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Abstract. Dynamic Reconfiguration is the process of changing a component-based system with minimum 

disruption and maximum automation. This process consists of three phases i.e. sensing the present state, 
planning for a new state and acting on the system to move it to the new state. Although, there are techniques and 
models for the sensing and acting phases, planning is a relatively neglected phase in this process. We have been 
using planning for the dynamic reconfiguration of component-based systems. However, planning systems 
provide different modeling languages. These languages have their own characteristics. Not all of these 
characteristics are important for the dynamic reconfiguration of software systems. In this paper we compare and 
evaluate the strengths and weaknesses of two planning languages: PDDL (Planning Domain and Definition 
Language) and AML (Aspen Modeling Language).  Although the original target of both of these languages is 
not dynamic reconfiguration, we will discuss how their features can be used to model planning the dynamic 
reconfiguration of component based systems.  

1. Introduction 

Dynamic reconfiguration is the process of dynamically loading, moving and unloading of components so that 
the system can quickly adapt to changing environmental conditions, while maintaining its consistency [8]. 
Dynamic reconfiguration of component-based systems (CBS) is necessary because of the increased automation 
associated with component-based systems. Indeed, the process of adding, removing and updating of components 
cannot be avoided in any system. However, it is not possible to stop the whole system to make any change(s) in 
the system. Dynamic reconfiguration is required in large systems, where it may not be possible or economical to 
stop the entire system to allow modification to part of its hardware or software [�16]. 

The next generation of CBS relies mostly on self-configuring systems that reconfigure themselves as much 
automatically as possible. IBM autonomic computing, HP’s Utility Computing, Sun’s N1 and Microsoft’s 
Dynamic Systems Initiative (DSI) are all geared towards providing more self-configuring ability to the systems. 
The basis for self configuring systems is dynamic reconfiguration.  

Although, the idea of dynamic reconfiguration to provide self-reconfiguring ability in CBS is promising, 
there are certain issues related with the process of dynamic reconfiguration that makes it difficult. Component-
based systems are complex in terms of number of components and their inter-relationships. Maintaining a 
consistent state introduces an added complexity.  Such systems are often heterogeneous [24] and often 
distributed. Lastly, there may be a large number of possible reconfigurations from which to choose[14], and the 
optimal choice may not be easy to determine. All of these factors make reconfiguration a difficult process. 

In an attempt to address these complexities, we are applying automated planning systems from the Artificial 
Intelligence community to this problem [3]. Planning systems can automatically construct plans for the 
reconfiguration of a system. They can search the space of possible reconfigurations to find one that is optimal or 
that at least meets acceptable criteria for the new configuration. 

The focus on planning came from the observation that the process of dynamic reconfiguration looks similar 
to the “sense-plan-act” (SPA) approach in control-based systems. Sensing is the monitoring of the state of the 
system and its associated components. Planning creates a plan for moving the system from one state to another. 
A plan is a sequence of steps that takes the system from one configuration state to the desired reconfigured state. 
Acting is the phase of actually carrying out the steps from the plan to reconfigure the system. 

Traditionally, the AI planning systems used to solve toy problems like blocks world. However, now these 
systems are powerful enough that they are now being used in planning for the areas like spacecraft missions, 
intelligent manufacturing, operations research and others. Also, in past the planners could only plan for 
STRIPS-like domains where there are no numeric or temporal constraints. However, now these planners can 
take into account constraints like resource usage, time availability, cost etc. Moreover, instead of producing 
sequential plans these planners can now generate parallel plans.  

The key to successful use of planning is the development of specifications of the planning domain and of the 
initial and final states (configurations) of the system. The planning domain describes the structure and 
constraints of a particular problem area.  In our case, the domain must describe the system to be configured: its 
components, inter-connections, and the constraints on those components. The initial and final states describes 
how the components are connected (initial state) and how they should be connected (goal state). 

There are various planning specification languages available for describing the domain and states, and each 
of  these planning languages has its own strengths and weaknesses. As far as we can determine, this is the first 



 
attempt to use the planning specification language for planning for dynamic reconfiguration in CBS. Therefore, 
it is necessary to find out the strengths and weaknesses of these languages in terms of dynamic reconfiguration 
modeling.  

In this paper we are going to examine the strengths and weaknesses of two planning languages. These 
languages are PDDL (Planning Domain and Definition Language) and AML (Aspen Modeling Language). 
PDDL is the standard language for the International Planning Competition (IPC) for the last four years. PDDL 
mostly has a first order logic syntax. Most of the planners available today (e.g., LPG[13], MIPS[9]) use PDDL. 
One reason for using PDDL is to also to experiment with different planners so that we can compare the 
performance of the planners for the dynamic reconfiguration planning problems.  
AML is the modeling language for a system called ASPEN (Automated Planning and Scheduling Environment). 
It uses C like syntax. ASPEN is used in many NASA spacecrafts for planning the reconfigurations in these 
spacecrafts. ASPEN also has to capability of replanning in case of failure of some part of the plan. Because in 
dynamic reconfiguration the plans can fail at certain time, it is a good idea to see how replanning increase the 
automation of the dynamic reconfiguration process. Before we look at the modeling aspects of planning 
specification languages we first look at some other attempts to model the dynamic reconfiguration in component 
based systems in the ‘Related Work’ section.  

2. Related Work 

The area of modeling systems for dynamic reconfiguration is an area of significant research. Conic [17] was 
an environment of designing distributed systems that separated the idea of system structure from functional 
behavior. Darwin [18] a successor of Conic was a language that gave the flexibility of representing static and 
dynamic structures that evolve during the lifetime of the system. POLYLITH [20] provided the adaptation 
capability in heterogeneous environments. Durra [16] describes the system as a set of components that have 
alternate configurations for runtime and their respective configuration transitions. Manifold [21] is an attempt to 
use coordination languages for reconfiguration. It represented the reconfiguration as control or event driven.  
Agnew et al. used a declarative reconfiguration language for the dynamic reconfiguration of component-based 
systems [2].  

3. The Synergy between Dynamic Reconfiguration and Planning 

Although, dynamic reconfiguration can be used whenever a change is needed in the system, however, dynamic 
reconfiguration is specially required when the system is attacked from outside. Often, malicious attacks can take 
the system into unanticipated states. These unanticipated states can result from the loss of critical components 
and this loss could be catastrophic in some cases. The task of dynamic reconfiguration at this time needs to 
restore the system and its functionality [25]. However, doing this involves many constraints that if done 
manually could take a lot of time. Planning can be used to overcome some of the problems associated with these 
constraints. 

Critical parts of the system must be back up in a certain period of time. In planning one can specify the 
temporal goals and also the criticality of the components. Therefore, given these constraints the planner’s job is 
to come up with a plan that starts the critical parts of the system as soon as possible. Moreover, resources e.g. 
disk space, bandwidth, machines could be scarce at the time of dynamic reconfiguration. Therefore, system 
cannot use the whole set of resources because they may be used somewhere else. However, in planning one can 
specify the availability of resources and ask the planner to optimize the set of resources over the course of 
planning. The priority of whether the backing up of the critical parts of the system has precedence or the 
minimization of resources is the priority can also be specified in planning in terms of metrics. The planner then 
produces plans that satisfy the given metrics.   

Malicious stacks often leave the system in an unhealthy state. There are situations where system cannot go 
back to its original state, because of the catastrophic failure of some of the components. Moreover, there may 
not be a predefined configuration of the system present based on the available set of components. In this kind of 
situation planning is helpful because it can find an optimum state based on the present set of constraints and 
availability of the components in the system. 



 
Component based systems are constructed in hierarchical way as components can be built from other 

components. In hierarchical systems the desire is to specify high-level goals and the system should be able to 
figure out low-level actions that achieve the goal. According to Brown et al. 40 percent of the root cause of the 
outage problems comes from operator errors [5]. These outage problems occur because the operators have to 
take care of the system at a number of levels. This is a similar problem with spacecraft mission operations. The 
reconfiguration of a spacecraft is achieved by specifying high-level goals and the planner in the spacecraft finds 
the acceptable set of low level commands to achieve the high level goals. Therefore, we can use planning to 
solve the similar problem in CBS. 

Planning could be used to above the problem of restoring the system after an attack. However, the semantics 
of the system are needed to be encoded in a planning language before we can make use of the advantages 
planning can give to us. Planning languages have their own strength and weaknesses. A single planning 
language cannot solve all the problems mentioned above. In this paper we will model dynamic reconfiguration 
of component-based systems in two languages to evaluate their applicability towards component-based systems.  

4. PDDL (Planning Domain and Definition Language) 

PDDL is the language of the International Planning Competition (IPC) [10]. It emerged as a research language 
but now it is being used in a variety of disciplines for planning. European Network of Excellence in AI Planning 
(PLANET) [22] has identified a number of areas where planning could be applied. These areas range from 
intelligent manufacturing to robot motion planning. PDDL is mostly used in these areas as the language for 
planning. There are a number of planners that use PDDL [9,13].  

A PDDL specification consists of two parts. There is domains specification that is fixed and common to all 
problems in that domain. The second part is a set of problem specifications that specify specific initial and goal 
states. The domain encodes all the semantics of the planning. These semantics include type of entities being 
used in planning, entity predicates, utility functions and actions. Following is a brief description of these parts. 

 
− Types of entities: in our case, this consists of components, connectors, and machines. 
− Entity Predicates/Facts: the predicates associated with entities (see the section marked “pproperties” in Figure 

2). An example might be “at-machine”, which is a predicate that relates a component (or connector) to the 
machine to which that component is assigned. The domain actually specifies simple predicates, which are n-
ary relations. These can be combined using logical operators into more complex predicates. As with Prolog, 
instances of these n-ary relations can be asserted as facts, and a state is effectively a set of asserted facts. 
Predicates are also referred to as constraints. 

− Utilities: a variety of utility functions can be defined to simplify the specification (see the “functions” section 
of Figure 2). An example might be “local-connection-time”, which computes the time to connect a 
component given that the component and the connector are on the same machine. 

− Actions: the actions are the steps that can be included in a plan to change the state of the system (see 
“durative-action” items in Figure 2). The output plan will consist of a sequence of these actions. An example 
is “start-component”, which causes the state of a component to become “active”. Actions have preconditions 
(“at start” in Figure 2) and post-conditions (“effects” in Figure 2). The post-conditions can add, modify, or 
remove facts from the on-going state that is tracked by the planner during plan construction. The actions are 
called “durative” because they have an assigned execution time that is used in calculating the total plan time. 
 
The second part of PDDL is the problem. A problem is variable and consists of initial state and a goal state. 

The initial state represents the current state of the system. This section defines the known entities (components, 
connectors, machines) and asserts initial facts about those entities. The goal state represents the desired state of 
our system. It specifies predicates that represent constraints that must be satisfied in any plan constructed by the 
planner. Finally, the metric, that is to be used to evaluate the quality of a plan. In our case the metric is mostly 
the minimal total execution time for the plan. 



 
5. AML (Aspen Modeling Language) 

AML (Aspen Modeling Language) is the language of a system from JPL (Jet Propulsion Library), called 
ASPEN. ASPEN is basically targeted for the spacecraft mission operations. The mission operators specify high 
level goals in AML and the job of ASPEN is to produce optimized sequence of low level operations that are 
actually executed [7].  

AML has a C-like syntax. The central data structure in AML is an ‘activity’. Activities can be decomposed 
into further sub activities. There are seven core model classes in AML. The modeling like in PDDL is separate 
from the actual problem. However, because ASPEN works with iterative repair, the activities specified in the 
model file can be added, deleted, moved etc to resolve the conflicts in a plan. A brief description of each class is 
given below.  

 
− Activity: An activity represents an action in the plan. An activity has a start time, end time and duration. 

Activities can be divided into sub activates by using decompositions. Activities can use resources. Activates 
can also change the state of a state variable. Activates can also dependent on other activities through 
constraints. (see ‘Activites’ in Figure 3). 

− Resources: A resource represents a variable over the lifetime of the system. A resource could be depletable, 
undepletable, atomic or concurrent. (see ‘Resources’ in Figure 3). 

− States: A state represents value of a discrete variable over time. Activities can change the state variable. (see 
‘states’ in Figure 3). 

− Parameters: A parameter is an abstracted value of a range. There are four types available in AML i.e. integer, 
boolean, float and string.  

− Parameter Dependencies/Functions: Dependencies amongst the parameters of the system could also be 
defined. The dependencies represent a parameter constraint network. The planner has to satisfy all the 
dependencies in a valid plan in AML.  

− Temporal Constraints: Temporal Constraints maintain the partial ordering of activities. Partial ordering of 
activities are necessary to specify the ordering of actions in the plan. (see ‘constraint’ in activity 
StartComponent in Figure 3) 

− Preferences: Preferences are the metrics given in AML. Preferences are used to calculate the score of plans. 
There are five basic preference functions available in AML.  These are local activity variable, activity/goal 
count, resource/state variable, resource/state change count and state duration.  
 
Apart from the model, the initialization of a plan is also needed for ASPEN to make a plan. The initialization 

consists of the goals and the initialization of any resources or parameters. The goals can be specified as 
mandatory or optional.  

After having described the basic syntax of these two planning specification languages, we are going to 
describe a basic architecture of a component-based system. This description is followed by the discussion of 
modeling this architecture in the planning specification language.  

6. The Domain of Reconfigurable Systems 

We adopt a simplified version of the models used in Architecture Definition Languages (ADLs) [11,12] as the 
basis for our specification. Our model differs from ADLs in that it also includes information about the structure 
and state of the environment. In our case, that environment is the set of machines onto which a software system 
is deployed. For our purposes, then, the model consists of three kinds of entities: components, connectors, and 
machines. 

Components contain the logic of the system. A component is any entity that one can manage. An instance of 
a component can only exist at one machine at one time. Components need to be connected to a connector in 
order to communicate with other components. Some of the operations that can be performed on the components 
are starting a component, stopping a component, and connecting a component. 

Connectors provide communication links. Each connector instance exists on one machine. The connector can 
be linked to other connectors for communication. A connector can be thought of as a weak form of the 
connectors described by Mehta et al. [19]. The connector needs to be connected to another connector before it 



 
can accept connections from the component. The connector has almost the same operations as a component, 
except that it has an interconnect operation that links it with other connectors. 

Machines are places where components and connectors are deployed. A machine may have a resource 
constraint that controls the number of components and connectors that may be assigned to that machine. The 
operations that can be performed on the machine are start and stop. Note that we do not explicitly model inter-
machine connections. We assume that all the machines are connected to a network and that any two machines 
can communicate using, for example, TCP/IP. We assume that a connector deployed on a machine will use the 
inter-machine communication channels as the substrate for the connector’s communication activities. 

Components, connectors, and machines all have associated state machines that define what states they can 
achieve and in what order. These states are shown in Figure 1. Components and connectors have essentially the 
same set of states, so they are unified in the figure.  

Component and Connector States: A component (or connector) starts in the inactive state. It can transition 
to the active state and to the connected state, which indicates that the component/connector has been connected 
to some existing connector. The component/connector can also reach a killed state, which indicates that it has 
failed. A killed component/connector cannot be restarted; rather, a new instance must be created and started. 

Machine States: Machines have a somewhat simpler state machine. They can be down, up, or killed. 
Components and connectors cannot be assigned to a machine unless it is in the up state. 

Component and Connector States

Machine States

Down Up
Machine Started

Machine Stopped
KilledMachine Killed

Inactive
Started

Stopped

Machine Down

Connected

Disconnected
Killed

Killed
Active Connected
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KilledMachine Killed
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Fig. 1. State Machine Diagram for Components, Connectors and Machines 

7. Modeling the Dynamic Reconfiguration Domain in PDDL  

In this section we will describe our experiences with modeling in PDDL. We will model five aspects of dynamic 
reconfiguration of component based systems.  

Initial and Target Configuration 

PDDL has a notion of initial state and goal state. Our goal is to change the configuration of system from an 
initial configuration to a target configuration. Therefore our initial state is the initial configuration and our goal 
state is the target configuration. In different situations the initial configuration and goal configuration are 
different. For example there are two kinds of possible initial configuration. The first is when the components are 
being deployed. In this case the initial state could be just a set of machines, components and connectors. 
However, when there is reconfiguration of a running system, the initial state is the present configuration of the 
system. Likewise, the goal state could be also of a different set of target configurations. This could be divided 
broadly into two kinds of goal states: Explicit Configuration and Implicit Configuration. The explicit 
configuration is just another configuration in which all the topology of the connections is clearly described for 
example component A needs to connect to connector 3 and component B needs to be connected to connector 1. 
In this case the planner’s job is to find an optimal set of machines on which to deploy the set of connectors and 
components. In implicit configuration the exact topology cannot be stated. This happens when there is an attack 
on the system and it leaves the system in a state where neither an explicit target configuration is available nor 
the system can go back to the original configuration where it was before the attack. In this case PDDL provides 
a very powerful tool to specify an implicit goal state. This goal state could be just a property component that 
needs to be true after the planning for example component A must be connected. In this case we have not 



 
specified where component A should connect. This is the job of the planner to find out a set of actions that lead 
the component A to a connected state. This feature is also helpful for an initial deployment of components when 
we do not want to specify and explicit goal configuration. 

(define (domain jtmc3)
(:requirements :typing :durative-actions :fluents :conditional-effects)
(:types connector component machine - object)
(:predicates
(connected-component ?c - component ?d - connector)

(working-component ?c - component)
(active ?d - connector)

(dn-free ?d - connector)
(interconnected ?d1 - connector ?d2 - connector)
(ready ?d - connector)
 (killed ?d - connector)
 (up-machine ?m - machine)
(at-machinec ?c - component ?m - machine)
 (at-machined ?d - connector ?m - machine)
 (component-is-connected ?c - component)
 (connector-started ?d - connector))

(:functions (start-time-component ?c - component)
(interconnect-time ?dn1 - connector ?dn2 - connector)
(connect-time-component ?c - component)
(start-dn-time ?d - connector)
(machine-up-time ?m - machine)
(machine-down-time ?m -machine)
(available-connection ?m - machine)
(local-connection-time ?m - machine)
(remote-connection-time ?m - machine)

(:durative-action connect-component
 :parameters (?c - component ?d - connector ?m - machine)
 :duration (= ?duration (remote-connection-time ?m))
 :condition (and

(at start (not (connected-component ?c ?d)))
(over all (working-component ?c))
(at start (not (killed ?d)))
(at start (active ?d))
(at start (ready ?d))

                 )
 :effect (and
(at end (connected-component ?c ?d))

(at end (component-is-connected ?c))
) )

(:durative-action local-connection-component …)
(:durative-action start-component…)
(:durative-action start-connector…)
(:durative-action start-machine…)
(:durative-action dn-interconnection…)

Types

Properties

Utilities

Actions

 
Fig. 2. Modeling of Dynamic Reconfiguration Domain in PDDL 

Actions 

An action is the main semantic of PDDL. An action takes parameters. These parameters consist of the entities 
that are involved somehow in the execution of this action. It may be possible that an actual entity may not be 
modified at all but its properties are necessary to modify the state of another entity. An action consists of 
precondition and postcondition. A precondition is essentially the state of the system under which an action can 
take place. The determination of the precondition is through the properties of the entities of the system. These 
properties are specified through predicates. Only an action can change the value of a predicate.  



 
Dependency Modeling 

The precondition and postcondition essentially determines the dependencies between the artifacts of the 
system. In component based system one needs to specify a number of types of dependencies [15]. However, all 
of these dependencies cannot be modeled in PDDL in a straightforward way. Therefore, while modeling 
dependencies in PDDL one has to be careful about dependencies that are only required in the reconfiguration 
planning. In our example domain these dependencies are the dependency of a component and connector can 
only be deployed on a machine if the machine has the available capacity. Another dependency is that a 
component cannot communicate unless it is connected with a connector.  

Resource Modeling 

As discussed before the reconfiguration process is constrained by the number of resources. However, in our 
domain we have only one resource and that is the capacity of the machine. This resource is modeled with a 
predicate associated with machine entity. However, other resources could also be modeled through predicates 
and associated with their specific types.  

State Modeling  

The planning specification language models the state of the system at each step in a plan. Therefore, it is 
necessary that the state of the system be modeled through some kind of mechanism. In this case the state is 
represented by the value of the predicates of the objects in the system. However, as PDDL is limited in its 
syntax representation, not all the variables in the state should be modeled. Only the predicates determine the 
state of the system from a reconfiguration point of view must be modeled.  

8. Modeling Dynamic Reconfiguration Planning in AML 

We will now try to model the same dynamic reconfiguration domain in AML. We will again model them in the 
five aspects we have described before in the previous section.  

Initial and Goal Configurations   

The basic data structure in AML is an activity. An activity can be thought of a strong form of an action in 
PDDL, however, they are both very different in terms of the features they provide for modeling. There is no 
direct way to specify an initial state or initial configuration in AML. However, a goal state can be defined by 
specifying a set of activities as mandatory goals. This is different from the goal state of PDDL where the 
predicates determine the goal state. The planner for AML has to satisfy all the decompositions and constraints 
with other activities in order to satisfy a mandatory goal. There could be also optional goals that can be 
specified. The optional goals are satisfied only when the mandatory goals are satisfied first. Then if there is time 
and resources available the optional goals are satisfied.  



 
model deployment
{ HORIZON_START = 2004-1/00:00:00;
horizon_duration = 500s;
time_scale = second;}

State_Variable machine_sv
{ states = ("down", "up");
transitions = ("down" <-> "up");
default_state = "down";}
State_Variable component_sv
{ states = ("inactive", "active", "connected", "killed");
transitions = ("inactive" <-> "active", "active" <-> "connected",

"connected" -> "killed", "connected" -> "inactive");
default_state = "inactive";}
State_Variable connector_sv
{states = ("inactive", "active", "connected", "killed");
transitions = ("inactive" <-> "active", "active" <-> "connected",

"connected" -> "killed", "connected" -> "inactive");
default_state = "inactive"; }

Resource machine_capacity
{ type = depletable; capacity = 0; min_value = 0; }

Activity StartMachine
{ int diskspaceonmachine; int bandwidthonmachine;

duration = 30;
reservations = machine_sv change_to "up"; };

Activity StartComponent
{ string componentname; int componentusage;

duration = [1, 500];
constraints = starts_after end of StartMachine;
reservations = component_sv change_to "active",

machine_capacity use componentusage,
machine_sv must_be "up";};

Activity StartConnector
{ string connectorname; int connectorusage1; int connectorusage2;

duration = [1, 500];
constraints = starts_after end of StartMachine;
reservations = connector_sv change_to "active",

machine_capacity use connectorusage1,
machine_sv must_be "up";};

Activity ConnectComponent
{ reservations = connector_sv must_be "up",

component_sv must_be "up",
component_sv change_to "connected";};

Model
Description

State Variables

Resources

Activities

 
Fig. 3. Modeling of Dynamic Reconfiguration Domain in AML 

Actions 

The modeling of actions in AML is performed through activities. As described before an activity has 
parameters, decompositions, reservations and constraints. However, lets try to model our reconfiguration 
domain in terms of activities in AML. AML provides a very powerful way of representing a hierarchy amongst 
the entities to be planned. However, there is no apparent hierarchy in this domain. Therefore, decompositions 
are not very useful for us in modeling the domain.  
   The modeling of the relative ordering of activities in AML can be performed in two ways. The first way is to 
constrain the activity by providing the relative ordering of the activities that needs to be performed before the 
execution of the present activity. For example in figure 3 the activity StartComponent can not be started unless 
the activity StartMachine is performed. The second way is to have a state variable associated with the activity 
that flags the completion of an activity by changing the state of the artifact i.e. machine. For example in figure 3 
we have a state variable called machine_sv that has two possible states. The default state is “down” and the 
StartMachine activity changes the state variable to ”up”. The StartComponent has a reservation that unless 
machine_sv is up it cannot be started. However, while performing experiments with actual ASPEN system, both 
of the above ways have shortcomings when it comes to actual planning.  
    The problem with the first way is to that we need to specify as many “start machine” operations in the domain 
file as the number of machine. This creates a really big domain file even if we have a small number of machines. 
On the other hand the StartComponent needs to be defined for the machine it is intended to deploy. This is in 



 
essence equivalent to specifying an actual plan. The second way also has problems because there is only one 
state variable associated with each machine. In case we have more then one machine then we need to specify a 
state variable for each machine. Again this is really verbose and requires a really huge domain specification 
from the modeling perspective.  

Resource Modeling 

Unlike in PDDL, AML provides separate notion for specifying a resource. However, a problem with modeling 
resources in AML is the separate notion of states and resources. In PDDL we were able to associate state with a 
resource. The state changes as the actions were being performed on the resource. However, in AML only actions 
and resources can be combined or actions and states can be combined. For example in our domain a machine is 
a resource, however, it can have a state through the predicates and performing actions like StartMachine etc can 
change the state. This way of modeling is not possible in AML. Resources are a completely separate notion in 
AML and they cannot have a state. The lack of this flexibility reduces our ability to model a component based 
system in AML for planning.  

State Modeling 

The state modeling of AML is performed through state variables. The problem with state variables is that only 
one instance of a state variable can be initialized. Unlike in PDDL where each object that is initialized in the 
problem file has states associated with it through predicates. Therefore, in order to model the state a new state 
variable must be declared for each entity.  

Dependency Modeling  

The only type of direct dependency modeling performed in AML is parameter dependencies. However, 
parameter dependencies are not really useful in our domain because the dependencies here are either resource 
dependencies or action dependencies (that are discussed under Actions).  

9. Conclusion and Future Work 

The modeling of dynamic reconfiguration in PDDL and AML has given us mixed results. On one hand PDDL 
has modeled almost the entire state diagram in fig 1, AML has some basic shortcomings in modeling of our 
domain. However, it does not mean that AML does not have any features that we cannot use. Our domain was 
basically a flat domain where no sub activities are being performed but if we take this abstraction to a higher 
level i.e. systems of systems then AML is really useful for building a hierarchical domain. Moreover, AML is 
also good for scheduling as opposed to planning. Although, PDDL has modeled the dynamic reconfiguration 
domain really well, the building of such a robust domain for dynamic reconfiguration is really tough. A small 
mistake in PDDL domain specification can lead to many mistakes in the actual plan. Moreover, in PDDL there 
is no notion of a hierarchy. Although, there has been attempts to add a hierarchical notion in PDDL [1,4] it has 
not been the part of the official specification of PDDL.  
 
We have seen in this discussion that PDDL is good for modeling the dynamic reconfiguration of component 
based systems. On the other hand AML is good for modeling the hierarchical notions and scheduling. Our future 
work will focus on integrating the strengths of these two modeling tools.  
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