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Abstract 

Siena is a form of peer-to-peer communication system based on the publish/subscribe paradigm. Siena 
messages are structured as attribute-value pairs where attributes are simple names and the value is taken 
from a limited set of types.  Currently, the set of supported types is bool (true or false), long (64-bit 
integer), double (128-bit floating point), and byte-string, which also subsumes the more traditional string 
type. These existing, built-in types are adequate for many kinds of applications. However, there are a 
number of situations where it would be desirable to support types that are rather more complicated than 
boolean, integers, floating-point, and strings. This report describes how the existing Siena has been 
extended to support user-defined types.  It also demonstrates the use of that type extension system to add 
several types that support complex query mechanisms such as Site-Select, Query-Advertise, and 
Unification 

 

1 Introduction 
Siena is a form of peer-to-peer communication system based on the publish/subscribe paradigm. 
Siena messages are structured as attribute-value pairs where attributes are simple names and the 
value is taken from a limited set of types.  Currently, the set of supported types is bool (true or 
false), long (64-bit integer), double (128-bit floating point), and byte-string, which also subsumes 
the more traditional string type. These existing, built-in types are adequate for many kinds of 
applications. However, there are a number of situations where it would be desirable to support 
types that are rather more complicated than boolean, integers, floating-point, and strings. This 
report describes how the existing Siena has been extended to support user-defined types.  It also 
demonstrates the use of that type extension system to add several types that support complex 
query mechanisms (Section 6). 

2 Overview of Siena 
Siena [1] is a form of peer-to-peer communication system based on the publish/subscribe [5] 
paradigm. In a publish/subscribe system, clients publish event (or notification) messages with 
highly structured content, and other clients make available a filter (a kind of pattern) specifying a 
subscription: the content of events to be received at that client. Event message distribution is 
handled by an underlying content-based networking [2] network, which is a set of server nodes 
interconnected into a peer-to-peer network. The content-based router is responsible for sending 
copies of event messages to all clients whose filters match that message. 

Siena messages are structured as attribute-value pairs where attributes are simple names and the 
value is taken from a limited set of types.  Currently, the set of supported types is bool (true or 
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false), long (64-bit integer), double (128-bit floating point), and byte-string, which also subsumes 
the more traditional string type. An example message could be represented as the following set 
of tuples. 

(author, “John Steinbeck”) (title, “Grapes of Wrath”) (edition,1)(instock,true) 

A client establishes a subscription by specifying a filter pattern that specifies the kinds of 
messages it wishes to receive. A filter is a set of triples of (attribute, operator, value). The set of 
pre-defined operators is shown in Table 1. 

Except for Equals and Not-Equals, these operators are not polymorphic in the traditional sense. 
Rather, each operator requires arguments of a specific type.  Given values of other types, a pre-
defined set of conversion operators is applied to convert the value to the required type. 

In order for a message to match a filter, every attribute in the message must satisfy all 
corresponding filter triples when the message value is substituted and the operator applied. That 
is, given the message pair (x,5) and the filter tuple (x,>,0), the value associated with x in the pair 
(namely 5) is substituted for the name x in the filter tuple and the result is evaluated to either true 
or false.  Thus in this case the evaluation is on the triple (5,>,0), which of course evaluates to 
true. 

The set of filter triples may be considered to be logically “and”ed together so that application of 
a message to a filter requires that all substitutions evaluate to true. A logical “or” can be achieved 
by specifying multiple separate filters. 

It is important to note that the attribute names used in messages and filters have no inherent 
semantic meaning. As with all such attribute-based systems, there must be some external 
agreement about their meaning, and all parties must adhere to that agreement. 

Siena adopts a peer-to-peer architecture where arbitrary Siena servers connect to form a specific 
topology. In the simplest case, a client connects to a server and establishes a subscription. The 
server then forwards the subscription filter to all of its peers. Each peer notes where the 
subscription came from, and forwards it to its peers. Later, when some other client connects to a 
server and generates an event message, the local copy of the filter can be applied at that server to 
determine the next server to whom the message should be forwarded. Note that if a message is 

generated for which no filter 
matches at the local server, then it 
will not be forwarded at all and so 
will generate no inter-server 
traffic. This kind of content-based 
routing is analogous to IP routing 
in the Internet, but instead of 
specific IP addresses, the content 
of messages of determines the 
destination (or destinations) for the 
message. 

3 The Covers Relation 
In order to understand the 
complexities of adding types to 

Table 1. Pre-Defined Operators in Standard Siena 
 

Operator Argument Type 
Equals (=) bool, long, double, byte-string 
Not-Equals (!=) bool, long, double, byte-string 
Less-Than (<) long 
Greater-Than (>) long 
Greater-Equals (>=) long 
Less-Equals (<= long 
Prefix (>*) byte-string 
Suffix (*<) byte-string 
Contains (*) byte-string 
Any (any) N.A. 
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Siena, it is important to understand the Covers relation. Siena is specifically designed to scale 
well to wide-area networks. One important way this is achieved is by utilizing an optimization 
that can reduce the number of filters that a given server must maintain. Key to this optimization 
is the Covers relation over filters. At a given server, for any two filters, F1 and F2, say, it can be 
determined if (F1 Covers F2) or (F2 Covers F1), or neither. The relation (F1 Covers F2) holds if 
any message that matches F2 also matches F1; F1 is more general than F2 in that the set of 
matching messages is larger than the set of messages matching F2. 

Since a filter is composed of triples of the form (x, op, a), F1 covers F2 if every matching triple 
satisfies the Covers relation in the following sense. 

1. ∀ triples t2=(x2,op2,b) ∈ F2 (∃ triple t1=(x1,op1,a)  ∈ F1 s.t. x2 = x1) (i.e., every attribute 
name that occurs in F2 also occurs in F1 

2. ∀ (x,op1,a) ∈ F1 & (x,op2,b) ∈ F2 (∀ z  (z,op2,b) = true ⇒ (z,op1,a) = true) (i.e., the set of 
values satisfying a triple from F2 is a subset of the set of values satisfying any similarly 
names triple from F1). 

Using this relationship, a forest of partial order trees can be constructed over all filters. Siena 
servers need only propagate the filters that are at the root of each Covers ordering. As we shall 
see, support for the Covers relation will be an important issue when adding new types to Siena. 

4 Requirements for an Extended Type 
To be precise, adding a type to Siena using the mechanism in this paper is really a matter of 
adding new operators to the Siena run-time system; the set of visible types in Siena is left 
unchanged. 

These operators expect that their arguments are of a certain type.  In the examples described in 
Section 7,  the operators assume that their arguments have been serialized into the form of byte-
strings, and these operators convert their arguments to byte-strings and then de-serialize the byte-
string to construct an instance of the actual type on which they operate. 

With this in mind, specifying a type requires the specification of a set of operators that can be 
used in filters. Each operator must specify the following items. 

• Name – the printable representation of the operator.  The bit-set type in Section 7.1, for 
example, defines the operators “set<=”, “set>=”, and “set~” (set intersection). 

• Index – a unique integer for use in the Siena  interface when the operator is specified by 
integer value rather than by its name; this integer is actually assigned by Siena. 

• Apply function – when a filter is matched against a notification message, it must be possible 
to evaluate  each triple of the form (name, operator, value) for specific values taken from the 
notification message. Thus, each operator must have an associated function to evaluate the 
operator when given two argument values. 

• Covers function – this function takes two filter triples t1=(x,op1,a) and t2=(x,op2,b), for 
example, and returns true if t1 Covers t2 as defined in Section 3.  It is important to note that 
this operation is purely an optimization and that Siena would work correctly without it, 
albeit not as efficiently as with it. Constructing this function can be challenging for non-
transitive operators.  This will be discussed further in Section 7. 
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5 Adding Type Extensions to Siena 
The process for adding a new type to Siena is relatively simple. Basically, you need to define a 
Java class, SetType, for example that implements the ExtendedType interface shown in Figure 1. 
To simplify this, an abstract super type called AbstractExtendedType is defined that handles most 
of the details. Associated with the type object will be one or more classes that implement the 
ExtendedOp interface (Figure 2). Again, the class AbstractExtendedOp can simplify that process.  
This interface defines the requirements listed in the previous section. 

Once the type and operator objects are defined, then it is possible to insert them into Siena by 
creating an instance of the type class (e.g., SetType) and passing it to the static method 
siena.Extension.addtype(). 

The details of SetType are described in Section 7.1. Appendix 9 shows the actual code for 
SetType. More details can be seen by examining the notifier and subscriber examples in the tests 
cases provided with the type extension code. 

6 Applications of an Extended Siena Type System 
Two specific examples that could benefit from additional types are Site-Select Addressing [4] 
and Query-Advertise [3]. The nature of these two application is described in the following 
subsections. The specific example types described in Section 7 relate back to these example 
applications. 

6.1 Site-Select Addressing 
Site-Select addressing is an approach to using Siena to carry out intensional (content-based) 
command against a dynamically changing set of targets. Each potential target exports a 

package siena; 
 
public interface ExtendedOp 
{  
    public String getName(); 
    public int getIndex(); 
    public void setIndex(int index); 
    public ExtendedType getType(); 
    public boolean apply_operator(AttributeValue x, AttributeValue y); 
    public boolean covers(AttributeConstraint af1,A ttributeConstraint af2);  
} 

Figure 2. ExtendedOp.java Interface. 

package siena; 
 
public interface ExtendedType 
{ 
    public String getName(); // typename 
    public boolean define(); // insert type's opera tors into Siena 
    public ExtendedOp[] getOperators(); // return s et of operators 
                                        // associat ed with type 
} 

Figure 1. ExtendedType.java Interface. 
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subscription in the form of a bit-set describing its characteristics. Commands are published that 
include a bit-set describing the characteristics of targets for whom the command is intended. 
Standard Siena does not support this efficiently because it does not have the proper bit-set 
operators defined.  The Set Type in Section 7.1 can, however, efficiently support Site-Select. 

6.2 Query-Advertise 
In our prior Query-Advertise work, the goal was to publish queries and have them efficiently 
directed to subscribing sites that had the potential to provide data that satisfied the published 
query.  One way to do this required that it be possible to determine if two queries, q1 and q2, 
potentially had a common solution.  That is, q1 was a subscription by a provider of information, 
where q1 “described” the data it could provide. If q2 intersected q1, then it made sense to direct 
q2 to the q1 site because there was a reasonable probability that the q1 site could provide an 
answer satisfying q2. The problem then became one of defining queries such that this kind of 
intersection could be computed. Again, standard Siena cannot provide this, but both the 
Unification operations (Section 7.2) and the FilterIntersection operation (Section 7.3) can be 
used for this purpose. 

 

7 Example Type Extensions 
7.1 Bit-Set Type 
The bit-set (or just set) treats the Siena byte-string type as representing a set of bits. The type 
provides three operators over these sets.  We will use the notation b[i] to indicate the i’th bit of 
the set. The three operators are as follows. 

1. Set-Less-Equal – Given two sets S and T, S set≤ T if (∀i (S[i] ⇒ T[i])); in other words, every 
bit that is set in S is also set in T.  Of course, T may have additional bits set. 

2. Set-Greater-Equal – Given two sets S and T, S set≥ T if (∀i (T[i] ⇒ S[i] )); in other words, 
every bit that is set in T is also set in S.  S may have additional bits set. 

3. Set-Intersection – Given two sets S and T, S set~ T if (∃i (T[i] & S[i])); in other words, at 
least one bit is set in the same position in S and T. 
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For these operators, the Apply function is straightforward.  Figure 3 shows the Java code for this 
function (referred to in that code as “apply_operator”) for the set≤ operator. The computation 
converts each argument to a byte-string and then compares each string byte-by-byte. If the two 
strings are different length, then one of two things happens.  If the argument 2 is shorter, then it 
is extended with zero bytes for comparison purposes. If argument 1 is shorter, then argument 2 
(the potentially larger set) is truncated because padding argument 1 (the potentially smaller set) 
with zeros will never change the result computed on the truncated value. The apply_operator 
functions for the set≥ and set~ operators are similar and are not included here. 

boolean apply_operator(AttributeValue n, 
                       AttributeValue f) 
{return setLessEqual(n,f);} 
 
boolean setLessEqual(AttributeValue n, 
                       AttributeValue f) 
{ 
    byte[] na = toBytes(n); 
    byte[] fa = toBytes(f); 
    // Need to worry about different length byte ar rays. 
    // Basically, we will zero extend, which means 
    // (if you analyze) that we only need to worry 
    // about the filter value; 
    // extending the notify value by zeros 
    // will not affect the result (because (0 set<=  x) 
    // is always true). 
    int ln = na.length; 
    int lf = fa.length; 
    boolean match = true; 
    // check that for all i: n[i] & f[i] == n[i] 
    for(int i=0;i<ln;i++) { 
        byte bn = na[i]; 
        byte bf = (i<lf?fa[i]:0); 
        if((bn & bf) != bn) {match = false; break;}  
     } 
     return match; 
} 

Figure 3. Bit-Set Apply Function 
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Computing the Covers relationship is also straightforward for the set≤ and set≥ operators 
because they are transitive.  Recall from Section 3, that we apply the covers relationship on a 
per-triple basis. Simplifying somewhat, this requires determining if the following holds. 

∀z (z,set≤,b) = true ⇒ (z,set≤,a) = true 

Note that this is true if the following holds. 

(b set≤ a) = true 

This is basically because the set≤ operator is transitive. 

Each operator is required to implement a covers() function that is given two triples and returns 
true if the first triple covers the second, and returns false if the first does not cover the second, or 
equally important, it cannot determine if the first covers the second. Figure 2 shows the code for 
the covers relationship for the set≤ operator.  Note that actually, the function is not given two 
triples, but rather only the last two elements of each triple since the attribute name part is 
assumed to be the same and its specific value is irrelevant. This pair, (op,value), is represented 
by the class AttributeConstraint in Siena. 

 The code in Figure 4 implements the covers relation for the set≤ operator. It assumes that the 
operator used in each AttributeConstraint argument is the set≤ operator or conforms to one of 
two special cases. There is no guarantee that only the set≤ operator will be used with a given 
attribute name.  In fact, any other operator could be used. It turns out that the two following 
special cases can be handled. 

(b, set≤, a) = true   ⇒  (x, set≤, a) Covers (x, =, b) 

(b, set≤ ,a) = false ⇒ (x, !=, a) Covers (x, set≤, b)   

However, aside from the equals and not-equals operators, determining the covers relationship 
may be impossible in general for the set≤, operator, hence the code returns false in all those 
cases. 

Computing the Covers relation for the set≥ operator proceeds in a similar fashion as with set≤. 
Since it too is transitive, we can show the following. 

(b,set≥,a)  = true ⇒ (x,set≥,a) Covers (x,set≥,b) 

boolean covers(AttributeConstraint af1, 
               AttributeConstraint af2) 
{ 
    boolean covers = false; //default 
    if(af1.op == index && (af2.op == index || af2.o p == Op.EQ)) { 
       covers = setLessEqual(af2.value,af1.value); 
    } else if(af1.op == Op.NE && af2.op == index) {  
        covers = ! setLessEqual(af1.value,af2.value ); 
    } 
    return covers; 
}  

Figure 4. Bit-Set Covers Function 
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Computing the Covers relation for set intersection (set~) is more difficult because it is not a 
transitive operator; that is, given that (x set~ y) and (y set~ z) are both true, we cannot infer that 
(x set~ z). The key is to find some other relationship/operation R such that  

b R a  ⇒ (x,set~,a) Covers (x,set~,b) 

Note that this inference need not be “perfect” in the sense that we do not require that 

(x,set~,a) Covers (x,set~,b) ⇒ b R a 

Remember that this is an optimization, and so failure to determine all instances of Covers will 
only lead to inefficiency, not failure. 

It turns out that the set≤ operator can be used as our R in the above equation. In other words, 

b set≤ a  ⇒ (x,set~,a) Covers (x,set~,b) 

The reason for this should be clear. If (b set≤ a) is true, then it means that a has at least the same 
set of bits set as are set in b, and possibly more.  Thus, any value that intersects b will also 
intersect a, and hence the set of values that satisfies (x,set~,b) is a subset of the values that satisfy 
(x,set~,a), and hence 

(x,set~,a) Covers (x,set~,b) 

This method of inferring the Covers relation from some related transitive operator (set≤, in this 
case) is quite general, and will be used in the subsequent examples where non-transitive 
operators exist. 

7.2 Unification and the Expression Type 
The second type extension example involves a unification operation over functional expression 
with variables. This is patterned after PROLOG expressions and unification.  

Figure 5 gives a YACC-style grammar 
for expressions. Expressions take the 
usual form of a nested tree of terms 
(n-ary functions) with constants or 
variables or 0-ary functions as the leaves 
of the nested expression tree. 

The Unification operation (unifies) takes 
two expressions and returns true if there 
is some assignment of values to the  
variables such that the two expressions 
can be made to match when the values 
are substituted for the variables in each 
expression. Multiple occurrences of the 
same variable in an expression must be 
assigned the same value.  Variable 
names are local to the expression, thus 
“_X” in one expression need not have 
the same assignment as “_X” in the 
other expression. 

unifyexpr : constant | unifyterm ; 

unifyterm : ID | ID '(' arguments ')' ; 

arguments : argument | argument ',' arguments ;  

argument : unifyterm | constant ; 

constant  : NUMBER | STRING | VARIABLE ; 

Lexical Tokens: 

ID : any string of characters not containing '(', ')', ',' , '"' 
       and not beginning with a digit or underscore ('_'). 

VARIABLE: underscore followed by an ID. 

NUMBER: sequence of decimal digits possibly 
                   preceded by '+' or '-'. 

STRING : any sequence of characters enclosed in 
                  double quotes ('"'). Occurrences of the 
                  double quote or backslash ('\') in the string 
                  are represented as '\"' or '\\' respectively. 

 
Figure 5. Unification Expression Grammar. 
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Table 2 shows some examples of unification. When the unification is possible (unifies() returns 
true), then the third column shows the associated assignments of values to variables. 

Adding the unification operation to Siena requires providing some form of representation for the 
expressions. The “external” representation was in the form of an expression tree whose nodes 
were instances of a general UnifyTerm object class. In order to insert such expression trees into a 
Siena Filter or notification message, a serialization function was provided that converted an 
expression tree into an instance of the standard Siena byte-string by doing a pre-order walk of the 
expression. Similarly, a de-serialization function was provided. 

Figure 6 shows the code for the apply_operator function for the unifies operator. It operates by 
first converting its two arguments to Strings and then using the de-serialization function (i.e., 
decode()),  to produce an expression tree for each argument.  It then attempts to unify the two 
trees and returns the boolean result.  It is worth noting that this procedure is not fast, so there is a 
definite cost to using unification in a Siena filter. 

As with the set intersection operator (set~), unifies is not a transitive operation, and so 
computation of the covers relation is not simple. As with the set~ operator, the approach is to 
find a related transitive operation that can be used to compute the covers relation. 

The transitive operator used here is one-way unification. One-way unification is a special form of 
the general unification operation that 
succeeds under the following 
conditions. 

1. E1 unifies E2 is true for 
expressions E1 and E2. 

2. The unification of E1 and E2 only 
assigns values to the variables in 
E1, except that E2’s variables 
may be assigned the value of a 
variable in E1.  This last point is 
referred to as variable 
equivalencing and is show in row 

boolean apply_operator(Attri buteValue n,    
                       AttributeValue f) 
{ 
    String sn = n.stringValue(); 
    String sf = f.stringValue(); 
    UnifyExpr un = new UnifyExpr(); 
    if(!un.decode(sn)) return false; 
    UnifyExpr uf = new UnifyExpr(); 
    if(!uf.decode(sf)) return false; 
    boolean match = Unifier.unify(un,uf); 
    return match; 
}  

Figure 6. Unification Apply Function 

Table 2. Examples of Unification 
 

Expression 1 Expression 2 Unifiable? Variable Assignment 

f(g(y,5) f(g(_X,_Y)) true _X=y 

_Y=5 

_X _Y true _X=_Y 

_Y=_X 

a(_X,b(c(_X))) a(g(“h”),b(c(g(_Y)))) true _X=g(“h”) 

_Y=“h” 

a(_X,_X) a(f,g) false  
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2 of Table 2. 

In effect, if one-way unification succeeds, then E1 is 
“more general” than E2. Figure 7 indicates how one-
way unification operates and why it is transitive. 
One-way unification of A and B effectively overlays 
A on top of B starting at the root of each. Thus, the 
leaves of A form a frontier on B such that the 
variables in B are either below the frontier or on the 
frontier in the case of equivalencing. Similarly, if B 
one-way-unfies (a.k.a. unifies1) C, then C’s 
variables are below B’s frontier.  Obviously, that 
also means that C’s variables are below A’s frontier, 
hence we can see that 

(A unifies1 B) ∧ (B unifies1 C) ⇒  (A unifies1 C) 

which means that unifies 1 is transitive. 

The unifies1 operator can be used as our transitive operator from whom we can compute a subset 
of the Covers relation; that is, the following is true. 

(a unifies1 b)  ⇒ (x,unifies,a) Covers (x,unifies,b)    (1) 

The reason for this is that if x unifies with b, then it will unify with a because a is “more general” 
than b (because (a unfies1 b)). Note that equation (1) only allows the computation of a subset of 
Covers because there may be special cases where the Covers relation holds, but (a unifies1 b) 
does not hold. But since Covers is an optimization, this is acceptable, and it just means that filter 
covering will not always operate as efficiently as possible.  

7.3 Filters as an Extended Type  
The third example of adding an extended type to Siena involves adding Siena Filters as the types 
with filter intersection as the operation. The filter intersection operation will be designated using 
“&&”. This particular example can be confusing because it seems somewhat recursive. 

The basic idea is that we want a filter triple (x,&&,f) to match a notification message pair (x,g) if 
(g intersects f), where f and g are instances of Siena filters.  Two filters are defined to intersect if 
the following is true. 

∃ m (f(m) = true) ∧ g(m) = true) 

In other words, two filters intersect if there is some possible message that matches both filters. 

Two filters F1 and F2 intersect if their triples can be shown to intersect.  This requires the 
following condition is satisfied. 

∀ (x,op1,a) ∈ F1 and (x,op2,b) ∈ F2 (∃ z  (z,op2,b) = true and (z,op1,a) = true) 

Note that we do not require every attribute name in one filter to occur in the other.  This is 
because a missing attribute name is equivalent to the triple (y,any,_) and so the following is 
trivially true. 

∀ (y,op1,a) ∈ F1 and (y,any,_) ∈ F2 (∃ z  (z,op2,b) = true and (z,any,_) = true) 

Figure 7. Unify1 Overlays. 

Expression A 

Expression B 
Expression C 
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Thus, our apply function essentially must enumerate triples and for each pair of triples (one from 
each filter), it must examine the combinations of operations and determine if there is a potential 
common solution. Figures 8a and 8b (following pages) show the code for the core of the 
intersection computation. It takes two AttributeContraint objects and determines if they can 
intersect or not. 

 

8 Summary 
We have shown how to extend the Siena run-time system with new types (really new operators). 
We have also shown examples of extended types that are especially relevant to the problem of 
using Siena to perform distributed query as represented by Site-Select and Query-Advertise. 
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boolean constraintIntersect(AttributeConstraint c1,  
                            AttributeConstraint c2)  
{ 
    // Special case the situation when c1.op == Op. any or c2.op == Op.any 
    if(c1.op == Op.ANY || c2.op == Op.ANY) return t rue; 
    // Special case the situation when c1.op == c2. op 
    if(c1.op == c2.op) { 
        switch (c1.op) { // following cases always true 
                         // because of transitivity  
        case Op.LT: // x<a && y<b == true (e.g. any  x <= min(a,b)) 
        case Op.GT: // x>a && y>b if a>b 
        case Op.GE: // x>=a && y>=b == true 
        case Op.LE: // x<=a && y<=b == true 
        case Op.NE: // x!=a && y!=b == true 
            return true; 
        default: break; // need to look more closel y 
        } 
    } 
    // Canonicalize the order since intersection is  commutative 
    // Assume the ordering in Op.java 
    if(c1.op > c2.op) {AttributeConstraint c = c1; c1 = c2; c2 = c;} 
    switch (c1.op) { 
    case Op.EQ: // x=a && y op b if a op b 
        return Covering.apply_operator(c2.op,c1.val ue,c2.value); 
    case Op.LT: switch (c2.op) { 
        case Op.GT: // x<a && y>b if b<a 
        case Op.GE: // x<a && y>=b if b<a 
        case Op.PF: // x<a && y prefix b if b<a 
        case Op.SF: // x<a && y suffix b if b<a 
        case Op.SS: // x<a && y contains b if b<a 
            return Covering.apply_operator(c1.op,c2 .value,c1.value); 
        case Op.LE: // x<a && y<=b == true 
        case Op.NE: // x<a && y!=b == true 
            return true; 
        default: return false; 
    } 
    case Op.GT: switch (c2.op) { 
        case Op.LE: // x>a && y<=b if b>a 
        case Op.PF: // x>a && y prefix b if b>a 
        case Op.SF: // x>a && y suffix b if b>a 
        case Op.SS: // x>a && y contains b if b>a 
            return Covering.apply_operator(c1.op,c2 .value,c1.value); 
        case Op.GE: // x>a && y>=b == true 
        case Op.NE: // x>a && y!=b == true 
            return true         
        default: return false; 
    } 

Figure 8a. Filter Intersection Function 
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    case Op.GE: switch (c2.op) { 
        case Op.LE: // x>=a && y<=b if b>=a 
        case Op.PF: // x>=a && y prefix b if b>=a 
        case Op.SF: // x>=a && y suffix b if b>=a 
        case Op.SS: // x>=a && y contains b if b>=a  
                return Covering.apply_operator(c1.o p,c2.value,c1.value); 
        case Op.NE: // x>=a && y!=b == true 
            return true; 
        default: return false; 
    } 
    case Op.LE: switch (c2.op) { 
        case Op.PF: // x<=a && y prefix b if b<=a 
        case Op.SF: // x<=a && y suffix b if b<=a 
        case Op.SS: // x<=a && y contains b if b<=a  
            return Covering.apply_operator(c1.op,c2 .value,c1.value); 
        case Op.NE: // x<=a && y!=b == true 
            return true;  
        default: return false; 
    } 
    case Op.PF: switch (c2.op) { 
        case Op.PF: // x prefix a && y prefix b if a prefix b | b prefix a 
            return Covering.apply_operator(c1.op,c1 .value,c2.value) 
                 | Covering.apply_operator(c1.op,c2 .value,c1.value); 
        case Op.SF: // x prefix a && y suffix b == true (i.e. a concat b) 
        case Op.SS: // x prefix a && y contains b = = true (i.e. a concat b) 
        case Op.NE: // x prefix a && y!=b == true 
            return true; 
        default: return false; 
    }  
    case Op.SF: switch (c2.op) { 
        case Op.SF: // x suffix a && y suffix b if a suffix b | b suffix a 
            return Covering.apply_operator(c1.op,c1 .value,c2.value) 
                 | Covering.apply_operator(c1.op,c2 .value,c1.value); 
        case Op.SS: // x suffix a && y contains b = = true (i.e. b concat a) 
        case Op.NE: // x suffix a && y!=b == true 
            return true;  
        default: return false; 
    } 
    case Op.SS: switch (c2.op) { 
        case Op.SS: // x contains a && y contains b  == true 
        case Op.NE: // x contains a && y!=b == true  
            return true;  
        default: return false; 
    } 
    default: return false; 
    } 
} 
 

Figure 8b. Filter Intersection Function 
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9 Appendix.  SetType.java (and SetLessThan.java) 
package sienatypes; 
 
import siena.*; 
import java.io.ByteArrayOutputStream; 
import java.io.ObjectOutputStream; 
 
public class SetType extends AbstractExtendedType 
{ 
    static final int operatorcount = 3; 
 
    public SetType() 
    { 
 super("Set",operatorcount); 
 operators[0] = new SetLessEqual(); 
 operators[1] = new SetGreaterEqual(); 
 operators[2] = new SetIntersect(); 
    } 
} 
 
class SetLessEqual extends AbstractExtendedOp 
{ 
    public SetLessEqual() {super("set<=");} 
 
    // During matches, n is from the notification, f from the filter 
   
    public boolean apply_operator(AttributeValue n,  AttributeValue f) 
    { 
      byte[] na = toBytes(n); 
 byte[] fa = toBytes(f); 
 int ln = na.length; 
 int lf = fa.length; 
 boolean match = true; 
 // check that for all i: n[i] & f[i] == n[i] 
 for(int i=0;i<ln;i++) { 
     byte bn = na[i]; 
     byte bf = (i<lf?fa[i]:0); 
     if((bn & bf) != bn) {match = false; break;} 
 } 
      return match; 
    } 
 
    public boolean covers(AttributeConstraint af1, AttributeConstraint af2) 
    { 
        boolean covers = false; //default 
        if(af1.op == index && (af2.op == index || a f2.op == Op.EQ)) { 
            covers = setLessEqual(af2.value,af1.val ue); 
        } else if(af1.op == Op.NE && af2.op == inde x) { 
            covers = ! setLessEqual(af1.value,af2.v alue); 
        } 
        return covers; 
    } 
} 

Figure 9. SetType and SetLessEqual 
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10 Appendix. ExtendedStartServer.java 
The final component added to Siena to support extended types is a replacement for the 
StartServer component. StartServer contains a main(), and is used to start up a standalone Siena 
router. It takes a variety of arguments as described at this URL. 

http://www.cs.colorado.edu/~carzanig/siena 

The replacement component is called ExtendedStartServer, and can be used as a drop-in 
replacement for StartServer.  The primary change in ExtendedStartServer is to add a new 
parameter called “-extension”. An example command using ExtendedStartServer is shown in 
Figure 10. The first command establishes the CLASSPATH, which tells java where to look for 
specific classes. Note that the first file in the CLASSPATH is “extension.jar”, which contains the 
extension code, including modified versions of some standard Siena classes.  It is important that 
the extension.jar file appear before the Siena jar file  (siena-1.4.3.jar, in this case) so that the 
modified Siena classes will come from the extension jar file. 

The second command line uses the “-extension” parameter to establish the set of new types that 
are to be loaded into the server. The argument to this parameter (“sienatypes.SetType”, for 
example) gives the class name for the class that defines the type.  There is nothing special about 
the “sienatypes” prefix, and the class name could be anything.  During startup of the server, 
reflection is used to find and load the specified extension classes. Thus, whatever they are 
named, these classes must be accessible through the class path. 

The third command starts the ExtendedServer, and is exactly the same as starting the normal 
Siena StartServer, except that it includes the extension parameters. 

 

CLASSPATH=extension.jar:siena-1.4.3.jar 
 
EXTENSIONS=-extension sienatypes.SetType –extension  sienatypes.UnifyType 
 
Java –cp “$CLASSPATH” siena.ExtendedStartServer –po rt 2001 $EXTENSIONS 
 

Figure 10. Using the ExtendedStartServer 
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