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ABSTRACT 
This paper considers the problem of an attacker disrupting an 
encrypted victim wireless ad hoc network through jamming. 
Jamming is broken down into layers and this paper focuses on 
jamming at the Transport/Network layer. Jamming at this layer 
exploits AODV and TCP protocols and is shown to be very 
effective in simulated and real networks when it can sense victim 
packet types, but the encryption is assumed to mask the entire 
header and contents of the packet so that only packet size, timing, 
and sequence is available to the attacker for sensing. A sensor is 
developed that consists of four components. The first is a 
probabilistic model of the sizes and inter-packet timing of 
different packet types. The second is a historical method for 
detecting known protocol sequences that is used to develop the 
probabilistic models, the third is an active jamming mechanism to 
force the victim network to produce known sequences for the 
historical analyzer, and the fourth is the online classifier that 
makes packet type classification decisions. The method is tested 
on live data and found that for many packet types the 
classification is highly reliable. The relative roles of size, timing, 
and sequence are discussed along with the implications for 
making networks more secure.  

Categories and Subject Descriptors 
C.2.2 [Computer-Communication Networks]: Network 
Architecture and Design – Network communications, 
wireless communication.  

General Terms 
Algorithms, Design, Experimentation, Security,  

Keywords 
Ad hoc networks, jamming, sensing, encryption. 

1. INTRODUCTION 
Ad hoc networks are envisioned as playing a significant 
role in mission critical communication for the military, 
utilities, and industry. An adversary may attempt to attack a 
victim ad hoc network to prevent some or all victim 
communication.  Such denial-of-service (DoS) attacks have 
been considered in ad hoc wireless networks at several 
levels. A number of researchers have considered DoS 
where the attackers are internal participants in the victim ad 
hoc network (see e.g. [8]). Ad hoc networks require the 
cooperation of peer nodes for their operation and are 
especially susceptible to such peer-based attacks. In this 
paper we consider encrypted victim networks in which the 
entire packet including headers and payload are encrypted 
and thus the attacker can not directly manipulate any of the 
victim communication. In this case, the attacker must resort 
to external physical-layer-based DoS, also known as 
jamming.  

Jamming can be as simple as sending out a strong noise 
signal in order to prevent packets in the victim network 
from being received. This method of jamming is not the 
subject of this paper. This paper attempts to exploit the 
protocols at various layers to get three advantages: jamming 
gain; targeted jamming; and reduced probability of 
detection. Jamming gain is the increase in efficiency from 
exploiting features of the victim network relative to 
continuous jamming. More precisely, it is the amount of 
energy1 used to achieve a desired effect relative to the 
amount of energy used to achieve the same effect with 
continuous jamming. This gain translates directly into 
reduced energy requirements for the attacker. At the link 
level, corrupting a single bit in a packet will cause the 
packet to fail its checksum and be discarded.  For a 10,000 
bit packet (1250 bytes) it implies that jamming gains as 
high as 40dB are possible. Further, typical wireless packet 
networks are lightly loaded so that jamming only when 
packets are present has further jamming gains. These 
examples make clear that there are significant jamming 

                                                           
1 or power as appropriate 
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gains possible. This concept is more fully explored later in 
the paper.  

Targeted jamming refers to jamming only specific victim 
nodes, links, or flows. The attacker may be interested in 
only certain parts of the victim network, and attacking only 
these parts can lead to further jamming gains.  

With reduced probability of detection, the victim network 
may not realize that jamming countermeasures are 
necessary. Targeting some TCP-DATA packets will cause the 
TCP window to collapse and poor connection performance 
that a user might attribute to network congestion or a low 
quality wireless connection. Further, if ICMP packets are 
not blocked the victim users will have contradictory views 
of the network state. If jamming is discovered, lower 
probability of detection jamming will be harder to detect, 
localize, and suppress.  

Jamming is not a transmit-only activity. It requires an 
ability to detect and identify victim network activity, which 
we denote as sensing. At the physical layer a sensor needs 
to identify the presence of packets. Since the network is 
encrypted, only the start time and size of the packet can be 
measured. At higher layers a sensor needs to classify 
packets using protocol information. In 802.11 for instance, 
whether a packet is successfully jammed or not can be seen 
by whether or not a node sends a short packet (i.e. the 
ACK) within 10µsec.   

The key insight in this paper is that encryption only 
provides bit level protection of the data. This protection is 
in the form of bit level operations to remove any exploitable 
data structure. A packet network running protocols at 
multiple layers reimposes structure on the data. Any 
transmission follows specific patterns of DNS lookup, TCP 
connection set up, IP ARP, AODV route requests, and 
802.11 atomic data exchanges. While these do not 
necessarily expose the bit-level data, they provide multiple 
avenues for DoS attack. 

1.1 A Layered Model for Jamming 
Together jamming and sensing can be broken down into a 
layered model similar to the OSI stack. We break it down 
into three levels for convenience as shown in Figure 1. The 
Link/Physical layer directly interacts with the media. If a 
higher layer requests a packet to be jammed, then this lower 
layer generates the physical signal and ensures that a packet 
and each of its link layer retries are jammed. This layer also 
provides the basic sensing capability of packet duration and 
timing. If sophisticated enough it could shield the upper 
layer from Link, MAC, and Physical layer control packets 
such as RTS/CTS and only report the higher OSI layer 
packets to the higher layer sensing and jamming. 

The Transport/Network Layer interacts with the 
corresponding Ad Hoc, IP, TCP, and UDP protocols. This 
layer senses packet types and traffic flows which can then 
be targeted by jamming.  

The Application layer senses HTTP sessions, VoIP set up 
and the like and targets specific user activities for jamming. 
It also sets higher level policies that define when jamming 
should take place and what targets in the victim network 
should be jammed. Further, the goal may be purely to sense 
the kind of network activity. 

Each of these layers contributes to the overall performance 
of the system so that each layer can provide its own 
contribution to jamming gain, targeted jamming, and low 
probability of detection.  

This paper discusses exclusively the role of jamming at the 
Transport/Network layer. The Link/Physical layer provides 
a sensing and jamming service. The jamming service is 
defined as jamming for a specified period, jamming a 
specified number of packets, or to start jamming 
continuously until a stop jamming request is made. This 
protocol is described in more detail in Section 3. The 
sensing provides a report on each packet observed at the 
link layer. This report could conceivably include the 
following information: 

Size: The physical layer could measure the transmission 
start and stop times or use other signal processing 
techniques to estimate the packet size in bytes.   

Timing: Similarly the packet start time can be estimated. 

Source Token: While the actual address of the transmitter 
source may not be known. Analysis of the transmitter signal 
could distinguish different transmitters so that each 
transmitter could be assigned a unique token. 

Destination Token: As noted before, receiver ACKs can be 
identified in many protocols by the unique timing. Similarly 
by analysis of ACK transmitters the destination might also 
be identified. 

Application Sense Jam 

Transport 
Network Sense Jam 

Link 
Physical Sense Jam 

Wireless Media 

Figure 1: The sensing and jamming layered model 
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Unicast vs. Broadcast: In many MAC and Link protocols, 
broadcast packets are not acknowledged while unicast 
packets are acknowledged. This could be used to identify 
whether a packet is unicast or broadcast.   

While all of these are possible, only the first two Size and 
Timing are assumed available since these make the fewest 
assumptions about the underlying network.  

The Transport/Network in turn provides jamming and 
sensing services to the higher layers. The jamming service 
can be as simple as to attack a target node at the greatest 
jamming gain possible while avoiding detection. The 
sensing service is to report on each packet seen adding to 
the Link/Physical layer attributes a broad packet 
classification into Data or Control and a narrow 
classification into specific Data (TCP or UDP) and Control 
(TCP-ACK, TCP-SYN, etc.) types. 

It should be emphasized that this layered model applies to 
the particular type of external DoS attack that is the subject 
of this paper. As in the OSI model, the choice of layers is 
not absolute and different architectures might have greater 
or fewer layers.  This layering provides the usual benefits of 
decomposing the problem into manageable modules that 
define layers in terms of services between layers and also 
by allowing a layer to be combined interchangeably with 
different layers. The modularity is in the sense that a single 
Transport/Network layer might be reused with many 
different Link/Physical layers to attack networks build on 
protocols such as 802.11a or 802.16. 

1.2 Sensing & Jamming in Ad Hoc Networks 
In network protocols, certain critical packets are necessary 
for operation. Jamming TCP-SYN, or TCP-SYN-ACK packets 
will prevent a TCP connection from being established. 
Jamming ARP-REQUEST or ARP-RESPONSE packets will 
prevent IP from associating IP and MAC addresses. Ad hoc 
networks add another protocol that can be attacked.  
Jamming  AODV-RREQ or AODV-RREP packets will prevent 
ad hoc routes from ever being established. Jamming a few 
protocol control packets can prevent or delay connections; 
preventing the connection when the goal is to shut the 
connection down and delaying the connection when the 
goal is to inhibit communication without being detected.  

As suggested from the above, knowing which packet to jam 
is the key to getting significant jamming gains. A sensor 
needs to identify the key control packets from different 
protocols. Ad hoc network protocols add additional packet 
types that can be detected. Sensing can be online or offline. 
In online sensing packets are identified as they are received. 
This can be difficult since in some cases a packet is 
identified within a protocol sequence that has not yet 
completed. Offline sensing is allowed to classify packets 
received in the past based on packets received both before 

and after the packet in question. These jamming and 
sensing ideas are explored more in a later section.  

By the time a sensor classifies a packet it is too late to be 
jammed. Any jamming signal in response to the sensor 
classification would arrive after the packet is received by its 
intended receiver. This leads to the third role played by ad 
hoc networks. In a multi-hop path, a packet is transmitted 
and retransmitted several times. This provides an 
opportunity for a packet to be identified on one hop and 
jammed on the second hop. This idea is shown in Figure 2. 

Finally, ad hoc networking could support a network of 
attackers sharing sensing information and jamming attacks. 
In this paper only a single attacker is considered 

1.3 The Role of Encryption 
MAC protocols can have various levels of encryption. 
802.11 Wired Equivalent Privacy (WEP) and WiFi 
Protected Access (WPA) both are designed to protect the 
contents of the packet but not the control information in the 
MAC header [17]. Some implementations go further and 
also encrypt the entire MAC header [10]. In this paper, we 
assume that the entire packet is encrypted and only size and 
packet timing information can be measured. The main 
difference then is that encryption may change the packet 
size by an unknown amount and disrupt the 
Transport/Network layer sensing. The above encryption 
schemes add a fixed offset that, as we will see, do not 
impose serious difficulties on the sensing. Another type of 
encryption is exemplified by the 802.11i WPA2 protocol. 
This protocol uses a block encryption so that all packet 
sizes are rounded up to the nearest multiple of 128bits. This 
tends to reduce the fidelity of the sensing since similar size 
packets get clumped to the same size. It is assumed that 
none of these schemes has any significant effect on the 
timing of packets.  

In the simulated and emulated experiments in this paper, no 
actual encryption takes place. The encryption is modeled as 
an offset to the size according to one of the above models 
and the packet size and timing information are passed to the 
Transport/Network layer sensor. The sensor is assumed not 

A B 

C S/J 

Figure 2: Exploiting multi-hop ad hoc routing. Ad 
hoc node A is communicating with C through B. The 
Sensor/Jammer identifies the target packet on the 
first hop and jams it on the second hop.  
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to know the encryption scheme and must adaptively 
estimate its effect. 

1.4 Prior Work 
Some attention has been given to attacks on the physical 
layer [16] of wireless networks. While much more 
consideration has been placed on attacks against the 
protocols that control these networks [7][8][9]. In [16], 
Stahlberg describes techniques to jam 802.11 networks by 
attacking the physical layer characteristics. Stahlberg 
describes jamming efficiency that can be attained by 
focusing jam efforts at specific transmission timeframes. He 
does not describe any intelligent methods of jamming a 
specific protocol nor does he mention any method of 
determining how jam periods are specified.  

Negi and Perrig propose that an intelligent jammer could 
exploit MAC layer semantics to carry out jamming of 
specific MAC packet types [13] which they argue would 
cause a cascading effect due to the use of random back-off 
algorithms. Other papers propose attacks against the MAC 
and transport layers from the perspective of either a 
network participant [8][9] or as a node that creates pockets 
of congestion [7].   

It should be noted that besides aiding jamming, sensing has 
other uses.  Cryptanalysis attacks on encrypted data benefit 
from knowing the plaintext bits [3]. For known protocols, if 
packets can be identified then this allows bits such as the 
protocol value, version number, and length fields to be 
inferred. In some attack applications, the goal is to identify 
user activity. For instance, websites can be identified by the 
pattern of packets exchanged [4][18]. Traffic analysis can 
be used to attack user privacy [6][15]. The sensing 
described in this paper can provide more detailed pattern 
information that can refine such pattern and traffic analysis. 

1.5 Paper Overview 
Within the framework defined so far this paper provides 
seven contributions. First it demonstrates the potential 
Transport/Network layer jamming gains within a simulated 
environment. Second a simulated jamming protocol is 
developed that allows testing on an ad hoc network of lap 
top computers. Third the potential jamming gains are 
demonstrated on a live network using the simulated 
jamming protocol. Fourth a sensor is developed that uses 
packet size, timing, and sequence. It uses off-line sensing to 
adapt an online sensor to the current network conditions 
and a probabilistic model of the sizes and inter-packet 
timing of different packet types. A historical method for 
detecting known protocol sequences is used to develop the 
probabilistic models. The fifth is an active jamming 
mechanism to force the victim network to produce known 
sequences for the historical analyzer. The sixth is the online 
classifier that makes packet type classification decisions. 

The method is tested on live data and found that for many 
packet types the classification is highly reliable. Finally the 
relative roles of size, timing, and sequence are discussed 
along with the implications for making networks more 
secure. 

2. POTENTIAL JAMMING GAINS 
To see the potential for jamming we designed a simple 
modification to the network simulator, ns2, that enabled us 
to run jamming “recipes” that would jam specific packets. 
A typical recipe is shown in Figure 3. The goal is to slow 
the connection without causing the connection to fail. The 
TCP sender (left) has an established connection with the 
receiver (right). At time 305 sec, a 10 sec Jam signal causes 
the TCP window size to shrink to 1. Due to the TCP 
exponential back-off, the first TCP packet is seen 10 
seconds after the noise signal. TCP forces an AODV route 
lookup. The attacker then jams 6 of the 7 RREP retries to 
obtain a 4 sec timing delay. Jamming the seventh would 
cause AODV to give up and alert the user, so the seventh is 
let through. The following TCP Ack is jammed to force the 
RTO to back-off further. This eventually triggers another 
AODV route lookup, and so on.   

To put a number to the jamming gain, we use the following 
model. We assume that the cost of jamming a single packet 
is equivalent to 10msec of jamming. At the MAC layer a 
packet and any retries may need jammed and the 10msec 
represents the total of this effort. In reality the 
Link/Physical layer attacker may be more or less efficient 
than this, but this is a function of the Link/Physical layer 
jamming gain and outside the scope of this paper.  

Applying this to simulated jamming attack, one cycle of 
AODV and TCP jamming consists of 7 jammed packets 
over 20 seconds. Each cycle admits one TCP-DATA 
packet, but, since it is never acknowledged the transfer 
never progresses. At 10msec per packet jammed, this 
implies that 70msec of jamming is equivalent to 20 seconds 
of continuous jamming. The net result is a sustainable 
jamming gain of 20sec/70msec = 286. This jamming gain is 
produced by a combination of jamming between multiple 
protocols. The simulator is just one implementation of these 
protocols and so we developed a test bed for simulating 
jamming recipes against protocols implemented in real 
networks. 
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3. TEST BED 
A test bed was constructed for testing the sensing and 
jamming. It consisted of Linux laptops [11] running the 
AODV-UU [14][19] protocol. The APE Mackill [2][20] 
allowed specific topologies to be set up on the desktop. The 
sensing and jamming was focused on the 
Transport/Network layer of this paper. For sensing the 
802.11b the attacker used an Atheros 802.11 card in 
monitor mode. This passed all packets to the sensor with 
only the 14 byte Ethernet header. The Jamming used the so-
called Simulated Jamming Protocol (SJP). Every victim 
node in the SJP filters all packets according to a signal sent 
by the attacker. The filter was written using the Click 
Modular Router [5]. When running in kernel level, the 
Click software assumes the operating system’s role of 
packet receiver. When a packet enters through the wireless 
interface, it is given exclusively to the router software. The 
software then decides to either give it to the OS or to 
perform some act upon it. The architecture is shown in 
Figure 4. The Attacker sends jamming signal packets to a 
Jam Receiver module in the victim node. The packets are 
one of the following four instructions: Jam for a specified 

period of time; jam a specified number of packets; jam all 
packets indefinitely; or stop jamming. These instructions 
define jam periods. When a packet arrives over the wireless 
interface, the jam receiver either discards the packet or 
forwards it to the kernel depending on whether it is in a jam 
period or not. The attacker sends its instructions over a 
separate wired interface to avoid any contention on the 
wireless interface.  The attacker can address the jamming to 
individual nodes or broadcast to all nodes. 

We note that the emulation is not completely realistic. It 
does not model the interaction between jamming and the 
wireless transmitter’s carrier sensing and MAC layer 
RTS/CTS/ACK packets. The SJP is designed to work 
above any MAC protocol and could be customized to 
interact with a specific MAC protocol to be more realistic.   

The test bed used three configurations:  

C1: The first is a pair of victim laptops one running the 
Apache server [1] and the other running a web browser 
application. The attacker node is placed so that it can 
receive the exchange of wireless packets between the nodes. 
A wired Ethernet hub connects the three computers so that 
SJP packets can be sent from the attacker to victim nodes.   

C2: The second is identical to the first, except that the 
server node is connected to the Internet.  

C3: The third is similar to Figure 5 with APE used to force 
a two hop path between nodes 1 and 4. The attacker node is 
placed so that it can hear traffic to and from node 4.  

 

4. TEST BED JAMMING GAINS 
This section provides some insights into the potential 
jamming gains that are possible. The first results show what 
is possible when a TCP startup sequence is attacked. 

 

Figure 5: Multi-hop scenario simulated with 
Mackill tool of APE 

TCP 5800 

TCP 5801 

Ack 5800 

RREQ 1 

RREQ 2 

RREQ 7 
RREP 7 

TCP 5801 

RREQ 1 

RREQ 7 
RREP 7 

TCP 5801 

305.0 

314.99 
325.159 

325.501 

329.001 

329.002 
329.010 

345.637 

349.001 

349.003 
349.010 

Noise / Jam 

time 

Figure 3: Simulated jamming attack on AODV/TCP 
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eth1  
(wireless) 

eth0  
(wired) 

Click Router 

Jam 
Receiver Discard 

LAN 
Card 

Out0 

Out1 

In0 

In1 

Figure 4: Simulated Jamming Protocol 
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Configuration C1 was used and the two 802.11 interfaces 
were in ad hoc mode. An HTTP connection was established 
between them to create a valid ARP table entry. The 
connection was terminated and then the client was jammed. 
Normally a series of UDP packets (DNS Lookup) followed 
by TCP-SYN, TCP-SYN-ACK, TCP-ACK are exchanged in the 
initial 3-way handshake. With jamming the client never 
receives the TCP-SYN. It retries four times with the result 
that it aborts the connection setup. Further the victim 
assumes something is wrong with the ARP table and it 
starts broadcasting ARP requests. The resulting times are 
shown in Table 1. The timing in this sequence is 
remarkably precise and was similarly precise across 
multiple runs which suggest that packet transmissions are 
predictable. As verification, the same experiment was 
replicated in Windows XP [12] with similar results except 
the time period between the 3rd and 4th TCP-SYN was 24 
seconds. The predictable sequence timing suggests that 
precision jamming is possible. Using the model of 10msec 
of jamming per packet jammed, jamming the first TCP-SYN 
yields a 3 sec delay. The jamming gain is 3sec/10mses = 
300. Similarly jamming the first and second yields a 9 sec 
delay and the jamming gain is 9sec/20msec = 450. 
Eventually TCP gives up and the jamming would need to 
jam one ARP-REQ per second (jamming gain is 100) to 
continue blocking the connection. Though not shown here, 
the timers on the TCP-SYN-ACK have similar backoff steps 
and yield similar delays. So, a more aggressive attack 
would jam the TCP-SYNs followed by the TCP-SYN-ACKs to 
yield a connection setup delay approaching one minute. 
This scenario shows that large jamming gains over 100 are 
easily obtained with Transport/Network layer jamming. 

The next chart examines a similar scenario using AODV-
UU for the routing in configuration C3. The attacker first 
jams five route request packets and then lets the sixth 
through to establish the route. Jamming the sixth would 

cause the connection to fail and notify the user. Next the 
TCP-SYN packets are jammed. The results are shown in 
Table 2. As can be seen, AODV-UU aggressively sends 
route request packets over the first 0.8 second. This time 
does not add to the delay to the subsequent TCP-SYNs which 
appear 3, 9, and 21 seconds after the start the same as in 
Table 1. Thus, the additional effort to jam the AODV-
RREQ does not provide additional jamming gain.  

This result and the simulation in Section 2 show that the 
attacker should directly jam TCP startups when possible or 
use a combination of AODV and TCP for an ongoing 
connection.  

5.  SENSING 
The simulation and experimental results show that jamming 
has the potential for large gains, if the packet types are 
identified. This section describes the approach to sensing 
packet types. There are two approaches to classifying 
packets into types. The first classifies packets as they arrive 
(so-called online classification). The second is allowed to 
collect more observations before making the decision on 
packet type (so-called offline classification). Online 
classification is the preferred approach, but as will be 
shown in the following subsections, both online and offline 
classification have a role.  

5.1 The Role of Size, Timing, and Sequence 
The Link/Physical Layer reports on the timing and size of 
packets. These measurements do not necessarily need to be 
accurate, and the approach in this paper can detail with 
measurement variations, but for simplicity we will assume 
that they are reported without errors. We also assume that 
the lower layer reports all packets in the correct sequence. 
Though measured accurately, packet sizes vary across 
encryption as described in Section 1.3 and also because of 
protocol implementation variations, and variations in how 

Table 1: Test bed TCP-SYN jamming gain 

Packet 
Jammed 

Total time 
(µsec) 

∆t  
(µsec) 

Cumulative 
Jam Gain 

TCP-SYN 0 0 300 

TCP-SYN 2991910 2991910 450 

TCP-SYN 8991910 6000000 700 

TCP-SYN 20991910 12000000 650 

ARP-REQ 25991900 4999990 540 

ARP-REQ 26991900 1000000 467 

ARP-REQ 27991900 1000000 414 

ARP-REQ 28991900 1000000 375 

ARP-REQ 29991900 1000000 - 

 

Table 2: Test bed AODV/TCP-SYN jamming gain 

Packet 
Jammed 

Total time 
(µsec) 

∆t  
(µsec) 

Cumulative 
Jam Gain 

AODV-RREQ 0 0 1 

AODV-RREQ 1350 1350 16 

AODV-RREQ 323240 321890 11 

AODV-RREQ 324440 1200 20 

AODV-RREQ 813240 488800 16 

TCP-SYN 819140 5900 50 

TCP-SYN 2993010 2173870 129 

TCP-SYN 9000120 6007110 262 

TCP-SYN 21002540 12002420 - 
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the size might be reported at lower layers. Packet timing, 
and in particular, inter-packet spacing varies for the above 
reasons plus variations caused by network congestion. 
Protocol sequence does not vary (an ACK can only occur 
after a DATA packet) but multiple overlapping data streams 
require deconfliction. Therefore, the identification of packet 
types is statistical.  

The sensor observes over time a sequence of packet sizes 
with known packet spacing. From this observation, O, it 
chooses the packet type T with the maximum a posteriori 
probability (MAP): 

{ })|'(maxarg
'

OTPT
T

= , 

where P(T|O) is the probability of packet type T given 
observation O.  Using Bayes rule:  

)(
)()|(

)|(
OP

TPTOP
OTP = . 

We note that P(O) is independent of T, so that the MAP 
decision simplifies to 

       { })'()'|(maxarg
'

TPTOPT
T

= . (1)

So, classification requires an a priori estimate of the 
probability of each packet type and an estimate of the 
probability of an observation given each packet type. These 
are described in the next section. 

5.2 Probabilistic Model of Size 
What if our only observation is the size, S, of the current 
packet? How useful is size to determining packet type? 
Table 3 categorizes 945 packets captured between two 
laptops in configuration C1.  It consisted of downloading a 

simple website with pictures and scp transfers.   

Some sizes correspond to a unique type. Any packet over 
74 bytes corresponds to TCP-DATA and 60 bytescorresponds 
to TCP-KEEP-ALIVE. For sizes, S, which are used by only one 
packet type T, P(T|S) = 1. The exceptions are 42 bytes 
(ARP-REQ and ARP-RESP), 66 bytes (TCP-ACK, TCP-FIN, and 
AODV-RREQ), 74 bytes (TCP_SYN_ACK and TCP_SYN), and 
62 bytes (AODV-RREP(unicast), and AODV-
RREP(broadcast))2. In these cases P(T|S) < 1 and the most 
likely packet given S is chosen (e.g. TCP-ACK). Using MAP 
classification on this data would yield 98% accuracy. Of 
course 92% of the packets are the easy to identify TCP-DATA 
and TCP-ACK. Results in Section 7 provide more detailed 
analysis.  

Table 4 lists aggregate packet size statistics from four 
packet captures of a WLAN network3, a total of 1984 
packets sent between a client and server over a wireless link 
in configuration C2. The size variations in the third column 
for TCP-ACK and of TCP-SYN-ACK are from different packet 
captures on different networks. Within a capture they were 
a consistent size. Further we expect the encryption 
algorithms to add a consistent modification to each of these 
packet sizes. With the incorrect packet size model, the 
MAP classifier will not achieve high classification 
accuracy. The problem, then, is to develop a model for size 
that captures these variations initially and can adapt to the 
specific sizes present in the victim network. This model can 
be used in the MAP classifier. For this we use the Bayes 
equivalent MAP classifier in (1). The key to this approach 
is that P(S|T) is independent of the other packet types and 

                                                           
2 In AODV-UU, broadcast AODV-RREP are used as HELLO packets. 

The careful observation of network activity in this research has 
been an exercise in identifying anomalous non-standard network 
behavior across many protocols. 

3 An ordinary WLAN was used because it allowed different 
combinations of operating systems and servers.  

Table 4: Distribution of Packet Sizes (bytes) across 
four different WLAN networks.  

Packet Type # of Packets Sizes utilized P(T) 

ARP REQ 6 42(6) 0.003 

ARP RESP 10 42(10) 0.005 

TCP-ACK 714 54(113), 66(601) 0.360 

TCP-DATA 1120 Various (95%>100) 0.565 

TCP-FIN 39 66(39) 0.020 

TCP-SYN 30 74(30) 0.015 

TCP-SYN-ACK 31 58(4), 74(21), 78(6) 0.016 

UDP-DATA 34 Various 0.017 

 

Table 3: Distribution of packet sizes (bytes) in an 
ad hoc network.  

Packet Type # of Packets Sizes utilized P(T) 

ARP-REQ 2 42 0.002 

ARP-RESP 2 42 0.002 

TCP-ACK 342 66 0.362 

TCP-DATA 529  (all >74) 0.560 

TCP-FIN 5 66 0.005 

TCP-SYN 3 74 0.003 

TCP-SYN-ACK 3 74 0.003 

TCP-KEEP-ALIVE 12 60 0.013 

AODV-RREQ 6 66 0.006 

AODV-RREP(unicst) 6 62 0.006 

AODV-RREP(brdcst) 35 62 0.037 
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so it allows independent estimation of the size distribution 
for each type. The coupling between types is given by the a 
priori type probability P(T) given in the last column of 
Table 4. The data in the third column can be the basis of the 
initial P(S|T). In order to capture the uncertainty the 
distribution is initially set to a broad distribution. Figure 6 
shows an example for TCP-ACK.  

 The next section describes a method for getting samples of 
packet sizes for different traffic types. These samples are 
used to modify the distribution as follows. For each sample 
(S,T), we set P(S|T) = P(S|T) + �T and then renormalize the 
distribution to have total probability 1. The constant �T sets 
the rate that the distribution adapts with new samples. The 
subscript indicates it can be different for different packet 
types. Generally, �T is larger for packet types that are more 
rare to speed their adaptation. It should be noted that when 
most sizes correspond to a unique packet type as is the case 
in Table 4 and would be true for any size transformation 
that is a simple additive offset, the distribution only needs 
to start to converge on the correct distribution for the MAP 
classifier to be correct. Thus, any reasonably accurate (S,T) 
samples will yield a high accuracy MAP classification. 
Some packet types, like TCP-DATA can be classified 
accurately with no training at all. Large packets are simply 
data. This long packet is data, short packet is control is the 
basis for bootstrapping identification of samples (S,T) as 
described in the next section. 

5.3 Historical Analyzer 
In order to derive samples of (S,T), we use the full size, 
timing, and sequence information over a historical packet 
window of W packets. Protocols introduce distinctive 
sequences, Q, such as data exchange (TCP-DATA, TCP-ACK) 
and TCP startup (TCP-SYN, TCP-SYN-ACK, TCP-ACK). A 
large packet followed shortly by small packet is likely a 
characteristic TCP DATA and ACK exchange.4 An L packet 
                                                           
4 Recall that in our sensing model we can not distinguish different 

senders, so the sequence is large packet, small packet. If the 
senders can be distinguished then the sequence would be large 
packet from one device, small packet from a different device. 

sequence is defined by a structure Q = (T1, τ2, T2,…, τL, TL) 
where Ti is the ith packet in the sequence and τi is the 
distribution of time between packet Ti-1 and Ti in the 
sequence. What is actually observed is O = (S1, t2, S2, …, tL, 
SL) where Si is the size of the ith packet and ti is the time 
gap between adjacent packets.  

The timing distributions are defined by a mean and standard 
deviation, (µ, σ). Given τ, the probability of inter-packet 
interval t is defined by a Gaussian distribution: 

       
2

2
1

2
1)|( z

etP
−=

π
τ , 

where z = (t – τ)/σ is the normalized Gaussian variable. 
Thus we compute the probability of a sequence Q given 
observation O as5  

       ∏
=

=
L

i
iiiii KTPTSPtPOQP

1

)()|()|()|( τ  

where we define P(t1|τ1) = 1 and K = P(τi)/P(ti)P(Si). The 
value of K requires distributions across all target sequences, 
inter-packet times and packet sizes. For simplicity at this 
stage, we use K = 10. Longer sequences multiply more 
probabilities together and thus tend to be smaller. This 
choice compensates for this effect with minimal 
assumptions about the network.  

Each packet Si, i = 1,…, W in the history window is a 
potential sequence starting point. The sequence Q that 
maximizes P(Q|O) is computed and Si is assigned type T1 
from the sequence Q. The goal of the historical analyzer is 
to provide accurate samples (S,T) for adapting the packet 
size distributions. In many cases even the maximum 
probability sequence Q is still unlikely. Thus, a minimum 
threshold θ is defined and the classified packet is not used 
unless P(Q|O) > θ. 

The history analyzer focuses on the sequences in Table 5. 
These sequences we refer to as lower protocol sequences 
since they depend on the communication transport and 
network layers. These can be composed into upper protocol 
sequences derived from application activity.  For instance, 
an FTP session, consists of an AODV, ARP, DNS-lookup, 
and TCP-Startup sequence followed by multiple Data-Ack 
sequences. Recognizing these upper protocol sequences 
while potentially important would be in the attacker’s 
Application layer and so outside the scope of this paper.  

5.4 Online Classifier 

                                                                                                 
For the purposes of this paper, we assume this extra fidelity is 
unavailable.  

5 This makes the independence assumption between the different 
sequence components.  
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Figure 6: Initial size distribution of TCP_ACK packet. 
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The online classifier differs from the history analyzer in that 
it must make a packet classification on each packet as it 
arrives in order to feed information to the jamming module 
in a timely manner. In this scenario, a sequence may or may 
not be helpful depending on where a packet type appears in 
a sequence. The TCP-Startup sequence is not useful for 
online classification of TCP-SYN packets. L = 1 is a valid 
sequence and equates to classifying a single packet by size. 
Each sequence with L > 1 implicitly defines initial 
subsequences by using less than L packets. Thus the online 
classifier uses whatever sequence or sequence fragments it 
can in order to classify the current packet.  

In this paper, we simplify the use of sequence by limiting 
the activity to one connection at a time. A large number of 
co-mingled connections would produce sequences with 
other packets in between. In principle the search for 
sequence matches can be extended to skip over intermediate 
packets. Future work will investigate this more fully. 
Another alternative that was explored was to use jamming 
to “reset” the network and simplify the traffic seen by the 
attacker. This is one of several potential uses of jamming in 
sensing discussed in the next section.  

6. JAMMING FOR ACTIVE SENSING  
Jamming has been discussed solely as a mechanism for 
disrupting the victim network. Sensing has been discussed 
as a passive observation activity. But, jamming can play a 
role in sensing. We describe three roles: discerning 
different traffic types, resetting the network, forcing the 
victim to produce certain packet types.  

Different protocols react differently to lost packets. In this 
way, jamming provides one method for distinguishing 
protocols. TCP will back off if packets are lost, while UDP 
will continue to push out packets. Experiments were carried 
out that demonstrated this phenomenon. The protocols do 
react as expected to a burst of jamming, TCP throughput 
temporarily dips when jammed while UDP does not react. 
This response was found to be more difficult to classify 
than passively sensing the Data-Ack sequence of TCP. This 
approach would be worth pursuing in special cases such as 
distinguishing UDP and TCP streams that consist of small 
data packets similar in size to the TCP-ACK.  

When an attacker turns on, the victim network may have 
many connections in progress that impedes sensing. 
Further, the vulnerable connection setup phase has passed.  
A second concept that was tested was to jam until 
connections fail so that the sensor has more distinct flows to 
work with and jamming could be targeted. To test this, we 
used configuration C1 and started a large HTTP download. 
The client was then jammed for increasing periods of time 
and then observed to see if the TCP connection continued 
or TCP had capitulated. Through this testing it was 
determined that the Apache Web server would hang its 
connection after about 18 seconds of jamming. After this 
failure, the user would likely retry the link starting a new 
connection setup that could be delayed arbitrarily through 
jamming.6 An 18 second burst of jamming in order to take 
control of the victim network is a reasonable tradeoff.  

To confirm whether this was a general result or unique to 
Apache, we attempted the same experiment with 
configuration C2 accessing large data files from common 
public sites. In some cases the behavior was similar to 
Apache, in others such as www.google.com, the TCP 
session persisted after more than 10 minutes of jamming. 
This is detrimental to getting good jamming gains, but 
useful for low probability of detection since it shows that 
long jamming periods may never result in a user 
notification.  

Sensing requires examples of each packet type in order to 
adapt. Certain packet types such as ARP packets are rare. A 
third use of jamming in sensing is to force the victim 
network to produce rare packet types. A naïve approach 
would be to jam a network for the 5-20minutes it takes for 
the ARP cache to timeout. A more practical approach is 
required that does not entail extensive jamming periods. As 
noted in Section 4 a failure to establish a TCP connection 
results in a series of ARP requests. This requires far less 
jamming to produce.  

The results in this session suggest that jamming may have a 
role in sensing. Further work is required to formalize what 
is possible.  

7. TEST BED SENSING 
To test the sensing we use configuration C2 between two 
laptops with an 802.11 interface in ad hoc mode. The 
experiment is to show how the sensing performs classifying 
ARP, TCP, and UDP packets in three scenarios since these 
packets are part of the attack with the highest jamming gain. 
In each scenario, a monitor records each packet as it is 
received and reports the timing and a size that depends on 

                                                           
6 If this is performed only once at attacker power up it may not 

alert the victim to the attacker’s presence.  

Table 5: Types of sequence  
Sequence Name Packets in Sequence 

Data-Ack TCP-DATA, TCP-ACK 

ARP ARP-REQ, ARP-RESP 

TCP-Startup TCP-SYN, TCP-SYN-ACK, TCP-ACK 

AODV AODV-RREQ, AODV-RREP(unicast) 

DNS-Lookup UDP-DATA, UDP-DATA 
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the encryption model. The scenarios differ in the encryption 
model: 

Scenario S1: reports the actual packet size. 

Scenario S2: reports the packet size with an offset of 10 
bytes. 

Scenario S3: reports the packet size padded to the next 
nearest multiple of 16 bytes.  

In each scenario two sensors are applied. The first sensor 
only uses size in estimating the packet and does not use 
timing or sequence nor does it use the historical analyzer to 
adapt the size distribution. The other sensor is the adaptive 
sensor defined in this paper. The adaptive sensor first 
observes 2000 packets to adapt the size distributions using 
the historical analyzer and then proceeds to the online 
classification based on sequence and size. The results are 
shown in Figure 7 tabulated in a so called confusion matrix 
{c(T,T’)} that counts for each packet type, T, how often it 
was classified into packet type T’. An ideal classifier would 
have c(T,T’) = 0 except on the diagonal when T = T’. 
Packets on the highlighted diagonal are correctly classified. 
Since these were based on actual traffic captures, the 
number of packets in each confusion matrix is not the same. 
But, the performance is still comparable. In (a), using only 
size the classifier correctly classifies ARP-REQ, but the ARP-
RESP are incorrectly classified also as ARP-REQ. Both of 
these packets are the same size and so there is no way to 
distinguish the two packet types based on size. A similar 
phenomenon occurs between TCP-FIN and TCP-ACK and 
between TCP-SYN and TCP-SYN-ACK. When an offset is 
introduced, as in (c), the size-only classifier makes many 
more mistakes. When the padding is introduced, as in (e), 
the classifier is unusable for jamming.  

The performance when the adaptive algorithm is applied is 
shown in Figure 7b. Compared to (a), the classifier can 
distinguish correctly between ARP-REQ and ARP-RESP, and 
between TCP-SYN and TCP-SYN-ACK. TCP-FIN is incorrectly 
classified, but, this is expected because no sequence for 
TCP-FIN was defined that can be used to adapt its 
distribution. In (d) the results are equally good. A simple 
offset does not change the ability to distinguish between 
different packet types. In (f) the padding clumps all the 
TCP control packets to the same size. The TCP-ACK packet 
has a much higher prior distribution compared to other 
control packet so that sequence can not separate out the 
other control packets as it has been implemented here. 
Further work is investigating this issue.  

8. LESSONS LEARNED: MAKING 
NETWORKS MORE SECURE 
The attacks in this paper are based on carefully exploiting 
protocol patterns and consistencies across size, timing and 
sequence. This suggests that to make networks more secure 

these consistencies should be removed wherever possible. 
For size, padding control packets so that they are all the 
same size will make it difficult to discern different packet 
types. Padding all packets including control so that they 
have the same minimum size (say 100 bytes) will further 
remove size as useful metric. For wireless MAC protocols 
such as 802.11, every packet has substantial overhead so 
that small packets already consist mostly of this overhead. 
Additional padding will have minimum effect on 
throughputs.  

Timing in these protocols is overly precise. In TCP, the 
receiver does not use the three second back off time 
between the first and second TCP-SYN. Indeed, if the first 
one has been jammed it is not even expecting the second. 
Similarly, the precise timing between many packets in the 
sequence can be varied by significant factors so that it is 
difficult to precisely jam the packets. The timing of some 
packets such as TCP-ACKs is used by protocols for 
estimating aspects of the network.  But, it is conceivable 
that these protocols could be modified to allow for added 
delays. For instance, the header could indicate any 
additional delay that was added for security reasons so that 
this could be factored into RTT calculations. 

Sequence for the protocols is immutable. But, it also can be 
foiled. One approach is to aggregate multiple packets. This 
will affect both timing and size of packets as well as 
potentially hiding the precise number of packets that are 
exchanged. Another attack is what we refer to as the zebra 
defense in which a single connection is striped across 
multiple TCP connections so that the attacker has difficulty 
separating and attacking individual victim connections.  

9. CONCLUSIONS 
Jamming and sensing are two related functions in physical-
layer-based denial of service attacks against an encrypted 
wireless ad hoc networks. These functions are complex and 
the layered approach developed in this paper showed how 
they could be broken down into a manageable design 
problem. This paper presented initial results in designing 
such a layered attacker for the Transport/Network layer. 
Jamming can get significant jamming gains, well over 100, 
when it knows the packet type and timing. Interestingly 
most of these gains were produced by attacking packets 
above the ad hoc network layer. Protocols introduce highly 
predictable timing that can be exploited. The limited 
information of packet size, timing, and sequence is enough 
to accurately predict packet types. Using a combination of 
offline historical analysis of sequence to provide training 
data for the online models, a packet classifier was 
developed that adapts to variations across networks and 
across different encryption models. The development in this 
paper suggests simple methods for making victim networks 
less vulnerable to these kinds of attacks. That said, wireless 
TCP/IP based networks are ubiquitous and a complete 
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legacy backhaul is unlikely leaving a significant number of 
vulnerable networks.  

The research presented here is ongoing. Future work will 
fully connect and test the jamming and sensing which were 
treated separately. The statistical sensing tools continue to 
be refined. A few representative attacks were presented and 
the test bed tools described here are being used to 
methodically evaluate other attacks. Scaling to larger ad 
hoc networks and networked attackers is the long term goal. 
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Figure 7: Test bed results for sensing packets with a size only sensor or the adaptive sensor. The results on the 
shaded diagonal are the number of packets of the associated type classified correctly. The off-diagonal counts 
incorrectly classified packets with the column indicating the true packet type and the row the incorrect 
classification. 
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(c) 10 byte size offset, size-only sensor (d) 10 byte size offset, adaptive sensor 

(b) Actual packet size, adaptive sensor (a) Actual packet size, size-only sensor 


