
A Distributed and Parallel Component Architecture for
Stream-oriented Applications

P. Barthelmess and C.A. Ellis

Department of Computer Science, University of Colorado at Boulder, Campus Box 430, Boulder, CO
80309-0430, USA.{barthelm,skip }@colorado.edu

University of Colorado Technical Report CU-CS-989-04

Abstract. This paper introduces ThreadMill - a distributed and parallel component ar-
chitecture for applications that process large volumes of streamed (time-sequenced) data,
such as is the case e.g. in speech and gesture recognition applications.
Many stream-oriented applications offer ample opportunity for enhanced performance
via concurrent execution, exploring a wide variety of parallel paradigms, such as task,
data and pipeline parallelism. ThreadMill addresses the challenges of development and
evolution of parallel and distributed applications in this domain by offering a modeling
formalism, a programming framework and a runtime infrastructure. Component develop-
ment and reuse, and application evolution are facilitated by the isolation of communica-
tion, concurrency, and synchronization concerns promoted by ThreadMill: 1) communi-
cation between components is mediated, so that components are oblivious to who their
peers in an application are, allowing them to be composed in unanticipated ways, in dif-
ferent contexts; 2) concurrency is exogenous to components and can be controlled via an
integrated staging mechanism that affords detailed control of distribution across multiple
address spaces and/or concurrency within each address space; 3) synchronization is ef-
fected via an extensible set of orchestration operators, that embed recurrent coordination
patterns that are matched to the requirements of stream-oriented applications.
A direct consequence of the novel mechanisms introduced by ThreadMill is that appli-
cations composed of reusable components can be re-targeted, unchanged, and made to
run efficiently on a variety of execution environments. These environments can range e.g.
from a single machine with a single processor, to a cluster of heterogeneous computa-
tional nodes, to certain classes of supercomputers. Experimental results show an eight-
fold speedup when using ten nodes of an AlphaServer DS20 cluster running a proof-of-
concept 2D video-based tracker for hands and face of American Sign Language signers.

1 Introduction

ThreadMill is a distributed and parallel component software architecture that caters for the spe-
cific requirements of applications that process large volumes of streamed (i.e. time-sequenced)
data. Such applications surface e.g. in the context of the analysis of streams generated by hu-
mans as they interact with each other and/or their environment.

Applications in this target domain can many times be naturally expressed in terms of a
pipe-and-filter paradigm. From the point of view of concurrency these applications, once ap-
propriately structured, can explore a variety of concurrency modalities, e.g.: thepipeline par-
allelism that emerges from the simultaneous processing of new elements in the first stages
of the processing pipeline while previous elements are still being processed by other stages;
task parallelismthat surfaces when the same data is analyzed concurrently by more than one
filter; anddata parallelismassociated to the concurrent processing of multiple sub-problems
(corresponding e.g. to multiple hypotheses) by replicated instances of a filter.



These multiple opportunities for parallel processing offer a potential for enhancing the per-
formance of this class of applications via distribution and concurrency. Many stream-oriented
applications process large volumes of data and/or employ computationally demanding process-
ing techniques. This in many cases results in lengthy processing times if a single processor is
employed. Enhanced performance opens up the possibility for many applications to become
usable in settings that require fast response time, such as e.g. advanced user interfaces and
smart environments.

While the opportunities for concurrency abound, developing code that takes advantage
of that is not in general easy. Parallel and distributed code many times embed assumptions
about the structure and characteristics of the execution environments on which it runs. These
assumptions tend to permeate the architectural scaffolding of applications, which makes it hard
to reuse parts of an application in different contexts, e.g. in different execution environments.

ThreadMill offers a modeling formalism, a programming framework and a runtime in-
frastructure that aim at facilitating the development and evolution of efficient distributed and
parallel stream-oriented applications. ThreadMill’s goals are to promote the reuse of exist-
ing application code while at the the same time affording detailed control over performance
aspects.

ThreadMill’s approach to development, reuse and control over evolution aspects is based
on mechanisms that promote the separation of communication, concurrency and synchroniza-
tion concerns from application code. These three aspects are made exogenous to application
components and can thus be manipulated in separate without affecting application code within
components.

ThreadMill takes a three-pronged approach to the separation of communication, concur-
rency and synchronization concerns:

1. Components communicate exclusively by indirect exchange of messages. The recipient of
a message is unaware of who the sender is; conversely, the sender of a message is unaware
of who the recipient(s) are. Because components do not address each other directly, they
can be composed in unanticipated ways, e.g. by having the results produced by a compo-
nent be transparently delivered to multiple consumers without requiring any special action
on the part of the component.

2. An integrated staging mechanism affords developers the detailed control over distribu-
tion of components among different address spaces and (thread-based) concurrency within
each address space. This first class staging mechanism addresses the need for structuring
application deployment in such a way that the communication of the commonly large data
structures is optimized by locality and accounts for differences e.g. in processor and net-
work speeds.

3. Synchronization functionality is factored out of components and embedded into reusable
components, resulting in components that can be potentially used in a broader range of
contexts. The open-ended nature of the architecture, that allows for new synchronization
operators to be defined, is based on ThreadMill’s reliance on a generic substrate offering
introspection capabilities.

This paper’s presentation is structured around the description of ThreadMill’s three main
aspects: 1) Thegeneric component modeland graphical formalism; 2)Themeta-machine, in
terms of which the semantics of the model are expressed; and 3) Thesynchronization mech-
anismtailored to the specific requirements of stream-oriented applications. This mechanisms
is built on top of the generic functionality of the model, taking advantage of the architectural
extensibility mechanisms of ThreadMill. These three aspects are presented in Sections 2 to 4.

The paper then presents results of experimental evaluation of the model and its implemen-
tation (Section 5) and related work (Section 6). The paper ends with Conclusions and Future
Work (Section 7). An extended version of this paper is presented in [4].

2



2 The ThreadMill model

ThreadMill offers a generic component-based model that is the foundation both for the devel-
opment of custom applications and for the implementation of domain-specific synchronization
operators. In this section we present this generic model. The underlying semantics of the model
presented here is then detailed in Section 3, in the context of ThreadMill’s meta-machine. Sec-
tion 4 shows how this generic model can be customized to handle the specific synchronization
requirements of stream-oriented applications.

Developing a ThreadMill application involves the following phases, that in most cases will
be iterated:

– Component development:application components are coded or existing components are
identified and reused, including synchronization operators.

– Application composition: components are composed into aconfiguration graphthat de-
termines how components communicate, based on data-dependencies among them.

– Staging definition: based on the characteristics of a target execution environment (e.g.
number of processors, processing speed, network speed), a specificconfiguration version
is defined. Configuration versions add annotations to configuration graphs to determine
threading and/or placement of components across one or more address spaces.

– Code generation:Configuration versions are processed by a ThreadMill compiler, that
generates a SPMD (Single Process Multiple Data) style code, that is ready to be deployed
in one or more processors.

In the following sections, we present the basic elements of the generic model (Section 2.1),
and the show how applications can be composed from reusable components (Section 2.2). We
then discuss how the execution behavior of an application can be defined through the integrated
staging functionality (Section 2.3).

2.1 Fundamental elements

All communication in the model takes the form of asynchronous messages (or tuple exchanges)
among components, as described in the following:

– Componentsimplement application code and can be specialized to perform specific syn-
chronization functions. A component is characterized by a signature(s, {ip}, {op}) where
s is a state, and{ip}, {op} are sets of input and output ports respectively. A component
producesor writes tuples to its output ports andacceptsor consumestuples from its input
ports.
Components attachhandlersto each of their input ports. These handlers apply unspecified
transformations to the state and may post tuples to one or more of the component’s output
ports. The state is private to each instance of a component and accessible to all of the
instance’s handlers.
In practice, defining a component is similar to defining a class in an object-oriented lan-
guage. Writing a component therefore involves defining a state and writing a set of handler
functions. Function signatures are required to comply to a ThreadMill mandated format.
Any language can used to write components, provided that it supports C-style calling con-
ventions.

– Connectorsare conceptual entities that are said tocarry tuples between a pair of compo-
nent ports. A connectorreceivestuples from the output port of a componenta andrelays
them to the input port of a componentb.
Multiple connectors can be attached to a single input port. Incoming tuples are in gen-
eral dealt with by a consumer component as if they were relayed by a single connector.

3



The introspection mechanisms (Section 3.4) might be used by advanced components to
distinguish messages sent by different components.
Conversely, multiple connectors might be associated to each output port. Tuples written
by a component to one of its output ports are replicated into as many copies as there are
attached connectors1. Selective delivery can be attained via instrospection mechanisms
(Section 3.4). Again, the introspection mechanism can be used by advanced components
to determine which components are connected to an output port. Messages then can be
selectively delivered to one (or a sub-group) of components that are attached to an output
port, rather than to all of them.
Notice that this architectural mechanism allows for results of a component to be propa-
gated to multiple consumers without the need for the generating component to be directly
concerned with this delivery.

– Tuples are units of data that are communicated among components. A tuple type deter-
mines a sequence of field names and field types. Tuples represent partial results that flow
among components and are further processed and refined as they flow through a configu-
ration graph, until some final processing objective is reached.
Tuples might represent complex data structures by embedding references to other struc-
tures (which in turn might include references themselves).

Communication among components is in general location and identity transparent. Com-
ponents are not required to be aware of who the recipients of tuples they generate are and
where these recipients are located. Conversely, components receiving a tuple can be oblivious
of who the sender of the tuple is or where the sender is located. Those advanced components
that require more control over the way the communication is effected can make use of Thread-
Mill’s introspection facilities (Section 3.4) for instance to perform delivery to a selective group
of connectors attached to a port.

2.2 Composing applications - configuration graphs

ThreadMill applications are defined by composing components intoconfigurations. Configura-
tions are directed graphs in which nodes represent components and edges represent connectors.

Figure 1 shows a configuration graph that represents a 2D vision-based Joint Likelihood
Filter (JLF) tracker [28]. This application tracks the position of the hands and face of Amer-
ican Sign Language signers from frame to frame of a video input (acquired byReader). The
method consists of evaluating multiple hypotheses based on random samples around positions
predicted by kalman filters against evidence provided by a skin-color filtered video frame (de-
tails are out of the scope of this paper - see [28] for details of the method and [6] for details of
the ThreadMill implementation).

Components in Figure 1 are distinguished according to their types. Rectangles represent
reusable application code. Ellipsoids (channels) and triangles (join operators) are synchro-
nization operators. The different types of components are discussed in detail in Section 4. For
the purpose of this section, it suffices to say that the nodes are components that perform ac-
tions on the tuples they receive through their input ports, and that may in turn produce tuples
through their output ports, according to some logic that is private to the component, i.e. the
tuple exchanges are the only observable results of component execution.

Ports are represented as small triangles embedded on one or more sides of a component.
Input ports are indicated by triangles that point into components; output ports are indicated

1 In practice, there is no copy involved unless a consumer is located in a different address space. Tuple
flow is performed by transmitting references, so what actually takes place is that the same reference is
sent to all consumers.

4



Priors


Track


Samples


Mask


Masks


X


Evaluate


Track parms


Evaluated


Select


Best


Loader


open


Reader


Frames


Skin filter


Process

ed


advance


V


open


Logger


Joined


Filter

parms


terminate


eof


Fig. 1.ThreadMill representation of a JLF tracker.

by triangles pointing out of components. In many occasions explicit port representations are
dropped and it is then assumed that connectors that are directed into components are made to
input ports and that connectors originating on a component are attached to output ports.

2.3 Staging - configuration versions

The configuration graphs examined in the previous section (Section 2.2) indicate potential
for concurrency through the partial ordering that is made explicit by the graph. ThreadMill
does not associate a concurrency semantics to these graphs, though. Concurrency issues are
dealt with in a separate phase, in which one or moreconfiguration versionsare defined. A
configuration version is built by applying transformations to a configuration graph to specify
the concurrency characteristics of an application. Configuration versions are matched to the
characteristics of specific execution environments, determining for instance how many address
spaces are to be created; which components are placed within each address space; how threads
of execution are to be assigned within each address space; and how many instances of each
component are to be created.

Currently, developers are responsible for specifying a desired concurrency semantics by
creating versions that consider application and environment characteristics. Refinement and
fine-tuning of configuration versions is facilitated by the ease with which these versions can

5



Priors


Track


Samples


Mask
Mask


Masks


X


Evaluate
Evaluate


Select


Best


Loader


Reader


Frames


Skin filter


Processed


V


Logger


Joined


Evaluated


0
 2


1


1


1


2


Evaluate


[0]


[0]
 [1]

[2]


[1]


2


3


2


Fig. 2.A configuration version for the JLF tracker application.

be created in ThreadMill. That allows developers to experiment with multiple versions to de-
termine effective ones. The reflective nature of ThreadMill’s execution mechanism makes it
possible in principle to explore self-tuning and dynamic execution (this is briefly considered in
Section 7.

Staging related issues are treated as first class concerns by ThreadMill because of the im-
pact that they have on performance. Efficiently implemented intra-address space communi-
cation (via hardware shared memory) can be orders of magnitude faster than communication
between address spaces particularly if the communication has to be performed over a network
connection. Placing components that communicate intensively and/or exchange large volumes
of data into the same address space has therefore important efficiency consequences. In fact,
given the same algorithm, this is the single most important factor determining whether the
performance of an application will be acceptable or not.

The ideal concurrency and placement of components of an application are determined by a
variety of factors that include characteristics of the application, such as computational costs of
each of its stages, size of exchanged data structures, as well as characteristics of the execution
environment, such as number of available processors, processor and network speeds, availabil-

6



ity of hardware supported shared memory. Configuration versions allow developers to use their
knowledge of the domain and environment to determine efficient runtime organizations.

For each configuration graph describing an application, a family of configuration versions
can be created. These different versions determine how the application is to be deployed under
different execution circumstances. The same application can thus be tuned for execution in a
single processor machine, or distributed over many multiprocessor nodes of a computational
cluster without requiring any changes to component code.

Configuration graphs can be tuned by developers to optimally explore the resources avail-
able on a specific execution environment, be it a single-processor machine or a supercomputer.
On the limit, an application can be made to execute strictly sequentially, under a single thread
of execution under a single processor. Or this same application can be distributed so that each
component executes under a private address space each running under its own processor. Most
versions will in practice combine distribution of components with thread concurrency within
each of the distributed address spaces.

Figure 2 shows a configuration version derived from the configuration graph of Figure 1.
This version is tailored to execute distributed over three address spaces, which will most likely
run under distinct computational nodes. The purple dotted lines in Figure 2 represent address
space boundaries and therefore define the placement of components within these spaces. The
number-labeled circles that annotate connectors represent thread assignments (only a few are
shown). Notice as well that some components, namelyMask and Evaluateare instantiated
multiple times, to take advantage of potential data parallelism offered by these specific stages.

ThreadMill supports the following staging operations:

– Placementspecifies address space boundaries, determining which components are to be
executed within each address space.
Boundaries are indicated in Figure 2 by purple dotted lines; each address space is labeled
with a tag 0, 1 and 2. Each address space can be mapped to a separate node of cluster, for
instance.
For multiprocessor machines that provide hardware shared memory support (such as com-
monly available Symmetric Multi Processor - SMP - machines), each address space can be
executed under a single machine, independently of its number of processors. Multiple pro-
cessors are taken advantage of via threading, and communication is optimized to make use
of the fast shared memory accessible to threads executing under these multiple processors.
Threading is specified by thebindingoperation.

– Binding determines the concurrency to be applied to elements of the same address space.
Binding associates threads of execution to individual connectors, so that tuples can be
concurrently processed by the consuming components.
Binding is indicated in Figure 2 by numbered circle labels attached to connectors - only a
few are actually shown in the figure for reasons of legibility. In practice, every connector
is labeled with a binding tag.
Thread assignment via binding as proposed by ThreadMill allows for a fine level of con-
trol over concurrency within an address space. All tuple processing can for instance be
associated with independent threads, exploring maximum concurrency, or can be made
to execute under a single thread, i.e. strictly sequentially. Intermediate solutions are also
possible, for instance assigning independent threads for computationally intensive compo-
nents and having other low priority components process tuples under one or more shared
threads.

– Unfolding provides for components to be instantiated multiple times, to enhance concur-
rency of selected processing stages. The multiple instances will compete for tuples, that are
therefore concurrently processed, rather than consumed one by one by a single consumer.

7



The actual mechanism that makes this distribution possible is embedded in a synchroniza-
tion operator - thechannel- that is detailed in Section 4.2.
Unfolding is graphically represented as multiple instances of an component, each of which
is labeled with an index number within brackets (e.g.MaskandEvaluatein Figure 2).
Notice thatplacementandbindingare orthogonal, in the sense that it is possible to place
unfolded instances in multiple address spaces, as is the case forEvaluate, that has instances
in spaces 0 and 1.

Configuration versions are processed by a ThreadMill compiler that converts them into
tables containing meta-information that drives the execution of an application. The compiler
generates a single-image, SPMD (Single Process Multiple Data) style of code that loads the
meta-information and initiates execution of the runtime infrastructure. The runtime infrastruc-
ture is based on the semantics of a meta-machine, that we introduce in the following section
(Section 3).

3 The meta-machine and runtime infrastructure

The semantics of the configuration versions described in the previous section (Section 2.3) are
defined in terms of the operations of a reflective machine. In particular, the exogenous commu-
nication and concurrency that are essential to ThreadMill’s approach to reuse and evolution are
effected via operations of the machine. This semantics is in turn implemented by ThreadMill’s
runtime infrastructure, accessible to application code via a programming framework.

The ThreadMill’s machine is an interpreter of configuration versions (Figure 3). The struc-
ture of the communication graph and annotations, represented as relations stored in a meta-
store provide the instructions that drive the machine.

Sequential

code


Receive

proxy


Meta

data


Compo-

nent


Compo-

nent


UE


store


Send

proxy


Mediator


Compo-

nent


A


B


B
B


C


C

UE


store


B


Fig. 3.The ThreadMill meta-machine.

We begin the presentation of the mechanism by introducing the data structures that repre-
sent configuration versions, as converted by the ThreadMill compiler (Section 3.1). Section 3.2
presents the machine’s functional elements. Section 3.3 presents the machine’s operational se-
mantics. The introspection facilities provided by ThreadMill for writing of advanced compo-
nents is presented in Section 3.4. Some of the practical aspects of the implemented infrastruc-
ture are presented in Section 3.5.

8



3.1 Reflective structures

A configuration version is expressed within the meta-machine in terms of five functions:map-
ping, placement, binding, handlerandstate:

– Mapping(c, op) is a function that takes a component identifierc and an output port iden-
tifier op and returns a set of tuples{(c′i, ipi)} that identify the components and their input
ports to whichop is attached by a connector.

– Placement(c) identifies the address space within which a componentc has been placed.
– Handler(c, ip) maps input portip of a componentc to a function handler that is attached

to the input portip and processes messages that are written toip.
– Binding(c, op, c′, ip) returns the thread identifier associated to the connector that attaches

the output portop of componentc to the input portip of componentc′.
Notice that the binding allows for the assignment of individual threads to each connector.

– State(c) returns a reference to the private state associated with component instancec.
– SpaceUE(n) returns the number ofunits of executionthat are to be created in a specific

address spacen.
– Local is a constant that uniquely identifies an address space.

These different functions are used by the machine’s mechanisms to obtain the information
that is used to drive the execution of an application, as specified in the following section.

3.2 Functional elements

Figure 3’s diagram represents the logical structure of a single address space. Execution in-
volves one or more instances of such machine that communicate with each other to transpar-
ently deliver messages across address space boundaries. In this diagram, green arrows (labeled
“A”) represent asynchronous posting of tuples to multi-threaded units of execution; white ar-
rows (labeled “A”) represent function calls; purple arrows (labeled “C”) represent accesses to
the meta-information that drives the machine. Rectangles are functional blocks; crooked ar-
rows attached to these blocks represent threads, i.e. the functional blocks marked with crooked
arrows can execute concurrently. In this section, we informally describe the semantics. The
detailed algorithms are discussed in Section 3.3.

1. The mediator is the core element of the machine, and acts as the intermediary between
all components, effectively driving the execution as it processes (concurrently) the tuples
that are posted by sequential application code, causing component handlers to be activated
(via the units of execution), which in turn might result in further generation of tuples. The
mediator is based on amediator/observerpattern [14].
Upon receipt of a tuplet, the mediator determines to whom it should be delivered by exam-
ining themappingrelation. Given a componentc and an output portop through which the
tuple was posted, the mediator determines the set of components and input ports{(c′i, ipi)}
to which the tuple is to be delivered. For each such recipient the mediator assembles an
activation recordar = (h, t, s) whereh = handler(c′i, ipi), ands = state(c′i).
Each activation record is further associated to anaddress spaceas = placement(c′i) that
determines under which address space the handler is to be processed. Activations that
are to take place in an address space different from the current one are transfered to the
send proxy(see item 3) for relaying to the foreign space. Activations that are local, i.e.
take place in the current address space are placed into the store of the unit of execution
ue = binding(c, op, c′i, ipi) for processing (see item 2).
Notice that multiple components (including the receive proxy) might call the mediator con-
currently to have tuples delivered asynchronously to the units of execution. The mediator
is reentrant and can handle these calls concurrently.

9



2. Theunits of executionimplement theasynchronous delegatepattern [14] being therefore
responsible for introducing concurrency into the execution. Each of them corresponds to a
thread of execution (indicated in Figure 3 by the crooked arrow that annotates them).
Units of execution retrieve activation records(h, t, s) placed by the mediator into their
private stores and invoke the indicated component handlerh, passing tuplet and the refer-
ence to the states as parameters. This effectively implements the semantics of a connector,
performing the transfer of a tuple to a component for processing under a specific binding.
The execution of the handler may result in further messages being posted to the mediator,
that will dispatch them according to what has been explained in item 1 above.
A handler under execution has control of the thread associated to the unit of execution
until its completion. Once the handler runs to completion, the unit of execution retrieves
another activation record, if available, and repeats the process described above.
The number of units of execution and by consequence the number of threads of a ma-
chine can be programmed individually for each address space, as part of the machine’s
initialization.

3. Thesend proxyhandles the transmission of tuples to components located in other address
spaces. The transmission is effected by sending a message to thereceive proxy(item 4) of
a machine controlling another address space. A marshaling mechanism automatically con-
verts data to/from a wire format. This mechanism performs a recursive descent through
pointer structures (using tuple-structure meta-data), sending out each part of a complex
data structure to a remote space where they are reassembled. Embedded pointers are re-
placed by unique system-wide identifiers. Recipients patch pointers with local addresses
of cached copies based on structure descriptors. ThreadMill adopts a single assignment
policy (common in message-passing systems) to avoid costly replica-synchronization op-
erations. This mechanism is further detailed in Section 3.5.

4. Thereceive proxymonitors inter-machine connections for messages. Once a message from
a foreign address space is received, the receive proxy posts it to the local mediator for dis-
patching, thus transparently effecting the activation of a local handler under the command
of a remote machine.

3.3 Operational semantics

Algorithms 1 to 5 present the pseudo-code of the machine operations that were briefly de-
scribed in a previous section.

To start processing, a marker tupleinit is posted as part of a machine initialization routine
(Algorithm 1). This tuple is by definition mapped to the initial behavior that is desired, and
causes the activation of one or more component handlers which in turn produce further tuples
that are translated by the mediator as described in Section 3.2. A variable number ofunits
of execution(UEs) are created as part of a machine’s initialization. The number of UEs to be
created is given individually for each address space by theSpaceUE(·) function (Section 3.1).
Local is a constant that is set to a unique address space identifier under which a specific
machine instance is executing.

Algorithm 1 Node initialization - units of execution
for i = 1 to SpaceUE(Local) do

U ← U+ new uniti
end for
Post(init)

10



Postis the main service activated by components to communicate (indirectly via the medi-
ator) with each other (Algorithm 2).

Algorithm 2 Post(c, op, t)
for all (c′, ip) ∈Mapping(c, op) do

n← Placement(c′)
if n = Local then

if m 6= stop then
u← Binding(c, op, c′, ip)
s← State(c′)
h← Handler(c′, ip)
S[u]← S[u] +safe (h, t, s)

else
for all ue ∈ U do

S[ue]← S[ue] +safe stop
end for

end if
else

Send(c, op, n, t)
end if

end for

Postings are handled by the mediator, that reacts to a posting in three distinct ways, depend-
ing on whether a tuple is a regular tuple or the special markerstop, and whether the handling
of a tuple takes place locally or remotely:

1. Handling of a regular tuple taking place within the local address space managed by
a machine instance
In this case, the mediator reacts by inserting zero or moreactivation recordsinto thestores
of zero or more UEs, according to the meta-data that establishes message translations. Be-
cause multiple components might post tuples concurrently, the insertion and extraction
of tuples into/from the stores need to be concurrency-safe (e.g. usinglocks). This is rep-
resented in the concurrent algorithms by the symbol “+safe” and “−safe”, representing
concurrency-safe insertions and deletions respectively.
For every local tuple(c′, ip) associated to(c, op) by Mapping(·), an activation record
(h, t, s) inserted into thestore of unit of executionu, whereh = Handler(c′, ip) is
a handler within componentc′ that is to be activated,t is the tuple to be handled and
s = State(c′) is the private state ofc′ andu = Binding(c, op, c′, ip) identifies the UE
associated to the connector between the output portop of componentc and portip of
componentc′. Postreturns as soon as the activation record is placed within a storeS[·], i.e.
the activation is handed over to the UE for asynchronous execution that does not dependent
from this point on from the mediator.

2. Handling of a stop marker tuple
A non-dispatchable messagestop is used to signal termination, and causes the dispatching
loop of the UEs (discussed bellow) to terminate. The mediator propagates the stop marker
by placing astop into every UE within the local address space.

3. Tuples that are handled by components located in remote address spaces
In this case, a tuple needs to be exported to the remote space for processing. This is handled
by a call to theSend Proxythat serves as the interface between machines distributed across
address spaces.

11



Activation records placed in UE stores are dispatched concurrently by the UEs (Algo-
rithm 3). UEs select nondeterministically an activation record(h, t, s) from their storesS[.]
and extract it. The nondeterminism reflects the lack of constraints on message ordering, which
is important to account for transmission delays common in distributed systems. An UE acti-
vates a handlerh of a componentc specified in the activation record, passing it the tuplet and
the states as parameters. The process is repeated until there is a single marker tuplestop in
the store, which signals the end of processing.Stop is never selected as part of Algorithm 3
and therefore eventually becomes the single content of the store2. This in turns causes the
dispatching loop to exit, terminating execution of the unit.

Algorithm 3 Dispatching loop within a unit of Executionu
1: repeat
2: (h, t, s)← any activation record fromS[u]
3: S[u]← S[u]−safe (h, t, s)
4: activateh(s, t)
5: until S[u] = stop

The receive proxy(Algorithm 4) is the element that handles messages that are exported
from other machines into a local machine. The proxy employs an infinite reception loop (even-
tually terminated by other means as part of some machine finalization code). Within the loop, a
blocking message reception instruction waits for messages and receives them when available.

Algorithm 4 Receive Proxy()
loop

block until a messagem becomes available
Post Local(m)

end loop

Received messages are posted using a version of post that propagates tuples only to local
handlers (Algorithm 5), to avoid that a message be repeatedly transmitted back and forth be-
tween address spaces. This undesirable situation might occur e.g. whenMapping(c, op) =
(c1, ip1), (c2, ip2), n1 = Placement(c1), n2 = Placement(c2) andn1 6= n2, i.e. a tuple
is mapped to two components that are placed in distinct address spaces. Lett be originally
generated by a componentc1 of n1. The original posting (Algorithm 2) generates an activa-
tion record(h1, t, s) handled locally and a call toSend(c2, n2, t). The former causes a local
activation of handlerh1 and the latter is sent through the send proxy to noden2. Tuple t is
eventually received by address spacen2, where it is processed by the receive proxy. Assume
that instead of usingPostlocal (Algorithm 5), the receive proxy calledPost (Algorithm 2).
That would result in the symmetrical generation of an activation record(h2, t, s) and a call
to Send(c1, n1, t)). The same tuplet would then be bounced back ton1 by the Send proxy,
and an infinite loop would ensue.Postlocal omits the calls to the Send proxy, avoiding the
undesirable situation.

2 A more realistic scenario admits multiplestop messages to be in the store.

12



Algorithm 5 Postlocal(m, c) - concurrent components

for all (c′, ip) ∈Mapping(c, op) do
n← Placement(c′)
if n = Local then

if m 6= stop then
u← Binding(c, op, c′, ip)
s← State(c′)
h← Handler(c′, ip)
S[u]← S[u] +safe (h, t, s)

else
for all ue ∈ U do

S[ue]← S[ue] +safe stop
end for

end if
else

Do nothing
end if

end for

3.4 Introspection facilities

To allow for the definition of advanced components, ThreadMill makes some meta-information
available. Components can query the structure of a running configuration version and adapt
their behavior according to the specifics of their context within this version:

– WhoAmI returns the component identifierc of the caller.
– InputPorts(c) returns the identifiers of the input ports of a componentc.
– OutputPorts(c) returns the identifiers of the output ports of a componentc.
– Producers(c, ip) returns the identifiers of the components whose output ports are con-

nected to the input portip of componentc.
– Consumers(c, op) returns the identifiers of the components whose input ports are con-

nected to the output portop of componentc.
– ConnectedTo(c, p, c′) returns the identifier of the (input or output) port of componentc′

that is connected to portp of componentc.
– Peers(c) returns the component identifiers of unfolded instances ofc.
– Rank(c) returns the relative unfolding index of a componentc, i.e., it returns 1 for the first

unfolded instance, 2 for the second and so on.
– ThisSpace returns the identifier of the current address space.
– Place(c) returns the identifier of the address space under which componentc is placed.
– Unit(c, op, c′, ip) returns the identifier of the unit of execution under which tuples relayed

via a connector are executed.
– NumberUnits(as) returns the number of units of execution under address spaceas.

The above functionality is mainly used by synchronization operators that need to adapt
their behavior according to their context of use. Regular application components rarely have
the need to employ this functionality.

Notice that these introspection functions allow for a component to recursively navigate a
whole configuration version graph, extracting all available information.

3.5 Infrastructure optimizations

Actual implementation faces specific challenges related to the need for high performance. In
particular, two aspects impact the efficiency of an implementation: 1) the management of data,

13



given that structures are in many cases large and special care must be taken to avoid unneces-
sary copies and 2) the communication among components, that can be efficiently realized by
taking advantage of shared memory within address spaces and by avoiding conversions when-
ever possible across address spaces. Sections 3.5 and 3.5 present some details of these two
aspects respectively.

Data managementThe sizes of the structures processed by applications in the target domain
are in many cases large - a single video frame can be as large as one megabyte. ThreadMill
minimizes data moving and copying by caching single copies of data structures within each
address space. Components that are co-located, i.e. deployed within same address space, access
cached data via handles, rather than receiving a copy of it. Actual copies only take place when
data has to be communicated to a different address space, and then only once per structure.

Tuples follow asingle assignment(or write-once) policy. That means that once a struc-
ture is initialized, its contents ought not to be modified by components. In practical terms, that
means simply that components treat data they receive as read-only. Results of processing are
generated in a separate, new structure, or generated via copy-on-write. Single assignment sim-
plifies data management because it eliminates the need for complex synchronization among
distributed copies and simplifies distributed garbage collection. This is particularly relevant in
distributed environments, where synchronization costs might become prohibitive because of
communication latency among computational nodes.

Garbage collection is an essential service that must be performed by the infrastructure,
given that components are by design unaware of how data they generate might be accessed by
other components. ThreadMill performs this collection by keeping reference counts, aided by
meta-information that identifies pointers within tuples.

Communication Communication among components that are co-located takes advantage of
shared memory and is effected through synchronized queues.

Data flowing across address spaces is transparently processed and transmitted by Thread-
Mill, using a native format as thewire format (adopting the approach proposed by [8]). This
reduces conversions in the common case in which address spaces are executing under simi-
lar platforms. Conversions among heterogeneous platforms are handled transparently by the
recipient’s infrastructure.

Tuples in ThreadMill might (and often do) embed references to other data structures (which
might in turn embed other references). With the aid of the reflective meta-information, these
embedded pointer structures are recursively visited by ThreadMill whenever a tuple needs to
be transmitted across address space boundaries. The reflective information describes pointer
locations and types within structures for each structure used by an application. A depth-first
descent is performed through the pointers until leaf structures are reached. Leaf structures
are contiguous byte regions that do not have embedded pointers or whose pointers point to
structures that have already been visited. Leaf structures are transmitted to the intended address
space, along with a minimal amount of meta-information necessary for the foreign address
space to reconstruct the data structure on arrival. As the recursion unrolls, additional parts of a
structure are sent piecewise to the destination address space.

As they are received, parts of a data structure are cached at the recipient’s address space.
Once the whole structure has been received, embedded pointers are patched to reflect the ad-
dresses of the cached parts in the recipient’s address space.

Actual transmission is based on MPI [11]. ThreadMill’s dependence on MPI is minimal
though, and can be easily replaced by other existing communication libraries (e.g. PVM [29]),
or developed directly on top of a TCP/IP (sockets) mechanism. MPI is convenient because of
its ample availability and the availability of freely downloadable libraries. An added bonus is

14



that MPI-enabled applications can be easily made to run on Globus[15] computational grids.
ThreadMill also currently makes use of the deployment facilities offered by MPI (applications
are deployed through a call to mpirun).

4 Orchestration mechanism

The functionality described so far (Sections 2 and 3) allows for applications to be assembled
from reusable components, and for these applications’ concurrency to be defined in detail.
Yet, these mechanisms, useful as they are, do not provide support for the synchronization
requirements that surface in the context of processing of streamed data. In ThreadMill, these
services are incorporated intoorchestration operatorsdefined on top of the generic model by
means of the introspection extensibility mechanisms.

The concurrent and asynchronous processing of time-sequenced data introduces specific
synchronization requirements. The objective of the synchronization mechanisms are twofold:
on the one hand to maximize the potential concurrency by supporting the independent pro-
cessing of sub-problems; on the other hand, the mechanisms must provide support for easy
reassembly and re-synchronization of the results of these partial computations.

The re-synchronization needs furthermore to take into account the time-sequenced nature
of the data. One wants to guarantee that independently of concurrency, results will be obtained
in a strictly time-sequenced way, corresponding to the ordering of the input. Consider for
instance a video processing application. The results must be produced for each frame in the
strict order in which the frames were produced. This is a challenge due to the asynchronous and
parallel nature of the applications, that may result in the intermixing of partial computations of
multiple frames.

The synchronization requirements that emerge are non-trivial. Embedding of this function-
ality into application components would therefore make application components more complex
and harder to maintain and reuse.

ThreadMill’s solution is based on the isolation of recurrent synchronization patterns into
specialized reusable components. The approach is therefore open-ended, since additional syn-
chronization needs can similarly be isolated into reusable components.

This section starts with the presentation of the concept ofactivity sets, that identify tuples
related to the same time-aligned tasks (Section 4.1). Section 4.2 introduces the synchronization
operators provided by ThreadMill.

4.1 Activity sets

ThreadMill promotes a divide-and-conquer pattern of recursive decomposition of problems
into subproblems that can be solved concurrently. This approach matches well the nature of
applications in the target domain, many of which can be expressed in terms of a pipe-and-filter
paradigm for which independent processing of parts is a natural match. Finding hands and face
in a specific video frame, for instance, is broken down e.g. into preparing the image for further
processing by filtering the skin-colored pixels; predicting the position of the object via kalman
filters; generating hypotheses and evaluating them; and choosing the most likely hypothesis as
representing the desired positions.

Communication among the different components is achieved indirectly by the production
and consumption of tuples that can be seen as representing both the results of a previous stage
and as commands that cause dependent stages to be activated. For each single video frame,
for example, a large number of tuples is generated and made to flow among components. Take
for instance theTrack component (Figure 2): it generates hundreds (or thousands) of tuples
that represent individual hypotheses about the current position of hands and face. These tuples

15



eventually causeEvaluateto be activated repeatedly, to produce likelihood estimates for each
of the hypotheses from which the most likely is chosen.

ThreadMill provides a mechanism to identify the multiple tuples that are related to a single
activity (e.g. a single frame in which hands and face are to be located) that we callactivity set.
Tuples of an activity set are identified by a unique activity identifier, called thetick (as inclock
tick).

Tick timestamps allow components to distinguish which tuples belong to the same overall
activity, e.g. to perform synchronization tasks and to guarantee that processing complies to a
temporal order within synchronization operators. All tuples representing hypotheses related to
a specific video frame, for instance, are tagged with the sametick as the frame itself; similarly,
other tuples that refer to this frame, such as the skin-color filtered image and the masks used
during evaluation will be tagged with identical ticks for each frame. Tick tagging allows for
multiple parts of different activities (e.g the parts related to multiple frames) to flow concur-
rently through a graph, and at the same time be kept distinctive for synchronization purposes.

After generating all tuples that are related to an activity set, components produce anend-
of-tick marker, that signals completion of the set associated with a specifictick. This marker
helps components determine when producers they depend on are done generating tuples of a
set, and is particularly useful in situations where producers can generate no tuples for a specific
set, or a variable number of tuples per set.

The functionality that deals with ticks for synchronization purposes is isolated into reusable
operators. Application components do not in general need to be concerned with the complexity
of synchronization in general and tick processing in particular. We examine the synchronization
operators of ThreadMill in the following section.

4.2 Synchronization operators

Synchronization operators allow for independently computed results to be recombined accord-
ing to a variety of different strategies, resulting in indirect synchronization of tasks. These
operators represent specialized components, placed within an open-ended hierarchy.The ex-
tension mechanism is based on standard inheritance of classes crafted according to ThreadMill
guidelines.

Stream-oriented synchronization support is embedded withinchannelandjoin operators:

– Channels(represented by ellipsoids) effect time-ordered tuple distribution.
The objectives of a channel are twofold: 1) to provide a mechanism that merges tuples that
are generated by a variable number of producers attached to a channel’s input port; 2) to
serve each tuple to one (of a variable number of) consumers that is known to be ready to
start processing.
Tuples are served according to the temporal ordering of theactivity setsthey are related
to, i.e., intick order. This functionality handles the potential inter-mixing of differentac-
tivity setsthat results from concurrent and asynchronous processing, and guarantee that
consumers have a temporally aligned view of these sets.
A channel merges tuples of the same type it receives from potentially multiple produc-
ers and implements aone-out-of-manydelivery policy to consumers that are available to
perform a task. A protocol between channels and their consumers allows the latter to an-
nounce when they are ready to receive and process a tuple. If no consumer is free, tuples
are cached until such time that a consumer becomes available.

– Cartesian productjoins (represented by triangles marked with and “x”) combine messages
of potentially different types into single tuples.

16



Most commonly applications in the target domain comprise phases in which sub problems
can be clearly identified. A natural solution in ThreadMill is for a component to gener-
ate multiple tuples, each representing a sub-problem, that can then be tackled in parallel
by one or more instances of other components. Once the solutions have been computed, a
common recombination pattern is to join them together into a single message that then suf-
fers further processing, e.g. a video image filtered for skin-colored pixels and the multiple
hypotheses that need to be evaluated against it are combined in preparation for evaluation.
Join operators have two incoming ports that accept potentially different tuple types and
one output port. All producers and all consumers of a join must be channels.

– A simpler type of join (represented as a triangle with a “v” marking) handles the situation
in which tuples are alternatively produced by only one of two incoming connectors at
each time. In this case the join operates as a pass-through, propagating to its output port
whatever input it receives, i.e. any interleaving of tuples from either connector is accepted.

Figure 4 summarizes the graphical notation assigned to each component type. Notice that
from the perspective of the underlying generic component model and meta-machine all these
different operators correspond to components that are in principle not distinguished from each
other. New operators can thus be similarly developed to enhance the architecture’s capabilities
without disturbing the underlying mechanisms.

V
 X


Application

component


Channel


Or-join
 Cartesian product


Signal
 Pipes


Fig. 4.Elements of ThreadMill’s graphical notation.

4.3 Pipes and signals

Pipesand signals (represented in Figures 1 and 2 as solid and dotted arrows respectively)
are both implemented in terms ofconnectors. Their distinction is based on the expectation
with respect to the protocol (or lack thereof) implemented by tuples flowing through these
connectors.

Pipes carry tuples that comply to the protocol that is related to the control of activity sets
(Section 4.1). That is to say that tuples flowing through pipes are required to be timestamped
with a tick, that the end of each activity set has to be marked by anend-of-tickmarker.

Signals on the other hand are not required to implement the activity set protocol. In fact,
signals will in general be used to implement specific inter-component protocols. Signals are
useful e.g. to allow for the propagation of user interface related information, both for the pur-
pose of notifying components of user actions and for collecting partial results for presentation
to users.

17



Signals are also used to implement communication among unfolded instances of compo-
nents, to allow these instances to coordinate their actions. One example of such coordination is
the one performed bychannelinstances. Channel instances communicate with each other via
signals to migrate tuples between overloaded and free instances so that the overall throughput
is maximized. Details of this mechanism are out of the scope of this paper and are described in
[6, chapter 3].

5 Experimental results

To experiment with the architecture, a multi-target tracker for hands and face of signers of
American Sign Language was developed. This tracker is based on a Joint Likelihood Filter
multi-target tracker described by Rasmussen [28]. Details of the implementation can be found
in [6].

5.1 Code versions

A sequential version of the tracker was first developed from scratch, based on Rasmussen’s
[28] description. A ThreadMill version was then developed. The ThreadMill version employs
essentially the same algorithm, and shares library code with the sequential version, to guarantee
equivalence of processing. The control structure of the sequential and the ThreadMill versions
differ considerably.

ThreadMill proved appropriated to describe the flow in this non-trivial application in a
compact way. The resulting graph revealed opportunities for parallelism that were hidden in
the original sequential code. One example is the potential execution ofRead(to acquire new
frames) and theSkin filter concurrently toTrack and Mask. The latter two phases generate
random samples and associated image masks based on priors, in preparation for the evaluation
of the likelihoods against the evidence provided by the image. SinceTrack andMask them-
selves do not depend on image data, they can be processed concurrently to the I/O operation
performed byReadand the skin color filtering.

5.2 Conditions of the experiments

Experiments with multiple versions, ranging from one to ten nodes of a cluster of Compaq
AlphaServer DS20 machines were run. In these experiments, a single (unchanged) application
was configured to run on multiple distributed nodes. Each version was executed five times for
different sample loads, and the execution times were averaged.

The sample loads varied from 1 to 3200 samples or hypothesis explored for each frame.
The same movie clip (from Purdue’s ASL moive database [23]) was used in all instances.
Execution times for each run reflect the average processing time of two hundred frames.

5.3 Cost per phase

Since hypotheses-related processing accounts for the bulk of the computational cost for a non-
trivial number of hypotheses, sample set sizes effectively represent growing computational
demands that need to be faced by the concurrency mechanisms. Figure 5 shows the percentage
of the processing time that is taken by each of the phases in JLF.Selection, Reader, Trackand
Loggertook less than one percent of the overall processing time and are not displayed in the
graph. As the number of samples growsMaskandEvaluatestrongly dominate the processing
requirements. It is thus the latter two phases that present the most promising opportunities for
speedup through concurrent execution.

18



0%


10%


20%


30%


40%


50%


60%


70%


80%


90%


100%


1
 100
 200
 400
 800
 1600
 3200


Number of samples


P
er

ce
nt

ag
e 

of
 o

ve
ra

ll 
co

st



Skin Filter


Masking


Evaluating


Fig. 5. Task influence per sample set size. Notice that as the sample sets grow, the data parallel tasks
dominate the computation.

5.4 Cluster-based experiments

Figures 6-7 and Tables 1and 2 report results of running multiple versions of the JLF application
distributed across multiple nodes. These versions are referred to asTMi, wherei indicates
the number of address spaces employed by a version. Each address space corresponds to an
individual dual-processor node. The experiment shows a close to 7-fold speedup for larger
sample sets relative to the baseline sequential version when ten dual nodes (twenty processors)
are used. Speedup is calculated asSeq/TMi, i = 1 . . . 10. A speedup of 2 means 100% faster
than (twice as fast as) the sequential baseline. More importantly, the experiments show that
given an adequate number of nodes, the time per sample can be kept almost constant even
when the sample set size grows exponentially. It is expected that optimizations of the basic
algorithm will therefore result in reductions that scale to larger sample set sizes.

0


2


4


6


8


10


12


14


100
 200
 400
 800
 1600
 3200


Number of samples


Ti
m

e 
(s

) p
er

 fr
am

e


Seq


TM
1


TM
2


TM
3


TM
4

TM
5

TM
10


Fig. 6. Time spent per frame for each sam-
ple size on one to ten dual AlphaServer DS20
nodes.

0.00


1.00


2.00


3.00


4.00


5.00


6.00


7.00


8.00


9.00


100
 200
 400
 800
 1600
 3200


Number of samples


S
pe

ed
up

 r
el

at
iv

e 
to

 S
eq

ue
nt

ia
l


TM
1


TM
2


TM
3


TM
4


TM
5


TM
10


Seq


Fig. 7.Relative speedup with respect to sequen-
tial baseline.

5.5 Discussion

Since the parallel implementationsTMi execute at least as many steps as the sequential
versionSeq (the algorithms are identical), speedups are necessarily sub-linear. This follows
from Amdahl’s law equation [2], that determines maximum speedups for parallelized code as
speedup = 1

(1−f)+ f
s

, wheref is the fraction of the code that is enhanced by parallelization

ands is the speedup of the enhanced code. Even assuming anf of 100% and an ideals equal
to the numberN of processors employed, the speedup would still be limited toN , i.e. strictly

19



Number of Samples
VersionCPUs 100 200 400 800 1600 3200

Seq 1 1714.402139.512899.524348.327424.9113299.96
TM1 2 1122.101402.651886.582445.234262.72 8500.25
TM2 4 597.97 702.26 948.701510.172784.13 5411.85
TM3 6 619.60 704.07 865.031215.732061.15 3936.12
TM4 8 664.38 710.40 829.241092.541647.90 3078.39
TM5 10 722.11 745.02 833.881038.991453.68 2572.87
TM10 20 956.13 965.53 979.891110.631249.19 1694.56

Table 1.Time per frame (ms) on one to ten nodes of an AlphaServer DS20 cluster. Average of
five runs per version/sample.

Number of Samples
VersionCPUs 100 200 400 800 16003200

TM1 2 1.531.531.541.78 1.74 1.56
TM2 4 2.873.053.062.88 2.67 2.46
TM3 6 2.773.043.353.58 3.60 3.38
TM4 8 2.583.013.503.98 4.51 4.32
TM5 10 2.372.873.484.19 5.11 5.17
TM10 20 2.792.222.963.92 5.94 7.85

Table 2.Speedup (Seq/TMi) with respect to sequential baseline.

linear. Since the portion of the code that can in fact be enhanced by parallelism is less than
100%, results will necessarily be sub-linear. Table 3 presents the results of calculating the frac-
tion f of the code that would correspond to a speedups equal to the number of processorsN .
The runs with larger speedups display an enhanced fraction of 87% to 91% across versions,
indicating that ThreadMill is taking good advantage of the concurrency that is possible in this
application.

Number of Samples
VersionCPUs 100 200 400 800 1600 3200

TM1 2 69.10%68.88%69.87%87.53%85.18%72.18%
TM2 4 86.83%89.57%89.71%87.03%83.34%79.08%
TM3 6 76.63%80.51%84.20%86.45%86.69%84.49%
TM4 8 70.00%76.34%81.60%85.57%88.92%87.83%
TM5 10 64.31%72.42%79.16%84.56%89.36%89.62%
TM10 20 46.56%57.76%69.69%78.38%87.55%91.85%

Table 3.Fractionf of the program that corresponds to the observedspeedup (Table 1) onN
processors for each version -f = N(1−speedup)

speedup(1−N) .

Super-linear results are possible only in cases where the parallel versions take advantage
of concurrency to eliminate steps of computation. In the JLF case, this might come about e.g.
if a smarter strategy for evaluation is employed, for instance by using the results of previous
evaluations to focus the search for the best joint sample on more promising regions of an image.

As shown in Table 1, the configuration that achieves maximal speedup varies depending on
sample set size, e.g. two nodes were enough to achieve the best times per sample for smaller

20



sample set sizes of 100 and 200 samples, and four nodes when the sample set size is 400 and so
on. Runs with smaller sample sets are penalized by the relatively large communication costs,
particularly for larger number of processors. This cost is compounded by low speed of the inter-
connections among the nodes used in the experiments (100Mb ethernet) that makes exchanges
among address spaces become expensive.TM10 processing 100 samples, for example, dis-
tributes over the network the image to be analyzed to ten nodes, each of which processes just
ten samples (one hundred samples divided into ten nodes) per frame. That results in a process-
ing time per frame (0.956 s) that is more than fifty percent aboveTM1’s time (0.632 s) for the
same number of samples (100).

Notice as well that the ThreadMill versionTM1 performs significantly better than the
sequential version, even on a single (dual) node, i.e. when there is no distribution. This demon-
strates the advantage of using intra-node threading, which allows forTM1 to take advantage
of the two processors available in each node to enhance performance. WhileSeq employs
a thread just in connection to reading of new frames,TM1 uses both processors to execute
concurrently all the application’s tasks.

6 Related work

6.1 Coarser-grained architectures

Architectures that target the same domain as ThreadMill (e.g. Neem [5], DACS [9], Galaxy
Communicator [24], OAA [7]) focus on coarser-grained components. These architectures are
typically not concerned with supporting concurrency via threads, or exploiting hardware shared
memory to provide fast intra-address space communication. As a result, they might impose too
high overheads if used to exploit the kind of fine-grained concurrency that is ThreadMill’s
focus. In fact, ThreadMill could be used to transparently implement the concurrency mech-
anisms within individual components of these coarser-grained architectures, complementing
their functionality.

6.2 Fine-grained architectures

An exception to the above is Stampede [27]. Stampede shares ThreadMill’s goal of facilitating
the development of applications that deal with time-sequenced data. It supports distribution
and concurrency via threads, and provides a synchronization distributed structure (the Space
Time Memory - STM) that is similar in functionality to ThreadMill’s channel operator. Both
Stampede’s STM and ThreadMill channels aim at regulating access to time-sequenced data in
the presence of multiple concurrent producers and consumers, and both rely on timestamps
embedded into tuples.

Stampede’s STM allows random access to temporally indexed data it stores, and provides
a rich set of retrieval operations that can specify a particular timestamp, the oldest/newest
timestamp, or the newest unread item. ThreadMill, on the other hand, allows for multiple tuples
to be associated with a single timestamp, which is an essential feature when support for fine-
grained concurrency is desired e.g. to support a variable number of hypothesis to be generated
and processed concurrently.

The staging of components is not addressed directly by Stampede (the mechanism is not de-
scribed in the available literature), while ThreadMill incorporates this functionality seamlessly
via configuration versions. The detailed control afforded by ThreadMill over concurrency and
distribution extends to all components. That means that developers can determine how chan-
nels (and other components) should behave in terms of concurrency, providing an extra level
of control that might result in enhanced performance in certain situations. Stampede, on the

21



other hand, defines STM as a privileged, system-level mechanism that obeys its own prede-
fined concurrency and placement strategies, over which developers have little or no control.

A few dataflow architectures share ThreadMill’s goals of providing support for fine-grained
concurrency. Some of these architectures do not support distribution, only concurrency via
threads (e.g. FSF [12], Weaves [16]). Others, such as RPV-II [3], support distribution, but not
thread-based concurrency within an address space.

6.3 Timestamping

ThreadMill’s timestamping mechanism is related to Jefferson’stimewarp[17]. Timewarp is
based on messages that are timestamped with a virtual time - real values totally ordered by
the relation<. Processes keep an internal clock that is updated according to the timestamps of
received messages. Each process optimistically processes messages in incremental timestamp
order. Since messages can arrive in any order, processes might be forced to roll-back some of
the processing they performed. This happens whenever a message with a previous (“older”)
timestamp arrives after one or more messages with subsequent (“newer”) timestamps have
already been processed. Timewarp offers a mechanism of propagation of “negative messages”
that is guaranteed to bring a system to a consistent state from which processing can resume. In
contrast to Timewarp, ThreadMill does not require rollbacks. Instead, ThreadMill’s channels
introduce delays as appropriate to guarantee that consumer operators always have a consistent
time-sequenced view of the computation. The essential difference that allows ThreadMill to
avoid rollbacks is that thetick protocol (discussed in Section 4.1) provides means - basically
through the propagation ofend-of-tickmarkers - for operators to determine when all tuples of
a certain tick have been seen, so that they can move their internal clocks forward without the
risk of older tuples ever being received.

6.4 Vision-oriented architectures

A certain number of architectures explores a narrower domain concerned with the support of
vision-based applications rather than the more general human communication that is Thread-
Mill’s focus. On the one hand, these architectures may provide better support for the specific
tasks that they target; on the other hand, they are restricted in many cases to executing these
same specific tasks and cannot in general be employed e.g. to support the development of a
broader range of applications. The Argus architecture [21], for instance, targets applications
related to gesture-based control of domestic appliances using multiple stereo cameras; the Ani-
mate Agent Architecture [10] and Perseus [18] offer vision-based support and planner integra-
tion for the purpose of controlling robots; the Blob streaming Framework [26] focus medical
imaging applications.

6.5 Actors and message-driven approaches

The asynchronous messaging meta-machine that is the foundation of ThreadMill’s communi-
cation and concurrency semantics is related to approaches such asActors[1], message-driven
execution[20] andprocessor virtualization[19]. While these approaches are associated with
programming languages and programming language constructs, ThreadMill employs similar
mechanisms to define (and implement) its underlying operational semantics. While it is pos-
sible to build systems based solely on the asynchronous messaging provided at this level, this
solution is less than convenient. This is particularly true considering the elaborate synchro-
nization of stream-oriented applications that require time-sequenced recombinations of partial
results, as is the case in the domain targeted by ThreadMill.

22



6.6 Library-based approaches

ThreadMill’s approach can also be contrasted to library-based approaches that are implemented
strictly as an API (such as MPI [11] or PVM [29]). The isolation of concerns promoted by
ThreadMill’s orchestration language makes it easier to reuse application code, given that com-
ponent interconnection and staging are not embedded in application code, as is required by
approaches that require that all services be activated via API calls. Library-based approaches
require programmers to face themselves the complexities of structuring their code according
to complex usage conventions.

6.7 Pattern-based parallel code generation

ThreadMill’s configuration graphs can be seen as user-defined patterns that describe solutions
to specific problems (e.g. a tracking problem using a JLF approach). Configuration versions in-
stantiate these patterns by specifying staging details. The ThreadMill compiler generates code
that binds these instantiated patterns into the framework provided by the underlying execu-
tion mechanism (the ThreadMill meta-machine). A somewhat similar approach is employed
by the University of Alberta’sCO2P3S system [22].CO2P3S is a system that automates the
generation of frameworks based on parameterized parallel patterns. Application programmers
choose pattern(s) that match the problem they are trying to solve (e.g. amesh pattern), cus-
tomize the pattern by providing parameters, and code functions that are called by the generated
frameworks’hooks.

In contrast toCO2P3S, in ThreadMill developers design application specific patterns, ex-
pressed in terms of a configuration graph built from fine-grained reusable operators. Thread-
Mill targets stream-oriented rather than parallel applications in general, and is thus able to take
advantage of assumptions that are true in this specialized domain to offer more focused sup-
port to facilitate the creation of application-specific patterns and performance tuning of these
patterns.

Extensibility in CO2P3S is coarse-grained - one may develop new patterns, but this re-
quires intensive programming of potentially large amounts of code. In ThreadMill, extensibil-
ity is achieved through the development of reusable operators, that may be orders of magnitude
simpler to develop than overall patterns.

ThreadMill is furthermore distinguished by the support it provides to staging as a sepa-
rate pattern instantiation phase.CO2P3S apparently supports concurrency within an address
space, but not distribution. Performance fine-tuning inCO2P3S is achieved by rewriting the
generated code that is exposed to programmers at the Intermediate and Native Code Layers
respectively.

7 Conclusions and Future Work

This paper presented ThreadMill, an architecture targeting the development of applications
in domains where high volumes of streamed data need to be efficiently analyzed, e.g. those
that target the analysis of human communicative behavior for instance in speech and gesture
recognition. ThreadMill focus on efficient handling of the high volumes of streamed data that
characterize applications in this domain. It allows for applications to be optimally deployed
on a variety of different execution environments without the need for code changes. The basic
notion that affords that is the separation of communication, concurrency and synchronization
concerns promoted by ThreadMill.

A few research directions suggest themselves as possible next steps in the development of
Threadmill:

23



– Dynamic reconfiguration behavior - The underlying machinery, and consequently the
implemented infrastructure that is based on it are reflective. Computation is therefore es-
sentially driven by the contents of tables, that are consulted by the meta-machine, and
based on which communication, distribution and concurrency are effected. A natural re-
search direction towards which ThreadMill could be evolved is concerned with adding
dynamic reconfiguration behavior.
Modifying the behavior of aconfiguration versioncan be in most cases straightforwardly
achieved by applying transformations to meta-tables, perhaps in a synchronized fashion
when multiple processes are to be affected. One can foresee architectural support being
offered e.g. for dynamic attachment and detachment of connectors, for load-sensitive cre-
ation and retraction ofunits of executionand for component level migration. Of particular
relevance to the implementation of the latter is the decoupling ofunits of executionfrom
components promoted by the meta-machine. Since theloci of concurrency are orthogonal
to components, component migration is equated to synchronized meta-table patching, and
migration of the states associate to a migrated instance. State migration is equated to mes-
sage transfer, and is already directly supported by the basic functionality of ThreadMill.
Interesting related aspects have to do with support for availability, load-balancing, quality
of service guarantees, as addressed e.g. by the Neptune Project [25].

– Identification of a larger set of synchronization patterns- Of particular interest is how
well ThreadMill’s paradigm can be extended via this mechanism, and whether this would
permit for a larger range of applications to be benefited by the technique. Given component
extensibility, discovered patterns could be readily incorporated for reuse. Particularly rel-
evant are patterns concerned with finer-grained data-parallelism, that support concurrent
processing of sub-images. While the basic mechanisms to support this kind of concurrency
is available in ThreadMill, it is clearly desirable to have reusable components that can be
used to handle the distribution and reassembly of sub-images.

– The automation of performance fine-tuning- Since performance fine-tuning can be ef-
fected largely without introducing changes to application code (other than algorithmic
improvements), an iterative style of performance fine-tuning can be pursued. One can en-
vision the optimization of ThreadMillconfigurationsas taking place in an environment
in which profiling and instrumentation information is iteratively used to reconfigure a
ThreadMill application on-the-fly, initiating a new cycle of measurements and further re-
finements by an optimizer in a cyclic fashion. Such an iterative style that mixes experi-
mentation with the use of an optimizer is used, e.g. by the FFTW project to optimize a
Fast Fourier Transform package to different problem characteristics on different execution
environments [13].

– Support for a more flexible state sharing mechanism- While the single assignment pol-
icy associated to tuples seems to match well the nature of the applications in the domain,
it is fair to assume that a more flexible mechanism to support sharing of state might be
beneficial for some kinds of applications.
Particularly for unfolded instances, transparent support for sharing of a common state
might provide for facilitation of development of components that make use of a single
data structure, without the need to require that the component itself implement the poten-
tially complex protocols required to keep instances synchronized.

References

1. Gul A. Agha. ACTORS: A Model of Concurrent Computation in Distributed Systems. Cambridge
Press, 1986.

2. G.M Amdahl. Validity of single-processor approach to achieving large-scale computing capability.
In Proceedings of AFIPS Conference, pages 483–485, Reston, VA, 1967.

24



3. Daisaku Arita and Rin-ichiro Taniguchi. RPV-II: A stream-based real-time parallel vision system and
its application to real-time volume reconstruction. In B. Schiele and G. Sagerer, editors,Proceedings
of the Second International Workshop on Computer Vision Systems (ICVS), volume 2095 ofLecture
Notes in Computer Science, pages 174–189, Vancouver, Canada, 2001. Springer-Verlag.

4. P. Barthelmess and C.A. Ellis. A distributed and parallel component architecture for stream-oriented
applications. Technical report, University of Colorado at Boulder, 2004.

5. P. Barthelmess and C.A. Ellis. The Neem Platform:An evolvable framework for perceptual collabo-
rative applications.Journal of Intelligent Information Systems, 2004. Forthcoming.

6. Paulo Barthelmess.ThreadMill: A highly configurable architecture for human communication anal-
ysis applications. PhD thesis, Computer Science Department, University of Colorado at Boulder,
November 2003.

7. Adam Cheyer and David Martin. The Open Agent Architecture.Journal of Autonomous Agents and
Multi-Agent Systems, 4(1/2):143–148, March 2001.

8. Greg Eisenhauer, Fabian E. Bustamante, and Karsten Schwan. Native data representation: An effi-
cient wire format for high-performance distributed computing.IEEE Transactions on Parallel and
Distributed Systems, 13(12):1234–1246, 2002.

9. G. Fink, N. Jungclaus, F. Kummert, H. Ritter, and G. Sagerer. A distributed system for integrated
speech and image understanding. InInternational Symposium on Artificial Intelligence, pages 117–
126, Cancun, Mexico, 1996.

10. R. James Firby, Roger E. Kahn, Peter N. Prokopopowitz, and Michael J. Swain. An architecture
for vision and action. In Chris Mellish, editor,Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, pages 72–79, San Francisco, 1995. Morgan Kaufmann.

11. Message Passing Interface Forum.MPI: A Message-Passing Interface Standard, 1994.
12. Alexandre R.J. Fran cois and Gérard G. Medioni. A modular software architecture for real-time

video processing. InProceedings of the International Workshop on Computer Vision Systems, pages
35–49, Vancouver, B.C., Canada, July 2001.

13. M. Frigo and S. G. Johnson. FFTW: An adaptive software architecture for the FFT. InProceedings
of the ICASSP, volume 3, pages 1381–1384, 1998.

14. Erich Gamma, Richard Halm, Ralph E. Johnson, and John Vlissides.Design Patterns: elements of
reusable object-oriented software. Addison Wesley, 1995.

15. Globus Project Team. Globus project. http://www.globus.org.
16. Michael M. Gorlick and Rami R. Razouk. Using Weaves for software construction and analysis. In

Les Belady, David Barstow, and Koji Torii, editors,Proceedings of the 13th International Conference
on Software Engineering, pages 23–34, Austin, Texas, May 1991. IEEE Computer Society Press.

17. David R. Jefferson. Virtual time.ACM Transactions on Programming Languages and Systems,
7(3):404–425, 1985.

18. Roger A. Kahn.Perseus: An Extensible Vision System for Human-Machine Interaction. PhD thesis,
University of Chicago, August 1996.

19. L. V. Kale. The virtualization approach to parallel programming: Runtime optimizations and the
state of the art. InLos Alamos Computer Science Institute Symposium - LACSI 2002, Albuquerque,
2002. ”State of the field” paper.

20. L.V. Kale and A. Gursoy. Performance benefits of message driven executions. InIntel Supercomputer
User’s Group, St. Louis, MO, October 1993.

21. Markus Kohler, Sven Schröter, and Heinrich M̈uller. The ARGUS-architecture for global computer-
vision-based interaction and its application in domestic environments. InProc. Human Computer
Interaction 1999 (HCI’99), pages 296–300, Munich, Germany, August 1999.

22. S. MacDonald, J. Anvik, S. Bromling, J. Schaeffer, D. Szafron, and K. Tan. From patterns to frame-
works to parallel programs.Parallel Computing, 28(12):1663–1683, December 2002.

23. Aleix M. Martnez, Ronnie B. Wilbur, Robin Shay, and Avi C. Kak. Purdue RVL-SLLL ASL database
for automatic recognition of American Sign Language. InFourth IEEE International Conference on
Multimodal Interfaces, page 167, Pittsburgh, Pennsylvania, 2002.

24. Mitre Corporation.Galaxy Communicator Documentation, 2002.
25. Neptune Project. http://www.cs.ucsb.edu/projects/neptune/.
26. Irfan Pyarali, Timothy H. Harrison, and Douglas C. Schmidt. Design and performance of an object-

oriented framework for high-speed electronic medical imaging.Computing Systems, 9(4):331–375,
1996.

25



27. Umakishore Ramachandran, Rishiyur Nikhil, James Matthew Rehg, Yavor Angelov, Arnab Paul,
Sameer Adhikari, Kenneth Mackenzie, Nissim Harel, and Kathleen Knobe. Stampede: A cluster
programming middleware for interactive stream-oriented applications.IEEE Transactions on Paral-
lel and Distributed Systems, pages 1140–1154, November 2003.

28. C. Rasmussen.Integrating Multiple Visual Cues for Robust Tracking. PhD thesis, Yale University,
2000.

29. V. S. Sunderam, A. Geist, J. Dongarra, and R. Manchek. The PVM concurrent computing system.
Parallel Computing, 20:531–545, March 1994.

26


