
Design, Implementation, and Evaluation of a
Compilation Server
Technical Report CU-CS-978-04

HAN B. LEE
University of Colorado
AMER DIWAN
University of Colorado
and
J. ELIOT B. MOSS
University of Massachusetts

Modern JVM implementations interleave execution with compilation of “hot” methods to achieve reasonable
performance. Since compilation overhead impacts the execution time of the application and induces run-time
pauses, we explore offloading compilation onto a compilation server. In this paper, we present the design, im-
plementation, and evaluation of compilation server which compiles and optimizes Java bytecodes on behalf of its
clients.

We show that the compilation server provides the following benefits: (i) lower execution and pause times of
the benchmark application due to reducing the overhead of optimization; (ii) lower memory consumption of the
client by eliminating allocations due to optimizing compilation and footprint of the optimizing compiler; (iii)
lower execution time of the application due to sharing of profile information across different runs of the same
application and runs of different applications.

We implemented compilation server in Jikes RVM, and our results indicate that it can reduce run time by
an average of 20.5%, pause times by an average of 81.0%, and dynamic memory allocation by 8.6% for our
benchmark programs. Our simulation results indicate that our current implementation of compilation server is
able to handle more than 50 concurrent clients while still allowing them to outperform best performing adaptive
configuration.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers

General Terms: Design, Experimentation, Performance, Measurement, Languages

Additional Key Words and Phrases: Compilation server, Java Virtual Machine

1. INTRODUCTION

One of the key features behind the enormous success of the Java programming language
is its network- and platform-independence: one can compile Java programs into platform-
neutral bytecode instructions and ship those instruction across a network to their final des-
tination where a Java Virtual Machine (JVM) executes them [Lindholm and Yellin 1996].

This material is based upon work supported by the National Science Foundation grant CCR-0085792 and CCR-
0133457, and IBM. Any opinions, findings, conclusions, or recommendations expressed in this material are those
of the authors and do not necessarily reflect those of the sponsors.
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.

2 · Han B. Lee et al.

Java’s “write once, run everywhere” paradigm is especially useful for mobile computing,
where applications may be downloaded on demand.

There are at least two basic methods of executing Java bytecode instructions: (i) by in-
terpreting the bytecode instructions; and (ii) by first compiling the bytecode instructions
into native machine code instructions and then executing the resulting native code. The
interpretation-only approach often results in poor performance because of interpretation
overheads, while the compilation-only approach introduces additional run-time overhead
because compilation occurs at run time. Thus, many JVMs use hybrid methods: com-
bine interpretation with optimizing compilation of “hot” methods at run time or combine
a cheap compiler with an optimizing compiler used only for hot methods. While these
combined approaches result in more efficient execution of Java programs, they still incur
the time, memory, and pause time overhead of optimizing compilation.

This optimizing compilation overhead is already quite significant in desktop systems,
and the situation is worse in devices where one has to balance computing power with other
attributes such as battery life. With the advent of mobile computing, there is an increasing
number of networked (wired or wireless) devices with limited CPU speed, small memory
size, and/or limited battery life, where the optimization overhead may be prohibitive.

We present here the design, implementation, and evaluation ofCompilation Server(CS),
which is a server-assist mechanism to eliminate or reduce the compilation overhead.CS
can compile and optimize code on behalf of clients. This paper includes and greatly extends
our earlier work [Palm et al. 2002], where, using a power model, we investigated the feasi-
bility of using a compilation service in energy constrained devices. Our implementation of
CSis based on Jikes RVM [Burke et al. 1999], and we present results for the SPECjvm98
benchmark suite,ipsixql, andpseudojbb, a variant of SPECjbb2000, benchmarks.

We show thatCSprovides the following benefits compared to the best performingAdap-
tiveconfiguration: (i) lower execution by an average of 20.5% and pause times by an aver-
age of 81% for the benchmark applications, by reducing the overhead of optimization; (ii)
lower memory management load on the client by an average of 8.6% by eliminating alloca-
tion coming from optimizing compilation and by reducing the footprint of the optimizing
compiler; (iii) lower execution time of the application due to sharing of profile information
across different runs of the same application and runs of different applications.

Our results also indicate thatCSscales well and can support over 50 concurrent clients
while still allowing them to outperform theAdaptiveconfiguration. We also show that
client performance is only slightly affected by slow network speeds, and that profile-driven
optimizations are feasible in the context ofCS.

We organize the remainder of the paper as follows. Section 2 describes the state-of-the-
art execution model in JVMs and motivatesCS. Section 3 presents design decisions behind
our currentCSimplementation. Section 4 describes our experimental methodology, while
Section 5 presents the results. Section 6 reviews prior work in the area. Finally, Section 7
concludes.

2. MOTIVATION

In Section 1, we introduced the concept ofCS. In this section, we motivate the need forCS
by discussing limitations of the execution model of current JVMs.

Design, Implementation, and Evaluation of a Compilation Server · 3

2.1 Execution Model of State-of-the-Art Java Virtual Machines

2.1.1 Background.Running Java programs normally consists of two steps: converting
Java programs into bytecode instructions (i.e., compiling Java source to.classfiles), and
executing the resulting class files [Gosling et al. 2000]. Because the compiled class files are
network- and platform-neutral, one can easily ship them across a network to any number
of diverse clients without having to recompile them.

JVMs then execute these class files, and to achieve reasonable performance, state-of-the-
art JVMs, such as HotSpot [Paleczny et al. 2001] and Jikes RVM [Burke et al. 1999], also
perform dynamic native code generation and optimization of selected methods. Instead of
using an interpreter, Jikes RVM [Arnold et al. 2000] includes abaseline(non-optimizing)
and anoptimizingcompiler. The baseline compiler is designed to be fast, and easy to
implement correctly, while the optimizing compiler is designed to produce more efficient
machine code by performing both traditional compiler optimizations (such as common-
subexpression elimination) and modern optimizations designed for object-oriented pro-
grams (such as pre-existence-based inlining [Detlefs and Agesen 1999]). In addition to
providing flags to control individual optimizations, Jikes RVM provides three optimization
levels: O0, O1, and O2. The lower levels (O0 and O1) perform optimizations that are fast
(usually linear time) and offer high payoff. For example, O0 performs inlining, which is
considered to be one of the most important optimizations for object-oriented programs.
O2 contains more expensive optimizations such as ones based on static single assignment
(SSA) form [Cytron et al. 1991]. The optimizing compiler can introduce significant run-
time overhead because compilation of Java programs happens during the execution of the
program (i.e., at run time). Thus, even though the optimizing compiler produces more
efficient machine code, it is not necessarily the best performing configuration when used
alone.

In fact, the best performing configuration in Jikes RVM is theAdaptivesystem. This
system tries to combine the best of both the baseline and the optimizing compiler by ini-
tially compiling all methods with the baseline compiler, and once it has identified “hot”
methods, it recompiles them with the optimizing compiler. The goal of the adaptive sys-
tem is to perform as well as the optimizing compiler-only approach without incurring much
run-time compilation overhead.

2.1.2 Implications. We now examine the performance characteristics of the various
optimization levels in Jikes RVM, and compare them to those of the Adaptive system.

The compilation overhead incurred by Jikes RVM at run time ranges widely depending
on its selection of compilers and optimizations. We examine and compare the execution
speed and compilation cost of different compilers and optimization levels in Jikes RVM.
Figure 1 gives the execution time of the SPECjvm98 benchmarks [Standard Performance
Evaluation Corporation (SPEC) 1998] (input size 100) on a Pentium 3 running at 500 MHz
with 512 MB of physical memory. We obtained the data using the FastAdaptiveSemiSpace
configuration (i.e., semi-space copying collector) of Jikes RVM version 2.2.2.

For each benchmark, Figure 1 has five bars, corresponding to different compilers and
optimization levels, with Baseline performing no optimizations and O2 performing ag-
gressive (including SSA-based) optimizations. TheAdaptivebars use the adaptive system
in Jikes RVM, and optimize methods only when they becomehot (are seen to be executed
more than a certain threshold). Each bar has two segments:Running timegives the exe-
cution time of the benchmark (i.e., with compilation time removed), andCompilation time

4 · Han B. Lee et al.

Compilation
Run

R
un

 ti
m

e
(s

ec
)

0
50

10
0

15
0

B
as

el
in

e
A

da
pt

iv
e

O
0

O
1

O
2

mtrt raytrace mpegaudio pseudojbb javac jess ipsixql jack db compress

Fig. 1. Execution and compilation times (seconds). The bars, from left to right, are: Baseline, Adaptive, O0, O1,
and O2

gives the time to run the optimizing compiler.
From Figure 1 we see that, for the most part, increasing the optimization level decreases

the running time of the application. However, increasing the optimization level also in-
creases the compilation time, and in many cases the increase in compilation time is greater
than the reduction in running time of the application. TheAdaptiveconfiguration performs
well, giving performance that is close to O1 and O2, but with lower compilation cost. How-
ever, even the adaptive compiler spends up to 23% of total execution time in the compiler.
This suggests that it may be worthwhile to migrate compilation to a more capable server
not only to reduce compilation cost but also to increase the number of methods benefiting
from optimization.

2.2 Compilation Pause Times

2.2.1 Background.In addition to affecting overall running time of applications, dy-
namic compilation also affects their responsiveness because it induces pauses in program
execution. The use of pause times as a performance metric is popular when evaluating
garbage collection algorithms (e.g., [Cheng and Blelloch 2001]), and it should be equally
important in evaluating dynamic compilation systems. For example, Hölzle and Ungar
[Hölzle and Ungar 1994] uses the concept of absolute pause times to evaluate the respon-
siveness of the SELF programming system.

Design, Implementation, and Evaluation of a Compilation Server · 5

2.2.2 Implications. Figures 2 and 3 show pause times due to dynamic compilation by
the optimizing compiler in the Adaptive system. The pauses due to baseline compilation
are insignificant as they are very short. The x-axis shows the actual execution time for a
particular benchmark, and thus its scale varies across different benchmarks. The y-axis
represents pause times in seconds. Thus, the bar at execution timex with the height of
y in Figures 2 and 3 says thatx seconds into the benchmark run, there is a compilation
pause ofy seconds. There are two things we can notice from the figures. First, even in
the Adaptive system, there are many methods that need to be compiled by the optimizing
compiler in order to achieve reasonable performance. Second, the bars are often tall. In
fact, some compilations take longer than 700 ms, which is unacceptable for interactive
applications, and most compilations last for more than 100 ms. Migrating compilation to
a server may alleviate the problem of long pause times since (i) the server, being a more
powerful machine (and not involved in running the application program), would be able to
compile methods faster; and (ii) the client may continue executing baseline compiled code
while waiting for optimized machine code to come back from the server.

2.3 Memory Usage

2.3.1 Background.Performing code optimizations consumes memory and thus may
degrade memory system performance. Since Java programs will be optimized at run time,
there are two memory costs for optimizations: (i) the data space cost, i.e., the space re-
quired by the optimizer to run; and (ii) the instruction space cost, i.e., the footprint of the
optimizer. (The final size of optimized code may be larger or smaller than unoptimized
code, but this size effect is much smaller than the other two.)

2.3.2 Implications. Figure 4 shows the bytes allocated by the various configurations
of Jikes RVM. We see that as we increase the level of optimization, the number of bytes
allocated increases dramatically. For resource-limited systems, such as handheld devices,
the memory costs alone may make aggressive optimizations infeasible. Since theAdap-
tive configuration optimizes only the hot methods, we see that it does not allocate many
more bytes than the non-optimizing configuration (Baseline). However, even theAdaptive
configuration will have the full instruction space cost of the normally optimizing configura-
tions since it includes the code of the optimizing compiler. This footprint is approximately
14 MB. By migrating optimizing compilation onto a server, one would be able to reduce
dynamic allocation due to compilation and also to eliminate the large footprint associated
with the optimizing compiler.

In summary, by offloading compilation onto a compilation server, we should be able to
improve end-to-end execution time, lower compilation pauses, and reduce memory usage
of Java programs.

3. DESIGN AND IMPLEMENTATION OF COMPILATION SERVER

Our current implementation of theCS is designed to address those concerns presented in
Section 2, and in this section, we discuss design trade-offs behind the current implementa-
tion.

The primary design goal ofCS is to minimize client execution time.CSclients may
include desktop PCs, laptops, and PDAs, and thus are likely to be limited in one form or
another compared toCS, which would be equipped with plenty of memory, fast disk drives,
and fast network connection(s). Therefore, it would be beneficial to allow the server to

6 · Han B. Lee et al.

0 10 20 30 40

0
20

0
40

0
60

0
80

0
10

00

mtrt

elapsed time (sec)

pa
us

e
tim

e
(m

s)

0 5 10 15 20 25 30 35

0
20

0
40

0
60

0
80

0
10

00

raytrace

elapsed time (sec)

pa
us

e
tim

e
(m

s)

0 10 20 30

0
20

0
40

0
60

0
80

0
10

00

mpegaudio

elapsed time (sec)

pa
us

e
tim

e
(m

s)

0 20 40 60 80

0
20

0
40

0
60

0
80

0
10

00

pseudojbb

elapsed time (sec)

pa
us

e
tim

e
(m

s)

0 20 40 60

0
20

0
40

0
60

0
80

0
10

00

javac

elapsed time (sec)

pa
us

e
tim

e
(m

s)

0 5 10 15 20 25 30

0
20

0
40

0
60

0
80

0
10

00

jess

elapsed time (sec)

pa
us

e
tim

e
(m

s)

Fig. 2. Pause times due to compilation in the Adaptive system.

Design, Implementation, and Evaluation of a Compilation Server · 7

0 10 20 30 40 50

0
20

0
40

0
60

0
80

0
10

00

ipsixql

elapsed time (sec)

pa
us

e
tim

e
(m

s)

0 10 20 30 40

0
20

0
40

0
60

0
80

0
10

00

jack

elapsed time (sec)

pa
us

e
tim

e
(m

s)

0 10 20 30 40 50

0
20

0
40

0
60

0
80

0
10

00

db

elapsed time (sec)

pa
us

e
tim

e
(m

s)

0 10 20 30 40 50

0
20

0
40

0
60

0
80

0
10

00

compress

elapsed time (sec)

pa
us

e
tim

e
(m

s)

Fig. 3. Pause times due to compilation in the Adaptive system (continued).

perform clients’ work to the extent possible. We try to adhere too this goal in choosing
our design parameters. Another related approach to improve client performance is task
migration, and we discuss some of the related work in this area in Section 6.2. However,
we do not consider task migration other than compilation in this paper.

3.1 Overview

Figure 5 shows the overall client andCSarchitecture. Broadly speaking, there are three
steps involved in usingCS:

(1) Client requests download of class files viaCS. In this respect,CS acts as a proxy
server that relays client’s request to the outside world. However, unlike a regular proxy
server,CSmay choose to annotate the class files with profile directives. These direc-
tives instruct the client as to which methods or which basic blocks within a method it

8 · Han B. Lee et al.

0

200

400

600

800

1000

1200

1400

1600

1800

mtrt raytrace mpegaudio pseudojbb javac jess ipsixql jack db compress

A
llo

ca
tio

n
in

 M
B

Baseline
Adaptive
O0
O1
O2

Fig. 4. Bytes allocated. The bars, from left to right, are: Baseline, Adaptive, O0, O1, and O2

should instrument and gather profile information for profile-driven optimizations. We
discuss and evaluate profile-driven optimizations in more detail in Section 5.6.

(2) Client compiles and executes downloaded methods with thebaselinecompiler. The
modified adaptive subsystem identifies “hot” methods and sends optimization requests
to CS. These requests are accompanied by various information discussed in detail in
Section 3.2.2.

(3) The front-end forCS, which we call theCSdriver, stores individual client state data
segregated by kind and described in Table I. The driver is also responsible for manag-
ing profile information, reusing optimized code, driving the optimizing compiler, and
sending optimized machine code back to the clients. The installer threads on clients
are responsible for receiving and installing optimized code.

In order to implement and evaluateCSin a reasonable time frame, we implemented both
the client support andCS in Jikes RVM. Our current implementation is limited in that it
requires that clients andCS run on the same architecture (IA32) and on identically built
Jikes RVM boot images.

SinceCSalso acts as a proxy server as depicted in Figure 5, we make another simplifying
assumption, namely thatCShas access to all client class files. Therefore, client requests
for method optimization do not need to send the bytecode instructions toCS. However,
since the size of the bytecode instructions is usually small, and network speed does not
affect client performance very much as shown in Section 5.3, this assumption is not likely
to affect client performance.

Design, Implementation, and Evaluation of a Compilation Server · 9

Client State
Segregated

by Type

Use

Individual
Client State

Controller

Installer
Thread

Adaptive
Subsystem

Executing
Code

Install Code

Prof
ile

 In
fo.

Request Method Compilation

CS

Constant Offset,
Member Offset,

TIB Offset,
Member ID,

Type ID,
Signature ID,

Profile
Information

Proxy

Class Files
(Bytecode)

Application Request & Download Class Files
and Profile Directives

Request & Download
of Class Files

 Send Compiled Method

Optimizing
Compiler

Drive &
Obtain Code

U
se

GC Map,
Inline Map,

Bytecode Map,
Spectulative
Assumptions

Class Files
(Bytecode)
& Profile

Directives

Virtual Machine

St
or

e

Store

U
se

1

2

3

Profile
Information

U
se

Store

CS
Driver

Compiled
Code &
Patch
Points

Store &
Use

Fig. 5. Overview ofCSand client interaction.

We discuss our design choices and our implementation of client support andCSin detail
below.

3.2 Client Design and Implementation

3.2.1 Method Selection.One of the most important aspects that affects client perfor-
mance is selecting which methods to optimize onCS. Although it would be less demanding
on clients to haveCSselect which methods to optimize, having the server choose does not
work well becauseCSdoes not have enough run-time information to make the best deci-
sion. Therefore, we delegate the task of method selection solely to clients.

While it is more efficient to optimize methods usingCSrather than on the client, there
still is some cost associated with using the server, such as collection of client state informa-
tion, the overhead of communication, and installation of compiled methods. Optimizing
too many methods, i.e., too eagerly, may increase this cost so significantly that it will offset
any benefit gained by optimization. In any case it is impractical to optimize all methods on
CSsince it would overload the server. On the other hand, optimizing too few hot methods
may eliminate any performance benefit.

Fortunately, the problem of method selection for recompilation is also present for the
adaptive system and has already been addressed [Arnold et al. 2000]. Our client imple-
mentation is based on the adaptive subsystem of Jikes RVM, and we use the default run-
time measurement subsystem, without any modification, to gather information about the

10 · Han B. Lee et al.

executing methods.
The default adaptive controller uses a cost-benefit analysis to decide whether it would be

worthwhile to recompile a method using a more aggressive optimization level. The default
controller assumes that a given methodm will execute as long as it has executed thus far,
and uses an offline benefit model to estimate how much time it can save. If the improved
running time estimate plus the cost of optimizingm to a certain optimization level is less
than the expected execution time of the current version ofm, then the controller decides to
recompilem.

The default adaptive controller’s cost-benefit model is calibrated offline using a set of
benchmarks. Since many variables, including network speed and server load, may fluctuate
during client execution, we use a modified cost-benefit model that takes into account this
variability. We express the benefit model as the speedup of our custom optimization level
(Table II) overbaseline, and calibrate it using an offline execution of our benchmarks.
Thus the benefit model remains constant throughout client execution. The cost model is
dynamic, and we derive it by measuring the time it takes for a given optimization request
to complete. The cost is expressed in terms of the number of bytecodes compiled per unit
time, and each individual client maintains their own cost model.

3.2.2 Client State.Once a methodm is identified as being “hot” using our modified
cost-benefit model, the adaptive controller issues a compilation request toCS (step 2 in
Figure 5). In addition to sending a description ofm, the adaptive controller also collects
and sendsclient statecorresponding tomand its callees toCS. The reason for sending state
information ofm’s callees toCS is because the optimizing compiler may decide to inline
them intom and thus needs to know about their state information. The collection of client
state relies on the baseline compiler, and thus if a callee has not yet been compiled by the
baseline compiler, its state information is not sent toCS. This process is described in more
detail in Section 3.3.3 where we describe inlining.

We want clients to perform minimal work, and to achieve that goal we designedCS
to generate machine code that can be installed and executed without any modification by
the client. To this end,CSneeds to know some things about the state of the client VM.
To keep it simple, client state information is sent as name (string), kind (byte), and value
(integer) triples, except for profile information. This representation is not optimized for
size but for simplicity. It is possible forCSand the client to agree upon a more compact
representation such as an index into the constant pool table in a class file. However, as we
will see in Section 5.3, the size of client state information is small and does not impact
client performance much.

Table I summarizes the different kinds of client state information.
To avoid resending information,CSmaintains per-client state information.

3.2.3 Mode of Communication.Another important design dimension that can affect
client performance is the way it communicates withCS. Both the amount of transmit-
ted data and the mode of communication (synchronous or asynchronous) can impact how
clients perform.

Offloading compilation to a server means that clients can continue executing unopti-
mized machine code while they are waiting for optimized code to arrive from the server.
It may be beneficial to wait for the server for long running methods since waiting and ex-
ecuting optimized code may be shorter than executing unoptimized code followed by op-
timized code. However, our experiments show that this happens rarely, and asynchronous

Design, Implementation, and Evaluation of a Compilation Server · 11

Table I. Different Kinds of Client State Information and Their Uses

Kind of client state Uses

Jikes RVM Table of Contents
(JTOC) offsets of float, double,
long, and string constants

The optimizing compiler generates code that indexes into the
JTOC (globals/statics area) to access these types of constants
for various flavors ofldc bytecode instructions.

JTOC offsets of static fields and
methods

The optimizing compiler uses these offsets to generate code for
getstatic, putstatic, invokestatic, and sometimesinvokespecial
bytecode instructions.

JTOC offsets of type informa-
tion blocks

The optimizing compiler uses these offsets, if present, to
generate code forinvokespecial, new, newarray, anewarray,
checkcast, andinstanceofbytecode instructions.

ID of unresolved fields and
methods

The optimizing compiler uses these IDs to generate “unre-
solved” code for many different bytecode instructions.

ID of types The optimizing compiler uses these IDs to generate code for
checkcastand instanceofinstructions. The optimizing com-
piler also uses these IDs to build exception tables.

ID of signatures The optimizing compiler uses these IDs to generate code for
invokeinterfacebytecode instruction.

Profile information This information may or may not be present depending on the
server’s profile directives. We currently support for only one
type of profile information: edge counters. Different types of
profile information will require different transmission formats.

communication with the server often offers better client performance. Furthermore, the
problem with long running methods can also be addressed by performingon-stack replace-
ment [Fink and Qian 2003] of compiled methods. Therefore, we use the asynchronous
mode of communication in our current implementation ofCS.

The use of asynchronous communication also has the benefit of reducing client pause
times since a client needs to pause only to send the request and to receive and install
compiled code. We explore the impact of usingCSon pause times in detail in Section 5.2.

In addition to simple synchronous or asynchronous communication, we also investigated
the idea ofsplit transactions, i.e., to split an optimization request in two transactions as
described below. The idea behind split transaction is that we could further reduce wait
time for optimized code by sending the request as early as possible.

In the first transaction, client would identify “getting-warm” methods and send requests
for these methods toCS. In the second transaction, the client would identify “actually-hot”
methods and send requests for these methods toCS. Since the set of methods in “getting-
warm” would include most, if not all, of the methods in “actually-hot”,CSwould simply
send previously optimized code back to the client without additional delay.

We implemented the split transaction model inCS, and found its performance lacking
for several reasons. If we set the threshold for identifying “getting-warm” methods too
low, then we ended up sending too many requests toCS, which became overloaded and
was slow at responding to the client’s request for “actually-hot” methods. If we set the
“getting-warm” threshold too high, then we were just delaying receipt of “actually-hot”
methods by havingCSwait to send optimized code until the second request came in.

Despite our discouraging initial results, there may be situations where split transactions

12 · Han B. Lee et al.

would perform well. For example, in a setting whereCSis more capable and relatively idle,
or in situations where optimization or analysis is much more expensive, split transactions
may be effective at reducing client wait time.

3.2.4 Security and Privacy.Any client-server architecture is affected by security and
privacy issues, and ours is no exception. Questions such as “How can clients trustCS?” or
“What kinds of privacy policies should be implemented inCS?” are interesting but beyond
the scope of our study. In our study, we assume that clients can trustCSto send correctly
optimized code and thatCS can trust its clients to send valid profile information. We
also assume that other appropriate security and privacy policies are in place, which is a
reasonable assumption to make if both client and server are behind a firewall, for example.

3.3 Server Design and Implementation

As shown in Figure 5, ourCS implementation consists of a driver that mediates between
clients and the optimizing compiler. TheCS driver receives and stores per-client state
information, segregated by kind so as to speed lookups by the optimizing compiler. It is
also responsible for combining profile information received from its clients (Section 5.6).
TheCSdriver also drives the optimizing compiler and relays optimized code back to the
clients. In addition to machine code, it also sends GC maps, inline maps, bytecode maps,
and the list of classes that must not be subclassed and methods that must not be overridden
back to its clients (these have to do with speculative optimizations, discussed below).

3.3.1 Optimization Selection.The Adaptive system allows multi-level recompilation
using the various optimization levels. For example, a method which has been recompiled
using optimization level O0 may later be recompiled using a higher optimization level, if
that is estimated to be beneficial. Since using the same multi-level recompilation strategy
in CSmay result in higher server load and increased network traffic, we limit the number
of recompilations per method to one. However, instead of using a predefined optimization
level such as O0, O1, O2, we use a custom optimization level based on our earlier study
on the effectiveness of optimizations [Lee et al. 2004].

In that earlier work, we categorized an optimization as “should be implemented”, “may
be implemented”, and “should not be implemented” by using application and kernel bench-
marks that stress tested each single optimization as well as by evaluating optimizations in-
dividually and in the presence of other optimizations. These recommendations were based
on the cost-benefit ratio of an optimization also taking into account its potential benefit.
Our custom optimization level used in this study includes all optimizations in the “should
be implemented” and “may be implemented” categories, and are listed and described in
Table II. Note that Table II corresponds to Tables VI and VII from our earlier paper [Lee
et al. 2004]. These optimizations have high potential for benefit with low to moderate
compilation cost.

3.3.2 Speculative Optimizations.One may need to apply some speculative optimiza-
tions, such as guarded inlining, in order to generate best quality code. However, speculative
optimizations make some assumptions about the state of the world, and these assumptions
need to hold for correct execution of programs. The Adaptive system maintains and checks
the validity of these assumptions, and when these assumptions are violated, it re-optimizes
the method in question (as we previously alluded). The same approach is used in theCS
setting: in order to accommodate speculative optimizations, the server sends a list of class

Design, Implementation, and Evaluation of a Compilation Server · 13

Table II. Optimizations included in our custom optimization level
Optimization Description

inl new Inline all run-time system routines for allocating arrays and scalars. Occurs
during the expansion of high-level IR into low-level IR.

inl Inline statically resolvable calls. Its heuristics include: inline if callee’s
estimated size is less than 11 machine instructions, do not inline if callee’s
estimated size is greater than 23 machine instructions, do not inline more
than a maximum inlining depth of 5, and do not inline if the absolute size of
the caller due to inlining is greater than 4096 machine instructions. We use
the default values and do not use inline plans to control inlining decisions.

preexinl Perform pre-existence based inlining when the single implementation as-
sumption is met and the receiver object is extant, using invariant argument
analysis [Detlefs and Agesen 1999].

guardedinl Perform guarded inlining of virtual calls using code patching (default on
IA32) or class or method test (default on PPC). It uses the same size heuris-
tics as inl.

guardedinl ifc Speculatively inline interface calls when there is a unique implementation
of the interface method, using guards as in guardedinl. It uses the same
size heuristics as inl.

scalarrepl aggr Perform scalar replacement of aggregates by treating fields of objects and
elements of arrays that do not escape a method like normal scalar variables.
It uses a flow insensitive escape analysis, which determines that the referent
of a symbolic register (local or temporary variable) escapes a method when
the register is stored in memory, assigned to another register, or returned
from a method. The escape analysis assumes the worst case about calls.

monitor removal Remove unnecessary synchronizations of objects that do not escape a
thread using a flow insensitive escape analysis. The escape analysis is sim-
ilar to that for scalarreplaceaggregates except that rather than assuming
that passing a register to a call causes the referent of the register to escape,
it uses a summary of the callee. If the compiler does not know who the
callee is (e.g., due to dynamic dispatching or dynamic class loading), then
it assumes that the referent object escapes.

static splitting Split the control flow graph to create hot traces based on static heuristics
(e.g., using hints left by guarded inlining) to avoid control flow merges that
inhibit other optimizations.

gcse Perform global common subexpression elimination on LIR (low-level ma-
chine independent IR) using the dominator tree to determine positions for
operations.

loc copy prop Perform local copy propagation (i.e., within basic blocks) using flow sen-
sitive analysis.

loc constantprop Perform local constant propagation (i.e., within basic blocks) using flow
sensitive analysis.

loc sr Perform local scalar replacement of loads of fields (i.e., within basic
blocks) using flow sensitive analysis. Call and synchronization instructions
invalidate all memory locations.

loc cse Perform local common subexpression elimination (i.e., within basic
blocks) using flow sensitive analysis.

loc check Eliminate redundant null, array bounds, and zero checks using a local (i.e.,
within basic blocks) flow sensitive analysis.

14 · Han B. Lee et al.

names and method descriptions back to the client that affect the validity of a compiled
method. The client is then responsible for checking that these classes and methods are not
subclassed and overridden, respectively. Even thoughCShas access to all the classes a
client may execute,CScannot perform these checks since it does not know which classes a
client may load dynamically in the future.CScould assume that any class that a client has
access to could potentially be subclassed and its methods overridden, but that would result
in code that is too conservative. If a client finds that these assumptions are violated, the
server sends non-speculatively optimized code to the client upon request. In Section 5.1.3,
we presents results that show the effectiveness of implementing speculative optimizations
in CS.

3.3.3 Inlining. We have found that one of the most effective optimizations is method
inlining [Lee et al. 2004], andCSsometimes is not as aggressive as the Adaptive system in
inlining, due to its limited knowledge about client states. In order forCSto inline a method
m1 into another method being compiled,m2, CSneeds to have full information aboutm1
(i.e., m1’s state information shown in Table I). Unlessm1 has been baseline compiled
on the client already, it is not possible forCS to know about its state. Because clients
ask only for “hot” methods to be compiled byCS, there is a high probability that most of
the frequent method invocations contained within these “hot” methods have already been
executed (and therefore compiled by the Baseline compiler) at least once, and thus all of
the frequent call sites can be inlined byCS. The fact thatCScannot inline as aggressively
as the optimizing compiler inOpt or Adaptivemay seem like a disadvantage, but in fact,
it is not, because the filtering of call sites that happens on clients works as a primitive
feedback-directed adaptive inlining mechanism. Due to this filtering,CSdoes not bother
to inline infrequently executed call sites; inlining them may result in worse instruction
cache behavior.

3.3.4 Linking. While producing generic machine code that can be used on different
clients has its benefits, it can be costly because each individual client must link the ma-
chine code before executing it. Therefore, in our current implementation,CS produces
optimized machine code that clients can simply download, install, and execute without any
modification. Because we are linking onCS, this requires thatCSknow some things about
each client’s state (Section 3.2.2). For example, if a static field is referenced in a method,
the server will use the offset of the corresponding static field obtained from the client to
generate code for that particular method.

3.3.5 Compiled Code Reuse.To reduce compilation time and server load even further,
we also investigate the issue of code reuse. To reuse code,CSmakes a scan of generated
machine code to find patch points: patch points are name (string) and machine code offset
(integer) pairs that describe which bytes have to be patched before compiled code can be
delivered to another client. When a request for the same method comes in,CS simply
walks over the list of patch points modifying the compiled code as necessary.

However, it is sometimes not enough to patch compiled code in this manner because
there may be other differences between clients. For example, depending on whether a
static field referenced in a method has been resolved on the client, the server may need to
generate additional code to resolve the field before accessing it. In the case where clients’
states differ, the server simply re-optimizes the method in question. Another approach
would be to generate lowest common denominator code that could be used universally

Design, Implementation, and Evaluation of a Compilation Server · 15

Table III. Benchmark descriptions.

Name Running time Compilation Lines Description

mtrt 42.71 s 23.3% 3,751 Multi-threaded version of raytrace
raytrace 37.40 s 18.5% 3,751 Raytracer
mpegaudio 36.59 s 16.9% not avail. Decompresses audio files
pseudojbb 85.31 s 14.0% 26,587 SPECjbb2000 modified to perform

fixed amount of work
javac 73.39 s 13.7% 25,211 Java compiler from the JDK 1.0.2
jess 31.05 s 9.7% 10,579 Java Expert Shell
ipsixql 55.91 s 9.1% not avail. Performs queries against persistent

XML document
jack 46.69 s 7.6% not avail. Parser generator, earlier version of

JavaCC
db 57.41 s 2.5% 1,028 Database operations on a memory

resident DB
compress 47.32 s 2.1% 927 Modified Lempel-Ziv method

across different clients, but such code would perform relatively poorly due to additional
checks.1

4. EXPERIMENTAL METHODOLOGY

To evaluate the concept ofCS, we have implemented a server and corresponding client
system in Jikes RVM. In this section, we describe our infrastructure, benchmarks, and
measurement methodology.

4.1 Infrastructure

Our implementation of the server and client is based on Jikes RVM version 2.2.2 from
IBM Research [Burke et al. 1999]. Jikes RVM is designed to support research into virtual
machines and includes an aggressively optimizing just-in-time compiler and an adaptive
compilation system [Arnold et al. 2000].

We base our client implementation on the Adaptive system with a copying garbage col-
lector with the modifications outlined in Section 3.2.1. That is, the cost-benefit model is
no longer static but is updated dynamically throughout client execution based on server
load and network conditions (i.e., overall server response time). Instead of having a com-
pilation thread, we implement a separate thread for downloading and installing optimized
code from the server. The server is implemented as a stand-alone application that runs on
top of Jikes RVM and acts as a driver to the Jikes RVM’s optimizing compiler. The server
is responsible for maintaining client state information segregated by kind, for loading and
resolving classes as needed, for maintaining a list of compiled methods for reuse, and for
patching compiled code as needed.

16 · Han B. Lee et al.

4.2 Benchmarks

We report results for the SPECjvm98 benchmarks [Standard Performance Evaluation Cor-
poration (SPEC) 1998] (using input size 100), plusipsixql, an XML database engine, and
SPECjbb2000 [Standard Performance Evaluation Corporation (SPEC) 2000] modified to
perform a fixed number of transactions, which we refer to aspseudojbb. Table III de-
scribes these benchmark programs. The column labeled “Running time” shows the run-
ning time of the benchmark programs in theAdaptiveconfiguration, and the “Compilation”
column shows the compilation time as a percentage of total execution time in that config-
uration. The table is sorted by the “Compilation” column in decreasing order. That is, the
top entries in Table III are more likely to benefit fromCSthan the bottom ones since there
is more compilation overhead to be removed.

4.3 Measurement Methodology

We conducted our experiments on a 500 MHz Pentium III processor with 512 MB of
memory running as a client, and a 2.4 GHz Pentium 4 processor with 2 GB of memory
running as a server. The speed difference between the two machines is about a factor of
five. We use different network speeds between client and server ranging from 56 Kbps to
100 Mbps. Our initial networking configuration uses a 100 Mbps connection.

We perform each run-time measurement ten times and report the average running time
along with its standard deviation. We conducted experiments using the default heap size
of 64 MB for all benchmarks, except for pseudojbb which was run with a 128 MB heap
size because it would otherwise throw anOutofMemoryExceptionexception. Since clients
usingCSallocate less dynamic memory, they are likely to perform better with smaller heap
size.

5. RESULTS

We now present and discuss detailed results evaluating the performance of both the client
and the server inCS. Section 5.1 gives the overall client speedup when usingCS. Sec-
tion 5.2 presents improvements in pause times. Section 5.3 evaluates the effect of a slower
network on client performance. Section 5.4 shows client memory savings gained by of-
floading compilation onto a server. Section 5.5 shows the scalability ofCSand the effect
of code reuse. Finally, Section 5.6 presents preliminary results that show the feasibility of
performing profile based optimizations in theCSsetting.

5.1 Overall Speedup

Figures 6 and 7 give the running time of different configurations for our benchmarks. The
configurations we consider are:

—Baseline: This configuration uses the Baseline compiler exclusively and thus is the worst
performing configuration for all benchmarks. The compilation cost is negligible in this
configuration.

—CS-NoSpec: This configuration corresponds to a client usingCS. The server performs
no speculative optimization.

1One could also use a cached version if it makes assumptions consistent with those of the client now requesting
the code but it may be costly.

Design, Implementation, and Evaluation of a Compilation Server · 17

Table IV. Summary of Speedup Data
Benchmark Speedup overAdaptive-OSR Compilation overhead

mtrt 44.8% 23.3%
raytrace 42.9% 18.5%
mpegaudio 29.5% 16.9%
pseudojbb 20.4% 14.0%
javac 32.3% 13.7%
jess 12.4% 9.7%
ipsixql 10.1% 9.1%
jack 18.3% 7.6%
db -3.6% 2.5%
compress -1.8% 2.1%

Mean 20.5% 11.7%

—CS-Spec: This configuration corresponds to a client usingCS. The server performs all
optimizations listed in Table II, including speculative optimizations.

—Adaptive-NoOSR: This is the Adaptive system of Jikes RVM without On-Stack Replace-
ment.

—Adaptive-OSR: This is the default adaptive system of Jikes RVMwith On-Stack Re-
placement.

—Opt: This configuration uses the optimizing compiler at optimization level O1. We use
optimization level O1 since it outperforms O2 for most benchmarks. We do not include
any compilation cost for this configuration, and thus this configuration is not realistic.
However, we can gauge how good other configurations are performing by comparing
them to thisOpt configuration.

The height of each bar represent its running time in seconds, and the number within a
given bar represents its running time as a ratio over the running time of theAdaptive-OSR
configuration. We compare the run-time performance ofCS-Specwith that of Adaptive-
OSRsinceAdaptive-OSRis the default realistic configuration. The error bars are placed at
one standard deviation away from the mean in all bars. Note that sometimes these error
bars seem to be missing because the errors are too small to see. Running times ofCS-Spec
configurations are usually bounded by theBaselineandOpt configurations.

From Figures 6 and 7, we see that the effect of usingCS ranges from speed improve-
ments of up to 45% to a slowdown of up to 3.6%. Table IV summarizes the speedup data.
The second column in Table IV, labeled “Speedup overAdaptive-OSR,” shows the per-
centage improvement ofCS-Specover theAdaptive-OSRconfiguration. The third column,
labeled “Compilation overhead,” shows compilation time as a percentage of total execution
time in the Adaptive system (also shown graphically in Figure 1).

Not only isCSeffective at removing compilation cost (Sections 5.2 and 5.3), but it is also
effective at improving client performance that goes beyond simply removing compilation
cost. We also notice thatCSsometimes degrades performance, and we explore both of
these issues in detail below.

18 · Han B. Lee et al.

mtrt
R

un
−

tim
e

(s
ec

)

0
10

20
30

40
50

60
70

Baseline
CS

NoSpec
CS

Spec
Adaptive
NoOSR

Adaptive
OSR Opt

1.
57

0.
85

0.
55

0.
92

1.
00

0.
54

raytrace

R
un

−
tim

e
(s

ec
)

0
10

20
30

40
50

60

Baseline
CS

NoSpec
CS

Spec
Adaptive
NoOSR

Adaptive
OSR Opt

1.
73

0.
92

0.
57

0.
94

1.
00

0.
55

mpegaudio

R
un

−
tim

e
(s

ec
)

0
20

40
60

80
10

0
12

0
14

0

Baseline
CS

NoSpec
CS

Spec
Adaptive
NoOSR

Adaptive
OSR Opt

3.
97

0.
70

0.
71

0.
99

1.
00

0.
70

pseudojbb
R

un
−

tim
e

(s
ec

)

0
20

40
60

80
10

0
12

0

Baseline
CS

NoSpec
CS

Spec
Adaptive
NoOSR

Adaptive
OSR Opt

1.
43

0.
85

0.
80

0.
97

1.
00

0.
71

javac

R
un

−
tim

e
(s

ec
)

0
20

40
60

80

Baseline
CS

NoSpec
CS

Spec
Adaptive
NoOSR

Adaptive
OSR Opt

1.
16

0.
69

0.
68

0.
97

1.
00

0.
65

jess

R
un

−
tim

e
(s

ec
)

0
10

20
30

40

Baseline
CS

NoSpec
CS

Spec
Adaptive
NoOSR

Adaptive
OSR Opt

1.
58

0.
90

0.
88

0.
99

1.
00

0.
79

Fig. 6. Running time of different configurations.

Design, Implementation, and Evaluation of a Compilation Server · 19

ipsixql
R

un
−

tim
e

(s
ec

)

0
20

40
60

80

Baseline
CS

NoSpec
CS

Spec
Adaptive
NoOSR

Adaptive
OSR Opt

1.
48

0.
90

0.
90

0.
99

1.
00

0.
93

jack

R
un

−
tim

e
(s

ec
)

0
10

20
30

40
50

Baseline
CS

NoSpec
CS

Spec
Adaptive
NoOSR

Adaptive
OSR Opt

1.
19

0.
83

0.
82

1.
01

1.
00

0.
78

db

R
un

−
tim

e
(s

ec
)

0
10

20
30

40
50

60

Baseline
CS

NoSpec
CS

Spec
Adaptive
NoOSR

Adaptive
OSR Opt

1.
21

1.
03

1.
04

0.
99

1.
00

1.
04

compress
R

un
−

tim
e

(s
ec

)

0
20

40
60

80
10

0
12

0
14

0

Baseline
CS

NoSpec
CS

Spec
Adaptive
NoOSR

Adaptive
OSR Opt

3.
04

1.
03

1.
02

1.
05

1.
00

0.
96

Fig. 7. Running time of different configurations (continued).

5.1.1 Sources of Speedup.UsingCSresults in client speedup that goes beyond remov-
ing compilation cost. This is explained by the fact that the cost-benefit model ofCS-Spec
is more aggressive (i.e., cost of compiling is lower) than that ofAdaptive-OSRbecause we
run the server on a more capable machine. The lower cost ofCS-Specmeans that there are
more methods optimized inCS-Specthan inAdaptive-OSR. Furthermore, most methods in
Adaptive-OSRare compiled to optimization level O0 because the cost inAdaptive-OSR’s
cost-benefit model is too high to recompile methods at higher optimization levels. In con-
trast, CS-Speccompiles methods using optimizations listed in Table II, which includes
many optimizations from optimization level O1 and one optimization from optimization
level O2. The higher quality and number of optimized methods generated byCS-Spec
result in performance improvement that goes beyond reducing compilation cost. Further-
more, clients usingCSperform fewer dynamic allocations, which results in better memory

20 · Han B. Lee et al.

behavior (Section 5.4).
Another interesting observation we can make from Figures 6 and 7 is that foripsixql,

clients usingCS actually outperform theOpt configuration. Recall thatOpt is an ideal
configuration where all methods are compiled by the optimizing compiler at optimization
level O1 without incurring any compilation overhead. This rather surprising behavior can
be explained by the difference in the quality of generated code.

First of all, the set of optimizations thatCS-Specuses is slightly different from that of
Opt. In particular, we include one O2 level optimization (global common subexpression
elimination) in our custom optimization level based on results from our earlier work [Lee
et al. 2004], which results in slightly better optimized code. Second, due to the filtering
that affects inlining decisions (as discussed in Section 3.3.3),CS-Specgenerates code that
may have better instruction cache behavior.

5.1.2 Slowdown. CSsometimes degrades client performance. This performance degra-
dation can be explained by the overhead in usingCS. This overhead includes the cost of
collecting and sending client state, and the cost of receiving and installing compiled meth-
ods. Due to this overhead, not all of the savings in compilation time translate into perfor-
mance improvement. This overhead is more readily seen when there is not much savings
opportunity to begin with (i.e., compilation cost inAdaptive-OSRis low), such as indb
andcompress.

5.1.3 Speculative Optimizations.The initial implementation ofCS did not include
speculative optimizations because it required communicating the compile-time assump-
tions made byCS to clients, and invalidations discovered by clients back toCS. Further-
more, when there are invalidations,CSre-optimizes methods without speculative optimiza-
tions, and clients need to download them again, introducing further overhead.

TheCS-NoSpecconfigurations in Figures 6 and 7 show the effect of omitting speculative
optimizations inCS. There are two things we can notice from the height of the bars. The
first is that, while speculative optimizations require further communication between clients
and CS, the cost of that communication is fairly low. The reason for this is that there
are relatively few invalidations in practice. For example, the number of invalidations for
javac, which optimizes over 200 methods, is only 4. We can also notice that speculative
optimizations work reasonably well, so that it is worthwhile to implement them inCS
despite of their added complexity and communication cost.

5.1.4 On-Stack Replacement.On-stack replacement (OSR) [Chambers and Ungar 1991;
Hölzle and Ungar 1994; Fink and Qian 2003] allows replacement of currently executing
methods with newly compiled methods. One of the situations where OSR is useful is when
there is a long running method that needs to be replaced with better optimized compiled
code. Jikes RVM’s Adaptive system implements OSR [Fink and Qian 2003], and to deter-
mine whether it would be worthwhile to implement OSR inCS, we examine its potential
in Figures 6 and 7. The configuration labeledAdaptive-NoOSRin Figures 6 and 7 shows
the effect of disabling OSR in the Adaptive system. There are only two benchmarks,com-
press and jack, where disabling OSR results in performance degradation (5% and 1%,
respectively). For other benchmarks, disabling OSR does not make much difference and
sometimes improves performance (by up to 8% inmtrt). While implementing OSR inCS
may give more benefit than in the Adaptive system since optimized code would be avail-
able sooner than it would in the Adaptive system, results from Figures 6 and 7 do not seem

Design, Implementation, and Evaluation of a Compilation Server · 21

Table V. Summary of Pause Times

CSclient Adaptive-OSR CSclient overAdaptive-OSR
Mean Maximum Mean Maximum Mean Maximum

Benchmark (ms) (ms) (ms) (ms) (ratio) (ratio)

mtrt 2.47 52.43 32.97 741.27 0.07 0.07
raytrace 3.61 55.50 39.49 772.06 0.09 0.07
mpegaudio 0.97 27.03 26.89 279.09 0.04 0.10
pseudojbb 2.05 83.09 23.98 620.81 0.09 0.13
javac 1.82 71.79 20.38 428.47 0.09 0.17
jess 1.53 48.41 22.70 120.96 0.07 0.40
ipsixql 2.96 45.29 53.54 1367.35 0.05 0.03
jack 1.39 41.22 24.50 515.93 0.06 0.08
db 0.57 1.23 52.82 219.93 0.11 0.01
compress 2.58 40.61 18.97 137.90 0.14 0.29

Mean 2.00 46.66 31.67 520.38 0.08 0.19

to justify the extra effort in implementing OSR inCS.

5.2 Pause Times

In addition to improvements to total running time,CSshould also be effective in removing
(or shortening) some of the run-time pauses due to dynamic compilation. Section 2.2
showed that there were a number of long pauses (> 100 ms) in the Adaptive system. In this
section, we present pause times inCSclients and compare them to those in the Adaptive
system.

Figures 8 and 9 show the pause times due to dynamic compilation inCSclients, sim-
ilar to Figures 2 and 3. The x-axis represents the actual execution time for a particular
benchmark, and the y-axis show the pause times in seconds. Note that the scale of y-axis
in Figures 8 and 9 is the same as the one used in Figures 2 and 3, and thus they can be
compared directly.

One of the differences we can see between the pause times ofCSclients and those of
the adaptive system is the shorter height of the bars inCSclients. This is to be expected
since compilation is being off-loaded toCS, and thus clients are pausing only to request
compilation and to receive and install optimized code from the server.CSclients are able to
perform useful work while waiting for server to finish compilation of requested methods.

Figure 10 shows the comparison graphically using box plots. The box plots show the
median, and the lower and upper quartiles of pause times. Note that the y-axis has been
clipped at 200 ms to make the charts more readable. We see from Figure 10 that, in
addition to having drastically lower mean, the bars that correspond toCSclients also have
much lower variability, not only for a given benchmark but across all benchmarks. The
lower variability may be appealing for soft real-time systems. Table V summarizes pause
time differences betweenCS clients and the Adaptive system, and it shows that we are
able to reduce mean pause times by an average of 92% and maximum pause times by an
average of 81% by usingCS.

While knowing the mean and maximum pause times of a system is useful, they are

22 · Han B. Lee et al.

0 5 10 15 20 25

0
20

0
40

0
60

0
80

0
10

00

mtrt

elapsed time (sec)

pa
us

e
tim

e
(m

s)

0 5 10 15 20

0
20

0
40

0
60

0
80

0
10

00

raytrace

elapsed time (sec)

pa
us

e
tim

e
(m

s)

0 5 10 15 20 25

0
20

0
40

0
60

0
80

0
10

00

mpegaudio

elapsed time (sec)

pa
us

e
tim

e
(m

s)

0 10 20 30 40 50 60 70

0
20

0
40

0
60

0
80

0
10

00

pseudojbb

elapsed time (sec)

pa
us

e
tim

e
(m

s)

0 10 20 30 40 50 60

0
20

0
40

0
60

0
80

0
10

00

javac

elapsed time (sec)

pa
us

e
tim

e
(m

s)

0 5 10 15 20 25 30

0
20

0
40

0
60

0
80

0
10

00

jess

elapsed time (sec)

pa
us

e
tim

e
(m

s)

Fig. 8. Pause times due to compilation inCSclients.

Design, Implementation, and Evaluation of a Compilation Server · 23

0 10 20 30 40 50

0
20

0
40

0
60

0
80

0
10

00

ipsixql

elapsed time (sec)

pa
us

e
tim

e
(m

s)

0 10 20 30 40

0
20

0
40

0
60

0
80

0
10

00

jack

elapsed time (sec)

pa
us

e
tim

e
(m

s)

0 10 20 30 40 50 60

0
20

0
40

0
60

0
80

0
10

00

db

elapsed time (sec)

pa
us

e
tim

e
(m

s)

0 10 20 30 40 50

0
20

0
40

0
60

0
80

0
10

00

compress

elapsed time (sec)

pa
us

e
tim

e
(m

s)

Fig. 9. Pause times due to compilation inCSclients (continued).

not sufficient to characterize the occurrences of the pauses because they do not say how
frequent or clustered the pauses are. In order to address this limitation and to evaluate the
real-time behavior of their collector, [Cheng and Blelloch 2001] introduced the concept of
minimum mutator utilization(MMU). In their context,utilization is defined as the fraction
of time that the mutator executes in a given time window, and minimum mutator utilization
denotes the minimum amount of processor time available to the mutator for a given window
size throughout the program execution. Since we are not evaluating garbage collectors, we
use the term minimum utilization rate (MUR) to denote the fraction of processor time
accessible to non-compilation threads for a given time window on a client, and use MUR
to evaluateCSclients. We present the results in Figures 11 and 12.

The x-intercept shows the maximum pause time, because the MUR will be zero up until
the time window gets bigger than the maximum pause time. Overall, we see that the MUR

24 · Han B. Lee et al.

●

●●●

●

●

●
●

●

●●
●

●

●

●

● ●
●●●
●
●

●

●

●

●

●

●●●
●●

●

●
●
●

●

●●●

●

●
●
●
●

●

●

●
●

●

●

●

●●●
●●

●

●
●

●

●

●●
●

●

●
●

●

●

●●●●
●

●

●

●
●

●

●

●

●
●
●
●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●●

●●●●●●

●

●
●

●
●

●

●

●
●

●

●●
●
●●

●

●●

● ●
●●
● ●

●

●●0
50

10
0

15
0

20
0

pa
us

e
tim

e
(m

s)

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

mtrt raytrace mpegaudio pseudojbb javac jess ipsixql jack db compress

CS−Spec
Adaptive−OSR

Fig. 10. Comparison of pause times betweenCSclients and the Adaptive system.

curves ofCSclients have a smaller x-intercept value and rise much more quickly than those
of the Adaptive system.

For time windows of 50 ms and 100 ms, the MUR ofCSclients ranges from 0.00 to
0.96 and 0.16 to 0.98 respectively. The MUR of the Adaptive system remains at 0 for both
50 ms and 100 ms time windows. In other words, for a given time window size of 100
ms, clients usingCSspend at least 16 ms to 98 ms in non-compilation threads. The higher
MUR of CSclients may be desirable in interactive or real-time systems.

The asymptotic y-value of the MUR curves gives the overall fraction of time available
for user computation over long time scales. The curves forCSclients show that they reach
the asymptote faster than in the Adaptive system, and generally have 90% or more of the
time available for user computation. In contrast, the Adaptive system runs require larger
time scales to reach their asymptotic value, and this value appears to be lower than for
CSruns (since the curves presented have not all attained the asymptotic value it is hard to
tell; however, we know thatCSgenerally improves performance over running the Adaptive
system locally).

5.3 Network Speed

As stated in Section 4.3, so far we have assumed that the client and server are networked
in a local area network using a 100 Mbps connection. In this section, we explore the effect
of different network speeds on client performance.

Design, Implementation, and Evaluation of a Compilation Server · 25

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

mtrt

Time window (ms)

M
in

im
um

 u
til

iz
at

io
n

ra
te

CS−Spec
Adaptive−OSR

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

raytrace

Time window (ms)

M
in

im
um

 u
til

iz
at

io
n

ra
te

CS−Spec
Adaptive−OSR

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

mpegaudio

Time window (ms)

M
in

im
um

 u
til

iz
at

io
n

ra
te

CS−Spec
Adaptive−OSR

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pseudojbb

Time window (ms)

M
in

im
um

 u
til

iz
at

io
n

ra
te

CS−Spec
Adaptive−OSR

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

javac

Time window (ms)

M
in

im
um

 u
til

iz
at

io
n

ra
te

CS−Spec
Adaptive−OSR

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

jess

Time window (ms)

M
in

im
um

 u
til

iz
at

io
n

ra
te

CS−Spec
Adaptive−OSR

Fig. 11. Minimum utilization rate ofCSclients and the Adaptive system.

26 · Han B. Lee et al.

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ipsixql

Time window (ms)

M
in

im
um

 u
til

iz
at

io
n

ra
te

CS−Spec
Adaptive−OSR

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

jack

Time window (ms)

M
in

im
um

 u
til

iz
at

io
n

ra
te

CS−Spec
Adaptive−OSR

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

db

Time window (ms)

M
in

im
um

 u
til

iz
at

io
n

ra
te

CS−Spec
Adaptive−OSR

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

compress

Time window (ms)

M
in

im
um

 u
til

iz
at

io
n

ra
te

CS−Spec
Adaptive−OSR

Fig. 12. Minimum utilization rate ofCSclients and the Adaptive system (continued).

We use thetc tool from theIPROUTE2utility suite [Kuznetsov 1998] to manipulate
kernel structures controlling the IP networking configuration.tc can be used for traffic
control, and we use it to limit the network speed between client and server. Table VI shows
the network speeds we consider.

We repeated our experiments with different network speeds and plot the results in Fig-
ure 13. The x-axis, which is on a logarithmic scale, represents different network speeds
in decreasing order, and the y-axis presents running time in seconds. Each line represents
a single benchmark, and each point shows the mean of ten measurements for a particular
configuration. As before, we place error bars at one standard deviation from the mean in
both directions. Most of the time the standard deviation is so small that it is difficult to
see the error bars. Note that as we decrease the network speed, there is more variability
between runs (i.e., longer error bars). This is to be expected since slightly different re-

Design, Implementation, and Evaluation of a Compilation Server · 27

Table VI. Different Network Speeds Considered
Speed Description

100 Mbps This is the network speed of Fast Ethernet, often used in local area net-
works.

10 Mbps This is the network speed of Ethernet. It is a good approximation to the
speed of the802.11bwireless protocol (11 Mbps).

1 Mbps This is typical cable modem and DSL speed. It also represents the speed
of the Home Phoneline Network Alliance (HomePNA) 1.0 standard as
well as the speed of the802.11wireless protocol.

512 Kbps This represents congested cable modem and DSL speed.
128 Kbps This represents typical ISDN speed.
56 Kbps This represents a good dialup modem speed.

Network speed (bps)

R
un

 ti
m

e
(s

ec
)

100M 10M 1M 512K 128K 56K

0
20

40
60

●

●
●●●●

●●●●●●

●

●

mtrt
raytrace
mpegaudio
pseudojbb
javac

jess
ipsixql
jack
db
compress

Fig. 13. Overview of effects of network speed onCSclients.

compilation decisions may result in rather large differences in the arrival time of compiled
methods.

We can see from Figure 13 that network speed does not affect client performance much
until it reaches the dialup modem speed of 56 Kbps. Even at 56 Kbps, the average run-time
performance degradation compared to the 100 Mbps network is only 10%. The maximum

28 · Han B. Lee et al.

Table VII. Dynamic memory allocation.
Name CSclient (MB) Adaptive-OSR(MB) Savings (%)

mtrt 154.78 164.94 6.16
raytrace 152.35 163.55 6.85
mpegaudio 16.73 40.96 59.16
pseudojbb 255.28 302.25 15.54
javac 233.03 256.38 9.11
jess 276.89 292.78 5.43
ipsixql 484.65 515.98 6.07
jack 246.56 256.70 3.95
db 85.76 93.29 8.07
compress 116.06 124.16 6.53

Mean 202.21 221.10 8.54

performance degradation of 26% is observed forraytrace.
To put this performance degradation due to slower network speed in perspective, we

plot running times of each individual benchmark separately along with running times of
its Baseline, Opt, andAdaptive-OSRconfigurations in Figures 14 and 15. Theraytrace
benchmark, which suffers the most performance degradation at 56 Kbps compared to 100
Mbps, still outperforms theAdaptive-OSRconfiguration by 28%. In fact, most of the
benchmarks still outperformAdaptive-OSRconfiguration even at the 56 Kbps connection
speed. The only exceptions aredb andcompress, but neither outperformed theAdaptive-
OSRconfiguration to begin with, even at 100 Mbps. Running times ofdb andcompress
at 56 Kbps degrade by only 0.1% and 1% respectively compared to those at 100 Mbps,
since there is only a handful of methods that need to be transferred.

In summary, for those benchmarks that make heavy use ofCS, the run-time degradation
due to a slower network is relatively small compared to the benefits of usingCS, and
thus they are still able to outperform theAdaptive-OSRconfiguration. On the other hand,
for those benchmarks that do not benefit much fromCS to begin with (i.e., have little
compilation cost inAdaptive-OSR), slowing down the network has insignificant effect on
their running time because so little data is transferred between the client and the server.

5.4 Memory Usage

CSclients no longer need the optimizing compiler sinceCSperforms all optimizing com-
pilations for them. The absence of the optimizing compiler results in a memory footprint
savings of about 14 MB compared to that of the Adaptive system. To measure the size of
the optimizing compiler, we measured the size of Jikes RVM bootimage with and without
the optimizing compiler and took the difference between the two bootimages. Considering
that the size of the bootimage forFastAdaptiveSemiSpaceis approximately 36 MB, this
memory footprint reduction is significant: 39%.

In addition to the reduction in instruction space,CSclients also perform fewer dynamic
allocations since they do not need to allocate the dynamic data needed by the optimizing
compiler. We measured the number of dynamically allocated bytes inCSclients and in the
Adaptive-OSRconfiguration and show the results in Table VII.

The reduction in the number of bytes allocated at run time ranges from 4% to 59% with a
mean reduction of 8.5% over that ofAdaptive-OSR. Programs may well have better cache

Design, Implementation, and Evaluation of a Compilation Server · 29

●

●
●●●●

mtrt

Network speed (bps)

R
un

−
tim

e
(s

ec
)

100M 10M 1M 128K 56K

0
20

40
60

 Baseline

 Adaptive−OSR

 Opt

● CS−Spec

●

●
●●●●

raytrace

Network speed (bps)

R
un

−
tim

e
(s

ec
)

100M 10M 1M 128K 56K

0
10

20
30

40
50

60
70

 Baseline

 Adaptive−OSR

 Opt

● CS−Spec

●●●●●●

mpegaudio

Network speed (bps)

R
un

−
tim

e
(s

ec
)

100M 10M 1M 128K 56K

0
50

10
0

15
0

 Baseline

 Adaptive−OSR

 Opt

● CS−Spec

●
●

●●●●

pseudojbb

Network speed (bps)

R
un

−
tim

e
(s

ec
)

100M 10M 1M 128K 56K

0
20

40
60

80
10

0
12

0 Baseline

 Adaptive−OSR

 Opt

● CS−Spec

●

●

●●●●

javac

Network speed (bps)

R
un

−
tim

e
(s

ec
)

100M 10M 1M 128K 56K

0
20

40
60

80

 Baseline

 Adaptive−OSR

 Opt

● CS−Spec

●
●●●●●

jess

Network speed (bps)

R
un

−
tim

e
(s

ec
)

100M 10M 1M 128K 56K

0
10

20
30

40
50 Baseline

 Adaptive−OSR

 Opt

● CS−Spec

Fig. 14. Effects of network speed onCSclients.

30 · Han B. Lee et al.

●
●●●●●

ipsixql

Network speed (bps)

R
un

−
tim

e
(s

ec
)

100M 10M 1M 128K 56K

0
20

40
60

80

 Baseline

 Adaptive−OSR

 Opt

● CS−Spec

●●●●●●

jack

Network speed (bps)

R
un

−
tim

e
(s

ec
)

100M 10M 1M 128K 56K

0
10

20
30

40
50

60

 Baseline

 Adaptive−OSR

 Opt

● CS−Spec

●●●●●●

db

Network speed (bps)

R
un

−
tim

e
(s

ec
)

100M 10M 1M 128K 56K

0
20

40
60

 Baseline

 Adaptive−OSR

 Opt

● CS−Spec

●●●●●●

compress

Network speed (bps)

R
un

−
tim

e
(s

ec
)

100M 10M 1M 128K 56K

0
50

10
0

15
0

 Baseline

 Adaptive−OSR
 Opt

● CS−Spec

Fig. 15. Effects of network speed onCSclients (continued).

and TLB (translation look-aside buffer) behavior given the reduced volume of dynamic
allocation.

5.5 Server Performance

Since a givenCSserver is likely to be used by multiple clients, it would be interesting to
explore how wellCSscales. Unfortunately, the optimizing compiler of Jikes RVM is not
re-entrant, which means that our current implementation ofCSis not re-entrant either. We
could spawn a number ofCSservers as separate processes, but this approach would not
scale well. To investigate the scalability ofCS in the absence of a re-entrant optimizing
compiler, we gather traces from the current implementation and use them in simulated
runs.

The trace information we gather consists of the inter-arrival times of compilation re-

Design, Implementation, and Evaluation of a Compilation Server · 31

0 10 20 30 40 50 60 70

0
20

40
60

80

Ratio of arrival rate over current

R
at

io
 o

f r
es

po
ns

e
tim

e
ov

er
 c

ur
re

nt

w/o code reuse
w/ code reuse

Fig. 16. Server response time as a function of arrival rate of compilation requests.

quests, and the service times of individual compilations, forCS. Our simulator then sim-
ulates a queuing system with one processor and a queue of infinite length, by randomly
picking an inter-arrival time and a compilation service time from the traces. We vary the
arrival rate of compilation requests and observe its effect on response times and server uti-
lization. For each simulated data point, we perform 10,000 simulated compilation requests.

Figure 16 shows the simulated response time ofCSas we vary the arrival rate of com-
pilation requests. We define the response time as the elapsed time between request arrival
and request completion; thus it includes the time a request remains in the queue and its
service time. The x-axis represents the arrival rate of compilation requests as a ratio over
the arrival rate in the traces from our benchmark suite, and thus approximates the number
of concurrent clients usingCS. The y-axis scale is the ratio of response time over current
response time. Therefore, a point at(x,y) shows that response is slowed by a factor ofy
when the arrival rate of compilation requests is increased by a factor ofx (i.e., x number
of concurrent clients). Figure 16 shows two different series. One series corresponds to
simulation results using traces with the code reuse enhancement whereas the other series
is based on traces without reusing code. We discussed code reuse in Section 3.3.5.

Without code reuse, the response time ofCSscales linearly for up to about ten clients
and increases exponentially afterward, resulting in a response time ratio of about 20 for 18
concurrent clients and response time ratio of over 60 for 20 concurrent clients. We see that

32 · Han B. Lee et al.

Server response time ratio

R
un

 ti
m

e
(s

ec
)

1 2 4 8 16 32 64 128 256

0
20

40
60

80
10

0

● ● ●
●

●

●

●

● ●

● ● ● ● ● ● ●
●

●

●

●

mtrt
raytrace
mpegaudio
pseudojbb
javac

jess
ipsixql
jack
db
compress

Fig. 17. Overview of effects of slow response time fromCSon client performance.

code reuse is quite effective at improving the scalability ofCS. With code reuse,CSscales
linearly for up to about 40 clients, and its response time ratio is about 20 even for over 50
clients. While knowing about scalability ofCS is useful, it would be more interesting to
know how well clients perform given slowed responses fromCS. For instance, if a slightly
increased response time fromCS is enough to cause clients to perform worse than the
Adaptive-OSRconfiguration, thenCSmay not be very useful.

Figure 17 shows the effect of slow response times on client running time. The x-axis
representsCSresponse time as a ratio over current (i.e., single load) response time. Note
that the x-axis is to a logarithmic scale. The y-axis represents client running time in sec-
onds. Each line represents a single benchmark, and each point shows the mean of ten
measurements for a particular server response time ratio. As before, we place error bars at
one standard deviation from the mean in both directions. Increasing response time results
in increased variability of running times (i.e., larger error bars).

We see that client running times remain steady until the response time ofCS increases
by a factor of about 16. To place this slowdown in running time in perspective, Figures 18
and 19 show running times of individual benchmarks separately, along with running times
for theBaseline, Opt, andAdaptive-OSRconfigurations.

We see from Figures 18 and 19 that all benchmarks except fordb andcompress out-
performAdaptive-OSReven when the response time from the server increases by a factor

Design, Implementation, and Evaluation of a Compilation Server · 33

● ● ●
●

●

●

●

●
●

mtrt

Relative server response time

R
un

−
tim

e
(s

ec
)

1 2 4 8 16 32 64 128 256

0
20

40
60

 Baseline

 Adaptive−OSR

 Opt

● CS−Spec

● ● ●
●

●

●

●

● ●

raytrace

Relative server response time

R
un

−
tim

e
(s

ec
)

1 2 4 8 16 32 64 128 256

0
10

20
30

40
50

60
70

 Baseline

 Adaptive−OSR

 Opt

● CS−Spec

● ● ● ●
●

●

●

●

●

mpegaudio

Relative server response time

R
un

−
tim

e
(s

ec
)

1 2 4 8 16 32 64 128 256

0
50

10
0

15
0

 Baseline

 Adaptive−OSR

 Opt

● CS−Spec

● ● ● ●
●

●

●

●

●

pseudojbb

Relative server response time

R
un

−
tim

e
(s

ec
)

1 2 4 8 16 32 64 128 256

0
20

40
60

80
10

0
12

0 Baseline

 Adaptive−OSR

 Opt

● CS−Spec

● ● ●
●

●

●

●
●

●

javac

Relative server response time

R
un

−
tim

e
(s

ec
)

1 2 4 8 16 32 64 128 256

0
20

40
60

80

 Baseline

 Adaptive−OSR

 Opt

● CS−Spec

● ● ● ●
●

●

●

●

●

jess

Relative server response time

R
un

−
tim

e
(s

ec
)

1 2 4 8 16 32 64 128 256

0
10

20
30

40
50 Baseline

 Adaptive−OSR

 Opt

● CS−Spec

Fig. 18. Effects of slow response time fromCSon client performance.

34 · Han B. Lee et al.

● ● ● ● ● ●
●

●

●

ipsixql

Relative server response time

R
un

−
tim

e
(s

ec
)

1 2 4 8 16 32 64 128 256

0
20

40
60

80

 Baseline

 Adaptive−OSR

 Opt

● CS−Spec

● ● ● ●
●

●

●

●
●

jack

Relative server response time

R
un

−
tim

e
(s

ec
)

1 2 4 8 16 32 64 128 256

0
10

20
30

40
50

60

 Baseline

 Adaptive−OSR

 Opt

● CS−Spec

● ● ● ● ● ● ● ●
●

db

Relative server response time

R
un

−
tim

e
(s

ec
)

1 2 4 8 16 32 64 128 256

0
20

40
60

 Baseline

 Adaptive−OSR

 Opt

● CS−Spec

● ● ● ● ● ● ● ● ●

compress

Relative server response time

R
un

−
tim

e
(s

ec
)

1 2 4 8 16 32 64 128 256

0
50

10
0

15
0

 Baseline

 Adaptive−OSR
 Opt

● CS−Spec

Fig. 19. Effects of slow response time fromCSon client performance (continued).

of 32. As mentioned before in Section 5.3,db andcompress were both slightly outper-
formed byAdaptive-OSRto begin with. In fact, becausedb andcompress make such
a light use ofCS, their running times degrade by only 0.6% and 0.1% respectively, even
when the response time from the server increases by a factor of 32. In other words, as
with network speed, benchmarks that have much to gain by usingCSare affected the most
by slow response time, but they are still able to outperformAdaptive-OSRbecause they
benefit so much from usingCSalready.

In summary our results indicate that:

—When there is no reuse across clients (which models a situation where different clients
execute completely distinct code) a CS can support 18 clients while still outperforming
Adaptive-OSR.

—When we restrict clients to one of our benchmark programs and there is reuse (e.g., two

Design, Implementation, and Evaluation of a Compilation Server · 35

0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ratio of arrival rate over current

S
ev

er
 u

til
iz

at
io

n

w/o code reuse
w/ code reuse

Fig. 20. Server utilization as a function of arrival rate of compilation requests.

clients execute the same benchmark or two clients execute different benchmarks that use
common libraries), a CS can support 50 clients while still outperformingAdaptive-OSR.

It is worthwhile to mention that code reuse also improves client performance slightly
since it reduces the amount of time a client has to wait before it can start executing opti-
mized machine code. However, the benefits of code reuse on clients are small, averaging
about 0.8% over all benchmarks.

Finally, Figure 20 shows server utilization as a function of the arrival rate of compila-
tion requests. The x-axis remains the same as in Figure 16, and the y-axis represents the
utilization of CS. Figure 20 contains two different series as before. We see that server uti-
lization scales linearly for both series, albeit with different slope. This figure, along with
Figure 16, confirms the common belief that servers’ response time scales linearly until
their utilization rate goes above 60% to 70%;CSis no exception.

5.6 Profile-driven Optimizations

Having a central server that compiles client code presents interesting and unique chal-
lenges. What if one can collect profile information from clients and use it in code genera-
tion (for the same or other clients) similarly to online feedback-directed optimizers [Arnold
et al. 2002]? Even though each client may execute different applications, it is quite pos-
sible that they execute the same common library routines, and if that is the case, then we

36 · Han B. Lee et al.

could reap the benefits of feedback-directed optimizations even when applications do not
run for “long” periods of time. Furthermore, if we could distribute profile collection to
multiple clients, we may be able to gather more expensive profiles, such as path profil-
ing [Ball and Larus 1996], that can be used to drive other optimizations without incurring
too much slowdown on any single client.

SinceCSalready acts as a proxy server for its clients, we believe it is reasonable to as-
sume the following. First, we assume thatCSknows about the performance characteristics
of each client it serves, and thus can put appropriate weight to profile data gathered by each
client. This avoids the problem of profile data from faster clients dominating profile data
from slower clients. Second, we assume thatCSkeeps track of profile directives it sends
to its clients (step 1 in Figure 5) in order to distribute evenly the task of profile collection.
This division of profile gathering may be at the granularity of a method or may even be at
the granularity of basic blocks. For example, ifCSdetermines that it had gathered enough
profile data for all methods a client is requesting,CSwill not require any profiling from
this client.

In this section, we explore and present preliminary data that show the feasibility of
gathering profile information on clients and using those data in later runs, using the edge
profiling mechanism implemented in Jikes RVM. In adaptive mode, the Baseline compiler
of Jikes RVM inserts instrumentation to collect edge profiles, which are then used by the
optimizing compiler when the adaptive controller decides to recompile a particular method.
The edge profile information is used in multiple places inside the optimizing compiler such
as in deciding whether a loop is worthwhile to unroll, and in reordering code to improve
instruction cache behavior and branch prediction. So far in our experiments, we disabled
profiling of Baseline compiled code, and thus did not use profile information to drive the
optimizing compiler ofCS. For the following experiments, we implemented a mechanism
for transmitting edge profile information gathered by Baseline compiled code on the client
to CSalong with each method recompilation request.

The second column, labeled “Instrumentation overhead,” in Table VIII summarizes the
overhead of collecting edge profile information by instrumenting Baseline compiled code
and sending it toCS. The instrumentation overhead ranges from 0.3% to 4.2% with a mean
of 2.1% over non-instrumented clients. This represents the overhead that a client would
incur if CSwere to decide to delegate instrumentation of all methods to a single client.
Different kinds of profiles, of course, would require different instrumentation with different
amounts of overhead. As an example, Ball and Larus report that their fast path profiling
implementation has an average of 30.9% overhead for their benchmark programs [Ball and
Larus 1996].

The last column, labeled “Improvement with profile,” in Table VIII shows performance
improvement of a client that benefits from previous edge profile data stored onCS. To
measure this improvement, we ran the same benchmark twice. The first run provided edge
profile data toCS, and the second run used profile-based optimized code without incurring
any instrumentation overhead. This situation, therefore, represents the most optimistic
case. The performance improvement ranges from 1.5% to 6.6% with a mean of 3.8%.

This result is by no means an exhaustive evaluation of the use of profiling in the context
of CS, but it serves as a proof of concept that profiling can be used to improve performance
of clients that useCS.

We also investigate cross-benchmark benefits of using edge profiling by running one
benchmark after a different benchmark. We executed the first benchmark with edge pro-

Design, Implementation, and Evaluation of a Compilation Server · 37

Table VIII. Summary of instrumentation and profile data
Benchmark Instrumentation overhead Improvement with profile

mtrt 2.9% 3.3%
raytrace 3.3% 4.6%
mpegaudio 3.7% 6.6%
pseudojbb 0.3% 2.2%
javac 4.2% 6.5%
jess 1.6% 2.1%
ipsixql 2.1% 4.4%
jack 0.9% 4.9%
db 0.4% 1.5%
compress 1.3% 1.7%

Mean 2.1% 3.8%

filing enabled, which sent its profile data toCS, and the second benchmark used code
optimized with edge profile information without incurring any instrumentation overhead.
To emulate an environment where some of the libraries were shared between different
applications, we ran our experiments using a bootimage without the Java library classes
compiled in. This allows for profiling and optimized compiling of library methods when
they are identified as “hot”. We exclude the combination of themtrt andraytrace bench-
marks from this discussion since they use the same code base. Our results indicate that
there is some degree of method sharing between the first and the second client, with the
speed improvement due to edge profiling ranging from 0.0% to 2.6% with a mean of 0.8%.
While this speed improvement is not big, it illustrates that clients do not have to be exe-
cuting the same program to benefit from each other’s profile information. SinceCSwill
service many clients and run for a long time, we would argue that the likelihood of a client
benefiting from prior profile information is higher than what we show here. Furthermore,
the benefit will also depend on what kinds of profile information is collected and used by
CS.

6. RELATED WORK

We investigated the idea of a compilation service as a means of reducing the energy con-
sumption of mobile devices using power models in [Palm et al. 2002]. This work is an
extension of that prior work, but instead of using power models to investigate energy con-
sumption, we presented design, implementation, and evaluation of an actual implementa-
tion of a compilation server and clients.

6.1 Server-based Compilation

There is related work in the area of server-based compilation for Java as well as for static
programming languages such as C and C++.

Delsart et al. [Delsart et al. 2002] describe a framework called JCOD designed to per-
form native compilation of Java classes similar to ours but with completely different design
goals. Their design is tailored for embedded devices with very limited memory, and thus
focuses on improving client performance with minimal increase in code size and memory
requirements. In fact, their compile-server performs only a few optimizations that reduce

38 · Han B. Lee et al.

code size: they perform no method inlining or loop unrolling since those optimizations
may increase code size. They are also concerned with producing code that is independent
of the operating system and virtual machine, and to that end they implemented a generic
object format that must be linked on the client, which results in high overhead. Our design
philosophy is that any task that can be performed on the server should be done there since
servers can be expected to be much more capable machines. In addition to these differ-
ences, we present thorough evaluation of the effects of network speed, server load, and
profile-driven optimizations, and investigate the memory usage and pause times of clients
usingCSand the scalability ofCS.

Newsome and Watson [Newsome and Watson 2002] describe a proxy compilation scheme
called MoJo in which a server compiles Java class files to C source code and then to an ob-
ject file to be used by a client using GNU gcc. MoJo handles only a subset of Java and does
not allow recompilation of “hot” methods but rather compiles whole class files at once. In
this sense, MoJo acts more like a way-ahead-of-time compiler that batch compiles for its
clients. Client execution is halted until compiled code is received. Our work differs in that
we consider optimization of “hot” methods only, interleaving execution with optimization
request.

There has been some effort in distributing compilation of static programming languages
such as C. The problem that these approaches is trying to solve is to reduce overall com-
pilation wait-time and is much simpler to solve since everything can be compiled ahead-
of-time. distcc [Pool 2003] allows distributed compilation of C, C++, Objective C, and
Objective C++ code using a number of machines on a network. distcc ships individual
compilation units (e.g., C files) across the network and links resulting object files together
to generate the final executable file. nc [Ellis 2003] is another tool that works in a similar
fashion.

6.2 Task Migration

The idea of offloading compilation onto a dedicated server can be considered as a specific
instance of task migration.

Flinn et al. [Flinn et al. 2001] describe a framework that automatically downloads tasks
to a wired server based on information provided by the application and past profiles. Their
work also incorporates a notion of “fidelity”. For example, their system may decide based
on the environment to use either the full or a short vocabulary for a speech recognition
system. Our work is in a sense a detailed evaluation of one application of their approach.

Kremer et al. [Kremer et al. 2000; 2001] describe a framework for migrating the exe-
cution of applications to a server. The server periodically (as determined by the compiler)
sends checkpoints to the handheld; if the server dies or is disconnected, the handheld can
continue execution from the last checkpoint. These ideas are useful in building a distributed
compilation system.

Teodorescu and Pandey [Teodorescu and Pandey 2001] describe a Java system that is
distributed across servers and resource-limited devices. The resource-limited devices run
minimal kernels that download parts of the run-time system on demand. Like our work,
the granularity of transferring code is a method. However, unlike our work, all compilation
is done on the server.

Sirer et al. [Sirer et al. 1999] consider how to distribute the tasks of a Java virtual ma-
chine between a personal computer and a proxy server. By putting tasks such as bytecode
verification on a server, they expect to enhance the reliability and stability of a system.

Design, Implementation, and Evaluation of a Compilation Server · 39

For example, a system administrator would need to install many security patches on only a
small number of servers rather than on every computer in the organization. Since the proxy
servers are behind firewalls and relatively secure, a client in the organization can trust the
server. We follow the general model of Sirer at al. for our work. However, the motivations
behind our work and theirs are different: they are more concerned with security while we
are concerned with performance and reducing memory consumption and pauses. We also
investigate the use of profile data on the server.

6.3 Just-in-time and Adaptive Systems

Our specific implementation of compilation clients is based on the adaptive optimization
system in Jikes RVM [Arnold et al. 2000], but there have been a number of just-in-time
and adaptive optimization systems built before [Cierniak et al. 2000; Plezbert and Cytron
1997; Radhakrishnan et al. 2000; Suganuma et al. 2001; Hölzle and Ungar 1996; Voss
and Eigemann 2001; Auslander et al. 1996]. The work by Plezbert and Cytron [Plezbert
and Cytron 1997] is particularly relevant to our work because one of the systems they con-
sider is “continuous compilation” where they assume that there is a second idle processor
available for performing compilation. One could consider the second idle processor as a
compilation processor that can be used just like a compilation server. However, we believe
that it is unreasonable to assume that a typical client (desktop or mobile device) would
have multi-processor capabilities. Moreover, they consider a file-based level of granular-
ity for compilation as opposed to our method-based level of granularity. They also claim
that “continuous compilation” can eliminate pauses due to compilation but no concrete
experimental data is presented.

6.4 Profile-driven Optimizations

Our client implementation is based on the Adaptive Optimization System (AOS) in Jikes
RVM [Arnold et al. 2000]. Those authors recognize that optimization cost must be taken
into consideration in an adaptive optimizer, and demonstrate (for instance) that for short
running programs the most aggressively optimizing configurations perform the worst (be-
cause their compilation cost is not recovered). Thus, they use a cost-benefit model for
deciding when and how to recompile a method based on many kinds of profiles. They con-
sider four different optimization levels (Baseline, O0, O1, and O2), and any given method
may be recompiled multiple times until it reaches level O2. They find that there is signif-
icant benefit to picking different optimization strategies for different methods, particularly
for long-running benchmarks. In addition, AOS instruments the Baseline compiled meth-
ods to obtain edge profile information to be used in the optimization of the same methods.
Our exploration into the feasibility of using profile information onCSis also based on this
mechanism.

In an extension of the above work, Arnold et al. describe an online feedback-directed
optimization system that performs four optimizations (splitting, inlining, code positioning,
and loop unrolling) [Arnold et al. 2002]. They note that the profile data collected during
the execution of Baseline compiled code are limited in that they capture only program
startup behavior. Therefore, they use a low-overhead instrumentation sampling frame-
work [Arnold and Ryder 2001] to instrument optimized code to capture steady-state be-
havior. They report performance improvements ranging from 2.8% to 20.5% with an aver-
age of 8.1% using these four feedback-directed optimizations. However, to achieve these
improvements, one has to run the benchmark for several iterations to reach “steady-state”.

40 · Han B. Lee et al.

Since many clients use a givenCS, the combination of feedback-directed optimizations
andCSis likely to yield “steady-state” performance without much delay.

However, the combination of profiles from different clients may also lead to optimizing
for the average system behavior, and thus profile combination is an interesting problem
that deserves its own investigation. There have been some efforts in finding similarities
and combining profiles in a single application setting. Kistler and Franz [Kistler and Franz
1998] describe a technique for computing the similarity of profile data and how to detect
program behavior changes to trigger program re-optimization. Savari and Young [Savari
and Young 2000] present another technique based on information theory to compare and
combine profile information. More recently, Krintz [Krintz 2003] describe a system based
on Jikes RVM that uses both on-line and off-line profile information to improve program
performance without incurring much run-time profiling overhead. Krintz combines both
types of profile information in determining hot methods and hot call sites and shows that
her system can improve overall program performance by 9%.

7. CONCLUSION

To achieve reasonable performance, many modern virtual machines resort toJust-in-time
compilation. However, the cost of dynamic compilation even in state-of-the-art virtual
machines is moderately high. In this paper, we presentedCS, acompilation server, which
compiles client code at the granularity of methods to reduce or eliminate the cost associated
with dynamic compilation. We evaluatedCS using a number of different criteria, and
showed thatCS is effective at reducing clients end-to-end execution times, pause times,
and memory consumption, using ten benchmarks. In addition, we evaluated the scalability
of CS and the effect of network speed on client performance. Finally, we showed the
feasibility of performing profile-based optimizations inCS. We believe that being able
to migrate compilation onto a remote server using ourCSapproach will have significant
impact on the way virtual machines and optimizations are designed and implemented.

REFERENCES

ARNOLD, M., FINK , S., GROVE, D., HIND , M., AND SWEENEY, P. 2000. Adaptive optimization in the Jalapeño
JVM. In Proceedings of the Conference on Object-Oriented Programming, Systems, Languages, and Appli-
cations. ACM Press, Minneapolis, MN, 47–65.

ARNOLD, M., HIND , M., AND RYDER, B. G. 2002. Online feedback-directed optimization of Java. InProceed-
ings of the Conference on Object-Oriented Programming, Systems, Languages, and Applications. ACM Press,
Seattle, WA, 111–129.

ARNOLD, M. AND RYDER, B. G. 2001. A framework for reducing the cost of instrumented code. InProceedings
of the ACM SIGPLAN’01 Conference on Programming Language Design and Implementation. ACM Press,
Snowbird, UT, 168–179.

AUSLANDER, J., PHILIPOSE, M., CHAMBERS, C., EGGERS, S. J.,AND BERSHAD, B. N. 1996. Fast, effective
dynamic compilation. InProceedings of the ACM SIGPLAN ’96 Conference on Programming Language
Design and Implementation. ACM Press, Philadelphia, PA, 149–159.

BALL , T. AND LARUS, J. R. 1996. Efficient path profiling. InProceedings of the 29th Annual ACM/IEEE
International Symposium on Microarchitecture. IEEE Computer Society, Paris, France, 46–57.

BURKE, M., CHOI, J.-D., FINK , S., GROVE, D., HIND , M., SARKAR , V., SERRANO, M., SREEDHAR, V. C.,
AND SRINIVASAN , H. 1999. The Jalapeño dynamic optimizing compiler for Java. InACM Java Grande
Conference. ACM Press, San Francisco, CA, 129–141.

CHAMBERS, C. AND UNGAR, D. 1991. Making pure object-oriented languages practical. InProceedings of the
Conference on Object-Oriented Programming, Systems, Languages, and Applications. ACM Press, Phoenix,
AZ, 1–15.

Design, Implementation, and Evaluation of a Compilation Server · 41

CHENG, P. AND BLELLOCH, G. E. 2001. A parallel, real-time garbage collector. InProceedings of the ACM
SIGPLAN 2001 Conference on Programming Language Design and Implementation. ACM Press, Snowbird,
UT, 125–136.

CIERNIAK , M., LUEH, G.-Y., AND STICHNOTH, J. M. 2000. Practicing JUDO: Java under dynamic opti-
mizations. InProceedings of the ACM SIGPLAN ’00 Conference on Programming Language Design and
Implementation. ACM Press, Vancouver, BC, 13–26.

CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K. 1991. Efficiently com-
puting static single assignment form and the control dependence graph.ACM Transactions on Programming
Languages and Systems (TOPLAS) 13,4, 451–490.

DELSART, B., JOLOBOFF, V., AND PAIRE, E. 2002. JCOD: A lightweight modular compilation technology for
embedded Java. InProceedings of the Second International Conference on Embedded Software. Springer-
Verlag, Grenoble, France, 197–212.

DETLEFS, D. AND AGESEN, O. 1999. Inlining of virtual methods. InProceedings of the 13th European Con-
ference on Object-Oriented Programming. Springer-Verlag, Lisbon, Portugal, 258–278.

ELLIS , S. 2003. The ‘nc’ network compilation tool. Available at http://www.brouhaha.com/ el-
lis/software/index.html.

FINK , S. J.AND QIAN , F. 2003. Design, implementation, and evaluation of adaptive recompilation with on-
stack replacement. InProceedings of the International Symposium on Code Generation and Optimization.
IEEE Computer Society, San Francisco, California, 241–252.

FLINN , J., NARAYANAN , D., AND SATYANARAYANAN , M. 2001. Self-tuned remote execution for pervasive
computing. In8th Workshop on Hot Topics in Operating Systems (HotOS-VIII. IEEE Computer Society Press,
Schloss Elmau, Oberbayern, Germany.

GOSLING, J., JOY, B., STEELE, G.,AND BRACHA, G. 2000.Java Language Specification, Second Edition: The
Java Series. Addison-Wesley Longman Publishing Co., Inc., Boston, MA.

HÖLZLE, U. AND UNGAR, D. 1994. A third-generationSELF implementation: reconciling responsiveness with
performance. InProceedings of the Ninth Annual Conference on Object-oriented Programming Systems,
Language, and Applications. ACM Press, Portland, OR, 229–243.

HÖLZLE, U. AND UNGAR, D. 1996. Reconciling responsiveness with performance in pure object-oriented
languages.ACM Transactions on Programming Languages and Systems (TOPLAS) 18,4, 355–400.

K ISTLER, T. AND FRANZ, M. 1998. Computing the similarity of profiling data: Heuristics for guiding adaptive
compilation. InWorkshop on Profile and Feedback-Directed Compilation. Springer Verlag, Paris, France.

KREMER, U., HICKS, J.,AND REHG, J. M. 2000. Compiler-directed remote task execution for power manage-
ment. InWorkshop on Compilers and Operating Systems for Low Power (COLP’00). Philadelphia, PA.

KREMER, U., HICKS, J.,AND REHG, J. M. 2001. A compilation framework for power and energy management
on mobile computers. Tech. Rep. DCS-TR-446, Rutgers University.

KRINTZ, C. 2003. Coupling on-line and off-line profile information to improve program performance. InPro-
ceedings of the International Symposium on Code Generation and Optimization. IEEE Computer Society, San
Francisco, California, 69–78.

KUZNETSOV, A. 1998. IPROUTE2 utility suite howto. Available at http://www.linuxgrill.com/iproute2-toc.html.
LEE, H. B., VON DINCKLAGE , D., DIWAN , A., AND MOSS, J. E. B. 2004. Understanding the behavior of

compiler optimizations. Tech. Rep. CU-CS-972-04, University of Colorado, Dept. of Computer Science, CB
430, Boulder, CO 80309-0430. Mar.

L INDHOLM , T. AND YELLIN , F. 1996.The Java Virtual Machine Specification. Addison-Wesley, Boston, MA.
NEWSOME, M. AND WATSON, D. 2002. Proxy compilation of dynamically loaded Java classes with MoJo. In

Proceedings of the Joint Conference on Languages, Compilers and Tools for Embedded Systems. ACM Press,
Berlin, Germany, 204–212.

PALECZNY, M., V ICK , C., AND CLICK , C. 2001. The Java HotSpot(TM) server compiler. InJava Virtual
Machine Research and Technology Symposium. The Usenix Association, Monterey, CA.

PALM , J., LEE, H., DIWAN , A., AND MOSS, J. E. B. 2002. When to use a compilation service? InProceed-
ings of the Joint Conference on Languages, Compilers and Tools for Embedded Systems. ACM Press, Berlin,
Germany, 194–203.

PLEZBERT, M. P. AND CYTRON, R. K. 1997. Does ”just in time” = ”better late than never”? InProceedings of
the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM Press, Paris,
France, 120–131.

42 · Han B. Lee et al.

POOL, M. 2003. distcc, a fast free distributed compiler. Available at http://distcc.samba.org/doc/lca2004/distcc-
lca-2004.html. White Paper.

RADHAKRISHNAN , R., VIJAYKRISHNAN , N., JOHN, L. K., AND SIVASUBRAMANIAM , A. 2000. Architectural
issues in Java runtime systems. InProceedings of the 6th International Symposium on High Performance
Computer Architecture (HPCA-6). 387–398.

SAVARI , S. AND YOUNG, C. 2000. Comparing and combining profiles.2.
SIRER, E. G., GRIMM , R., GREGORY, A. J.,AND BERSHAD, B. N. 1999. Design and implementation of a dis-

tributed virtual machine for networked computers. In17th ACM Symposium on Operating System Principles
(SOSP ’99). ACM Press, Kiawah Island, SC, 202–216.

STANDARD PERFORMANCE EVALUATION CORPORATION (SPEC). 1998. SPECjvm98 benchmarks.
http://www.specbench.org/osg/jvm98.

STANDARD PERFORMANCE EVALUATION CORPORATION (SPEC). 2000. SPECjbb2000 benchmark.
http://www.specbench.org/jbb2000/.

SUGANUMA , T., YASUE, T., KAWAHITO , M., KOMATSU, H., AND NAKATANI , T. 2001. A dynamic opti-
mization framework for a Java just-in-time compiler. InProceedings of the Conference on Object-Oriented
Programming, Systems, Languages, and Applications. ACM Press, Tampa Bay, FL, USA, 180–195.

TEODORESCU, R. AND PANDEY, R. 2001. Using JIT compilation and configurable runtime systems for efficient
deployment of Java programs on ubiquitous devices. InUbiquitous Computing 2001, LNCS 2201. Springer
Verlag, Atlanta, GA, 76–95.

VOSS, M. J.AND EIGEMANN , R. 2001. High-level adaptive program optimization with ADAPT. InProceedings
of the Eighth ACM SIGPLAN Symposium on Principles and Practices of Parallel Programming. ACM Press,
Snowbird, UT, 93–102.

