Extending the Siena Publish/Subscribe System

Dennis Heimbigner
CU-CS-946-03

10 January 2003

)

University of Colorado at Boulder

Technical Report CU-CS-946-2003
Department of Computer Science
Campus Box 430
University of Colorado
Boulder, Colorado 80309-0430

Extending The Siena Publish/Subscribe System

Dennis Heimbigner
(dennis.heimbigner@colorado.edu)

31 March 2003

Abstract
Siena is a form of peer-to-peer communication syskased on the publish/subscribe paradigm. Siena
messages are structured as attribute-value paiesewdttributes are simple names and the valuekénta
from a limited set of types. Currently, the setsopported types is bool (true or false), long l&4-
integer), double (128-bit floating point), and bgteing, which also subsumes the more traditiotr@hg
type. These existing, built-in types are adequatenfany kinds of applications. However, there are a
number of situations where it would be desirablesupport types that are rather more complicated tha
boolean, integers, floating-point, and strings. sTheéport describes how the existing Siena has been
extended to support user-defined types. It alsnatestrates the use of that type extension systeaaldo
several types that support complex query mechanisoth as Site-Select, Query-Advertise, and
Unification

1 Introduction

Siena is a form of peer-to-peer communication sydt@sed on the publish/subscribe paradigm.
Siena messages are structured as attribute-vailigevgzere attributes are simple names and the
value is taken from a limited set of types. Cutlserthe set of supported types is bool (true or
false), long (64-bit integer), double (128-bit flivgy point), and byte-string, which also subsumes
the more traditional string type. These existingiltbn types are adequate for many kinds of
applications. However, there are a number of sdanatwhere it would be desirable to support
types that are rather more complicated than bopleéegers, floating-point, and strings. This
report describes how the existing Siena has betaméed to support user-defined types. It also
demonstrates the use of that type extension sy&ieadd several types that support complex
guery mechanisms (Section 6).

2 Overview of Siena

Siena [1] is a form of peer-to-peer communicatigatem based on the publish/subscribe [5]
paradigm. In a publish/subscribe system, clientslipln event (or notification) messages with
highly structured content, and other clients makalable afilter (a kind of pattern) specifying a
subscription: the content of events to be received at thantliEvent message distribution is
handled by an underlyingpntent-based networking [2] network, which is a set of server nodes
interconnected into a peer-to-peer network. Theesdrbased router is responsible for sending
copies of event messages to all clients whoseditlteatch that message.

Siena messages are structured as attribute-vaitgeevidzere attributes are simple names and the
value is taken from a limited set of types. Cutlserthe set of supported typeshsol (true or

false),long (64-bit integer), double (128-bit floating poingndbyte-string, which also subsumes
the more traditionadtring type. An example message could be representdueasltowing set
of tuples.

(author, “John Steinbeck”) (title, “Grapes of Wrattedition,1)(instock,true)

A client establishes a subscription by specifyindili@r pattern that specifies the kinds of
messages it wishes to receive. A filter is a sdtiples of (attribute, operator, value). The skt o
pre-defined operators is shown in Table 1.

Except for Equals and Not-Equals, these operat@siat polymorphic in the traditional sense.
Rather, each operator requires arguments of afgpgge. Given values of other types, a pre-
defined set of conversion operators is applietbtovert the value to the required type.

In order for a message to match a filter, everyibatte in the message must satisfy all

corresponding filter triples when the message vausibstituted and the operator applied. That
is, given the message pair (x,5) and the filtetetp,>,0), the value associated with x in the pair
(namely 5) is substituted for the name x in thiefituple and the result is evaluated to eithex tru

or false. Thus in this case the evaluation istanttiple (5,>,0), which of course evaluates to
true.

The set of filter triples may be considered to digadally “and”ed together so that application of
a message to a filter requires that all substitgtievaluate to true. A logical “or” can be achieved
by specifying multiple separate filters.

It is important to note that the attribute namesdusm messages and filters have no inherent
semantic meaning. As with all such attribute-basgdtems, there must be some external
agreement about their meaning, and all parties aulstre to that agreement.

Siena adopts a peer-to-peer architecture whergampSiena servers connect to form a specific

topology. In the simplest case, a client connexta server and establishes a subscription. The
server then forwards the subscription filter to afl its peers. Each peer notes where the
subscription came from, and forwards it to its peeater, when some other client connects to a
server and generates an event message, the lggabtthe filter can be applied at that server to

determine the next server to whom the message ati@uforwarded. Note that if a message is

generated for which no filter

Table 1. Pre-Defined Operators in Standard Siena matches at the local server, then it
will not be forwarded at all and so
Operator Argument Type will generate no inter-server
Equals (=) bool, long, double, byte-string| traffic. This kind ofcontent-based
Not-Equals (I=) bool, long, double, byte-string| routing is analogous to IP routing
Less-Than (<) |ong in the Internet, but instead of
Greater-Than (>) long specific IP addresses, the content
Greater-Equals (>=) long of messages of determines the
Less-Equals (<= long destination (or destinations) for the
Prefix (>*) byte-string message.
Suffix (*<) byte-string 3 The CoversRelation
Contains (*) byte-string
Any (any) N.A. In order to wunderstand the
complexities of adding types to

Siena, it is important to understand Gevers relation. Siena is specifically designed to scale
well to wide-area networks. One important way tBisichieved is by utilizing an optimization
that can reduce the number of filters that a giserver must maintain. Key to this optimization
is theCovers relation over filters. At a given server, for amyo filters, F1 and F2, say, it can be
determined if (F1 Covers F2) or (F2 Covers Flyather. The relation (F1 Covers F2) holds if
any message that matches F2 also matches F1; mbres general than F2 in that the set of
matching messages is larger than the set of messaafehing F2.

Since a filter is composed of triples of the fomn @p, a), F1 covers F2 if every matching triple
satisfies the Covers relation in the following sns

1. O triples t2=(x2,0p2,b)1 F2 (Otriple t1=(x1,0pl,a)00 F1 s.t. x2 = x1) (i.e., every attribute
name that occurs in F2 also occurs in F1

2. O (x,0pl,a)dF1 & (x,0p2,b)J0 F2 (z (z,0p2,b) = true> (z,0pl,a) = true) (i.e., the set of
values satisfying a triple from F2 is a subsethsd tet of values satisfying any similarly
names triple from F1).

Using this relationship, a forest of partial ordexes can be constructed over all filters. Siena
servers need only propagate the filters that atbeatoot of each Covers ordering. As we shall
see, support for the Covers relation will be anantgnt issue when adding new types to Siena.

4 Requirementsfor an Extended Type

To be precise, adding a type to Siena using thehamésm in this paper is really a matter of
adding new operators to the Siena run-time systém;set of visible types in Siena is left
unchanged.

These operators expect that their arguments aaeceftain type. In the examples described in
Section 7, the operators assume that their argisn@ve been serialized into the form of byte-
strings, and these operators convert their argusrertyte-strings and then de-serialize the byte-
string to construct an instance of the actual typevhich they operate.

With this in mind, specifying a type requires theeaification of a set of operators that can be
used in filters. Each operator must specify thifing items.

Name — the printable representation of the operafine bit-set type in Section 7.1, for
example, defines the operators “set<=", “set>= &et~" (set intersection).

Index — a unique integer for use in the Siena riate when the operator is specified by
integer value rather than by its name; this inteégectually assigned by Siena.

Apply function — when a filter is matched againstadification message, it must be possible
to evaluate each triple of the form (name, operatmue) for specific values taken from the
notification message. Thus, each operator must havassociated function to evaluate the
operator when given two argument values.

Covers function — this function takes two filteiptes t1=(x,op1,a) and t2=(x,op2,b), for
example, and returns true if t1 Covers t2 as ddfineéSection 3. It is important to note that
this operation is purely an optimization and th&n& would work correctly without it,
albeit not as efficiently as with it. Constructitigys function can be challenging for non-
transitive operators. This will be discussed fertim Section 7.

package siena;

public interface ExtendedOp
{
public String getName();
public int getindex();
public void setindex(int index);
public ExtendedType getType();
public boolean apply_operator(AttributeValue x, AttributeValue y);
public boolean covers(AttributeConstraint af1,A ttributeConstraint af2);

Figure 2. ExtendedOp.java Interface.

5 Adding Type Extensionsto Siena

The process for adding a new type to Siena isivelgtsimple. Basically, you need to define a
Java class$etType, for example that implements tBstendedType interface shown in Figure 1.
To simplify this, an abstract super type calfdstractExtendedType is defined that handles most
of the details. Associated with the type objectl wé one or more classes that implement the
ExtendedOp interface (Figure 2). Again, the claabstractExtendedOp can simplify that process.
This interface defines the requirements listechenfirevious section.

Once the type and operator objects are defined, ithis possible to insert them into Siena by
creating an instance of the type class (eSgtType) and passing it to the static method
siena.Extension.addtype().

The details of SetType are described in Section Agpendix 9 shows the actual code for
SetType. More details can be seen by examining the notdinel subscriber examples in the tests
cases provided with the type extension code.

6 Applications of an Extended Siena Type System

Two specific examples that could benefit from aiddidl types are Site-Select Addressing [4]
and Query-Advertise [3]. The nature of these twgliaption is described in the following
subsections. The specific example types describe8eiction 7 relate back to these example
applications.

6.1 Site-Select Addressing

Site-Select addressing is an approach to usingaSiercarry out intensional (content-based)
command against a dynamically changing set of targEach potential target exports a

package siena;

public interface ExtendedType

{
public String getName(); // typename

public boolean define(); // insert type's opera tors into Siena
public ExtendedOp[] getOperators(); // return s et of operators
/I associat ed with type

Figure 1. ExtendedType.java Interface.

subscription in the form of a bit-set describing ¢haracteristics. Commands are published that
include a bit-set describing the characteristicdanfjets for whom the command is intended.

Standard Siena does not support this efficientlgabee it does not have the proper bit-set
operators defined. The Set Type in Section 7.] lvawever, efficiently support Site-Select.

6.2 Query-Advertise

In our prior Query-Advertise work, the goal waspablish queries and have them efficiently
directed to subscribing sites that had the potemtigprovide data that satisfied the published
query. One way to do this required that it be fidsgo determine if two queries, q1 and g2,
potentially had a common solution. That is, g1 wasibscription by a provider of information,
where g1l “described” the data it could provideg2fintersected g1, then it made sense to direct
g2 to the gl site because there was a reasonatibalplity that the gl site could provide an
answer satisfying g2. The problem then became érdefining queries such that this kind of
intersection could be computed. Again, standardhé&ieannot provide this, but both the
Unification operations (Section 7.2) and the Hitersection operation (Section 7.3) can be
used for this purpose.

7 Example Type Extensions
7.1 Bit-Set Type

The bit-set (or justset) treats the Siena byte-string type as represeratisgt of bits. The type
provides three operators over these sets. Weusdlthe notation b[i] to indicate the i'th bit of
the set. The three operators are as follows.

1. Set-Less-Equal — Given two sets S and T, $ §et ([i (S[i] = TIi])); in other words, every
bit that is set in S is also set in T. Of couepay have additional bits set.

2. Set-Greater-Equal — Given two sets S and T, S Bet (i (T[i] = SJi])); in other words,
every bit thatis setin T is also setin S. S maye additional bits set.

3. Set-Intersection — Given two sets S and T, S seif~(T (T[i] & SJ[i])); in other words, at
least one bit is set in the same position in STand

For these operators, the Apply function is strdmiatard. Figure 3 shows the Java code for this
function (referred to in that code as “apply_oparatfor the set operator. The computation
converts each argument to a byte-string and thempaces each string byte-by-byte. If the two
strings are different length, then one of two tlsilgppens. If the argument 2 is shorter, then it
is extended with zero bytes for comparison purpodesgument 1 is shorter, then argument 2
(the potentially larger set) is truncated becaus#dmg argument 1 (the potentially smaller set)
with zeros will never change the result computedttun truncated value. The apply_operator
functions for the setand set~ operators are similar and are not inclheéeel

boolean apply operator(AttributeValue n,
AttributeValue f)
{return setLessEqual(n,f);}

boolean setLessEqual(AttributeValue n,
AttributeValue f)
{

byte[] na = toBytes(n);
byte[] fa = toBytes(f);
// Need to worry about different length byte ar rays.
// Basically, we will zero extend, which means
/I (if you analyze) that we only need to worry
[/l about the filter value;
I/l extending the notify value by zeros
/I will not affect the result (because (0 set<= X)
Il is always true).
int In = na.length;
int If = fa.length;
boolean match = true;
Il check that for all i: n[i] & f[i] == n[i]
for(int i=0;i<In;i++) {
byte bn = nali;
byte bf = (i<If?fa[i]:0);
if((bn & bf) I= bn) {match = false; break;}
}
return match;
}
Figure 3. Bit-Set Apply Function

boolean covers(AttributeConstraint afl,
AttributeConstraint af2)
{

boolean covers = false; //default

if(afl.op == index && (af2.op == index || af2.0 p == Op.EQ)) {
covers = setLessEqual(af2.value,afl.value);

} else if(afl.op == Op.NE && af2.0p == index) {
covers = ! setLessEqual(afl.value,af2.value);

}

return covers;

Figure 4. Bit-Set Covers Function

Computing the Covers relationship is also stramiwtbrd for the set and set operators
because they are transitive. Recall from Sectioth& we apply the covers relationship on a
per-triple basis. Simplifying somewhat, this regsidetermining if the following holds.

Oz (z,se£,b) = true= (z,sek,a) = true
Note that this is true if the following holds.
(b sek a) = true
This is basically because theseperator is transitive.

Each operator is required to implementoaers() function that is given two triples and returns
true if the first triple covers the second, andimes false if the first does not cover the secand,
equally important, it cannot determine if the ficsivers the second. Figure 2 shows the code for
the covers relationship for the sedperator. Note that actually, the function is goten two
triples, but rather only the last two elements atte triple since the attribute name part is
assumed to be the same and its specific valueelewant. This pair, (op,value), is represented
by the clas#ttributeConstraint in Siena.

The code in Figure 4 implements the covers ralatoy the set operator. It assumes that the
operator used in each AttributeConstraint argunienhe set operator or conforms to one of
two special cases. There is no guarantee thattbelyset operator will be used with a given
attribute name. In fact, any other operator ccadused. It turns out that the two following
special cases can be handled.

(b, sex, a) =true = (X, sek, a) Covers (X, =, b)
(b, sek ,a) = false= (X, !=, a) Covers (X, sst b)

However, aside from the equals and not-equals tgeradetermining the covers relationship
may be impossible in general for thessebperator, hence the code returns false in akeho
cases.

Computing the Covers relation for the=efperator proceeds in a similar fashion as witk.set
Since it too is transitive, we can show the follogi

(b,sek,a) =true= (x,set,a) Covers (x,setb)

Computing the Covers relation for set intersectiset~) is more difficult because it is not a
transitive operator; that is, given that (x set-agjl (y set~ z) are both true, we cannot infer that
(x set~ z). The key is to find some other relatigp&giperation R such that

b R a= (x,set~,a) Covers (x,set~,b)
Note that this inference need not be “perfect'hia $ense that we do not require that
(x,set~,a) Covers (x,set~B) b R a

Remember that this is an optimization, and so faibo determine all instances of Covers will
only lead to inefficiency, not failure.

It turns out that the setoperator can be used as our R in the above equatiother words,
b sek a = (x,set~,a) Covers (x,set~,b)

The reason for this should be clear. If (k=s&} is true, then it means that a has at leastdahee
set of bits set as are set in b, and possibly mdreus, any value that intersects b will also
intersect a, and hence the set of values thafisat{x,set~,b) is a subset of the values thatfgatis
(x,set~,a), and hence

(x,set~,a) Covers (x,set~,b)

This method of inferring the Covers relation froome related transitive operator sein this
case) is quite general, and will be used in thesesgbent examples where non-transitive
operators exist.

7.2 Unification and the Expression Type

The second type extension example involves a @tifin operation over functional expression
with variables. This is patterned after PROLOG espions and unification.

Figure 5 gives a YACC-style grammg

. . unifyexpr : constant | unifyterm ;
for expressions. Expressions take t yexp | unify

usual form of a nested tree of tern
(n-ary functions) with constants @
variables or 0-ary functions as the leaV
of the nested expression tree.

The Unification operation (unifies) take
two expressions and returns true if the
is some assignment of values to t
variables such that the two expressid
can be made to match when the vall
are substituted for the variables in ea
expression. Multiple occurrences of th
same variable in an expression must
assigned the same value. Variah
names are local to the expression, th
“ X" in one expression need not hay
the same assignment as “ X" in tf

other expression.

unifyterm : ID | ID '(" arguments)" ;

arguments : argument | argument ', arguments ;
argument : unifyterm | constant ;

constant : NUMBER | STRING | VARIABLE ;
Lexical Tokens:

ID : any string of characters not containing)t(’,,", "
and not beginning with a digit or undersc(rg.

VARIABLE: underscore followed by an ID.

NUMBER: sequence of decimal digits possibly
preceded by '+' or '-'.

STRING : any sequence of characters enclosed in
double quotes (""). Occurrenctthe
double quote or backslash ¢\thie string
are represented as '\"' oré8pectively.

Figure 5. Unification Expression Grammar.

Table 2. Examples of Unification
Expression 1 Expression 2 Unifiable? Variable Assignt
f(a(y.5) fla(LX,_Y)) true _X=y
_Y=5
X Y true XY
_Y=X
a(_X,b(c(X))) | a(g(*h).b(c(g(LY))))| true _X=g(*h")
_Y=*h"
a(_ X, X) a(f,g) false

Table 2 shows some examples of unification. Whenuthification is possible (unifies() returns
true), then the third column shows the associassiyaments of values to variables.

Adding the unification operation to Siena requipesviding some form of representation for the

expressions. The “external” representation washenform of an expression tree whose nodes
were instances of a general UnifyTerm object classrder to insert such expression trees into a
Siena Filter or notification message, a serialaratfunction was provided that converted an

expression tree into an instance of the standaaSiyte-string by doing a pre-order walk of the

expression. Similarly, a de-serialization functieas provided.

Figure 6 shows the code for the apply_operatortfandor the unifies operator. It operates by
first converting its two arguments to Strings ahdn using the de-serialization function (i.e.,
decode()), to produce an expression tree for aaghment. It then attempts to unify the two
trees and returns the boolean result. It is wodting that this procedure is not fast, so theme is
definite cost to using unification in a Siena filte

As with the set intersection operator (set~), @sifis not a transitive operation, and so
computation of the covers relation is not simpls. With the set~ operator, the approach is to
find a related transitive operation that can balusecompute the covers relation.

The transitive operator used her@me-way unification. One-way unification is a special fooh
the general unification operation that

boolean apply_operator(Attri buteValue n, succeeds under the following
{ AttributeValue f) conditions.
gtring S]p =fn-stringV?IU(e)(); 1. E1 unifies E2 is true for
tring sf = f.stringValue(); ;
UnifyExpr un = new UnifyExpr(); expressions E1 and E2.
if('un.decode(sn)) return false; 2. The unification of E1 and E2 only
UnifyExpr uf = new UnifyExpr(); assigns values to the variables in
if('uf.decode(sf)) return false; E1 h E2’ iabl
boolean match = Unifier.unify(un,uf); , except .t at S Vvariables
return match: may be assigned the value of a
} variable in E1. This last point is
Figure 6. Unification Apply Function referred to as variable

equivalencing and is show in row

2 of Table 2.

In effect, if one-way unification succeeds, thenig€l
“more general” than E2. Figure 7 indicates how one-
way unification operates and why it is transitive.
One-way unification of A and B effectively overlays
A on top of B starting at the root of each. Thing t
leaves of A form a frontier on B such that the
variables in B are either below the frontier ortba
frontier in the case of equivalencing. SimilarlfyBi
one-way-unfies (a.k.a. unifiesl) C, then C
variables are below B’s frontier. Obviously, that
also means that C’s variables are below A’s frantie
hence we can see that

(A unifies1 B)[J (B unifies1 C)= (A unifiesl C)

which means that unifies 1 is transitive.

Expression B

Expression C

Figure 7. Unifyl Overlays.

The unifies1 operator can be used as our transifpeeator from whom we can compute a subset
of the Covers relation; that is, the followingligé.

(a unifiesl b)= (x,unifies,a) Covers (x,unifies,b) (1)

The reason for this is that if x unifies with bethit will unify with a because a is “more general’

than b (because (a unfiesl b)). Note that equdtiponly allows the computation of a subset of
Covers because there may be special cases whefgotlees relation holds, but (a unifiesl b)

does not hold. But since Covers is an optimizatibis, is acceptable, and it just means that filter
covering will not always operate as efficientlypassible.

7.3 Filtersasan Extended Type

The third example of adding an extended type to&iavolves adding Siena Filters as the types
with filter intersection as the operation. Thediilintersection operation will be designated using
“&&”. This particular example can be confusing basa it seems somewhat recursive.

The basic idea is that we want a filter triple (&,8 to match a notification message pair (x,q) if
(g intersects f), where f and g are instances eh&filters. Two filters are defined to intersict
the following is true.

Om (f(m) = true)l g(m) = true)
In other words, two filters intersect if there @ possible message that matches both filters.

Two filters F1 and F2 intersect if their triplesnche shown to intersect. This requires the
following condition is satisfied.

0 (x,0pl,a)d F1 and (x,op2,b)] F2 (Oz (z,0p2,b) =true and (z,opl,a) = true)

Note that we do not require every attribute nhamene filter to occur in the other. This is
because a missing attribute name is equivalenheotriple (y,any,) and so the following is
trivially true.

O (y,opl,a)d F1 and (y,any, [l F2 (dz (z,0p2,b) = true and (z,any,_) = true)

10

Thus, our apply function essentially must enumetrgdées and for each pair of triples (one from

each filter), it must examine the combinations pémtions and determine if there is a potential
common solution. Figures 8a and 8b (following pagesow the code for the core of the

intersection computation. It takes two Attribute@amt objects and determines if they can
intersect or not.

8 Summary

We have shown how to extend the Siena run-timeesystith new types (really new operators).
We have also shown examples of extended typesathagspecially relevant to the problem of
using Siena to perform distributed query as reprteseby Site-Select and Query-Advertise.

11

boolean constraintintersect(AttributeConstraint c1,

{

AttributeConstraint c2)

I/l Special case the situation when cl.op == Op. any or c2.op == Op.any
if(cl.op == Op.ANY || c2.0p == Op.ANY) return t rue;
/I Special case the situation when c1.op == c2. op
if(cl.op == c2.0p) {
switch (c1.op) { // following cases always true
I/ because of transitivity
case Op.LT: // x<a && y<b == true (e.g. any X <= min(a,b))
case Op.GT: // x>a && y>b if a>b
case Op.GE: /] x>=a && y>=b == true
case Op.LE: // x<=a && y<=b == true
case Op.NE: // x!=a && y'=b == true
return true;
default: break; // need to look more closel y
}
I/ Canonicalize the order since intersection is commutative
/I Assume the ordering in Op.java
if(cl.op > c2.op) {AttributeConstraint ¢ = c1; cl=c2;c2=c;}

switch (cl.op) {
case Op.EQ: //x=a&&yopbifaopb
return Covering.apply_operator(c2.op,cl.val ue,c2.value);
case Op.LT: switch (c2.0p) {
case Op.GT: // x<a && y>b if b<a
case Op.GE: // x<a && y>=b if b<a
case Op.PF: // x<a && y prefix b if b<a
case Op.SF: // x<a && y suffix b if b<a
case Op.SS: /l x<a && y contains b if b<a
return Covering.apply_operator(cl.op,c2 .value,cl.value);
case Op.LE: // x<a && y<=b == true
case Op.NE: // x<a && y!=b == true
return true;
default: return false;

case Op.GT: switch (c2.op) {
case Op.LE: // x>a && y<=h if b>a
case Op.PF: // x>a && y prefix b if b>a
case Op.SF: // x>a && y suffix b if b>a
case Op.SS: // x>a && y contains b if b>a
return Covering.apply_operator(cl.op,c2 .value,cl.value);
case Op.GE: // x>a && y>=b == true
case Op.NE: // x>a && y!=b == true
return true
default: return false;

Figure 8a. Filter Intersection Function

12

case Op.GE: switch (c2.0p) {

case Op.LE: // x>=a && y<=b if b>=a
case Op.PF: // x>=a && y prefix b if b>=a
case Op.SF: // x>=a && y suffix b if b>=a
case Op.SS: /I x>=a && y contains b if b>=a

return Covering.apply_operator(cl.0
case Op.NE: // x>=a && y!=b == true

return true;

default: return false;

case Op.LE: switch (c2.0p) {
case Op.PF: // x<=a && y prefix b if b<=a
case Op.SF: // x<=a && y suffix b if b<=a
case Op.SS: / x<=a && y contains b if b<=a
return Covering.apply_operator(cl.op,c2
case Op.NE: // x<=a && y!=b == true
return true;
default: return false;
}
case Op.PF: switch (c2.o0p) {
case Op.PF: // x prefix a && y prefix b if
return Covering.apply_operator(cl.op,cl
| Covering.apply_operator(cl.op,c2
case Op.SF: // x prefix a && y suffix b ==
case Op.SS: /I x prefix a && y contains b =
case Op.NE: // x prefix a && y'=b == true
return true;
default: return false;

}
case Op.SF: switch (c2.o0p) {
case Op.SF: // x suffix a && y suffix b if
return Covering.apply_operator(cl.op,cl
| Covering.apply_operator(cl.op,c2
case Op.SS: /I x suffix a && y contains b =
case Op.NE: // x suffix a && y'=b == true
return true;
default: return false;

case Op.SS: switch (c2.op) {
case Op.SS: /I x contains a && y contains b
case Op.NE: // x contains a && y!=b == true
return true;
default: return false;

default: return false;

}

p,c2.value,cl.value);

.value,cl.value);

a prefix b | b prefix a
.value,c2.value)
.value,cl.value);

true (i.e. a concat b)
= true (i.e. a concat b)

a suffix b | b suffix a
.value,c2.value)
.value,cl.value);

= true (i.e. b concat a)

== true

Figure 8b. Filter Intersection Function

9 Appendix. SetTypejava (and SetL essThan.java)

package sienatypes;
import siena.*;
import java.io.ByteArrayOutputStream;
import java.io.ObjectOutputStream;
public class SetType extends AbstractExtendedType
static final int operatorcount = 3;
public SetType()
{
super("Set",operatorcount);
operators[0] = new SetLessEqual();

operators[1] = new SetGreaterEqual();
operators[2] = new SetIntersect();

}

}

class SetLessEqual extends AbstractExtendedOp

{ public SetLessEqual() {super('set<=");}
// During matches, n is from the naotification, f from the filter
public boolean apply_operator(AttributeValue n, AttributeValue f)

byte[] na = toBytes(n);
byte[] fa = toBytes(f);
int In = na.length;
int If = fa.length;
boolean match = true;
Il check that for all i: n[i] & f[i] == n[i]
for(int i=0;i<In;i++) {
byte bn = nali;
byte bf = (i<If?fa[i]:0);
if((bn & bf) I= bn) {match = false; break;}

}
return match;
}
public boolean covers(AttributeConstraint afl, AttributeConstraint af2)
{
boolean covers = false; //default
if(afl.op == index && (af2.0p == index || a f2.0p == Op.EQ)) {
covers = setLessEqual(af2.value,afl.val ue);
} else if(afl.op == Op.NE && af2.op == inde x) {
covers = | setLessEqual(afl.value,af2.v alue);
}
return covers;
}

Figure 9. SetType and SetLessEqual

14

10 Appendix. ExtendedStartServer.java

The final component added to Siena to support eentypes is a replacement for the
StartServer component. StartServer contains a jpand is used to start up a standalone Siena
router. It takes a variety of arguments as desdrdtehis URL.

http://www.cs.colorado.edu/~carzanig/siena

The replacement component is called ExtendedStadgGeand can be used as a drop-in
replacement for StartServer. The primary changdxtendedStartServer is to add a new
parameter called “-extension”. An example commasoh@l ExtendedStartServer is shown in
Figure 10. The first command establishes the CLASIS®, which tells java where to look for
specific classes. Note that the first file in theASSPATH is “extension.jar”, which contains the
extension code, including modified versions of s@tamdard Siena classes. It is important that
the extension.jar file appear before the Siendil@ar (siena-1.4.3.jar, in this case) so that the
modified Siena classes will come from the extengofile.

The second command line uses the “-extension” petemto establish the set of new types that
are to be loaded into the server. The argumenhit garameter (“sienatypes.SetType”, for

example) gives the class name for the class tHatedethe type. There is nothing special about
the “sienatypes” prefix, and the class name cow@dabything. During startup of the server,

reflection is used to find and load the specifiedersion classes. Thus, whatever they are
named, these classes must be accessible througladisepath.

The third command starts the ExtendedServer, arkastly the same as starting the normal
Siena StartServer, except that it includes thenskd@ parameters.

CLASSPATH=extension.jar:siena-1.4.3.jar
EXTENSIONS=-extension sienatypes.SetType —extension sienatypes.UnifyType

Java —cp “$CLASSPATH” siena.ExtendedStartServer —po rt 2001 $EXTENSIONS

Figure 10. Using the ExtendedStartServer

15

11 References

[1]

[2]

[3]

[4]
[5]

Antonio Carzaniga, David S. Rosenblum, and Alexaihdé/olf. “Design and Evaluation
of a Wide-Area Event Notification Service”. ACM Tsactions on Computer Systems.
10(3): 332-383 (Aug. 2001).

Antonio Carzaniga and Alexander L. Wolf. “Contematsbd Networking: A New
Communication Infrastructure”. NSF Workshop on mafmdstructure for Mobile and
Wireless Systems. Oct. 2001. Scottsdale, AZ.

Dennis Heimbigner. “Adapting Publish/Subscribe Maldare to Achieve Gnutella-like
Functionality”. 2001 ACM Symposium on Applied Contimig (SAC 2001): Special Track
on Coordination Models, Languages and Applicatipps.176-181, 11-14 March 2001,
Las Vegas, NV.

Jonathan Hill. “Site-Select Messaging for DistrigditSystems”. University of Virginia
Department of Computer Science Technical ReporR@®2-06, April 1, 2002.

Steven P. Reiss. “Connecting Tools Using Messagsiigin the Field Environment”.
IEEE Software, July 1990, pp. 57-67.

16

