses a block encryption so that all packet
sizes are rounded up to the nearest multiple of 128bits. This
tends to reduce the fidelity of the sensing since similar size
packets get clumped to the same size. It is assumed that
none of these schemes has any significant effect on the
timing of packets.

In the simulated and emulated experiments in this paper, no
actual encryption takes place. The encryption is modeled as
an offset to the size according to one of the above models
and the packet size and timing information are passed to the
Transport/Network layer sensor. The sensor is assumed not

A B

C S/J

Figure 2: Exploiting multi-hop ad hoc routing. Ad
hoc node A is communicating with C through B. The
Sensor/Jammer identifies the target packet on the
first hop and jams it on the second hop.

5

to know the encryption scheme and must adaptively
estimate its effect.

1.4 Prior Work
Some attention has been given to attacks on the physical
layer [16] of wireless networks. While much more
consideration has been placed on attacks against the
protocols that control these networks [7][8][9]. In [16],
Stahlberg describes techniques to jam 802.11 networks by
attacking the physical layer characteristics. Stahlberg
describes jamming efficiency that can be attained by
focusing jam efforts at specific transmission timeframes. He
does not describe any intelligent methods of jamming a
specific protocol nor does he mention any method of
determining how jam periods are specified.

Negi and Perrig propose that an intelligent jammer could
exploit MAC layer semantics to carry out jamming of
specific MAC packet types [13] which they argue would
cause a cascading effect due to the use of random back-off
algorithms. Other papers propose attacks against the MAC
and transport layers from the perspective of either a
network participant [8][9] or as a node that creates pockets
of congestion [7].

It should be noted that besides aiding jamming, sensing has
other uses. Cryptanalysis attacks on encrypted data benefit
from knowing the plaintext bits [3]. For known protocols, if
packets can be identified then this allows bits such as the
protocol value, version number, and length fields to be
inferred. In some attack applications, the goal is to identify
user activity. For instance, websites can be identified by the
pattern of packets exchanged [4][18]. Traffic analysis can
be used to attack user privacy [6][15]. The sensing
described in this paper can provide more detailed pattern
information that can refine such pattern and traffic analysis.

1.5 Paper Overview
Within the framework defined so far this paper provides
seven contributions. First it demonstrates the potential
Transport/Network layer jamming gains within a simulated
environment. Second a simulated jamming protocol is
developed that allows testing on an ad hoc network of lap
top computers. Third the potential jamming gains are
demonstrated on a live network using the simulated
jamming protocol. Fourth a sensor is developed that uses
packet size, timing, and sequence. It uses off-line sensing to
adapt an online sensor to the current network conditions
and a probabilistic model of the sizes and inter-packet
timing of different packet types. A historical method for
detecting known protocol sequences is used to develop the
probabilistic models. The fifth is an active jamming
mechanism to force the victim network to produce known
sequences for the historical analyzer. The sixth is the online
classifier that makes packet type classification decisions.

The method is tested on live data and found that for many
packet types the classification is highly reliable. Finally the
relative roles of size, timing, and sequence are discussed
along with the implications for making networks more
secure.

2. POTENTIAL JAMMING GAINS
To see the potential for jamming we designed a simple
modification to the network simulator, ns2, that enabled us
to run jamming “recipes” that would jam specific packets.
A typical recipe is shown in Figure 3. The goal is to slow
the connection without causing the connection to fail. The
TCP sender (left) has an established connection with the
receiver (right). At time 305 sec, a 10 sec Jam signal causes
the TCP window size to shrink to 1. Due to the TCP
exponential back-off, the first TCP packet is seen 10
seconds after the noise signal. TCP forces an AODV route
lookup. The attacker then jams 6 of the 7 RREP retries to
obtain a 4 sec timing delay. Jamming the seventh would
cause AODV to give up and alert the user, so the seventh is
let through. The following TCP Ack is jammed to force the
RTO to back-off further. This eventually triggers another
AODV route lookup, and so on.

To put a number to the jamming gain, we use the following
model. We assume that the cost of jamming a single packet
is equivalent to 10msec of jamming. At the MAC layer a
packet and any retries may need jammed and the 10msec
represents the total of this effort. In reality the
Link/Physical layer attacker may be more or less efficient
than this, but this is a function of the Link/Physical layer
jamming gain and outside the scope of this paper.

Applying this to simulated jamming attack, one cycle of
AODV and TCP jamming consists of 7 jammed packets
over 20 seconds. Each cycle admits one TCP-DATA
packet, but, since it is never acknowledged the transfer
never progresses. At 10msec per packet jammed, this
implies that 70msec of jamming is equivalent to 20 seconds
of continuous jamming. The net result is a sustainable
jamming gain of 20sec/70msec = 286. This jamming gain is
produced by a combination of jamming between multiple
protocols. The simulator is just one implementation of these
protocols and so we developed a test bed for simulating
jamming recipes against protocols implemented in real
networks.

6

3. TEST BED
A test bed was constructed for testing the sensing and
jamming. It consisted of Linux laptops [11] running the
AODV-UU [14][19] protocol. The APE Mackill [2][20]
allowed specific topologies to be set up on the desktop. The
sensing and jamming was focused on the
Transport/Network layer of this paper. For sensing the
802.11b the attacker used an Atheros 802.11 card in
monitor mode. This passed all packets to the sensor with
only the 14 byte Ethernet header. The Jamming used the so-
called Simulated Jamming Protocol (SJP). Every victim
node in the SJP filters all packets according to a signal sent
by the attacker. The filter was written using the Click
Modular Router [5]. When running in kernel level, the
Click software assumes the operating system’s role of
packet receiver. When a packet enters through the wireless
interface, it is given exclusively to the router software. The
software then decides to either give it to the OS or to
perform some act upon it. The architecture is shown in
Figure 4. The Attacker sends jamming signal packets to a
Jam Receiver module in the victim node. The packets are
one of the following four instructions: Jam for a specified

period of time; jam a specified number of packets; jam all
packets indefinitely; or stop jamming. These instructions
define jam periods. When a packet arrives over the wireless
interface, the jam receiver either discards the packet or
forwards it to the kernel depending on whether it is in a jam
period or not. The attacker sends its instructions over a
separate wired interface to avoid any contention on the
wireless interface. The attacker can address the jamming to
individual nodes or broadcast to all nodes.

We note that the emulation is not completely realistic. It
does not model the interaction between jamming and the
wireless transmitter’s carrier sensing and MAC layer
RTS/CTS/ACK packets. The SJP is designed to work
above any MAC protocol and could be customized to
interact with a specific MAC protocol to be more realistic.

The test bed used three configurations:

C1: The first is a pair of victim laptops one running the
Apache server [1] and the other running a web browser
application. The attacker node is placed so that it can
receive the exchange of wireless packets between the nodes.
A wired Ethernet hub connects the three computers so that
SJP packets can be sent from the attacker to victim nodes.

C2: The second is identical to the first, except that the
server node is connected to the Internet.

C3: The third is similar to Figure 5 with APE used to force
a two hop path between nodes 1 and 4. The attacker node is
placed so that it can hear traffic to and from node 4.

4. TEST BED JAMMING GAINS
This section provides some insights into the potential
jamming gains that are possible. The first results show what
is possible when a TCP startup sequence is attacked.

Figure 5: Multi-hop scenario simulated with
Mackill tool of APE

TCP 5800

TCP 5801

Ack 5800

RREQ 1

RREQ 2

RREQ 7
RREP 7

TCP 5801

RREQ 1

RREQ 7
RREP 7

TCP 5801

305.0

314.99
325.159

325.501

329.001

329.002
329.010

345.637

349.001

349.003
349.010

Noise / Jam

time

Figure 3: Simulated jamming attack on AODV/TCP

Kernel

eth1
(wireless)

eth0
(wired)

Click Router

Jam
Receiver Discard

LAN
Card

Out0

Out1

In0

In1

Figure 4: Simulated Jamming Protocol

7

Configuration C1 was used and the two 802.11 interfaces
were in ad hoc mode. An HTTP connection was established
between them to create a valid ARP table entry. The
connection was terminated and then the client was jammed.
Normally a series of UDP packets (DNS Lookup) followed
by TCP-SYN, TCP-SYN-ACK, TCP-ACK are exchanged in the
initial 3-way handshake. With jamming the client never
receives the TCP-SYN. It retries four times with the result
that it aborts the connection setup. Further the victim
assumes something is wrong with the ARP table and it
starts broadcasting ARP requests. The resulting times are
shown in Table 1. The timing in this sequence is
remarkably precise and was similarly precise across
multiple runs which suggest that packet transmissions are
predictable. As verification, the same experiment was
replicated in Windows XP [12] with similar results except
the time period between the 3rd and 4th TCP-SYN was 24
seconds. The predictable sequence timing suggests that
precision jamming is possible. Using the model of 10msec
of jamming per packet jammed, jamming the first TCP-SYN
yields a 3 sec delay. The jamming gain is 3sec/10mses =
300. Similarly jamming the first and second yields a 9 sec
delay and the jamming gain is 9sec/20msec = 450.
Eventually TCP gives up and the jamming would need to
jam one ARP-REQ per second (jamming gain is 100) to
continue blocking the connection. Though not shown here,
the timers on the TCP-SYN-ACK have similar backoff steps
and yield similar delays. So, a more aggressive attack
would jam the TCP-SYNs followed by the TCP-SYN-ACKs to
yield a connection setup delay approaching one minute.
This scenario shows that large jamming gains over 100 are
easily obtained with Transport/Network layer jamming.

The next chart examines a similar scenario using AODV-
UU for the routing in configuration C3. The attacker first
jams five route request packets and then lets the sixth
through to establish the route. Jamming the sixth would

cause the connection to fail and notify the user. Next the
TCP-SYN packets are jammed. The results are shown in
Table 2. As can be seen, AODV-UU aggressively sends
route request packets over the first 0.8 second. This time
does not add to the delay to the subsequent TCP-SYNs which
appear 3, 9, and 21 seconds after the start the same as in
Table 1. Thus, the additional effort to jam the AODV-
RREQ does not provide additional jamming gain.

This result and the simulation in Section 2 show that the
attacker should directly jam TCP startups when possible or
use a combination of AODV and TCP for an ongoing
connection.

5. SENSING
The simulation and experimental results show that jamming
has the potential for large gains, if the packet types are
identified. This section describes the approach to sensing
packet types. There are two approaches to classifying
packets into types. The first classifies packets as they arrive
(so-called online classification). The second is allowed to
collect more observations before making the decision on
packet type (so-called offline classification). Online
classification is the preferred approach, but as will be
shown in the following subsections, both online and offline
classification have a role.

5.1 The Role of Size, Timing, and Sequence
The Link/Physical Layer reports on the timing and size of
packets. These measurements do not necessarily need to be
accurate, and the approach in this paper can detail with
measurement variations, but for simplicity we will assume
that they are reported without errors. We also assume that
the lower layer reports all packets in the correct sequence.
Though measured accurately, packet sizes vary across
encryption as described in Section 1.3 and also because of
protocol implementation variations, and variations in how

Table 1: Test bed TCP-SYN jamming gain

Packet
Jammed

Total time
(µsec)

∆t
(µsec)

Cumulative
Jam Gain

TCP-SYN 0 0 300

TCP-SYN 2991910 2991910 450

TCP-SYN 8991910 6000000 700

TCP-SYN 20991910 12000000 650

ARP-REQ 25991900 4999990 540

ARP-REQ 26991900 1000000 467

ARP-REQ 27991900 1000000 414

ARP-REQ 28991900 1000000 375

ARP-REQ 29991900 1000000 -

Table 2: Test bed AODV/TCP-SYN jamming gain

Packet
Jammed

Total time
(µsec)

∆t
(µsec)

Cumulative
Jam Gain

AODV-RREQ 0 0 1

AODV-RREQ 1350 1350 16

AODV-RREQ 323240 321890 11

AODV-RREQ 324440 1200 20

AODV-RREQ 813240 488800 16

TCP-SYN 819140 5900 50

TCP-SYN 2993010 2173870 129

TCP-SYN 9000120 6007110 262

TCP-SYN 21002540 12002420 -

8

the size might be reported at lower layers. Packet timing,
and in particular, inter-packet spacing varies for the above
reasons plus variations caused by network congestion.
Protocol sequence does not vary (an ACK can only occur
after a DATA packet) but multiple overlapping data streams
require deconfliction. Therefore, the identification of packet
types is statistical.

The sensor observes over time a sequence of packet sizes
with known packet spacing. From this observation, O, it
chooses the packet type T with the maximum a posteriori
probability (MAP):

{ })|'(maxarg
'

OTPT
T

= ,

where P(T|O) is the probability of packet type T given
observation O. Using Bayes rule:

)(
)()|(

)|(
OP

TPTOP
OTP = .

We note that P(O) is independent of T, so that the MAP
decision simplifies to

 { })'()'|(maxarg
'

TPTOPT
T

= . (1)

So, classification requires an a priori estimate of the
probability of each packet type and an estimate of the
probability of an observation given each packet type. These
are described in the next section.

5.2 Probabilistic Model of Size
What if our only observation is the size, S, of the current
packet? How useful is size to determining packet type?
Table 3 categorizes 945 packets captured between two
laptops in configuration C1. It consisted of downloading a

simple website with pictures and scp transfers.

Some sizes correspond to a unique type. Any packet over
74 bytes corresponds to TCP-DATA and 60 bytescorresponds
to TCP-KEEP-ALIVE. For sizes, S, which are used by only one
packet type T, P(T|S) = 1. The exceptions are 42 bytes
(ARP-REQ and ARP-RESP), 66 bytes (TCP-ACK, TCP-FIN, and
AODV-RREQ), 74 bytes (TCP_SYN_ACK and TCP_SYN), and
62 bytes (AODV-RREP(unicast), and AODV-
RREP(broadcast))2. In these cases P(T|S) < 1 and the most
likely packet given S is chosen (e.g. TCP-ACK). Using MAP
classification on this data would yield 98% accuracy. Of
course 92% of the packets are the easy to identify TCP-DATA
and TCP-ACK. Results in Section 7 provide more detailed
analysis.

Table 4 lists aggregate packet size statistics from four
packet captures of a WLAN network3, a total of 1984
packets sent between a client and server over a wireless link
in configuration C2. The size variations in the third column
for TCP-ACK and of TCP-SYN-ACK are from different packet
captures on different networks. Within a capture they were
a consistent size. Further we expect the encryption
algorithms to add a consistent modification to each of these
packet sizes. With the incorrect packet size model, the
MAP classifier will not achieve high classification
accuracy. The problem, then, is to develop a model for size
that captures these variations initially and can adapt to the
specific sizes present in the victim network. This model can
be used in the MAP classifier. For this we use the Bayes
equivalent MAP classifier in (1). The key to this approach
is that P(S|T) is independent of the other packet types and

2 In AODV-UU, broadcast AODV-RREP are used as HELLO packets.

The careful observation of network activity in this research has
been an exercise in identifying anomalous non-standard network
behavior across many protocols.

3 An ordinary WLAN was used because it allowed different
combinations of operating systems and servers.

Table 4: Distribution of Packet Sizes (bytes) across
four different WLAN networks.

Packet Type # of Packets Sizes utilized P(T)

ARP REQ 6 42(6) 0.003

ARP RESP 10 42(10) 0.005

TCP-ACK 714 54(113), 66(601) 0.360

TCP-DATA 1120 Various (95%>100) 0.565

TCP-FIN 39 66(39) 0.020

TCP-SYN 30 74(30) 0.015

TCP-SYN-ACK 31 58(4), 74(21), 78(6) 0.016

UDP-DATA 34 Various 0.017

Table 3: Distribution of packet sizes (bytes) in an
ad hoc network.

Packet Type # of Packets Sizes utilized P(T)

ARP-REQ 2 42 0.002

ARP-RESP 2 42 0.002

TCP-ACK 342 66 0.362

TCP-DATA 529 (all >74) 0.560

TCP-FIN 5 66 0.005

TCP-SYN 3 74 0.003

TCP-SYN-ACK 3 74 0.003

TCP-KEEP-ALIVE 12 60 0.013

AODV-RREQ 6 66 0.006

AODV-RREP(unicst) 6 62 0.006

AODV-RREP(brdcst) 35 62 0.037

9

so it allows independent estimation of the size distribution
for each type. The coupling between types is given by the a
priori type probability P(T) given in the last column of
Table 4. The data in the third column can be the basis of the
initial P(S|T). In order to capture the uncertainty the
distribution is initially set to a broad distribution. Figure 6
shows an example for TCP-ACK.

 The next section describes a method for getting samples of
packet sizes for different traffic types. These samples are
used to modify the distribution as follows. For each sample
(S,T), we set P(S|T) = P(S|T) + �T and then renormalize the
distribution to have total probability 1. The constant �T sets
the rate that the distribution adapts with new samples. The
subscript indicates it can be different for different packet
types. Generally, �T is larger for packet types that are more
rare to speed their adaptation. It should be noted that when
most sizes correspond to a unique packet type as is the case
in Table 4 and would be true for any size transformation
that is a simple additive offset, the distribution only needs
to start to converge on the correct distribution for the MAP
classifier to be correct. Thus, any reasonably accurate (S,T)
samples will yield a high accuracy MAP classification.
Some packet types, like TCP-DATA can be classified
accurately with no training at all. Large packets are simply
data. This long packet is data, short packet is control is the
basis for bootstrapping identification of samples (S,T) as
described in the next section.

5.3 Historical Analyzer
In order to derive samples of (S,T), we use the full size,
timing, and sequence information over a historical packet
window of W packets. Protocols introduce distinctive
sequences, Q, such as data exchange (TCP-DATA, TCP-ACK)
and TCP startup (TCP-SYN, TCP-SYN-ACK, TCP-ACK). A
large packet followed shortly by small packet is likely a
characteristic TCP DATA and ACK exchange.4 An L packet

4 Recall that in our sensing model we can not distinguish different

senders, so the sequence is large packet, small packet. If the
senders can be distinguished then the sequence would be large
packet from one device, small packet from a different device.

sequence is defined by a structure Q = (T1, τ2, T2,…, τL, TL)
where Ti is the ith packet in the sequence and τi is the
distribution of time between packet Ti-1 and Ti in the
sequence. What is actually observed is O = (S1, t2, S2, …, tL,
SL) where Si is the size of the ith packet and ti is the time
gap between adjacent packets.

The timing distributions are defined by a mean and standard
deviation, (µ, σ). Given τ, the probability of inter-packet
interval t is defined by a Gaussian distribution:

2

2
1

2
1)|(z

etP
−=

π
τ ,

where z = (t – τ)/σ is the normalized Gaussian variable.
Thus we compute the probability of a sequence Q given
observation O as5

 ∏
=

=
L

i
iiiii KTPTSPtPOQP

1

)()|()|()|(τ

where we define P(t1|τ1) = 1 and K = P(τi)/P(ti)P(Si). The
value of K requires distributions across all target sequences,
inter-packet times and packet sizes. For simplicity at this
stage, we use K = 10. Longer sequences multiply more
probabilities together and thus tend to be smaller. This
choice compensates for this effect with minimal
assumptions about the network.

Each packet Si, i = 1,…, W in the history window is a
potential sequence starting point. The sequence Q that
maximizes P(Q|O) is computed and Si is assigned type T1
from the sequence Q. The goal of the historical analyzer is
to provide accurate samples (S,T) for adapting the packet
size distributions. In many cases even the maximum
probability sequence Q is still unlikely. Thus, a minimum
threshold θ is defined and the classified packet is not used
unless P(Q|O) > θ.

The history analyzer focuses on the sequences in Table 5.
These sequences we refer to as lower protocol sequences
since they depend on the communication transport and
network layers. These can be composed into upper protocol
sequences derived from application activity. For instance,
an FTP session, consists of an AODV, ARP, DNS-lookup,
and TCP-Startup sequence followed by multiple Data-Ack
sequences. Recognizing these upper protocol sequences
while potentially important would be in the attacker’s
Application layer and so outside the scope of this paper.

5.4 Online Classifier

For the purposes of this paper, we assume this extra fidelity is
unavailable.

5 This makes the independence assumption between the different
sequence components.

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103

Size Distribution

P
er

ce
nt

 t

Figure 6: Initial size distribution of TCP_ACK packet.

10

The online classifier differs from the history analyzer in that
it must make a packet classification on each packet as it
arrives in order to feed information to the jamming module
in a timely manner. In this scenario, a sequence may or may
not be helpful depending on where a packet type appears in
a sequence. The TCP-Startup sequence is not useful for
online classification of TCP-SYN packets. L = 1 is a valid
sequence and equates to classifying a single packet by size.
Each sequence with L > 1 implicitly defines initial
subsequences by using less than L packets. Thus the online
classifier uses whatever sequence or sequence fragments it
can in order to classify the current packet.

In this paper, we simplify the use of sequence by limiting
the activity to one connection at a time. A large number of
co-mingled connections would produce sequences with
other packets in between. In principle the search for
sequence matches can be extended to skip over intermediate
packets. Future work will investigate this more fully.
Another alternative that was explored was to use jamming
to “reset” the network and simplify the traffic seen by the
attacker. This is one of several potential uses of jamming in
sensing discussed in the next section.

6. JAMMING FOR ACTIVE SENSING
Jamming has been discussed solely as a mechanism for
disrupting the victim network. Sensing has been discussed
as a passive observation activity. But, jamming can play a
role in sensing. We describe three roles: discerning
different traffic types, resetting the network, forcing the
victim to produce certain packet types.

Different protocols react differently to lost packets. In this
way, jamming provides one method for distinguishing
protocols. TCP will back off if packets are lost, while UDP
will continue to push out packets. Experiments were carried
out that demonstrated this phenomenon. The protocols do
react as expected to a burst of jamming, TCP throughput
temporarily dips when jammed while UDP does not react.
This response was found to be more difficult to classify
than passively sensing the Data-Ack sequence of TCP. This
approach would be worth pursuing in special cases such as
distinguishing UDP and TCP streams that consist of small
data packets similar in size to the TCP-ACK.

When an attacker turns on, the victim network may have
many connections in progress that impedes sensing.
Further, the vulnerable connection setup phase has passed.
A second concept that was tested was to jam until
connections fail so that the sensor has more distinct flows to
work with and jamming could be targeted. To test this, we
used configuration C1 and started a large HTTP download.
The client was then jammed for increasing periods of time
and then observed to see if the TCP connection continued
or TCP had capitulated. Through this testing it was
determined that the Apache Web server would hang its
connection after about 18 seconds of jamming. After this
failure, the user would likely retry the link starting a new
connection setup that could be delayed arbitrarily through
jamming.6 An 18 second burst of jamming in order to take
control of the victim network is a reasonable tradeoff.

To confirm whether this was a general result or unique to
Apache, we attempted the same experiment with
configuration C2 accessing large data files from common
public sites. In some cases the behavior was similar to
Apache, in others such as www.google.com, the TCP
session persisted after more than 10 minutes of jamming.
This is detrimental to getting good jamming gains, but
useful for low probability of detection since it shows that
long jamming periods may never result in a user
notification.

Sensing requires examples of each packet type in order to
adapt. Certain packet types such as ARP packets are rare. A
third use of jamming in sensing is to force the victim
network to produce rare packet types. A naïve approach
would be to jam a network for the 5-20minutes it takes for
the ARP cache to timeout. A more practical approach is
required that does not entail extensive jamming periods. As
noted in Section 4 a failure to establish a TCP connection
results in a series of ARP requests. This requires far less
jamming to produce.

The results in this session suggest that jamming may have a
role in sensing. Further work is required to formalize what
is possible.

7. TEST BED SENSING
To test the sensing we use configuration C2 between two
laptops with an 802.11 interface in ad hoc mode. The
experiment is to show how the sensing performs classifying
ARP, TCP, and UDP packets in three scenarios since these
packets are part of the attack with the highest jamming gain.
In each scenario, a monitor records each packet as it is
received and reports the timing and a size that depends on

6 If this is performed only once at attacker power up it may not

alert the victim to the attacker’s presence.

Table 5: Types of sequence
Sequence Name Packets in Sequence

Data-Ack TCP-DATA, TCP-ACK

ARP ARP-REQ, ARP-RESP

TCP-Startup TCP-SYN, TCP-SYN-ACK, TCP-ACK

AODV AODV-RREQ, AODV-RREP(unicast)

DNS-Lookup UDP-DATA, UDP-DATA

11

the encryption model. The scenarios differ in the encryption
model:

Scenario S1: reports the actual packet size.

Scenario S2: reports the packet size with an offset of 10
bytes.

Scenario S3: reports the packet size padded to the next
nearest multiple of 16 bytes.

In each scenario two sensors are applied. The first sensor
only uses size in estimating the packet and does not use
timing or sequence nor does it use the historical analyzer to
adapt the size distribution. The other sensor is the adaptive
sensor defined in this paper. The adaptive sensor first
observes 2000 packets to adapt the size distributions using
the historical analyzer and then proceeds to the online
classification based on sequence and size. The results are
shown in Figure 7 tabulated in a so called confusion matrix
{c(T,T’)} that counts for each packet type, T, how often it
was classified into packet type T’. An ideal classifier would
have c(T,T’) = 0 except on the diagonal when T = T’.
Packets on the highlighted diagonal are correctly classified.
Since these were based on actual traffic captures, the
number of packets in each confusion matrix is not the same.
But, the performance is still comparable. In (a), using only
size the classifier correctly classifies ARP-REQ, but the ARP-
RESP are incorrectly classified also as ARP-REQ. Both of
these packets are the same size and so there is no way to
distinguish the two packet types based on size. A similar
phenomenon occurs between TCP-FIN and TCP-ACK and
between TCP-SYN and TCP-SYN-ACK. When an offset is
introduced, as in (c), the size-only classifier makes many
more mistakes. When the padding is introduced, as in (e),
the classifier is unusable for jamming.

The performance when the adaptive algorithm is applied is
shown in Figure 7b. Compared to (a), the classifier can
distinguish correctly between ARP-REQ and ARP-RESP, and
between TCP-SYN and TCP-SYN-ACK. TCP-FIN is incorrectly
classified, but, this is expected because no sequence for
TCP-FIN was defined that can be used to adapt its
distribution. In (d) the results are equally good. A simple
offset does not change the ability to distinguish between
different packet types. In (f) the padding clumps all the
TCP control packets to the same size. The TCP-ACK packet
has a much higher prior distribution compared to other
control packet so that sequence can not separate out the
other control packets as it has been implemented here.
Further work is investigating this issue.

8. LESSONS LEARNED: MAKING
NETWORKS MORE SECURE
The attacks in this paper are based on carefully exploiting
protocol patterns and consistencies across size, timing and
sequence. This suggests that to make networks more secure

these consistencies should be removed wherever possible.
For size, padding control packets so that they are all the
same size will make it difficult to discern different packet
types. Padding all packets including control so that they
have the same minimum size (say 100 bytes) will further
remove size as useful metric. For wireless MAC protocols
such as 802.11, every packet has substantial overhead so
that small packets already consist mostly of this overhead.
Additional padding will have minimum effect on
throughputs.

Timing in these protocols is overly precise. In TCP, the
receiver does not use the three second back off time
between the first and second TCP-SYN. Indeed, if the first
one has been jammed it is not even expecting the second.
Similarly, the precise timing between many packets in the
sequence can be varied by significant factors so that it is
difficult to precisely jam the packets. The timing of some
packets such as TCP-ACKs is used by protocols for
estimating aspects of the network. But, it is conceivable
that these protocols could be modified to allow for added
delays. For instance, the header could indicate any
additional delay that was added for security reasons so that
this could be factored into RTT calculations.

Sequence for the protocols is immutable. But, it also can be
foiled. One approach is to aggregate multiple packets. This
will affect both timing and size of packets as well as
potentially hiding the precise number of packets that are
exchanged. Another attack is what we refer to as the zebra
defense in which a single connection is striped across
multiple TCP connections so that the attacker has difficulty
separating and attacking individual victim connections.

9. CONCLUSIONS
Jamming and sensing are two related functions in physical-
layer-based denial of service attacks against an encrypted
wireless ad hoc networks. These functions are complex and
the layered approach developed in this paper showed how
they could be broken down into a manageable design
problem. This paper presented initial results in designing
such a layered attacker for the Transport/Network layer.
Jamming can get significant jamming gains, well over 100,
when it knows the packet type and timing. Interestingly
most of these gains were produced by attacking packets
above the ad hoc network layer. Protocols introduce highly
predictable timing that can be exploited. The limited
information of packet size, timing, and sequence is enough
to accurately predict packet types. Using a combination of
offline historical analysis of sequence to provide training
data for the online models, a packet classifier was
developed that adapts to variations across networks and
across different encryption models. The development in this
paper suggests simple methods for making victim networks
less vulnerable to these kinds of attacks. That said, wireless
TCP/IP based networks are ubiquitous and a complete

12

legacy backhaul is unlikely leaving a significant number of
vulnerable networks.

The research presented here is ongoing. Future work will
fully connect and test the jamming and sensing which were
treated separately. The statistical sensing tools continue to
be refined. A few representative attacks were presented and
the test bed tools described here are being used to
methodically evaluate other attacks. Scaling to larger ad
hoc networks and networked attackers is the long term goal.

10. REFERENCES
[1] The Apache HTTP Server Project, release 2.0,

downloaded Sep. 2004. http://httpd.apache.org/

[2] APE Project, How to build, install and run the APE
testbed, Uppsala University, Nov. 8, 2002
http://apetestbed.sourceforge.net/ape-testbed.pdf

[3] Bellovin, S.M., Probable plaintext cryptanalysis of the
IP security protocols, In Proc. 1997 Symposium on
Network and Distributed System Security. Feb. 1997
pp. 52–59

[4] Bissias, G.D., Liberatore, M., Jensen, D., Levine, B.N.,
Privacy Vulnerabilities in Encrypted HTTP Streams, In
Proc. Privacy Enhancing Technologies Workshop
(PET 2005).

[5] Click Modular Router Project, MIT, release 1.4.3,
downloaded Dec. 2004 http://pdos.csail.mit.edu/click/

[6] Fu, X., Graham, B., Bettati, R., Zhao, W. Active
Traffic Analysis Attacks and Countermeasures. In
Proc. of the 2003 International Conference on
Computer Networks and Mobile Computing, 2003.

[7] Gupta, V., Krishnamurthy, S., Faloutsos, M. Denial of
Service Attacks at the MAC Layer in Wireless Ad Hoc
Networks. In Proc. of Milcom, 2002.

[8] Hu, Y.-C., Perrig, A. A survey of secure wireless ad
hoc routing. IEEE Security & Privacy Magazine. v. 02,
n. 3, (May–Jun. 2004), pp. 28–39.

[9] Joncheray, L. A Simple Active Attack Against TCP. In
Proc. Fifth Usenix UNIX Security Symposium, 1995

[10] Landeta, D., Secure Wireless LAN SecNet 11 & SecNet
54, in Information Assurance Solutions Working
Symposium, Aug. 2005. See also,
http://www.govcomm.harris.com/secure-comm/

[11] Linux, The linux homepage, the 2.4.27 kernel,
downloaded Nov. 2005, http://www.linux.org

[12] Microsoft Corporation, Microsoft Windows XP Home
Edition Version 2002 Service Pack 2.

[13] Negi, R., Perrig, A. Jamming analysis of MAC
protocols. Carnegie Mellon Technical Memo, 2003.

[14] Perkins, C., Royer, E., Das, S., Ad hoc On-demand
Distance Vector (AODV) Routing, Internet Draft, draft-
ietf-manet-aodv-11.txt, work in progress, Aug 2002.

[15] Raymond, J. Traffic Analysis: Protocols, Attacks,
Design Issues and Open Problems. In H. Federrath, ed.,
Designing Privacy Enhancing Technologies, v. 2009
of LNCS, pp. 10–29. Springer-Verlag, 2001

[16] Stahlberg, M.. Radio jamming attacks against two
popular mobile networks. In H. Lipmaa and H. Pehu-
Lehtonen, ed., Proc. of the Helsinki University of
Technology Seminar on Network Security. Fall 2000.

[17] Stallings, W., Wireless Communications and Networks,
2nd Ed., Prentice Hall, 2005.

[18] Sun, Q., Simon, D.R., Wang, Y., Russell, W.,
Padmanabhan, V.N., Qiu, L., Statistical identification
of encrypted web browsing traffic. IEEE Symposium
on Security and Privacy, 2002.

[19] Uppsala University, The AODV-UU implementation ,
version 0.8.1, downloaded Nov. 2005
http://core.it.uu.se/AdHoc/AodvUUImpl

[20] Uppsala University, The Ad hoc Protocol Evaluation
(APE) testbed, release 0.3, downloaded Nov. 2005
http://apetestbed.sourceforge.net

13

DATA 28 212

SYNACK

SYN 1 1

ACK 17 150 15 15 3

T
C

P

FIN

REQ

C
la

ss
if

ie
d

Pa
ck

et
s

A
R

P

RESP

 RESP REQ FIN ACK SYN SYN
ACK

DATA

 ARP TCP

 Actual Packets

 (e) Padding to nearest 16 bytes, size-only sensor

DATA 9 274

SYNACK

SYN 2

ACK 25 283 23 23

T
C

P

FIN

REQ 4

C
la

ss
if

ie
d

Pa
ck

et
s

A
R

P

RESP 4

 RESP REQ FIN ACK SYN SYN
ACK

DATA

 ARP TCP

 Actual Packets

 (f) Padding to nearest 16 bytes, adaptive sensor

Figure 7: Test bed results for sensing packets with a size only sensor or the adaptive sensor. The results on the
shaded diagonal are the number of packets of the associated type classified correctly. The off-diagonal counts
incorrectly classified packets with the column indicating the true packet type and the row the incorrect
classification.

DATA 4 251

SYNACK 6

SYN 28 138 23 20 4

ACK 2 2 8 118 3 2

T
C

P

FIN

REQ

C
la

ss
if

ie
d

Pa
ck

et
s

A
R

P

RESP

 RESP REQ FIN ACK SYN SYN
ACK

DATA

 ARP TCP

 Actual Packets

DATA 5 158

SYNACK 1 5

SYN 20 14 4

ACK 26 161 1

T
C

P

FIN

REQ 2 2

C
la

ss
if

ie
d

Pa
ck

et
s

A
R

P

RESP

 RESP REQ FIN ACK SYN SYN
ACK

DATA

 ARP TCP

 Actual Packets

DATA 28 963

SYNACK 64

SYN 60

ACK 66 876 2

T
C

P

FIN

REQ 2

C
la

ss
if

ie
d

Pa
ck

et
s

A
R

P

RESP 2

 RESP REQ FIN ACK SYN SYN
ACK

DATA

 ARP TCP

 Actual Packets

DATA 10 422

SYNACK 34

SYN 30

ACK 35 436

T
C

P

FIN

REQ 6
C

la
ss

if
ie

d
Pa

ck
et

s
A

R
P

RESP 6

 RESP REQ FIN ACK SYN SYN
ACK

DATA

 ARP TCP

 Actual Packets

(c) 10 byte size offset, size-only sensor (d) 10 byte size offset, adaptive sensor

(b) Actual packet size, adaptive sensor (a) Actual packet size, size-only sensor

