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Abstract

We have measured the energy efficiency of differ-
ent memory management strategies on a high per-
formance pocket computer. We conducted our study
by measuring the energy consumption of eight C
programs with four different memory management
strategies each. The memory management strategies
are: no deallocation, explicit deallocation, conser-
vative mark-and-sweep garbage collection, and con-
servative mark-and-sweep incremental garbage collec-
tion.

Our measurements show that different memory
management strategies have very different energy re-
quirements. In the most extreme case, one program
consumed 40 times as much energy with incremen-
tal garbage collection than with explicit deallocation.
We demonstrate that, although overall energy use is
strongly correlated with execution time, the proces-
sor and peripheral energies separately do not correlate
well with execution time.

1 Introduction

Modern pocket computers [17, 8] provide sufficient
processing capability and memory capacity to run
traditional desktop-development environments (e.g.,
Java) and operating systems. The Itsy Pocket Com-
puter [17], an example of this new breed of pocket
computer, runs a fully-functional port of Linux, X-
windows, Java, and Squeak. In comparison, the
Palm V PDA [9] runs a non-general-purpose oper-
ating system (PalmOS) and a very limited port of
Java (KVM). This new breed of pocket computers
offers software developers the opportunity to use a
rich programming environment, and to concentrate
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on adding functionality to applications rather than
minimizing their memory footprint. For the user of
such computers, their processing and memory capa-
bilities make it feasible to download applications over
a wireless connection and run them safely within a
flexible and platform-neutral run-time environment
such as Java.

A key enabler of rich programming environments
and mobile applications is dynamic memory alloca-
tion, a technique that permits memory to be allo-
cated by a program as it runs. With one exception
[7], previous evaluations [33, 11, 28] of memory man-
agements strategies focused on memory behavior or
execution time and not energy. Yet, for pocket com-
puters, which are powered by batteries, energy is one
of the most important resources – a pocket computer
is useless if its battery has been exhausted. Further,
the power consumed by the memory subsystem of
a pocket computer is a significant contributor to its
overall power consumption [14].

In this paper, we present an evaluation of the en-
ergy impact of memory management strategies. To
our knowledge, such an evaluation has been done pre-
viously only by Chen et al.[7] using an activation-
based energy model, which captured the energy con-
sumed by the (simulated) processor core, on-chip
caches, and SRAM. In comparison, we measure the
energy consumed by an actual pocket computer in-
cluding the energy consumed by its processor (Stron-
gARM SA1100) and its memory subsystem (64 MB
of DRAM).

To evaluate the energy impact of memory manage-
ment, we have implemented four different memory
management strategies, and have measured the per-
formance and energy cost of their use when several
benchmark programs were run on an Itsy pocket com-
puter. The strategies we have chosen are representa-
tive of those often used in C and C++ programs as
well as in run-time environments such as Java. Our
results show that the choice of memory management
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has a profound effect on the energy consumption of
programs. The contributions of this paper are:

• We experimentally quantify the energy perfor-
mance of four memory management strategies
using an actually prototype of a modern pocket
computer.

• We demonstrate that, although overall energy
use is strongly correlated with execution time,
the processor and peripheral energies separately
do not correlate well with execution time.

• We relate object allocation and deallocation pat-
terns to the energy consumption of specific mem-
ory managers.

In the next section, we present some background
material on energy and memory managements. Then,
in Section 3, we describe the four strategies we exam-
ine, our workload, the Itsy Pocket Computer, and
our measurement methodology. We then discuss our
results in Section 4, and present future work in Sec-
tion 6.

2 Background

To better understand how the use of a particular
management strategy affects the energy consumption
of applications that use it, we begin by reviewing
energy-consumption concepts. We then follow with
a discussion of memory management strategies.

2.1 Energy

The energy E, measured in Joules (J), consumed by
a computer over T seconds is equal to the integral
of the instantaneous power, measured in Watts (W).
The instantaneous power consumed by components
implemented in CMOS, such as microprocessors and
DRAM, is proportional to V 2 × F , where V is the
voltage supplying the component, and F is the fre-
quency of the clock driving the component. Thus,
the power consumed by a computer to, say, search an
electronic phone book, may be reduced by reducing
V , F , or both. However, for such tasks that embody
a finite amount of work, reducing the frequency may
result in it taking more time to complete the work,
and thus, little or no energy will be saved.

In normal usage, pocket computers run on batter-
ies, which provide a finite amount of energy. Fur-
thermore, the amount of energy a battery can deliver
(i.e., its capacity) is reduced with increased power
consumption [10]. As an illustration of this effect,

consider the Itsy pocket computer that was used in
this study (described in Section 3.2). When the sys-
tem is idle, the integrated power manager disables the
processor core but keeps active the device drivers. If
these drivers are clocked at 206 MHz, a typical pair
of alkaline batteries will power the system for about
2 hours, but if they are clocked at 59 MHz, they will
last for about 18 hours. Although the battery life-
time increased by a factor of 9, the processor speed
was only decreased by a factor of 3.5. The capacity of
the battery can also be increased by interspacing pe-
riods of high power demand with periods of low power
demand [4]. Nonetheless, the extent to which these
two non-ideal properties can be exploited is highly
dependent on the chemical properties and the con-
struction of a battery as well as the conditions under
which the battery is used.

2.2 Memory Management Strategies

A memory management strategy specifies how
dynamically-allocated memory is deallocated.
Broadly speaking, there are three types of strategies:
no deallocation, explicit deallocation, and automatic
deallocation. A program using the no deallocation
strategy never deallocates the memory allocated to
its objects, except when it completes. A program
using explicit deallocation, however, deallocates the
memory allocated to objects at the points in the
program specified by the programmer. In contrast, a
program using automatic-deallocation (i.e., garbage
collection) depends on the run-time system to
deallocate the memory associated with objects when
the objects are not reachable, that is, considered live.

At run time, to support the allocation and deal-
location of memory, some bookkeeping information
must be maintained. In general, this information
must be updated on each allocation and deallocation.
In addition, for strategies that rely on garbage col-
lection, the bookkeeping information may also have
to be updated on each read and write of memory.
Accessing and updating the bookkeeping information
requires executing instructions that are not part of
the program itself, and that may increase the number
of cache misses and page faults the program incurs.
Thus, bookkeeping introduces both time and energy
overhead to the execution of a program.

No-deallocation has the smallest overhead because
there is little overhead in allocating new memory – in
essence, the memory available for allocation to a pro-
gram may be viewed as a linear array, which can be
indexed by an increment-only pointer. The simplic-
ity of this scheme makes it appropriate for short-lived
programs having small working sets. Explicit deallo-
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cation incurs a greater overhead due to the need to
record when memory is deallocated, to keep track of
the blocks of memory that are not presently allocated,
and to select from these each time an allocation is to
be done.

The overhead associated with automatic-
deallocation is highly dependent on the type of
garbage collector used. In this paper, we use a
conservative mark-and-sweep collector. A conserva-
tive collector is pessimistic when deciding whether
an object is no longer considered live, but as a
consequence, does not require support from the com-
piler or programming language. A mark-and-sweep
collector does not reallocate frequently-accessed live
objects during garbage collection. As a result, over
time, the memory space becomes more fragmented,
leading to worse memory-system behavior (e.g.,
higher cache miss rates) than would occur with
a compacting collector. Because we use a non-
compacting collector, the overhead associated with
tracking unallocated memory and allocating memory
will be the same as with explicit deallocation. But,
automatic-deallocation also incurs the cost of search-
ing for those objects that are no longer considered
in use, and deallocating the memory associated with
them. Each time a garbage collector is invoked, it
may either attempt to locate all live objects, or it
may seek only a subset of them. In the latter case,
an incremental collector is said to be used. For more
details on dynamic memory allocation, the reader is
referred to [32].

The different overheads of the memory manage-
ment schemes translates into different energy over-
heads. The study presented in this paper will help
software designers for embedded systems make more
informed memory management decisions.

3 Methodology

This section first describes the four memory manage-
ment strategies and the benchmarks we used in our
study (Section 3.1), then describes the Itsy pocket
computer, which was the platform for our experi-
ments (Section 3.2), and finally describes how we
measure energy (Section 3.3).

3.1 Strategies and workload

In this paper we measure the energy consumption
resulting from the use of four memory management
strategies:

• no deallocation (no deallocation),

• explicit deallocation using the memory manager
provided in glibc2.1 (explicit deallocation),

• automatic deallocation using the Boehm-
Demers-Weiser conservative mark-and-sweep
garbage collector [2] (BDW), and

• automatic deallocation using the Boehm-
Demers-Weiser collector in incremental mode
(BDW-inc)

We modified our benchmark programs to imple-
ment each of these strategies, and ran each program
on an Itsy pocket computer while measuring its power
consumption. In their original form, our benchmarks
use the explicit deallocation strategy. For no deal-
location, we deleted calls to the routine for freeing
memory (free) from the programs. If a program had
its own memory recycling mechanism, we also dis-
abled that mechanism. Finally, for both BDW and
BDW-inc, we used the programs modified for no deal-
location but replaced calls to the memory allocator
(system or user-defined) with calls to the garbage col-
lector’s allocation routine.

Table 1 briefly describes our benchmark programs
and their inputs, and for each one, gives its running
time for the explicit-allocation strategy, the number
of lines of code, and the amount of memory it allo-
cates dynamically. The running times are measured
by using our energy measurement hardware and are
accurate to 1/5000 second. All programs are written
in C. Anagram, ks, ft, yacr-2, and bc are from Todd
Austin’s pointer-intensive benchmark suite [1]; li and
ijpeg are integer benchmarks from the SPEC95 suite;
sed is a commonly used UNIX tool from GNU.

We chose these programs since we believe they are
representative of the tasks a pocket computer might
be asked to do: e.g., complex calculations (bc), string
processing (sed), execution of programs using inter-
pretation (li), and image processing (ijpeg). In ad-
dition these benchmarks do a significant amount of
dynamic memory allocation, which is an important
characteristic of many modern applications. Finally,
several of these benchmarks, such as the ones from
Austin’s suite and the SPEC benchmarks, are com-
monly used benchmarks in the literature.

3.2 The Itsy Pocket Computer

The Itsy Pocket Computer is a flexible research plat-
form, developed to enable hardware and software re-
search in pocket computing. It is a small, low-power,
high-performance handheld device with a highly flex-
ible interface, designed to encourage the development
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Name Running Memory Lines of Description and inputs
time (sec) allocated (bytes) code

bc 0.57 27,811,152 7,308 GNU bc calculator
Find prime numbers smaller than 1000

yacr-2 0.76 69,916 3,979 Channel router used for integrated circuit layout
input1.in distributed with program

sed 0.91 591,512 31,859 GNU stream editor
Text processing of 720K text file

ks 0.97 8152 782 Kernighan-Schweikert graph partitioning tool
KL-1.in distributed with program

anagram 1.11 259,812 647 Generates anagrams
Eight words in four lines

li 2.40 3,835,616 7,597 Lisp interpreter
boyer.lsp distributed with benchmark

ijpeg 8.79 9,072,332 31,211 Image compression/decompression
Sample image

ft 42.37 1,245,480 2,156 Finds minimum spanning trees.
Graph with 8000 vertices, 16000 edges

Table 1: Benchmark programs and their inputs

Figure 1: Setup used to measure power.

of innovative research projects, such as novel user in-
terfaces, new applications, power management tech-
niques, and hardware extensions.

There are several versions of the basic Itsy design,
with varying amount of RAM, flash memory and I/O
devices. We used several version 1.5 units for this
study, which Compaq Computer Corporation’s West-
ern Research Lab modified to include instrumentation
leads for power measurement. Itsy version 1.5 and
version 2 differ primarily in their sleep power usage.
Figure 1 shows the units along with the measurement
equipment we used.

All versions of the Itsy are based on the low-power
StrongARM SA-1100 microprocessor. All versions
have a small, high-resolution display, which offers
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Figure 2: Itsy version 1.5 System Architecture

320×200 pixels on a 0.18mm pixel pitch, and 15 levels
of greyscale. All versions also include a touchscreen,
a microphone, a speaker, and serial and IrDA com-
munication ports. The Itsy architecture can support
up to 128 Mbytes both of DRAM and flash memory.
The flash memory provides persistent storage for the
operating system, the root file system, and other file
systems and data. Finally, the Itsy also provides a
“daughter card” interface that allows the base hard-
ware to be easily extended.

The version we use in this study (1.5) has 64
Mbytes of DRAM and 32 Mbytes of flash mem-
ory. Our units are modified to allow us to run the
StrongARM SA-1100 at either 1.5 V or 1.23 V. Al-
though 1.23 V is below the manufacturer’s specifica-
tion, it can be safely used at moderate clock speeds,
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and yields about a 30% reduction in the power con-
sumed by the processor. The Itsy can be powered
either by an external supply or by two size AAA bat-
teries – the batteries provide sufficient energy for the
Itsy to run 1

2 hour in “high power” mode, such as
when playing an MPEG video or the popular action
game Doom. Figure 2 shows a schematic of the Itsy
architecture. All measurements in this paper use the
power adapter rather than batteries.

3.3 Measuring Power and Total En-
ergy

To measure the instantaneous power consumed by
the Itsy, we use a data acquisition (DAQ) system
to record the current1 drawn by the Itsy as it is con-
nected to an external voltage supply, and the voltage
provided by this supply. Figure 1 presents a picture
of our setup along with the wires connected to the
Itsy to facilitate measuring the supply current and
voltage. We configured the DAQ system to read the
current and voltage 5000 times per second, and con-
vert these readings to 16-bit binary values. A host
computer stores these readings for subsequent anal-
ysis. From these measurements, we can compute a
time profile of the power used by an application as it
runs on the Itsy.

To determine the relevant part of the power-usage
profile of a workload, we measure the time required
to execute the workload and then select the rele-
vant set of measurements from the data collected by
the DAQ system. For each benchmark, we used the
gettimeofday system call to time its execution; this
interface uses the 3.6 MHz clock available on the pro-
cessor to provide accurate timing information. To
synchronize the collection of the voltages with the
start of execution of a workload, as the workload be-
gins executing, we toggle one of the SA1100’s general-
purpose input-output (GPIO) pins. This pin is con-
nected to the external trigger of the DAQ system;
toggling the GPIO causes the DAQ system to begin
recording measurements. As our measurement tech-
nique is very similar to that used in [14], we refer the
reader to this reference for a more in depth descrip-
tion.

Once the relevant part of the profile has been de-
termined, we calculate from it the average power
and the total energy consumed by the Itsy during
the corresponding time interval. To compute the en-
ergy, we make the assumption that the power mea-

1The supply current was measured by measuring the voltage
drop across a high precision small-valued resistor of a known
resistance (0.02Ω). The current was then calculated by divid-
ing the voltage by the resistance.

Time in GC Number of GC
Benchmark BDW BDW-inc BDW BDW-inc
bc 2.51 14.80 158 421
yacr-2 0.02 0.06 3 6
sed 0.06 0.28 9 23
ks 0.01 0.02 1 2
anagram 0.03 0.04 2 3
li 0.53 2.36 35 97
ijpeg 2.28 4.39 2 4
ft 0.48 0.68 7 14

Table 2: Statistics on benchmark programs. All times
are in seconds.

sured at time t represents the average power of the
Itsy for the interval t to t + 0.0002 seconds, where
0.0002 seconds is the time between each successive
power measurement. Thus, the energy E is equal to∑n

i=1 pi(t) × 0.0002, where p1(t), . . . , pn(t) are the n
power readings of interest.

In making our power measurements, we used a sim-
ilar approach as the one used in [14] to reduce a num-
ber of sources of possible measurement error. The
net effect of these errors is an error of ≈ 0.005 Watts,
which in our experiments, yields an error of at most
0.0006 Joules, or at most 0.6% with a mean maxi-
mum possible error of 0.4%. These values represent
the maximum error; we saw much smaller variation
in our measurements.

4 Results

In this section, we report on the energy consump-
tion of our benchmark programs for each of the four
memory management strategies described in Section
3.1. In Table 2, we provide some additional statistics
for the two strategies that use a garbage collector.
In the table, the columns labeled Time in GC give
the time spent by the program in the garbage col-
lector when using BDW and BDW-inc. The Number
of GC columns give the number of times each pro-
gram invoked the garbage collector when using BDW
and BDW-inc. We used the default settings BDW
and BDW-inc to trigger garbage collection. We used
getrusage to measure all times in Table 2.

4.1 Energy consumption

Figure 3 presents the energy consumption for each
of our benchmark programs for each memory man-
agement strategy. The bars are normalized to the
energy consumption of no deallocation (Table 3 gives
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Figure 3: Normalized total energy consumption for
benchmark programs

Benchmark Energy for “no deallocation” (J)
bc 7.40
yacr-2 2.65
sed 3.40
ks 3.17
anagram 3.81
li 8.81
ijpeg 34.62
ft 144.27

Table 3: Energy consumption in Joules of “no deal-
location”

the energy consumption of no deallocation). For the
programs we considered, use of the explicit deallo-
cation strategy consumed less energy than all other
strategies. Use of the no deallocation strategy did not
result in less energy demand because the programs
allocated a sufficient amount of memory that it was
better to deallocate memory as the program ran than
to reduce the time spent in the memory manager.

From Figure 3 we note that both no deallocation
and explicit deallocation consume noticeably less en-
ergy than garbage collection in three programs (bc,
li, and ijpeg) and more energy in one program (ft).
Given that our garbage collection does not compact
objects (and thus significantly change the memory
behavior of programs) and that we do not do any
energy optimizations in the garbage collector (such
as powering down unused DRAM banks [7]), it is not
surprising that explicit deallocation typically uses less
energy than garbage collection. However, the magni-
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Figure 4: Normalized running time (in seconds) for
different memory managers

tude of the difference between garbage collection (and
especially incremental collection) and explicit deallo-
cation for some programs, such as bc, is surprising.

There are two factors that can account for different
energy consumption when a program runs with two
different memory managers. First, one memory man-
ager may be more expensive than the other in terms
of execution time. Second, one memory manager may
have or lead to worse memory system behavior (e.g.,
more cache misses) than the other. In the following
two sections we explore which of these two reasons
accounts for the data in Figure 3.

4.2 Correlation of energy consump-
tion to execution time

Figure 4 presents the execution time for our bench-
mark programs. All bars are normalized to the exe-
cution time for no deallocation. On comparing these
bars to Figure 3 we see clear parallels: in every
case, increased execution time implies increased en-
ergy consumption.

Figure 5 investigates whether an increase in execu-
tion time is fully correlated to increase in energy con-
sumption. It presents the power consumption (i.e.,
Watts) for each benchmark program. If energy con-
sumption is fully correlated to execution time, then
all bars (even across benchmarks) will have exactly
the same height.

From Figure 5 we see that there is some variation
in the rate of energy consumption of the programs.
In other words, while execution time of a benchmark
configuration gives a good indication of the total en-
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ergy consumption of the program, it does not tell
the whole story: other factors, such as program and
memory management behavior also affect energy con-
sumption.

Figure 6 breaks down the power consumption into
energy consumed by the processor and the power con-
sumed by the peripherals (e.g., caches and display).
Our measurement infrastructure allows us to mea-
sure these powers seperately. The lines to the right
of the vertical axis give the power consumption of the
processor and the lines to the left give the power con-
sumption of the peripherals. There are four set of
lines for each benchmark corresponding to the four
memory management schemes Note that for a given
benchmark and memory management strategy, the
difference between the total power reported in Fig-
ure 5 and the sum of the power consumed by the
processor and the peripherals is due to the power con-
sumed by the voltage regulators used in the Itsy.

From Figures 6 we see that power consumption
varies significantly across memory managers and par-
ticularly across benchmarks even though we did not
see these variations in Figure 5. Moreover, in con-
figurations where the processor consumes energy at
a faster rate, we often see that the peripherals con-
sume energy at a slower rate and vice versa. For
example, in bc explicit deallocation consumes energy
at a slower rate than no deallocation for peripherals
and at a faster rate for the processor. The explana-
tion for this is that if a program incurs many cache
misses, then it will spend more of its execution time
waiting for memory than a program that incurs few
cache misses. While a cache miss is in progress, the
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Figure 7: Memory behavior of bc running on a Com-
paq Alpha Workstation

processor used in the Itsy, the StrongARM SA-1100,
reduces its clock speed, thereby lowering the power
consumption of the processor. Taken together, the
data presented in this section suggests that it is not
enough to evaluate the energy consumption of a pro-
gram or strategy by just measuring the energy con-
sumed by the processor: one must measure or simu-
late the energy consumed by the entire computer to
get an accurate picture of energy consumption.

4.3 Correlation of energy consump-
tion to program behavior

The most dramatic variation in rate of energy con-
sumption occurs in benchmark bc. To understand
this, we need to look at the memory usage pattern of
bc (Figure 7)2. The x-axis of Figure 7 represents time
measured in bytes allocated by the program. A point
(x,y) in this figure means that at ”time” x the live
objects occupy y bytes. We obtained these numbers
from a “debugging” run with the garbage collector;
with the debugging flag set, BDW collector outputs
detailed statistics at each garbage collection. This
graph has two curves, one for explicit deallocation
and the other for the BDW memory manager. Figure
7 shows that bc allocates objects rapidly: during the
run, it allocates just under 23MB of objects. How-
ever, objects also die fairly rapidly and the number
of live bytes grows slowly and reaches less than 400K.

2We generated the memory usage graphs 7 and 8 by running
the same source code and garbage collector as used in our other
experiments on a Compaq Alpha Workstation. Thus, while the
shape of these graphs are significant, the actual magnitude of
the data will be different from the Itsy since data types (such
as pointers) have different sizes on the Itsy and the Alpha.
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Each spike in the memory behavior curve represents
the point at which garbage collection either began or
ended.

We see that explicit deallocation is quite efficient
at managing the memory of bc: even though the pro-
gram is allocating at a fast rate, it is also explicitly
deallocating at a fast rate and that objects are deal-
located soon after they become useless. Garbage col-
lection, in contrast, has a much bigger memory re-
quirement since it doesn’t deallocate objects immedi-
ately: garbage collection is invoked only periodically
but when it is invoked, it is just as effective as explicit
deallocation in reclaiming objects.

If we use the no-deallocate memory manager with
bc then it will use a lot of memory (up to 23MB) and
thus incur potentially more cache misses and write-
buffer activity, which are all expensive in terms of
energy. Thus, no deallocation is much worse than ex-
plicit deallocation for energy consumption. However,
no deallocation is still better than either garbage col-
lection strategy since the overhead of tracing live ob-
jects during frequent garbage collections dominates
the benefits due to a smaller working-set size. Fur-
ther, comparing the data in Table 2 to that in Fig-
ure 4, we see that the time spent in the garbage col-
lector is much greater than the full running time of
the original program!

The memory usage of ft is in stark contrast to that
of bc (Figure 8): all the objects allocated by ft remain
live until nearly the end of the run at which point
many objects are explicitly freed. Garbage collection
is unable to free any objects in ft. However, despite
the ineffectiveness of garbage collection, the garbage
collected configurations run faster and consume less
energy than explicit or no deallocation.

From Table 2 we see that even though garbage
collection is ineffective in reclaiming objects in ft,
garbage collection consumes only 1.1% of total execu-
tion time. Because ft does not deallocate any mem-
ory and it spends little time in the garbage collector,
the differences in run time and energy between ex-
plicit deallocation and garbage collection are due to
the time spent doing allocation. The BDW alloca-
tor is optimized to handle many objects of the same
size and since most of ft ’s objects are one of three
sizes, BDW may be more efficient than the standard
allocator.

4.4 Summary of Results

In this section we demonstrated that the choice of
memory manager affects the energy consumption of a
program on the Itsy. Also, in order to understand the
energy consumption of a program or configuration,
it is misleading to measure the energy consumption
of just the processor: one must measure the energy
consumption of the entire system.

5 Related Work

There are two bodies of related work: work in the
area of energy-efficient computing, and work in the
area of memory management.

Chen et al. [7] describe the effect of variations
in mark-and-sweep garbage collection algorithm in a
severely resource limited environment. Chen et al.
also propose optimizations for turning off memory
banks and demonstrate, via simulation, that they are
effective at reducing energy consumption. Chen’s en-
vironment is a microSPARC-IIep based 100MHz sys-
tem with 128 KB of ROM. Our work differs from their
work in two major ways. First, we report results from
actual measurements of energy consumption rather
than simulations. Second, while our environment (the
Itsy pocket computer) is resource limited compared to
a desktop, it is not as severely limited as the handheld
that Chen et al. explore. hence, our results are more
representative of emerging mobile computers, which
are powered by high-performance yet low-power mi-
croprocessors with significant amounts of DRAM

A crucial first step in producing energy efficient sys-
tems is the use of code optimizations and compilers
that seek to reduce the number of instructions exe-
cuted by an application, thereby reducing the time
required to execute it and the energy required [16].
There has also been considerable work on designing
the hardware used by such systems to be energy effi-
cient and energy conscious. Much of this work has
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focused on circuit-level [23] design issues or CAD
tools [20]. More recently, work has focused on mi-
croarchitectural features to reduce power. This work
ranges from characterizing power use or the poten-
tial power reduction in systems [29, 16, 18] to designs
that optimize the memory subsystem [15, 21], reduce
waste from speculative execution [22] or use a combi-
nation of techniques such as clock gating and voltage
scaling [31, 6, 3, 5].

Relating specifically to memory-system issues,
there are many papers that compare the power effi-
ciency of different static organizations of the memory
hierarchy, particularly the caches and TLB, for spe-
cific workloads [21] or using analytical models [20].
However, there is very little published material that
compares the power efficiency of the memory system
beyond the primary or secondary caches. In one of
the few references we have found, da Silva [19] com-
pared different dynamic memory allocators used in
an ATM switching network.

There has been much work on comparing different
memory management strategies [11, 36, 35, 26] and
on measuring the memory system performance of dif-
ferent memory management strategies [24, 34, 33, 25,
12, 13].

6 Future Work

In undertaking the evaluation we report on here of
the energy impact of various memory management
strategies, we have identified a number of areas wor-
thy of future study.

First, the choice of garbage collector clearly has
an impact on the energy consumed by an applica-
tion. Because the power consumed while accessing
memory has a significant impact on the overall power
consumption of a pocket computer, we are consider-
ing garbage collectors that have better memory be-
havior. Examples of these include copying collectors,
which change the layout of objects in memory, and
generational [30] or more general age-based collectors
[27], which focus collection efforts on a small region
of memory.

Second, while the applications we have chosen for
the basis of our study are representative of those that
are likely to be run on pocket computers, users of such
computers will likely run more than one application
at a time. We are thus investigating how multipro-
gramming impacts the choice of memory management
strategy. We are also investigating Java-based appli-
cations, and multimedia applications. One challenge
in investigating multiprogramming and these more
media-rich applications is that there is considerable

inter-run variance for a given application, and thus,
it is more difficult to get repeatable runs for different
memory management schemes.

Third, we are investigating optimizations that di-
rectly affect the energy consumption of applications.
For example, the Itsy is an example of a system in
which decreasing the clock speed of the processor does
not result in a corresponding increase in the access
time of the memory system, since memory access de-
lay is dominated by DRAM precharge and other ex-
ternal factors.

Table 4 shows the power, energy and execution
time for the “ijpeg” application in which this effect
can be leveraged to reduce the energy consumed when
executing it. The processor clock was reduced from
206MHz to 118MHz for the duration of garbage col-
lection. The overall execution time increases by less
than 5%, while the power consumed decreases by
about 3%. From this data, we draw two conclusions.
If this change in clock speed was accompanied by a
reduction in voltage, the energy saved by the volt-
age reduction could offset by a significant amount
the approximate 2% increase in energy consumption
brought about by the longer run time. Thus, a net
energy saving could be achieved. Secondly, the lower
rate of energy consumption may increase the bat-
tery life without significant user delay. These out-
comes are possible because the application was mem-
ory bound. We are investigating garbage collection
algorithms that take advantage of this property of
systems, and how it may be more generally applied.

7 Conclusions

In modern pocket computers energy is one of the most
important resources–a pocket computer is useless if
its battery has been exhausted. This paper demon-
strates that the choice of memory management strat-
egy affects energy consumption of programs and thus
battery life of pocket computers.

We conducted our study by measuring the energy
consumption of eight C programs with four different
memory management strategies each. The memory
management strategies are: no deallocation, explicit
deallocation, conservative mark-and-sweep garbage
collection, and conservative mark-and-sweep incre-
mental garbage collection. We measured the energy
consumption on an Itsy, a prototype of a modern
pocket computer developed at Compaq Computer
Corporation’s Palo Alto Research Labs.

Our measurements show that different memory
management strategies have very different energy re-
quirements. In the most extreme case, one program
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Program Execution Time Average Power Total Energy
No clock scaling 15.47 1.67 25.83
Clock Scaling 16.18 1.63 26.31

Table 4: Performance of the “ijpeg” benchmark with the BDW-inc collector

consumed 40 times as much energy with incremen-
tal garbage collection than with explicit deallocation.
We also show that processor and peripheral energy
consumption compliment each other: programs that
have a lower rate of processor energy consumption
often have a higher rate of peripheral energy con-
sumption (and vice versa). In addition to execution
time, the behavior of programs with respect to how
they use objects also affects the energy consumption
of programs. Overall we found that explicit dealloca-
tion usually used the least energy, closely followed by
no deallocation. Both garbage collection based mem-
ory managers typically consumed the same or more
energy than explicit or no deallocation.
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