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Abstract— This paper describes the support provided for
mobility and fault tolerance in Mykil, which a key distribution
protocol for large, secure group multicast. Mykil is based on a
combination of group-based hierarchy and key-based hierarchy
systems for group key management. Important advantages of
Mykil include a fast and efficient rekeying operation for large
group sizes, continuous availability of the key management
service in a disconnected network environment, an ability to
map group structure to the underlying network infrastructure,
fault tolerance, and support for member mobility and smaller
hand-held devices. Mobility support in Mykil allows mobile group
members to access a multicast service without any need for going
through an extensive registration process. Fault tolerance support
allows group members to access a multicast service despite
communication failures, network partitions, and node failures
in the network. A prototype of Mykil has been implemented.
The paper describes this implementation and reports on the
performance measured from this implementation.

I. INTRODUCTION

Multicasting is a fundamental communication paradigm
that allows an application to efficiently disseminate data to
a group of recipients. With the ever-increasing popularity
of the Internet, secure group multicast is increasingly being
used to construct applications that require one-to-many and
many-to-many communication mechanisms. Examples of such
applications include pay-per-view programs, video-on-demand
services, frequent stock quote updates, video conferencing,
discussion forums, and advertising.

Support for secure group multicast is typically built on top
of IP multicast. A secure multicast group is a multicast group
in which members register and authenticate themselves with a
designated registration authority, receive a set of cryprographic
key(s), and use these keys to encrypt the multicast data that
they send and decrypt the multicast data that they receive.
Figure 1 illustrates the steps followed when a new member
joins a multicast group. After registration, users contact a
key management server using the key(s) and other materials
obtained from the registration server. A key management
server manages a set of cryptographic keys used for various
purposes in a secure multicast group, €.g. one or more group
key(s) that is (are) used to encrypt and decrypt multicast data. It
stores these keys, updates them when certain events occur, and
distributes them to the group members using a key distribution
protocol. The process of updating the cryptographic keys, and
distributing them to the group members is called a rekeying
operation. Rekeying is required in secure multicast to ensure

that only the current group members can send encrypted
multicast data, and decrypt the received multicast data.
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Fig. 1. Secure Multicast Components.

In this paper, we focus on large multicast groups with
frequent membership changes, i.e., groups consisting of a
significantly large number of members (100,000 members
or more) with members joining or leaving quite frequently.
There are a large number of multicast applications that exhibit
these characteristics. For example, a popular pay-per-view
program can have a very large number of subscribers, or a
popular discussion forum can have a very large number of
participants at certain times. When a group is large, the cost
of key management can become prohibitively expensive. This
is because a rekeying operation requires distributing various
keys, including group key(s), to all group members. If this is
done naively, it may require O(n) messages, where n is the
number of members in the group. Furthermore, if a rekeying
operation is performed after every membership change, and if
the membership changes are frequent, key management will
require a large number of message exchanges per unit time.

We have designed and implemented a key management pro-
tocol called Mykil (Multi-Hierarchy Based key Distribution
Protocol) for managing cryptographic keys in large multi-
cast groups that exhibit frequent membership changes. Mykil
cleverly combines two different types of hierarchy schemes—
group-based hierarchy and key-based hierarchy, to provide an
efficient and scalable solution for key management in large
multicast groups. Mykil borrows several interesting ideas from
the earlier work done in the area of key management for large
group multicast, and provides a solution that is better than the
previous solutions.

In addition to addressing the scalability problem of key
management in large multicast groups, Mykil provides support
for mobile group members and fault tolerance. Mykil ensures
that group members that move from one location to another in



the network can continue to avail the multicast service and the
key management functionality without having to go through
extensive registration process. Furthermore, Mykil ensures that
the key management functionality remains available to group
members, despite communication partitions or node failures.
Overall, Mykil makes four important contributions. First,
it provides a very efficient and fast rekeying operation by
ensuring that key updates take place at only a small number of
group members during a member join or leave event. The cost
of rekeying operation is further reduced by batching member
join and leave events. Second, it is designed to support group
members that access a multicast service using small devices
such as PDAs or cell phones that have limited resources.
This is done by minimizing the memory, bandwidth, and CPU
requirements for key management at group members. Third,
Mykil is designed to support both static and mobile group
members. Finally, the key management functionality of Mykil
is robust and remains available to all group members even
when the underlying communication network partitions.

II. RELATED WORK

Assume that the cryptographic keys of a large multicast
group have been changed several times since the group was
formed, and the sequence of these successive group keys is S.
Four important cryptographic properties have been identified
for managing a group key [18]:
1) Key freshness: The group key must be new at any time.
2) Group key secrecy: It is computationally infeasible for
an adversary (non-member) to discover any of the group
keys in S.

3) (Weak) Backward secrecy: A current or a former group
member that knows a subset of keys in S cannot deduce
any of the preceding keys in S.

4) (Weak) Forward secrecy: A current or former group
member v cannot deduce any of the new group keys
after u leaves (or left) the group.

Several novel and scalable key management schemes for
large group multicast have been proposed, and some of them
have been implemented. A detailed survey of these schemes is
provided in [11], [5]. These schemes can be categorized under
two different classes: (1) group-based hierarchy schemes, and
(2) key-based hierarchy schemes.

Group-based hierarchy schemes address the scalability issue
in key management systems by organizing a multicast group
into a hierarchy of subgroups. A group member belongs to
exactly one of these subgroup. The basic idea is to distribute
the functionality of the key management service among the
subgroups, and thereby achieve decentralization and scalabil-
ity. Examples of key management systems that are based on
group-based hierarchy include [7], [17], [12], [13].

Key-based hierarchy schemes on the other hand address
the problem of scalability by organizing a tree-structured
hierarchy of cryptographic keys. This hierarchy scheme is also
known as logical key hierarchy (LKH). The root of this tree
corresponds to the group key, and the rest of the nodes of the
tree correspond to cryptographic keys (called auxiliary keys)

that are selectively used for distributing various keys to the
users. Each group member is associated with a different leaf
in this tree and needs to know all the keys in the path from
that leaf node to the root. Key management systems that are
based on this basic idea of organizing keys in a tree-structured
hierarchy include [21], [20], [3], [15], [4], [10], [23]. This
tree-structured organization of keys is maintained by the key
management server.

A rekeying operation results in changing all keys along a
path from the root to one of the leaf node where join/leave
event occurs. New keys are distributed to appropriate members
by cleverly encrypting them using the previous auxiliary
keys (See [11] for details). Scalability is achieved in key-
based hierarchy protocols by reducing the number of message
exchanges during a rekeying operation. For example, assuming
that the tree is relatively balanced, only O(log n) keys need to
be changed, where n is the total number of group members.
Furthermore, by cleverly encrypting the new keys using the old
auxiliary keys, all new keys can be communicated to respective
group members via a single multicast message.

Both group-based and key-based hierarchy protocols have
their advantages and disadvantages. Both types of protocols
provide significant scalability over a naive key distribution
protocol mentioned in Section I. Because of decentralization
of key management functionality, a protocol based on group-
based hierarchy can tolerate network partitions. A protocol
based on key-based hierarchy on the other hand cannot tolerate
network partitions. Another advantage of group-based hierar-
chy is that the actual organization of different areas can be
mapped quite well to the underlying network infrastructure.
For example, all members located with in a subnet or an
organization may belong to one area. Storage requirements
for a key management server in a group-based hierarchy is
low (one subgroup key and m pairwise secret keys, where m
is the number of members in a subgroup), while it is 271
in key-based hierarchy. So, the storage requirements for a key
key management server in a key-based hierarchy protocol can
become prohibitively high. Finally, key distribution during a
rekeying operation in a group-based hierarchy protocol relies
on a subgroup controller sending separate messages to area
members. This can result in a subgroup controller becoming
a performance and scalability bottleneck.

III. MYKIL: PROTOCOL DETAILS

The main motivation of Mykil is to combine the two
hierarchy schemes in such a way that the good features of
the two schemes are preserved and the limitations of the
two schemes are eliminated. Although such a combination
has been hinted in [12] and [11], no protocol based on this
combination has been developed so far. Mykil is the first
protocol that exploits this idea and demonstrates its usefulness
in terms of scalability and performance. Furthermore, Mykil
is specifically designed to provide support for robustness and
for members that are mobile and/or access a multicast service
via small hand-held devices. Mykil also optimizes the rekeying
operation by batching, and can save up to 40—60% key update



multicast messages. Finally, a tree structure for organizing
different areas and members with in each area is vulnerable to
node/link failures. Mykil addresses this by including a fault-
tolerance component that allows group members to move to
other areas, and area controllers to change their parent nodes.

In particular, Mykil is based on Iolus[12] and LKH[21].
It uses the idea of group-based hierarchy of Iolus to divide
a multicast group into several smaller subgroups called areas
with a designated area controller (AC) for each area. There is a
separate area key for each area. Different areas are linked with
one another to form a tree structure, with ACs providing the
links—an AC of an area A is also a member of another area
B (area B is A’s parent in the tree-structure organization). A
group member belongs to exactly one area. Like LKH, Mykil
builds a tree-structured hierarchy of cryptographic keys called
auxiliary-key tree with in each area to facilitate key distribution
to the area members. The area controller of an area maintains
the auxiliary-key tree of that areas, and each member of this
area is associated with a different leaf of this auxiliary-key
tree. Multicast data propagation in Mykil is identical to the
multicast data propagation in Iolus. A group member (sender)
first generates a random key K, and encrypts the data to be
multicast using K. It also encrypts K, using its area key.
It then multicasts the encrypted data and encrypted random
key in a single multicast message with its area. To forward
multicast data (that has been encrypted using a random key)
from area A to another area B, the AC of A first decrypts the
random key K. and encrypts it using the B’s area key. Recall
that an AC is a member of two areas, and so it knows the area
keys of two different areas. An example of the organization of
group members along with propagation of data multicast by
group member m; is shown in Figure 2.

Area 3

Fig. 2. Organization of group members in Mykil.

A. Group and Area Creation

A multicast group G is initialized by creating a root area
with a designated area controller for this area. This root area
forms the root in the tree-structured organization of the all
areas comprising G. The area controller of this root area is
also the group controller of G. In terms of functionalities, a
group controller is no different from any other area controller
of the group. Responsibilities of an area controller include:
(1) managing cryptographic keys of its area; (2) forwarding

multicast data as shown in Figure 2; (3) managing member
mobility and failures; (4) maintaining the auxiliary key tree of
its area; and (5) managing member join and leave events.

Creation of a new area in G is initiated by a designated area
controller A.. Before creating a new area, A, must obtain an
authorization information database A7 needed to determine
various keys needed for managing member mobility, and node
or communication failures. While the exact mechanism of how
this is done is out side the scope of Mykil, it is important to
note that the security of a multicast group critically depends
on this mechanism. A, chooses another area to be the parent
of its area. This choice can be based on network proximity,
administrative policy, or any other appropriate criteria. A, then
joins the chosen parent area (as a regular group member) by
contacting the area controller of the parent area as described
in the next subsection.

B. Member Join

The protocol for joining a multicast group in Mykil ensures
that only authorized entities are able to join the group. In
addition, this protocol is designed to facilitate support for
member mobility and fault tolerance. In particular, the join
protocol is comprised of seven steps as shown in Figure
3. Each of these steps are carefully designed to prevent
security attacks such as node impersonation, replay attacks, or
man-in-the middle attacks. Both public-key cryptography and
symmetric-key cryptography have been used. It is assumed
that all entities in the protocol, clients that want to join
a group, registration server, and area controllers have their
own public/private key pairs. Further, it is assumed that the
registration server and all area controllers know one another’s
public keys. Finally, it is assumed that the public key of the
registration server is well known. A challenge-response based
mechanism [19] has been used for authentication purposes,
and nonces and time stamps have been used to prevent replay
and man-in-the-middle attacks.

In the first step, a client K that wants to join a multicast
group sends a join message to the registration server. This
message is encrypted using the public key of the registration
server, and contains four pieces of information: authorization
information; client K’s public key; Noncecw; and a MAC
(message authentication code) computed over the first three
pieces of information. Authorization information is used by
the registration server to determine if K is eligible to join
the group and the length of K’s membership duration. For
example, this can contain credit card information and the time
period the client wants to stay as a member. By including
its public key, K ensures that the registration server learns
its public without any need for public key infrastructure.
Noncecw is a random number generated by K that is used
as a challenge to the registration server to authenticate itself.
Finally, MAC is used to ensure that the registration server can
verify the integrity of this message.

On receiving this message, the registration server first
decrypts the message and verifies its integrity. If verified, it
checks the authorization information of K. If K is determined



eligible to join the multicast group, the registration server
executes the second step by sending a message to K containing
the following information: Noncecw + 1; Noncewc; and
a MAC computed over the first two pieces of information.
This message is encrypted using the public key of K that the
registration server received in the first step. Noncecw + 1
is included to authenticate the registration server’s identity as
the one who knows the private key corresponding to the well-
known public key that K used to encrypt its message in the
first step. Noncew ¢ is a random number generated by the
registration server and used as a challenge to K to authenticate
itself. Finally, MAC is used to ensure that K can verify the
message integrity.

On receiving this message, K first decrypts the message
using its private key and verifies its integrity. If verified, K
authenticates the registration server by checking Noncecw +
1. If the authentication process succeeds, K executes the third
step by sending a message containing Noncewc + 1 and
a MAC computed over it. This message is encrypted using
the public key of the registration server. On receiving this
message, the registration server verifies its integrity and then
authenticates the client.

These three steps have accomplished the following: (1)
The client has authenticated the registration server; (2) The
registration server has authenticated the client; and (3) The
client has communicated the authorization information to the
registration server and the registration server has determined
the eligibility of the client to join the multicast group. Message
confidentiality is implemented by encrypting all messages us-
ing appropriate public keys. Message integrity is implemented
by including appropriate MACs. Man-in-the-middle attack
and replay attack [19] are prevented by including appropriate
nonce and implementing a challenge-response protocol.

{[auth—info]; Pub_k; Nonce_CW; MAC}_Pub_rs
Step2: RS {Nonce_CW+1; Nonce_WC; MAC}__Pub_k > Client
Step 3: Client {Nonce_WC+1; MAC}_Pub_rs = RS
Step 4: RS{Nonce_AC; K_id; ts; Pub_k; MAC}_Pub_ac; Sig_Prv o5 AC
RS {Nonce_AC+1; Pub_AC; MAC}_Pub_k; Sig_prv_rs
Step 6: Client {Nonce_AC+2; Nonce_CA; MAC}_Pub_ac
AC {Nonce_CA+1; ticket; [aux—keys]; MAC}_Pub_k
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Step 1: Client

» Client
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» Client
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Fig. 3. Join Protocol.

In the fourth step, the registration server first chooses an
appropriate area for K and sends a message to the area
controller of that area. The choice of an appropriate area can
be based on factors such as proximity to the client, load bal-
ancing, etc. This message contains the following information:
Nonceac; client K’s id; Timestamp; K’s public key; and
a MAC computed over the first four pieces of information.
This message is encrypted using the public key of the area
controller and signed using the private key of the registration
server. Nonceac is a random number generated by the
registration server that will be used later for authentication

of the client to the area controller. Timestamp is included
here to prevent a replay attack, in which an adversary that
is able to intercept messages exchanged in this step and later
in step 6, and gain access to the multicast group later on
by replaying those messages. Timestamp is used by an area
controller to catch such replayed messages. The signature
generated using the registration server’s private key is used
by the area controller to authenticate that this message indeed
originated from the registration server.

After sending the message in step 4, the registration server
executes step 5 by sending a message to the client K. This
message contains Nonceac + 1; public key and address of
the area controller; and MAC computed over the two pieces of
information. This message is encrypted using the public key of
K, and signed using the private key of the registration server.
Here Nonce ¢ is same as the one used in step 4. This will be
used by K to authenticate itself to the area controller in step
6. Once again, the signature generated using the registration
server’s private key is used by K to authenticate that this
message indeed originated from the registration server.

After receiving this message from the registration server in
step 5, K first authenticates the sender of the message to be the
registration server by verifying the signature. It then decrypts
the message using its private key and verifies its integrity.
Next, in step 6, it sends a message to the area controller.
This message contains Noncec + 2, Noncec 4, and a MAC
computed over these two numbers. This message is encrypted
using the area controller’s public key. Noncec 4 is a random
number generated by K that is used as a challenge to the area
controller to authenticate itself.

After receiving the message from the registration server
in step 4, the area controller verifies the signature of the
registration server attached to this message. It then decrypts
the message using its private key and verifies its integrity.
Similarly, on receiving the message from client K in step
6, the area controller decrypts it using its private key and
verifies its integrity. If verified, it authenticates the client
by comparing Nonceac + 2 received in this message with
Nonce g¢ received in the message from the registration server
in step 4. If all information in these two messages are verified
to be correct, the area controller adds client K in its area. It
finds a position for K in its auxiliary key tree and updates the
auxiliary keys in a similar fashion to the join protocol in LKH
[21]. The details of auxiliary key tree update are described in
Section III-C.

In step 7, the area controller sends a message to the client K
containing the following information: all auxiliary keys in the
path from K to the root of the auxiliary key tree; Nonceca +
1; a ticket; and a MAC generated over these three pieces of
information. This message is encrypted using the public key
of K. Nonceca + 1 is used by K to authenticate that this
message indeed originated from the area controller that knows
the private key corresponding to the public key used to encrypt
the message in step 6. Ticket is a cryptographic entity that is
by K to move from one area to another. Details of ticket
structure and how it is used are described in Section IV-B.



C. Auxiliary Key Tree Update

The area controller creates a new area key K and multicasts
Ek,(K,) (encryption of K, using the previous area key K,)
to all current area members. In addition, it determines an
appropriate (empty) leaf position in the auxiliary key tree of its
area to place K. Area controllers in Mykil maintain a balanced
tree structure of auxiliary keys such that each node (except
leaf) in this tree has up to four children. This is based on the
observation that a tree structure with each node having four
children provides the best overall performance [21].

If an empty leaf position is found in the current auxiliary-
key tree, K is placed at that position. However, if no empty
leaf position is present in the current auxiliary-key tree, the
following procedure is followed. First, find the shallowest, left-
most leaf node n. Let member m.. is currently associated with
this leaf. Create four new auxiliary-key nodes, nll, n21, n3’
and nd’, place them as children of n, and respectively assign
randomly generated auxiliary keys k1, k2, k3  and k4. Next
associate member m, with node nl" and K with node n2'.
Unicast the list of new auxiliary keys appropriately encrypted
to m.. An example of member join is illustrated in Figure 4.

/'m m
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i

Fig. 4. A new member m joins an area.

D. Member Leave

The member leave protocol is again similar to that in LKH,
except for one important step. Since the join operation is much
less expensive if an empty leaf is already present in the tree,
Mpykil increases the likelihood of this scenario by not pruning
the leaf after a member leaves. All keys along the path from
the node corresponding to the leaving member to the root are
changed, and the changed keys are multicast by encrypting
them using appropriate auxiliary keys. An example when
member m; decides to leave is shown in Figure 5 (shown as
a binary tree here for simplicity). In this example, keys along
the path from the root to the leaf corresponding to mq, i.e.,
K,, K», and K4 are changed to K;, K;, and K‘; respectively.
Next, the changed keys are multicast as EK; (K,), Ex,(K.,),

By (K,), and g, (Ky).
E. Batching

An important technique called barching has been proposed
[4], [22], [9], [17] to reduce the frequency of rekeying oper-
ations. The main idea of batching is to perform a rekeying
operation only after a minimum number of member join/leave
requests have been received, and/or a certain time interval has
elapsed. Mykil employs batching to reduce the overhead of
rekeying operations in three ways: (1) aggregation of join

Fig. 5. Member m; requests to leave the group.

events, (2) aggregation of leave events, and (3) aggregation
of join and leave events. The main idea is that all join and
leave events are aggregated at an area controller until a new
multicast data is received. The keys are updated just before
the multicast data is forwarded.

Assume that a new member m wishes to join an area A. To
do this, the area controller A, has to update the area key to say
K; Assume right after that another new member m' wishes
to join the same area. A, has to now update the area key to
K ;’ If no data multicast occurs between these two join events,
there is no need for A, to multicast area key K ; to the current
area members. Aggregation of join events in Mykil prevents
such needless multicast. To do so, when a new join request
from a new member m arrives at A., A. simply calculates a
new leaf position for m, records the identity of m and other
current members whose path may have changed due to this
join, and sets an update needed flag. When a new multicast
data packet arrives at A., A, checks the update needed flag. If
set, it multicasts a new area key to the current area members,
sends appropriate unicast messages to the members whose
identities were recorded, resets the update needed flag, and
then forwards the multicast data.

In similar manner, all consecutive leave events are aggre-
gated until a new multicast data packet arrives at A.. We
explain the distribution of updated auxiliary keys through an
example illustrated in Figure 6. Suppose two members ms
and mg leave the group consecutively. Rekeying operation
involving leave event of ms will update keys K,, K3, Kg,
and K5. Rekeying operation involving leave event of mg will
update keys K,, K3, K7, and K;5. Notice that keys K; and
K3 are unnecessarily updated twice here. Aggregation of leave
events avoids such unnecessary key updates. In this example,
keys K,, K3, Kg, K7, K12, and K;5 are updated only once
to K;, K:;, Ké, KI7, K;2, and K15 respectively. These keys

!

are multicast by encrypting as follows: Ex, (K,), EK; (K,),
EK(; (K3), EK; (K3), Ek,,(Kg), and Ek,, (K;). Aggregation
of leave events can save a significant amount of bandwidth,
because leave events typically occur together in several real-
world applications. For example, members cancelling their
cable memberships at the end of a month, or video-on-demand
membership at the end of a movie.

Finally, both join and leave events are aggregated in Mykil.
The procedure to do so is essentially a union of the join
aggregation and leave aggregation procedures with minor
changes. Notice that if a significantly large number of join
and/or leave events are aggregated, a subsequent rekeying
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Fig. 6. Members ms and mg leave the group.

operation can become quite complex and time consuming.
In particular, this may significantly delay the forwarding of
multicast data. To address this, Mykil performs a rekeying
operation under two conditions: (1) when a new multicast data
packet is received by an area controller and the update needed
flag is set, and (2) when a specific time interval has elapsed
since the last rekeying operation. Rekeying under the latter
condition preserves the freshness of the area key, and reduces
the complexity of rekeying operation.

Key update messages sent by an area controller after a
member join/leave must be authenticated. Otherwise, in the
absence of authentication, any area member can send a key
update message. In Mykil, each key update message is signed
using the private key of the area controller. The use of private-
key-based signature can be expensive. However, given that
batching will be used in any practical multicast service, key
update messages will not be very frequent. For authenticating
the source of a multicast data, we can use faster methods such
as those proposed in [16], [3].

IV. SUPPORT FOR MEMBER MOBILITY AND FAULT
TOLERANCE

An important contribution of Mykil is that it is designed to
provide support for mobile group members and operation in a
disconnected environment. Common failures such as network
communication partitions or intermediate node/router crashes
can result in a loss of communication between a group member
and the area controller of its area. Member mobility can result
in either a loss of communication, or degraded communication
between the member and its area controller. Finally, failure of
the area controller of an area will result in the loss of multicast
service for all group members with in that area, and perhaps
some other downstream areas.

The decentralized nature of Mykil allows operation in a
disconnected environment. As long as a member can contact
its area controller, it can continue to multicast data and receive
data multicast by another member with in the same partition
of the network. Furthermore, it can continue to receive all
rekeying messages. However, if a member loses contact with
its area controller, it can neither receive, nor send any multicast
data. Support for member mobility and fault tolerance in Mykil
is comprised of four parts:

1) When a group member detects that it can no longer
communicate with its area controller, it attempts to join
another area by contacting that area’s area controller.

2) When an area controller detects that it can no longer
communicate with one of its area member, it terminates
the membership of that member from its area.

3) When an area controller detects that it can no longer
communicate with the area controller of its parent area, it
attempts to change its parent area by contacting another
area’s area controller.

4) Finally, an area controller itself is replicated to tolerate
node failures.

A. Communication Failure: Detection

To enable group members and area controllers detect com-
munication problems, area controllers of each area multicast
alive messages with in their respective areas whenever they
encounter an idle period. An idle period occurs at an area
controller when it hasn’t multicast any message in its area in
the last T4 time units. In addition, each group member sends
an alive message to its area controller whenever it determines
that it has not sent any message to its area controller in the
last Ty ctive time units. Typically the value of Ty ctipe is much
larger than the value of Tj4.. Based on this, each member
or area controller can implement its own criteria to decide if
it has been disconnected. For example, a member can decide
that it has been disconnected from its area controller, if it has
not received any message from it in the last 5 % T;q, time
units. Similarly, an area controller can decide that one of its
area member has been disconnected, if it does not receive any
message from that member in the last 5 * T} .45 time units.

B. Member Rejoin

When a member determines that it has been disconnected
from its area controller, it attempts to join another area. This
can of course be done by contacting the registration server
and repeating the entire join process described in Section
III-B. However, there are two disadvantages in following
this procedure. First, the entire join process is extensive and
requires the client to submit authorization information. This
can be an extra burden on a client. Second, since a member is
typically granted access to a secure multicast group for a fixed
period of time, it is important to make sure that the member
is never denied access to the multicast group during this time
period, and is not allowed to access the multicast group after
this time period is over. For example, if the supported multicast
application charges the users to become group members for a
given period of time, a member that is only changing its area
should not be charged again.

Mykil uses tickets to enable a member to join a new
area without going through the extensive join process. This
procedure is similar to the one used in Kerberos [14]. Recall
that a member is given a ticket when it joins a multicast
group. A ticket works like a ski pass. Intuitively, a ski pass
has “Time of purchase”, “Validity period”, “Pass holder’s
picture/name/signature”, and a “bar code” that cannot be
tampered with. On similar lines, a ticket has the following
information embedded in it:

o Join time: The time when the member joins the group.



« Validity period: Ticket expiry time.

o ID: a unique id for the member; e.g. MAC address of the
NIC (Network Interface Card) used by the member.

« Public key: Public key of the member.

e Area controller: Area controller ID of the last area to
which the member belonged.

« MAC: Computed over all the above information.

To ensure that the contents of a ticket cannot be changed
by anyone without being detected, Mykil makes use of a
secret symmetric key Kgpqreq shared between all the area
controllers. The information contained in a ticket is encrypted
using Kgpqareq- When a member attempts to join another area,
it presents its ticket to the area controller of the new area. The
area controller verifies this ticket before granting membership
to the rejoining user. This is similar to a single ski pass that is
good for skiing in five different resorts; all ski resorts will have
the same scheme of scanning the bar code and verifying the
validity of a ski pass. Figure 7 shows the details of the rejoin
protocol that is executed when a member attempts to join a
new area B with area controller AC'g. The area controller of
the area A, which the member belonged last is AC4.

{Nonce_CB; ticket; MAC}_Pub_ac_b

Step 1: Client » AC_B
Step 2: AC_B {Nonce_CB+1; Nonce_BC; MAC}_Pub_k > Client
Step 3: Client {Nonce_BC+1; MAC}_Pub_ac_b = AC B
Step 4: AC_B {K_id; ts; MAC}_Pub_ac_a; Sig_Prv_ac_b = AC A
Step 5: AC_A {ticket; ts; MAC}_Pub_ac_b; Sig_Prv_ac_a = AC_B
Step 6: AC_B {ticket; [aux—keys]; MAC}_Pub_k; Sig Prv_ac_b » Client

Fig. 7. Rejoin protocol to join another area.

The rejoin protocol is comprised of six steps, and employs
security mechanisms similar to those used in the join protocol
(Section III-B) to address message confidentiality, message
integrity, authentication, man-in-the-middle attack, and replay
attack. In the first step, the member sends a message to ACp
containing the following information: Noncec p; Ticket; and
a MAC computed over the first two pieces of information.
This message is encrypted using the public key of AC's. On
receiving this message, ACg first decrypts the message and
verifies the integrity of the message and the validity of the
ticket. If verified, it sends a message to the member containing
Noncecp+1; Noncepc; and a MAC computed over the first
two pieces of information. This message is encrypted using
the public key of the member. Noncecp + 1 is used by the
client to authenticate ACpg, and Noncepc is a challenge to
the member to authenticate itself. In the third step, the member
authenticates itself to AC'p by sending a message containing
Noncepc + 1 and a MAC computed over Noncegc + 1 to
ACB. This message is encrypted using the public key of AC'p.

At this stage, ACg has all the information to let the member
join its area. However, there is a possibility that a malicious
client Cy may have shared its ticket and public/private key pair
with its cohort Cs, and C is attempting to join area B, even
though C7 is still a member of area A. Notice that the mutual

authentication procedure implemented in the first three steps
prevents an adversary C, who happens to steal C’s ticket
from joining the group. This is because C, does not know the
corresponding private key of C'1, and so cannot authenticate
itself (impersonate C7) in the third step.

To address the issue of malicious cohorts sharing a ticket
and and the corresponding public/private key pair, steps 4 and
5 are included in the rejoin protocol. In these steps, ACp first
contacts AC4 to ensure that the client is no longer a member
of A. Recall that the identity of area A is included in the
ticket. In step 4, ACp sends a message to AC4 containing
the following information: client’s ID; Time stamp; and a
MAC computed over the first two pieces of information. This
message is encrypted using the public key of AC4, and signed
using the private key of AC'p. Here time stamp is included to
prevent a replay attack by an adversary who happens to sniff
this message. After verifying the validity of this message and
if the client is no longer a member of A, AC 4 sends a message
to ACp containing the following information: client’s ticket;
time stamp; and a MAC computed over the first two pieces of
information. This message is encrypted using the public key
of ACp and signed using the private key of AC 4.

Finally, after receiving and verifying the validity of this
message, ACp lets the client join its area by adding it in
its auxiliary key tree, and sending a message containing the
following information: all auxiliary keys in the path from
the client’s leaf to the root of the auxiliary key tree; an
updated ticket; and a MAC computed over the two pieces of
information. This message is encrypted using the public key
of the client and signed using the private key of ACp.

Steps 4 and 5 require that the area controllers AC4 and
ACB exchange messages between each other. This may not
be possible, if there is a communication partition between
the two areas. In case ACp cannot communicate with AC 4,
there are two options: (1) ACp denies the member to join its
area; and (2) ACp allows the member to join its area without
verifying that the member has indeed left area A. The first
option is unfair to a legitimate mobile client, but prevents
misuse by malicious cohorts that share keys and tickets. The
second option on the hand allows members to avail multicast
service despite communication partitions, but is subject to the
misuse bu malicious cohorts. One way to prevent this misuse
in the second option is to verify the MAC address of the NIC
being used by the rejoining member. Recall that the MAC
address of the NIC is stored in a ticket. This will require a
member to use the same NIC when rejoining. Of course, it is
indeed possible for a malicious cohort to tamper with the NIC
address. However, doing so will be difficult, and hopefully
diminish any gains from sharing the ticket.

There is also the issue of how does a group member find
out the address and public key of a new area controller while
moving. It needs them to start the rejoin protocol. One way to
do this is to have the registration server provide a list of all
area controllers’ addresses and public keys when a member
registers with a multicast group (step 5 of join protocol).



C. Fault Tolerance: Area Controller

When an area controller determines that it can no longer
communicate with one of its area member, it unilaterally
terminates the membership of that member from its area. It
essentially executes the protocol for member leave described
in Section III-D.

When an area controller A, detects that it can no longer
communicate with the area controller of its parent area, it
attempts to change its parent area by contacting another area’s
area controller. To do so, each area controller maintains a
list of one or more preferred area controllers. A. chooses an
appropriate area controller ACp from this list, and sends a
area-join request to that area controller. This request contains
the following information: A.’s identity; Time stamp; and a
MAC computed over the first two pieces of information. This
message is encrypted using the public key of ACp, and is
signed using A.’s private key. On receiving this message,
AC'p verifies the signature and the integrity of the message.
If verified, it send an ack message to A, containing a its area
key, time stamp and a MAC. This message is encrypted using
the public key of A., and signed using the private key of ACp.

Finally, Mykil replicates an area controller to tolerate the
failure of a node on which an area controller is running.
We assume a crash failure model [6] for node failures in
our implementation. A primary-backup mechanism [1], [2] is
used to manage this replication. To minimize the performance
overhead of this primary-backup replication, only a minimal
state information is replicated. This includes the complete aux-
iliary tree, public keys of the area members, area controllers
and the registration server, and the identities of the parent
area controller and all child area controllers. Primary and
backup servers are synchronized during any key updates, and
whenever there is a change in the parent/child area controllers.

Notice that the state information about the multicast mes-
sages being exchanged is not replicated. This is done to min-
imize communication between primary and backup servers.
A consequence of this is that the area members may not
receive some multicast messages while the backup server takes
over the primary during a primary server failure. The backup
server monitors the health of the primary server by exchanging
heartbeat messages at regular time intervals.

V. IMPLEMENTATION AND PERFORMANCE

A prototype of Mykil has been implemented on a net-
work of Linux workstations. TCP has been used for com-
munication between area controllers for forwarding multicast
data. OpenSSL libraries for cryptography has been used. We
have used RSA _public_encrypt and RSA private decrypt for
encryption and decryption, and RSA_sign and RSA _verify for
digital signatures and signature verification. We used 2048 bit
RSA keys in the join protocol and 128 bit symmetric keys
for area and auxiliary keys. We evaluate Mykil with respect
to 5 criteria: storage requirements; computation requirements;
bandwidth requirements; join and rejoin protocol performance;
and feasibility on hand-held devices.

A. Storage Requirements

In addition to its own public/private key pair, each member
needs to store the public keys of its area controller and the
registration server. Given a 2048 bit RSA key, a member will
need at least 2048*4 = 8192 bits (1 KB) to store these keys.
In addition, a member may store the public keys of other
area controllers that are needed in the rejoin protocol. If there
are 10 such other area controllers, a member will need an
additional 2.5 KB of memory. Initial registration protocol is
not described in detail for Iolus or LKH. However, public keys
will definitely be needed in Iolus and LKH as well to facilitate
initial registration. Our guess is that a member will need to
store four or five public keys in these protocols, requiring
approximately 1-2 KB of memory.

In addition, a group member needs to store symmetric
keys as well. Suppose a multicast group consists of 100,000
members. In LKH, this will result in an auxiliary-key tree of
depth 16 (4 children for each node). This implies that each
member will have to store 16 auxiliary keys and a group
requiring 128*17 = 2176 bits (272 B). On the other hand a
member in Iolus will need to store 2 keys, an area key and
a pairwise secret key with area controller. Assuming that we
limit the membership size of an area to about 5000 members in
Mykil, a member in Mykil will need to store about 11 keys.
This means that a user needs 32 bytes in Iolus, 272 bytes
in LKH, 176 bytes in Mykil to store the required symmetric
keys. This shows that Iolus incurs minimum amount of storage
overhead and LKH incurs the maximum amount of overhead.
Mykil’s storage overhead per member falls in between. An
important point to note is that the memory requirements to
store cryptographic are fairly small in all three protocols.

Storage requirements to store keys at the area controllers
or key management servers are relatively high. In Mykil,
an area controller needs to store public keys of all other
area controllers and registration server, and all auxiliary keys.
Again, for a group of 100,000 members divided into 20 areas,
this requirement is about 132 KB (5 KB for 20 public keys;
127 KB for 8092 symmetric keys) in Mykil. In LKH, a
key management server will have to store approximately 2'8
auxiliary keys. This will require about 4 MB of memory. In
Iolus, a subgroup controller will need about 80 KB (5001
symmetric keys; some public keys). Thus the storage require-
ments for area controller in Mykil and subgroup controller in
Iolus are moderate, while they are significantly larger for key
management server in LKH.

B. CPU Requirements

For a join event, the computational requirements at the
joining member are similar in all three protocols. The joining
member receives the new area/group key and some auxiliary
keys. However, a join event requires existing members to do
some computation as well. In particular, group key of all
members is updated in LKH, while area key of the members
of only one area is updated in Iolus and Mykil. So, on an
average, the CPU requirements are larger in LKH compared
to Iolus or Mykil during a join event.



For a leave event, each member of one area will receive
a new area key in Iolus. For a group of 100,000 members
with maximum area size of 5000 members, S000 members
will update one key. In case of LKH, on an average, 50% of
members will need to update one key, 25% will update two
keys, 12.5% will update three keys, 6.25% will update four
keys, and so on. For a group of 100,000 members, this implies
that 50,000 members will update one key, 25,000 members
will update two keys, 12,500 members will update three keys,
6,250 members will update four keys, and so on. Finally, in
Mpykil, only the members with in one area are affected. For
an area of 5000 members, 2500 members will update one key,
1250 members will update two keys, 625 members will update
three keys, 313 members will update four keys, and so on. This
shows that Iolus incurs minimum amount of CPU overhead per
member, mykil incurs a little larger CPU overhead, and LKH
incurs significantly larger overhead.

C. Bandwidth Consumption

The bandwidth consumption per group member during a
rekeying operation depends on the length of the key update
message. For a join event, the length of key update message
that is multicast is same in all three protocols, i.e. the length
of the encrypted new group/area key. In addition, LKH and
Mykil also unicast the key path to the new member. In Mykil,
this corresponds to 16*12 = 172 bytes in an area of 5000
members. In LKH, this corresponds to 16¥17 = 272 bytes for
a group of 100,000 members.
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Fig. 8. Bandwidth consumption during a leave event.

For a leave event, the length of key update message in Iolus
depends on the area size. For an area of 5000 members and
assuming 128-bit keys, the length of this message will be about
80,000 bytes. In LKH and Mykil, the size of rekeying message
during a leave event depends on the height of the tree. In par-
ticular, an updated key corresponding to a node n is encrypted
separately by keys corresponding all children of n. Since, all
keys along the path from the root to the leaf corresponding
to the leaving member are updated, this implies a rekeying
message of 2x17x16 = 544 bytes in LKH (100,000 members
in the group), and 2 % 12 % 16 = 384 bytes in Mykil. Figure
8 shows the bandwidth requirements for the three protocols,

and Figure 9 shows in detail the bandwidth requirements in
Mykil and LKH. These graphs show clearly that both Mykil
and LKH require significantly lower bandwidth at a member
than Iolus. Bandwidth requirement in Mykil is further reduced
by aggregating consecutive join or leave events. For example,
Figure 10 shows the reduction in Mykil by aggregating ten
consecutive leave events.
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Fig. 9. Bandwidth consumption in Mykil and LKH during a leave event.
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D. Join and Rejoin Protocol Performance

As mentioned earlier, we have used OpenSSL libraries
for cryptography in our implementation. When a 2048-bit
key is used, the length of data that can be encrypted by
public key has an upper limit as 256 bytes in OpenSSL
library. At least 41 bytes are needed for the padding method
(RSA_PKCS1_OAEP_PADDING). So only 215 bytes of buffer
can be used to store data in every encryption function call. We
tried to fit our data into this 215 bytes to avoid the hassle
of breaking a big chunk of data into smaller pieces, and
reassemble them back together. In step 7 of the join protocol
or step 6 of the rejoin protocol, an area controller needs to
send a set of keys along the path from the joining member to
the root in the auxiliary tree. This turned out to be too large to
fit with in a 215 B buffer. So, in our implementation, the area
controller creates a one-time symmetric key, communicates



that key to the client by encrypting it using the public key of
the client, and then send the set of auxiliary keys by encrypting
them using the one-time symmetric key.

Average time for a member join (join protocol) was mea-
sured to be about 0.45 seconds on network of three Pen-
tium III 1.0 GHz PCs running RedHat Linux 8.0. With
RSA _blinding_on option on, which blinds the correlation be-
tween the amount of time taken for encryption/decryption and
key value, time increases by only about 0.01 seconds for each
join operation. Average time for a member rejoin (rejoin pro-
tocol) was measured to be about 0.4 seconds under the same
computing environment. While there is not much difference
in the performance of join and rejoin protocols, the rejoin
protocol does not require any participation of the registration
server, thus reducing communication and computation load on
that server. Furthermore, if steps 4 and 5 are removed from
the rejoin protocol (option 2 discussed in Section IV-B), the
rejoin time is reduced to about 0.28 seconds.

E. Hand-held Devices

An important goal of Mykil is to enable clients access a
multicast service via smaller, hand-held devices, such as PDAs
and laptops. Current state-of-the-art PDAs running Linux have
400-500 MHz CPU and 16-32 MB memory [8]. Based on our
discussion on storage requirements in Section V-A, it is clear
that the storage requirements of Mykil can easily be satisfied
by modern PDAs. To evaluate the computational feasibility
of running Mykil on such devices, we ported Mykil on a
low-end laptop (Celeron; 600 MHz; 64 MB RAM) running
Linux. We experimented with RC4 encryption algorithm to
encrypt/decrypt multicast data on it. We observed that it took
about 0.32 seconds to encrypt/decrypt a 16 MB file, i.e. data
can be encrypted or decrypted at about 50 MB/sec on this
device. This much computation power is more than adequate
for processing multimedia. For example, a 10 MB file can store
one minute of a high resolution MPEG-4 film (resolution 720
x 416; sound quality 128 KBit/s 44 KHz). It will take only
about 200 milliseconds to encrypt/decrypt this file using RC4
on a modern PDA. These preliminary experiments suggest that
there should be no problem in porting Mykil on a modern
PDA. We plan to so in the near future.

VI. CONCLUSION

We have proposed a key management protocol called Mykil
that combines two hierarchy schemes in such a way that
all important advantages of the two schemes are retained.
These include scalability, mapping to the underlying network
infrastructure, and operation in a disconnected environment.
Mykil improves on LKH by reducing the resource require-
ments for a group member, providing support for operation
in a disconnected environment, and providing an ability to
map the group organization to the underlying network infras-
tructure. Mykil improves on Iolus by reducing the bandwidth
requirements and eliminating the performance bottleneck of
area controller. In addition, Mykil provides support for smaller,
hand-held devices, user mobility, and robustness. An analysis

shows that the resource requirements for a group member in
Mykil are reasonable, and a client can avail of this protocol
via smaller, hand-held devices. We have implemented Mykil
at the application level on a network of Unix/Linux system.
Performance measurement from this implementation shows
that the performance of the two protocols (join and rejoin
protocols) that are critical in providing support for member
mobility and fault tolerance is adequate. Furthermore, we have
also provided a proof-of-concept that Mykil is appropriate for
group members using hand-held devices.
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