Linear-time recognition of circular-arc graphs

Ross M. McConnell *

April 29, 2001

University of Colorado at Boulder
Technical Report CU-CS-914-01
Department of Computer Science
Campus Box 430
University of Colorado
Boulder, Colorado 80309 USA

Abstract

A graph G is a circular-arc graph if it is the intersection graph of a set of arcs on a
circle. That is, there is one arc for each vertex of G, and two vertices are adjacent in
G if the corresponding arcs intersect. We give a linear-time algorithm for recognizing
this class of graphs. When G is a member of the class, the algorithm gives a certificate
in the form of a set of arcs that realize it.

*Department of Computer Science and Engineering, University of Colorado at Denver, Denver, CO
80217-3364 USA, rmcconne@carbon.cudenver.edu. This research was supported by the University of Metz.
The author gratefully acknowledges Dieter Kratsch for extensive inputs to this paper.

f g

Figure 1: A circular-arc graph is the intersection graph of a set of arcs on the circle, while
an interval graph is the intersection graph of a set of intervals on the line.

1 Introduction

The intersection graph of a family of n sets is the graph where the vertices are the sets, and
the edges are the pairs of sets that intersect. Every graph is the intersection graph of some
family of sets [17]. An graph is an interval graph if there is a way to order the universe
from which the sets are drawn so that each set is consecutive. Equivalently, a graph is an
interval graph if it is the intersection graph of a finite set of intervals on a line. A graph
is a circular-arc graph if it is the intersection graph of a finite set of arcs on a circle. (See
Figure 1.)

An interval graph is a special case of circular-arc graphs; it is a circular-arc graph that
can be represented with arcs that do not cover the entire circle. Some circular-arc graphs
do not have such a representation, so the class of interval graphs is a proper subclass of the
class of circular-arc graphs.

Interval graphs and circular-arc graphs arise in scheduling problems and other combina-
torial problems. Before the structure of DNA was well-understood, Seymour Benzer [1] was
able to show that the set of intersections of a large number of fragments of genetic material
in a virus were an interval graph. This provided strong evidence that genetic information
was arranged inside a linear structure. Benzer earned the Nobel Prize partly for this work.

Being able to determine whether a graph is an interval graph or circular-arc graph
constitutes recognition of these graph classes. However, having a representation of a graph
with intervals or arcs can be helpful in solving combinatorial problems on the graph, such as
isomorphism testing and finding maximum independent sets and cliques [4, 14]. Therefore,
a stronger result than just recognizing the class is being able to produce the representation

whenever a graph is a member of the class. In addition to its other uses, the representation
constitutes a certificate that the graph is a member of the class.

Fulkerson and Gross [10] gave an O(n*) algorithm for solving this problem on interval
graphs. Booth and Lueker later improved this to linear-time [3]. Until now, a linear-time
bound for circular-arc graphs has been elusive.

The reason that the problem is harder on circular-arc graphs than on interval graphs
is that there are two ways to travel from one point to another on a circle, as opposed to
just one on a line. When attempting to construct a realizer of a circular-arc graph, one
must choose one of these when joining an adjacent pair of arcs, and the correct choice is
not always obvious. The necessity of making these choices is absent in the interval-graph
recognition problem. In an interval graph the maximal cliques correspond to regions of
maximal overlap among the intervals, and there are therefore O(n) maximal cliques. This
plays an important role in Booth and Lueker’s algorithm. This is not true of circular-arc
graphs. For instance, three arcs can intersect pairwise around the circle, yet have no point
in common. The number of maximal cliques in a circular-arc graph can be exponential in
n [26].

It was initially conjectured by Booth [2] that recognition of circular-arc graphs was
NP-complete. Tucker disproved this with an O(n?®) algorithm [26]. Hsu improved this to
O(nm), where m is the number of edges [14], and Eschen and Spinrad further improved
this to O(n?) [9].

In the current paper, we give an O(n+m) time bound. Because this is linear in the size
of the graph, further improvements to the time bound are not possible. Like the previous
algorithms, this one produces a set of arcs that realize the graph whenever it is a circular-arc
graph.

The algorithm is based on modular decomposition, transitive orientation of compara-
bility graphs, and algorithms on permutation graphs and interval graphs. For overviews of
these topics, their applications, and their relationships to circular-arc graphs, see the books
by Golumbic [12] and Roberts [23], and the survey article by Moehring [20].

2 Preliminaries

Let G = (V,E) be a graph. By n(G) and m(G) we denote the number of vertices and
edges, respectively, of G. We use n and m for these if G is understood. Let E' C G denote
that £’ C F, and e € G denote that e € E. G denotes the complement of G, whose vertices
are V and whose edges are the non-edges of G. If G is a digraph, G” denotes its transpose,
which is obtained by reversing the directions of all of its directed edges. If v is a vertex in
G, let N(G,v) denote the neighbors of v in G. When G is understood, we may use N (v)
to denote this. N|[G,v] denotes the closed neighborhood, N(G,v) U {v}, and N[v] denotes
this when G is understood. Let N(G,v) denote the non-neighbors, V — N[G,v], of v, and
let N(v) denote the same thing when G is understood.

If A is a matrix, we let A;; denote the value in row 7 and column jof A. f X CV, G|X
denotes the restriction of G to X, namely, the graph G' = (X, EN (X x X)). Similarly, if
A is an n X n matrix and X is a subset of {1,2,...,n}, then A|X is the |X| x | X| matrix of

entries whose rows and columns are both in X.

We may assume without loss of generality that no endpoints of arcs coincide, since in
any realizer where they do, the endpoints can be moved by small amounts to make this true.
To avoid cumbersome terms, let us call the clockwise endpoint of an arc the left endpoint,
and the counterclockwise endpoint the right endpoint. We can remember this relationship
by thinking of the arc as “facing” the center of the circle. If = is a vertex of the graph,
[(z) and r(z) denote the left and right endpoints of its arc. In contexts where the realizer
is understood, we will find it convenient to let x stand both for a vertex in G and for the
arc [I(z),r(z)] in the realizer. If R is an interval realizer, we assume that the first given in
the realizer is the left endpoint that is adjacent to the uncovered part of the circle. Let us
call this representation the string realizer since a string with two occurrences of each arc
name suffices to represent it.

If G is a circular-arc graph with realizer R, and X is a subset of the vertices, then R|X
is the restriction of R to X, namely, the result of removing from R those arcs corresponding
to vertices not in X. Clearly, R|X is a realizer of G|X.

Since combinatorial arguments are often easier than geometric ones, we will sometimes
operate on a realizer that is equivalent to a geometric one, namely, a circular ordering of
{l(z) : z € V}U{r(z) : £ € V}. The circular ordering represents the order of left and right
endpoints as one travels counterclockwise around the circle. The circular ordering can be
represented by an ordered list, where an incremental rightward movement is a movement
from position 7 to position 7 + 1 (mod 2n). Let us call this the circular-list representation
of the realizer. A circular-arc graph may have more than one realizer; when counting
its realizers, we consider two realizers to be the same if one is a cyclic permutation of
the other, and different otherwise. If G is an interval graph, we adopt the convention of
circularly permuting the realizer so that an uncovered part of the circle occurs immediately
following the last endpoint in the list. Let us call this the ordered list representation of
an interval realizer. We consider two interval realizers to be different if their ordered-list
representations are different.

An undirected graph is a special case of a directed graph where each undirected edge
consists of two oppositely directed edges. In this paper, we consider an n x n matrix A
to be synonymous with a complete graph on vertex set V' = {v1, vg, ..., v, }, where each
directed edge (v;,v;) is labeled with A;;. A module of a matriz corresponds to a set X of
vertices such that for every vertex y ¢ X, all directed edges in X x {y} have the same label,
and all directed edges in {y} x X have the same label. In this case, y fails to distinguish
members of X. A module of a graph or digraph G = (V, E) is a module in its boolean
adjacency matrix. That is, it is a set of vertices such that for each y € X, every element of
X x {y} is an edge or none is, and every element of {y} x X is an edge or none is. Modules
of matrices are studied in [5, 6], where they are called modules on two-structures. They
were previously known in the special case of graphs, and first studied in [11].

V and its singleton subsets are trivial modules. A graph or matrix with only trivial
modules is called prime. A universal vertez is a vertex z with N[z] = V. A cliqgue module
is a module of G that is a (not necessarily maximal) clique in G. Universal vertices are
identifiable by their degrees. The clique modules can be found in linear time by lexically
sorting adjacency lists.

A modular partition of V in a matrix is a partition of V' where every partition class is
a module. If X and Y are disjoint modules, then every element of X X Y has the same
label. The modular quotient induced by the parts is the matrix obtained by making one
vertex for each part, and letting the label of each ordered pair (X,Y") of parts be the labels
of the edges from X to Y. One way to represent a modular quotient is with the submatrix
induced by any set P consisting of one vertex from each part. Similarly, if R is a circular-arc
realizer, then the quotient is realized with the smaller realizer R|P.

Two sets A and B overlap if AN B, A— B, and B — A are all nonempty. A module is
strong if it overlaps no other module. The transitive reduction of the containment relation
on strong modules of a graph G = (V, E) is a tree, and is called the modular decomposition.
The root of the modular decomposition is V' and the leaves are its singleton subsets. At
most one of G and its complement, G, can be disconnected. If one of them is disconnected,
the children of the root are the connected components, and V is a degenerate node. The
remaining nodes are prime nodes. The family F of modules of G consists of those sets that
are nodes of the tree, and those sets that are a union of siblings that have a degenerate
parent. Let M D(G) denote the modular decomposition of G.

The modular decomposition of a matrix is defined in the same way, except that the
root is degenerate if the complement of the graph consisting of those edges with one label
is disconnected. If T is a matrix, let M D(T) denote its modular decomposition.

A digraph is a dag if it is acyclic. A digraph is transitive if, for every pair (a,b) and (b, ¢)
of directed edges, (a,c) is also a directed edge. A transitive dag models a poset relation. If
G = (V,E) is a dag, the transitive closure of G is the minimum transitive dag on V' that
contains it. The transitive reduction is the minimum subgraph of G on V that has the same
transitive closure as G does. A linear order is a complete transitive dag. A linear order
can be represented by giving its unique topological sort, (v1,ve,...,v,). A linear extension
of G is a linear order that contains G.

A transitive orientation of an undirected graph is an assignment of directions to its
edges so that the resulting digraph is a transitive dag. A graph is a comparability graph if
there exists a transitive orientation of it. Finding a transitive orientation of a comparability
graph takes O(n + m) time [18]. The complement of an interval graph is a comparability
graph.

An undirected graph can be viewed as a special case of a directed graph, where each
undirected edge ab represents two directed edges, (a,b) and (b,a). If (a,b) and (c,d) are
two directed edges, we say that (a,b)I'(c,d) iff a = ¢ and b and d are nonadjacent, or b = d
and a and c are nonadjacent. If G is a comparability graph, then (a,b)I'(c,d) implies that
in any transitive orientation of G, either both of (a,b) and (c,d) appear as directed edges,
or neither does. To understand why, suppose that (a,b)I'(c,d), but (a,b) and (d,c) are
directed edges in an orientation of G. Suppose without loss of generality that a = ¢. Then
(d,c) and (¢, b) = (a, b) require a transitive directed edge (d, b), but d and b are nonadjacent,
so this is impossible.

The transitive closure of the I relation is an equivalence relation on directed edges, and
the equivalence classes are groups of directed edges, called implication classes, that must
either all appear in or all be absent from any transitive orientation of G. Therefore, if G is a
comparability graph, (a,b) and its transpose (b, a) cannot be in the same implication class.

The implication class containing (a,b) consists of the transposes of the directed edges in
the implication class containing (b,a). The union of an implication class and its transposes
is a color class. The color classes are a partition of the undirected edges of G.

There is a type of dual relationship between the modules of G and its color classes.

Lemma 2.1 (see, for example, [20]) If X and Y are disjoint nodes of the modular decom-
position of G, then X XY is a subset of a single implication class.

The vertices spanned by a color class are always a module of G. Moreover, if M is
a module, an edge of G that is in G|M is always in a different color class from an edge
that is not in G|M. Because of this, given a transitive orientation of G and its modular
decomposition, one may obtain a new transitive orientation by reversing the directions of
all edges inside a node of the modular decomposition tree. In a degenerate node whose
children are nonadjacent in G, a transitive orientation of G determines a linear order on
the children. Reversing the orientations of all edges between a pair of children that are
adjacent in this linear order gives a new transitive orientation. All transitive orientations
of G are obtainable from a single one by applying these two reversal operations in different
places in the modular decomposition tree.

A permutation graph is a graph that is a comparability graph, and whose complement
is a comparability graph. The union of a transitive orientation of a permutation graph and
a transitive orientation of its complement gives a linear order on the vertices. Reversing
the orientations in the complement and again taking the union of the two gives another
linear order. Two vertices are adjacent in the graph iff their relative order is the same in
both of these orderings. This permutation realizer gives a way to represent a permutation
graph with two orderings of the vertices.

3 Intersection matrices

If G is a circular-arc graph and R is a realizer, we can classify each ordered pair (z,y) of
vertices with z # y according to the type of intersection of their arcs in R, as follows [26,
14, 9]:

single overlap: Arc x contains a single endpoint of arc y.

double overlap: z and y jointly cover the circle and each contains both endpoints
of the other.

e Arc z is contained in arc y

e Arc z contains arc y

Let vy, v9,...,v, be a numbering of vertices of V. A circular-arc matriz of a realizer R
is an n x n matrix T where T;; is a label that tells the type of the relationship between arc

v; and arc v; in the realizer. (See Figure 2.) R is a realizer of T if it realizes not just the
graph implied by T but also the intersection types claimed by T'. A circular-arc matrix is

abcdef

SN a tl2nc

b/c 12nc

c' 11 cnl

a|fjb e dj22t t 2
e/ nnnc n

flttl2n

Figure 2: The intersection matrix of a circular-arc realizer gives the types of intersections
between arcs. The types consist of two arcs overlapping at one endpoint, G; (1), two arcs
overlapping at two endpoints, G2 (2), two arcs not intersecting, G,, (n), one arc being
contained in the other D, (c) and one arc containing the other (D.)T (t). The pairs of
each type give the graphs G1, G2, G, D, and (D.)T, respectively. The matrix has a skew
symmetry, where t in a row 7, column j corresponds to ¢ in row j column 1.

an interval matriz if there is a realizer for it that does not cover the circle; in this case G is
an interval graph, since a circular-arc realizer can be cut at an uncovered point on the circle
and rolled out onto a line. An intersection matriz is a matrix whose entries give the alleged
intersection types in some circular-arc realizer, but where it is not a requirement that the
realizer exist. In general, we refer to a circular-arc matrix as an intersection matrix, except
when we wish to emphasize that a realizer is required to exist.

From these types, we get a partition of the complete graph into the following undirected
graphs on V:

e (G1: single overlaps

e (5: double overlaps

e (G.: containments

e (3, = G: non-intersections

We will use multiple subscripts to denote unions of these. For example G = G2, the
union of edges of G1, G2, and G.. An edge of G, can be viewed as two directed edges with
the following classifications.

e D,: edges of the form {(z,y) : z is contained in y}

e (D.)T: edges of the form {(z,y) : z contains y}.

The non-neighbors of a vertex x are its neighbors in G, its overlap neighbors are its
neighbors in Gy, its double-overlap neighbors are its neighbors in G, and its containment

neighbors are its neighbors in G.. G(T') denotes the graph that gives the pairs that intersect,
hence G(T') = G12.. The neighbors are the the neighbors in G(T'). If M is a module of T,
then each vertex in V' — M has the same relationship to members of M. The non-neighbors,
overlap neighbors, double-overlap neighbors, and containment neighbors are those vertices
of V — M that have those relationships to the members of M.

These intersection types have played a significant role in the previous algorithms for
recognizing circular-arc graphs. Tucker [26] developed ways of constraining the possible
types of intersection in order to facilitate insertion of arcs during an incremental assembly
of a realizer. This step was a bottlenecks in Tucker’s algorithm. A faster approach for
computing the constraints was one of the significant innovations of Eschen and Spinrad [9],
and it plays a critical role in the current paper.

A departure of our approach from previous ones is the use of a simple operation on
the intersection matrix, which we will call a flip. Recall that we consider a realizer to be
a circular list giving the order of left and right endpoints of the vertices’ arcs around the
circle. Let a geometric flip on a vertex be an exchange of the positions of [(z) and r(z) in
this list. This is equivalent to making z’s arc travel between the same endpoints as before,
but around the opposite part of the circle as before. (Figure 3). This changes the types of
relationships involving z’s arc as follows:

e (z,y) € G becomes (z,y) € D, and (z,y) € D, becomes zy € G
e (z,y) € Gy, becomes (z,y) € (D.)T and (z,y) € (D.)* becomes (z,y) € Gy,

e (z,y) € G1 remains unchanged

If T is an intersection matrix, we can compute the intersection matrix 7" for the realizer
that results from a flip on = without any knowledge about the realizer, other than what is
given directly by 7". It requires only a simple relabeling of some of the entries of z’s row
and column in 7. Let us call this relabeling of T an algebraic flip on x.

One matrix being obtainable from another by a sequence of algebraic flips is an equiv-
alence relation on intersection matrices. Let us call this relation flip-equivalence. Every
flip-equivalence class on circular-arc matrices contains an interval matrix: in a circular-arc
realizer of a matrix T, if one picks a point on the circle that does not coincide with an
endpoint of an arc and flips all arcs containing the point, the resulting set of arcs will fail
to cover the circle at that point, and realize the interval matrix 7" obtained from T' by the
equivalent algebraic flips.

It is tempting to try to transpose parts of the problem to another class of graphs.
Eschen and Spinrad [9] compute the intersection constraints by transposing this problem
into the domain of chordal biparite graphs. Hsu [14] approaches the recognition problem
by transposing much of it to the domain of circle graphs. The significance of flip operations
is that they allows us to transpose much of the problem to the domain of comparability
graphs, where we make use of existing analytical and algorithmic tools for that graph class.

It should be noted that despite superficial differences, there is a non-obvious relationship
between the flip operation and Hsu’s use of circle graphs to model parts of the problem.
This is discussed in greater detail in the concluding section of our paper.

abcdef

all Inlct2
bllnf 12nc
c(llll cnl
djiit/2t t 2
el{lclnnc n
fll2tl12n

Figure 3: A geometric flip consists of rerouting an arc’s path between its endpoints; in
this case arc a is flipped. (Compare to Figure 2.) A flip has a predictable effect on the
intersection matrix: it swaps the roles of n and ¢, and 2 and c¢ in a row, and swaps the roles
of n and ¢, and 2 and ¢ in a column. Whether or not we know the matrix’s circular-arc
realizer, we may find the effect of a geometric flip on it. This operation on the intersection
matrix is an algebraic flip.

4 Summary of the circular-arc graph recognition algorithm

Our algorithm produces a circular-arc realizer of G if it is a circular-arc graph. If G is not
a circular-arc graph, it cannot return a circular-arc realizer, as no such realizer exists. The
algorithm may return a circular-arc realizer for a graph that is not G. To check this, we
use the following algorithm.

Algorithm 4.1 Checking whether a circular-arc realizer realizes G.

For each vertex x, look up the arc for each neighbor of x in the adjacency-list represen-
tation of G and verify that it intersects x’s arc. Then count the number of intervals that
intersect x’s interval, halting and rejecting the realizer if the count exceeds the degree of x
mn G.

For the correctness of the recognition algorithm, it suffices to verify only that it returns
a valid realizer when G is a circular-arc graph. Henceforth, we will assume that G is a
circular-arc graph, except in the analysis of the time bound.

Algorithm 4.2 summarizes the approach.

Algorithm 4.2 Constructing a circular-arc realizer.

1. Find an intersection matriz T that can be shown to be realized by some realizer of G;

2. Perform a set of algebraic flips on T to obtain an interval matriz T';
3. Find an interval realizer R' of T';

4. Invert the flips used to obtain T’ from T, but apply them as geometric flips to R'.
This gives a circular-arc realizer R of T.

The fourth subproblem is trivial. We summarize the approach to the other three now,
and give the full details below.

4.1 Finding an intersection matrix that gives the intersection types for
some realizer of ¢

We use Hsu’s characterization of a set of constraints on the intersection types that are
sufficient to get an intersection matrix. Eschen and Spinrad [9] give an algorithm for the
intersection types in O(n?) time when the vertices can be partitioned into two cliques.
We improve this to O(n + m) for arbitrary circular-arc graphs. This requires a sparse
representation of the intersection matrix, consisting of a labeling of the edges of G with the
type of intersection that they represent.

4.2 Finding a set of flips to turn 7" into an interval matrix

With a single flip, we create a vertex vy of degree O(m/n) that has no double-overlap
relationships. All arcs intersecting vy contain exactly one endpoint of vy. Flipping an arc
containing one endpoint of vy makes it contain the opposite endpoint of vy instead. Flipping
all arcs intersecting vy so that they contain the same endpoint of vy would vacate a region
of the circle adjacent to the other endpoint of vg. This would therefore yield an interval
matrix.

While it is possible to do it this way, we find it easier to use the following approach
to vacate part of the circle. We find an interval A of the circle such that all arcs that are
non-neighbors of vy are either contained in A or contain A. Flipping an arc does not affect
the positions of its endpoints. We find the set () of neighbors of vy with an endpoint in
A, and flip them so that they all cover the same endpoint of vg. (See Figures 11 and 12.)
This ensures that one endpoint p of A is uncovered by any arc in (). All other arcs in the
realizer are either disjoint from A or contain A, and these are easy to distinguish using the
intersection matrix. Flipping those that contain A leaves a region of the circle next to p
uncovered.

4.3 Finding an interval realizer of an interval matrix

It is easily seen that if 7" is an interval matrix, G, is a comparability graph: the order of
left endpoints in an interval realizer is a linear extension of a transitive orientation. (See
Figure 4.) Gi, is a comparability graph for the same reason. In an interval matrix, Go
is empty, since a double overlap of two arcs covers the entire circle. Therefore, G, is the

complement of G1,,. Since it also has a transitive orientation, namely D, it follows that
G, and Gy, are complementary comparability graphs, hence permutation graphs.

In [18], an algorithm is given for interval-graph recognition that uses a linear extension
of a transitive orientation of G = G,,. Thus, we can get an interval realizer of G in this
way. Unfortunately, because of the added constraints in the types of intersections imposed
by T, this might fail to be a realizer of T'.

The permutation-graph recognition algorithm of [18] uses the transitive orientation
algorithm to compute linear extensions of transitive orientations D and D’ of a permutation
graph H and its complement H. It then finds the linear orders D U D' and D U (D')T in
linear time, which gives the permutation realizer. Running this algorithm gives a linear
extension of D, and a linear extension of a transitive orientation G1,, and therefore gives a
permutation realizer of G1,. It is easy to see that these two permutations are the order of
appearance of left endpoints and the order of appearance of right endpoints in an interval
realizer of G. But once again, this may fail to be an interval realizer of 7.

The key observation we use is that every realizer of T gives a single orientation of
G1, that is simultaneously transitive in G1, and G,. Finding a transitive orientation of
G1, that is simultaneously transitive in G, further constrains the possible solutions, and
allows us to get the orders of appearance of left and of right endpoints of a realizer of T'.
Interleaving these orders to produce the full realizer is a trivial operation. We show how
the transitive orientation algorithm of [18] can be modified to produce the simultaneous
transitive orientations of Gy, and G,,.

5 Creating an intersection matrix that shares a realizer with
a given circular-arc graph

In this section, we give the implementation of Step 1 of Algorithm 4.2.
Lemma 5.1 Let G be a circular-arc graph, and let X be a cligue module of G.

1. If y is a universal vertex, a circular-arc realizer for G can be obtained from any
circular-arc realizer for G|(V — {y}), in O(1) time.

2. If X is a clique module of G and x € X, an intersection matriz for G can be obtained
from any intersection matriz of G|((V — X) U {z}) in O(|X|) time if X is given.

Proof: To obtain a realizer of G from a realizer of G|(V — {y}), insert r(y) anywhere,
and insert [(y) immediately to the right of it. This causes it to cover the circle, except in
an interval between r(y) and I(y) that has no endpoints of other arcs in it.

Let X = {1, %9,23, ...,z }. A realizer of G can be obtained from a realizer of G|((V —
X) U{z}), by replacing I(z) with the sequence (I(z1), l(z2), ..., [(z})), and replacing r(z)
with the sequence (r(z1), r(z2), ..., 7(zg)). O

The goal of the recognition algorithm is to produce a circular-arc realizer of G if one
exists. We apply the reduction Lemma 5.1 initially to GG, eliminating all universal vertices

10

and all but one vertex from each remaining clique module, to obtain a graph G’. We find
a realizer of G’, and use Lemma, 5.1 to find a realizer of G.

Clique modules are groups of vertices whose closed neighborhoods are identical. The
clique modules are found by creating a list that has directed edges (u,v) and (v,u) for each
undirected edge uv in G, and a loop (z,z) for each vertex, and then radix sorting this list
to obtain sorted closed neighborhood lists for each vertex. Radix sorting the neighborhood
lists makes clique modules consecutive. This takes O(n + m) time.

Thus, we assume in the rest of this section that G has no universal vertices or clique
modules, hence no two vertices have identical closed neighborhoods.

Let T(G) denote the n x n matrix T of labels that is defined as follows:

1. if z and y are nonadjacent then T}, = G,
2. else if N[z] C N[y| then Ty, = D,
3. else if N[y] C N[z] then Ty, = (D.)*

4. else if N[z] U N[y] = V and for each z € N[z] — N]y], N[z] C N[z] and for each
' € Nly] — N[z], N[2'] C N[y], then T;y = G>

5. else Ty = G

Theorem 5.2 [1/] If G is a circular-arc graph with no cliqgue modules or universal vertices,
then T'(G) is the intersection matriz of a circular-arc realizer of G.

Hsu calls a realizer of this matrix a normalized model, and works exclusively with
normalized models. If G is a graph, performing a flip on a vertex in T'(G) yields a new
matrix T” for a graph G', and T’ gives the intersection types of a realizer of G'. Tt is not
necessarily true that 7' = T(G'), so a geometric flip may or may not give a normalized
realizer. The sole significance to us of a normalized model is that it allows us to get an
initial intersection matrix.

A chordal bipartite graph is a bipartite graph with no chordless cycles of length 6 or
greater. Let ny and ns denote the sizes of its bipartition classes. A neighborhood contain-
ment test on two vertices z and y consists of evaluating the expression N(z) C N(y). A
disjoint neighborhood test consists of evaluating whether N(z) N N(y) is empty.

Theorem 5.3 [25] Neighborhood containments tests between between k pairs of vertices in
a chordal bipartite graph can be performed in O(ning + k) time.

Theorem 5.4 [7] Disjoint neighborhood tests between between k pairs of vertices in a
chordal bipartite graph can be performed in O(ning + k) time.

Theorem 5.5 [9]: Let G be an arbitrary circular-arc graph, and let my be a vertez whose
arc contains no other in some circular-arc realizer of G. Let D(N'[my],V, Ep) be a bipartite
graph, where N'[mg] is a copy of N[my], and xy € Ep iff t #y and zy ¢ E. Then D is
chordal bipartite.

11

In the statement of Theorem 5.5 in [9], my is only required to be a vertex of minimum
degree. However, this is only to ensure for the proof that mg’s arc contains no other in
some circular-arc realizer. The proof works without modification for this version of the
theorem.

Theorem 5.6 Let G be a graph and let U C V' such that G|U is an interval graph. Then
it takes O(n+m-+k) time to evaluate N[z]NU C N[y|NU and (N[z]NU)U(N[y|nU) =U
at k pairs {z,y} of vertices such that that y € U.

Proof: Compute an interval realizer of G|U in O(n + m) time [3]. Create a list L of
the left endpoints in the order in which they appear, and a list R of the right endpoints
in the order in which they appear. For each vertex w of G, compute the leftmost right
endpoint L(w) and the rightmost left endpoint R(w) among neighbors of w in the realizer
of G|U. Compute also the leftmost right endpoint L'(w) and the rightmost left endpoint
R'(w) among non-neighbors of w in the realizer of G|U. Computing L(w) and R(w) clearly
takes O(|N(w)|) time. To compute L'(w), mark neighbors of w in the realizer, in O(|N (w)|)
time. Then traverse R from left to right until a right endpoint of an unmarked vertex is
encountered; this is L'(w). R'(w) can be found by a symmetric operation on L. All but one
endpoint encountered in each traversal is a neighbor of w, so this takes O(|N(w)|) time.
Then unmark neighbors in O(|N(w)|) time to reinitialize the realizer. The entire operation
takes O(|N(w)|) time, hence O(n + m) time over all vertices.

For {z,y} such that y € U, N[z]NU C N[y|NnU iff I(y) < L(z) and r(y) > R(x).
(NynU)U (N[z]nU) =U iff I(y) < L'(z) and r(y) > R'(z). O

Theorem 5.7 [9] Let G be a graph and let U C V such that G|U is an interval graph.
Then it takes O(n+m+n|V —U|) time to evaluate N[z)NU C N[y|NU at all pairs {z,y}
of vertices such that x €¢ U andy €V —U.

Nonadjacent pairs always have the same intersection type, so we use a sparse repre-
sentation of the intersection matrix that consists of labeling the edges of G with their
intersection type. The following two theorems suffice.

Theorem 5.8 It takes O(n + m) time to determine that G is not a circular-arc graph, or
else evaluate the following boolean expressions at each edge xy in G:

1. N[z] C Nly] and N[y] C Nla];

2. Nz]UN[y]|=V.

In their conference paper, Eschen and Spinrad give an O(n?) bound, but omit the proof
of Part 2 due to space considerations. However, it is a straightforward variant of the proof
of Part 1. They do not give a tighter bound, presumably because this suffices to get their
O(n?) bound for circular-arc graph recognition. However, it is also straightforward to get
an O(n+m) bound using their methods, if one is interested in evaluating these expressions
only at adjacent pairs of vertices, which we show now.

12

Proof: A vertex of minimum degree satisfies the requirements of mg in Theorem 5.5,
and has degree O(m/n) in G. The size of the bipartite adjacency matrix for the graph D
given by the theorem is O((m/n)n) = O(m). Let U denote V' — N[my).

It takes O(n + m) time to find an interval model of G|U [3].

1. Consider pairs of the form {z,y} C N[mg]. By Theorem 5.3, we may evaluate
NI[G,z] C N[G,y], which is true iff N[y] C N[z]. Using Theorem 5.4, we test whether
the neighborhoods of z and y are disjoint in D, which tells whether N[z]UN[y| =V
in G.

2. Next, consider adjacent pairs of the form {z,y} C U. It takes linear time for all
such pairs to evaluate N[z] N U C Ny] N U, by Theorem 5.6, and linear time to
evaluate N(D,y) C N(D,z) in D, by Theorem 5.3, which gives N|[z] N N[my] C
N[y] N N[myp]. The results of these two tests give N[z] C N[y]. To evaluate N|[z] U
Nly] = V', (N[z] 1 Nlmo]) U (Nly] N Nlmo]) = Nlmo] iff N(D,) N N(D,y) is empty.
By Theorem 5.4, we can compute this for all these adjacent pairs in linear time. We
evaluate (N[z] NU) U (N]y]NU) = U using Theorem 5.6.

3. Pairs of the form {z,y} with z € N[mo] and y € U are handled as in Part 2, except
that N[z] C N[y] must be obtained with Theorem 5.7. Since |N[myg]| is O(m/n), the
time bound is still O(m).

a

Theorem 5.9 [t takes O(n + m) time to determine that G is not a circular-arc graph, or
else evaluate the following boolean expressions at each edge xzy in G:

N[z] UN[y] =V, and for each z € N[z] — N[y], N[z] C N|z].

An O(n?) bound for evaluating this in the special case where the vertices can be par-
titioned into two cliques is given in [9]. (Their circular-arc recognition algorithm works by
reducing the general problem to subproblems of this type.) We need a linear bound for
arbitrary graphs. In the remainder of this section, we give the proof.

A probe interval graph is a graph G = (V, E) and a partition {P, N} of V such that
G|P is an interval graph, U is an independent set, and there is an interval realizer on V
where edges of P x V can be realized with an interval model. There are no restrictions
on adjacencies and nonadjacencies assigned by the realizer among members of N. Such a
realizer of G is a probe interval realizer.

Theorem 5.10 If G is a probe interval graph and the partition {P,N} of its vertices, it
takes O(n + m + n|N|) time to construct a probe interval model.

After we circulated an earlier draft of this paper with a proof of the following Theo-
rem 5.10, it was pointed out that Johnson and Spinrad have shown an O(n?) variant of
it [16]. Our proof of Theorem 5.10 is given in [15], where we also improve the time bound
given by the theorem to O(n + mlogn).

13

Theorem 5.11 Let G be a graph, and let U CV such that G|U is a probe interval graph
with partition {P,N} of U. Given a probe interval model for G|U, it takes O(n+m~+n|V —
P|) time to evaluate N[z]|N P C N[y]|NP at all adjacent pairs {x,y} such that at most one
ofx andy isinV —U.

Proof: The algorithms of Theorems 5.6 and 5.7 can be trivially adapted to the problem,
once a probe interval model R of G|U is available. For Theorem 5.6, compute L(w),
R(w), L'(w) and R'(w) in R|P, and let [(y) and r(y) denote the position of y € U relative
endpoints of P. The test is now identical. An identical adaptation suffices for the algorithm
of Theorem 5.7 given in [9]. O

With these results in hand, let us turn to the problem posed by Theorem 5.9. Flipping
of arcs provides the required reductions. We again assume that G has no clique modules or
universal vertices. Flipping y causes it to lose precisely those neighbors whose arcs, hence
whose neighborhoods, are contained in N[y]. If N[z]UN[y] = V then flipping y and testing
whether its neighborhood is now contained in N|z] tells whether for every z € N[y] — N[z],
N[z] C N[y].

Algorithm 5.12 Build an auzilliary graph for Theorem 5.9.

o Compute neighborhood containments in G and dominating neighbors of the form zy €
G(T) and N[z]U N[y] =V, using Theorem 5.8.

e For each such pair:

— Find one, say, x, with degree at least as large as the other.

— Insert a copy x' into G and make it adjacent to x, thereby making {z,z'} a clique
module.

e Let us call this graph H', and the set of new vertices F. Let R' be the realizer of H'
derived from T(G) by letting each added arc x' € F properly contain its copy x in'V.
(Since we do not know T(G), we define R’ in this way but do not compute it.) Let H
be the circular-arc graph that results from flipping each £’ € F in R'.

e Find a vertex mg that minimizes |[N[H, mo] NV]|.

e Return my, H|V, and the edges of H that go between V and F.
Lemma 5.13 Algorithm 5.12 takes O(n + m) time and |F| = O(m/n).

Proof: The size of H' is O(n 4+ m) and each vertex in F has degree Q(n) in H', so the
size of H is also O(n +m), and |F| is O(m/n). We may spend O(n) time on each member
of F.

The critical observation is that the algorithm does not need to compute R, R', Ry or
edges in H|F in order to be able to return the result. H|V = G, so these edges are already
available. For z € V and ¢y’ € F, let y be the unflipped copy of 3’ in V. Since G has no
clique modules, zy' fails to be an edge of H iff N[G,z] C N[G,y]. N|G,z] C N|G,y] only
if z and y are adjacent in G, so the results of this test are known from the first step of the
algorithm. Since |F| is O(m/n), the time bound follows for these pairs. O

14

Lemma 5.14 Let mg be a vertex of H that minimizes |[N[H,z]NV|. If mg € V, then there
is a realizer R of H such that arc mqg contains no other.

Proof: Recall that G has no clique modules or universal vertices. Let Rg be the
unknown realizer of T'(G) given by Theorem 5.2. Let R’ be the realizer of H' obtained from
R by adding a copy 3’ of each arc y of R that has a duplicate element of F' in H'. To
disambiguate what happens to the relationship of y and 3/ when 4/ is flipped, let us assume
that the endpoints of 3’ have been stretched slightly so that ¢’ properly contains y. In the
circular ordering of endpoints in R’, the endpoints of y and g’ form two consecutive pairs.
Let Ry be the realizer of H obtained by flipping the members of F'.

Let 2’ be an arc such that N[H, 2'|NV = N[H, mg]NV. Since my minimizes N[H, z]NV,
only arcs of this form could be be contained in arc mg in Ry. If 2/ € V', then mg and 2’ are
a clique module of G, a contradiction. Thus, 2’ is the flipped copy of some z € V. Because
of the way the copy of 2’ is created, z and 2z’ are nonadjacent, hence so are mg and z. The
endpoints of z and 2’ make two adjacent pairs in the circular ordering of endpoints in Ry,
so if arc 2/ fails to contain arc mg in Ry, z is a neighbor of m(in G, a contradiction. O

In what follows, we let N[H,z] denote the neighborhood in H of z € VU F in H, and
N|[z] denote the neighborhood in G of z € V.

Let mgy be the vertex returned by Algorithm 5.12. Below, we need for mg to be a
member of V. If mg € F, myg is the twin of some z € V, and each v’ € F is the twin of
some y € V. If z and y are adjacent and N[z]UNJy] = V, then we do not know whether my
and ¢’ are adjacent, since we do not know whether z and y are a Gy or a G relationship.
However, since we already know neighborhood containments among adjacent pairs in V' we
can find out in O(n) time for all z € N[z] — N|y], whether N|[z] C N[z]. Similarly, we can
find for all 2’ € N[y] — N[z] whether N[z] C N[y]. (As we see below, however, this second
test is unnecessary.) Since |F| = O(m/n), all of these evaluations take O(m) time. This
disambiguates G1 and G2 edges incident to =, which gives all edges of H|(V U{m}) and all
edges of H between mg and members of F'—{mg}. At this point, we reset G = H|(V Umy),
V=VU{mey}, F=F —{mg}. We rerun Algorithm 5.12, but this time, there is no need
to insert a copy of mg and flip it, since G already has one. We select the same mg to
return as the first time. It is still true that |N[H,mo] N V| is minimized. Now, mg € V,
and Algorithm 5.12 gives us H|V and edges of H from V to F. By Lemma 5.14, my’s arc
contains no other arc in some realizer of H.

Let X = N[H,mo]NV,Y = N[H, my] N F. Define bipartite graphs D; (X UY,V) and
Dy(X,V U F) as described in Theorem 5.5. The edges of H that are required to compute
each of these are now available. Fach must be chordal bipartite, as they are induced
subgraphs of the unknown chordal bipartite graph on H defined by Theorem 5.5.

For each pair z,y such that N[z] U N[y] =V, at least one of z and y has a copy in F.
Suppose without loss of generality that y has a copy ¥’ in F. Suppose N[z] U N[y] =V. If
for some z € N[z] — Ny], N[z] ¢ N|[z], then z has a neighbor that z does not have, and
this neighbor must be a neighbor 2’ of y that z does not have. Since N[z]U N[y] =V,
this implies that 2’ € N[y] — N[z], and N[2'] ¢ NJy], since 2z’ has a neighbor, z, that y
does not have. Testing for all z € N[z] — N[y|] whether N[z] C N|z] suffices for the the
seemingly stronger requirement of the fourth condition in the definition of T'(G), where the

15

condition on 2z’ is redundant. But the non-neighbors neighbors of y in V' are exactly the
neighbors of 3’ in V' whose neighborhoods in V' are contained in 4. The condition is true
iff N[H,y'|NV C N[H,z]NV.

Thus, for Theorem 5.9, it remains to find for each {z,4'} with z € V and ¢/ € F whether
N[H,y|NV C N[H,z]NV.

Algorithm 5.15 Ewvaluate N[H,y'| NV C N[H,z] NV for each adjacent pair xy' in H
withz €V andy € F.

Let X = N[H,mg]NV and Y = N[H,mo]NF. Note that H|(V — X) = G|(V — N[my))
s an interval graph.

Break the problem into two parts: N[H,y'|NX C N[H,z]NX and N[H,y]N(V -X) C
N[H,z]N(V — X).

Casel :zeV-X,y €Y

a: N[H,y]n(V—-X)CN[H,z]n(V — X): Apply the algorithm of Theorem 5.7.
b: N[H,y'|NX C N[H,z]NX: Apply the algorithm of Theorem 5.8 to Ds.

Case2 :z€V-X,yeF-Y

a: N[H,y]n(V—-X)CN[H,zln(V — X): Apply the algorithm of Theorem 5.7.
b: N[H,y|NX C N[H,z]NX: Apply the algorithm of Theorem 5.3 to Ds.

Case 3 :ze€ X,y €Y
e N[H,y|NV C N[H,z]NV: Apply the algorithm of Theorem 5.3 to D;.
Cased :z€ X,y e F-Y

a: N[H,y|NX C N[H,z]NX: Apply the algorithm of Theorem 5.3 to Ds.

b: N[H,y|n(V — X) C N[H,z]N(V — X): Hy = H|((V - X)U(F —Y)) is an
interval graph, since a realizer of H fails to cover mg. Let Hp be the probe
interval graph obtained by omitting edges of H|(F —Y) from Hy. Build a probe

interval model for Hp using the algorithm of Theorem 5.10. Apply the algorithm
of Theorem 5.11 on H|((V U (F —-Y)), usingU =(V - X)U(F -Y).

For the time bound, the matrices D; and Dy have O(m) entries each, since | X UY| is
O(m/n). Theorem 5.3 gives a linear bound for the cost of handling pairs in cases 1b, 2b,
3, and 4a. |Y| and |F — Y| are each O(m/n), so Theorem 5.7 gives a linear bound for cases
la and 2a, Theorem 5.10 gives a linear bound for building the probe model for case 4b,
and Theorem 5.11 gives a linear bound for performing the neighborhood containment tests
required for Case 4b.

This completes the proof of Theorem 5.9. By Theorems 5.5 and 5.9, we get the following
summary, which completes the time bound of Step 1 of Algorithm 4.2:

Theorem 5.16 If G is a circular-arc graph, it takes O(n+m) time to to find an intersec-
tion matrixz for a realizer of G.

16

a e

f S

b < d g
Interval redizer R

a a a
[J
b c b ¢ be_ S, ¢
d o€ d o€ doe o€
° ° — =0 ././
f g f g f g
Orientation of G, Orientation of Gy, D¢ (containmentsin R)
induced by R induced by R

Figure 4: An interval orientation of an interval matrix is an orientation of the non-
intersections (Gy) and the union of non-intersections and single-endpoint overlaps (Giy)
that is given by the relative order of two arcs in a realizer. The orientation of G, is a subset
of the orientation of G,; both orientations are transitive. The complement of G1,, G,
also has a transitive orientation, D., which is determined by which interval is contained in
which. The union of D, and the the interval orientation of G, is a linear order, which
gives the order of right endpoints of R. The union of (D.)? and the interval orientation of
G1, gives the order of left endpoints. R can be obtained from an interval orientation by
interleaving these orders of left and right endpoints.

6 Finding an interval realizer of an interval matrix

In this section, we give the implementation of Step 3 of Algorithm 4.2.

When T is an intersection matrix from some realizer R of (G, it is not the case that
every realizer of GG realizes T'. This is because its partition of edges of G into D., G1, and
G5 relations given by another realizer of G may not be faithfully reflected by the types of
intersections in T'. Therefore, T" places additional constraints on possible realizers that G
does not, and not all realizers of G satisfy the requirements of Step 3.

Let T be an interval matrix and R be an interval realizer of T. If ab € G1,, let us
say that a precedes b in R if l[(a) < I(b), even if they overlap at one endpoint. (Because
ab € Gy, this happens iff r(a) < r(b).) Let the interval orientation of Gy, given by R be
the orientation of its edges such that for each edge ab € G1,, (a,b) appears as a directed
edge in the orientation iff a precedes b in R. (See Figure 4.) Then R realizes the orientation.
An interval orientation of Gy, is any orientation of Gy, that has an interval realizer. An
interval orientation T' of T is obtained by replacing elements of T labeled G| with D or
(D1)?, elements labeled G, with D, or (D,)", so that the elements labeled D1 and D,, give
an interval orientation of G1,, and the elements labeled (D1)” and (D,)” are its transpose.
In this case, we say that R is a realizer of T".

17

An interval orientation of G1,, gives a simultaneous transitive orientation of both G,
and of G1,,. To see why, note that if ab,bc € G,,, then a and b are nonadjacent and b and
¢ are nonadjacent. If a comes before b in a realizer and b comes before ¢, then a and c are
nonadjacent, and a comes before ¢, providing a transitive edge (a,c) for the orientations
(a,b) and (b, c) given by the linear extension. A similar argument applies to G1,.

Therefore, G,, and G4, are comparability graphs. In an interval matrix, G5 is empty,
so G, is the complement of Gy,. G, is also a comparability graph, since it has D, as a
transitive orientation. Since G, and G4, are complementary comparability graphs, they
are permutation graphs.

Below, we show that it is easy to construct a realizer if an interval orientation of the
interval matrix is given. Thus, we reduce the problem of finding an interval realizer of
an interval matrix to that of finding an interval orientation of the matrix. This has the
advantage that it allows us to apply tools and concepts that were developed for the transitive
orientation problem.

A module of a graph can be viewed as the result of a substitution operation that is
depicted in Figure 5. As we mentioned in Section 2, the edges that are internal to a module
in a comparability graph may be oriented independently of those that are not when one
wishes to compute a transitive orientation. (One must be careful not to create directed
cycles among edges internal to different modules, however.) The modules completely specify
the sets of edges that can be oriented independently of others [11, 12, 20]. There is a
structure that has an analogous role in the problem of finding interval orientations of Gy,
and which we will call A modules.

To get an intuitive notion of a A module, let us define an operation on interval realizers
that is analogous to the substitution operation on graphs, and which is depicted in Figure 6.
A modules are always modules of the interval matrix for the set of intervals that result
from the substitution operation. However, not all modules of the interval matrix are A
modules. An example of this is given in Figure 7. The A modules completely specify the
sets of edges that can be oriented independently when computing interval orientations, just
as modules do this for transitive orientations.

6.1 Basic tools

Let the mirror transpose RT of the ordered-list representation of R be the result of reversing
the list and swapping the roles of left and right endpoints. It is what is seen if the realizer
is held up to a mirror. If the interval graph represented by R is complete, then all left
endpoints precede all right endpoints. In this case, let the sandwich transpose, R, denote
the result of reversing separately the order of the left endpoints and the order of right
endpoints, without swapping their roles. The next two lemmas are obvious.

Lemma 6.1 Suppose an interval realizer R realizes the containment relation D, and the
interval orientation Dy, of Giyn. Then:

1. RT realizes D, and (D1,)"

2. If R realizes a complete graph, then R® realizes (D.)T and (D1,)T.

18

A B
W X . X
—
Gl ®
z y>
62 a
b e Z
€4
C D
W X . X
G1 =
zy
[]

®
b C\d. —_— z

Figure 5: A module of a graph can be viewed as the result of a substitution operation on two
graphs G1 and G,, where a vertex y of G is replaced with G5. The edges between vertices
of G2, and between the remaining vertices of G1 are unaffected, and an edge is installed
between a vertex v in Go and a remaining vertex u of G if u and y are adjacent in G;. The
vertices of G2 become a module in the composite graph. Figure B depicts the result of the
operation on the two graphs of Figure A. Figure C depicts transitive orientations of G; and
Go, while Figure D illustrates that a substitution of transitively-oriented graphs produces
a transitively oriented graph. Figure E shows that reversing the transitive orientation of
G, produces a new transitive orientation of the composite graph that differs only in the
orientations of edges internal to the module. In general, a graph with nontrivial modules
can be viewed as the result of a substitution operation on smaller graphs, so the modules
indicate the sets of edges that can be oriented independently of other edges when computing
a transitive orientation of a graph.

19

Rit uwuxyzzwyxX

R2: abcdachbd

Ry uwulabcdlyzzwylachd]
(Substitution of R, for xin R 1)

Edge types:

—= Containment

Ry: uwuxylabcdacbdjwyz

(Substitution of R, for zin R) T Overlap

------- Non-intersection

Figure 6: An interval realizer can be represented with a string with two letters in each
string, as illustrated by R;. The edge-labeled graph representing the associated interval
matrix is shown to the right, with the labels given according to the legend. Rj3 is the result
of substituting Ry for x in Ry, by replacing the left endpoint of « with the left endpoints of
intervals in Ry and the right endpoint of z with the right endpoints of intervals in Ry. A
requirement when the two endpoints of z are not consecutive in R; is that all left endpoints
of Ry all precede all right endpoints in Ro, hence the interval graph represented by Rs is
a clique. Note that Ry becomes a module in the resulting interval matrix. A second
substitution operation that does not require Ry to represent a clique is illustrated by Ry; a
requirement of this substitution operation is that the two endpoints of the replaced interval
in R; are consecutive. Rs once again becomes a module in the resulting interval matrix,
which is not depicted. A A module is a module of an intersection matrix that can result
from one of these two allowed substitution operations. In either case, reversing the interval
orientations of edges of Ry before performing the substitution results in a new interval
orientation of the final matrix. Thus, the A modules give sets of edges that can be oriented
independently of other edges when computing an interval orientation of an interval matrix.

20

.
° N a ae<--—--eb

“m=== G4 (proper overlap)
-------- Gy (non-intersection)

Figure 7: Not all modules of an intersection matrix are A modules. The module {a, b} of the
intersection matrix cannot be the result of either of the substitution operations described in
Figure 6. The only two possible realizers and the interval orientations they induce illustrate
that the orientations of edges internal to a non-A module cannot be oriented independently
of other edges when computing an interval orientation.

Lemma 6.2 If R is an interval realizer on the circle that realizes a complete interval graph,
then flipping every arc in R yields RS.

Lemma 6.3 If T is an interval matriz, then for any interval orientation, there is exactly
one realizer.

Proof: There must be at least one realizer by the definition of an interval orientation. It
remains to show that there is only one.

Let a and b be two distinct vertices. If ab € G1,, l(a) < I(b) and r(a) < r(b) iff (a,b) is
the orientation of ab in the interval orientation. If ab € G, then [(b) < I(a) and r(a) < r(b)
iff (a,b) € D.. Since the intersection matrix is an interval matrix, ab ¢ Go2. The relative
order of left endpoints is uniquely constrained by D, and the interval orientation, and so
is the relative order of right endpoints.

Let us now examine the relative order of pairs consisting of one left endpoint and one
right endpoint. Let = and y be two vertices. If z = y, then [(z) < r(y). Otherwise, suppose
without loss of generality that I(z) < I(y). Then r(z) < I(y) iff zy € Gy, and I(y) < r(x)
otherwise. The relative order of all pairs consisting of one left endpoint and one right
endpoint are uniquely constrained. O

6.2 A TI'-like relation
Let us define an analog A of the I" relation for the problem of finding an interval orientation

instead of just a transitive orientation. (The I' relation involves two edges joined at one
end, resembling the letter ', while A involves three relationships that make a triangle.)

21

Let I';, denote the I relation on G, let I'; denote the I' relation on G4, and let I'y,, denote
the I" relation on Gy,,.

Definition 6.4 Let {a,b,c} be three vertices. Then (a,b)A(a,c) and (b,a)A(c,a) if one of
the following applies:

e (a,b)T,(a,c) (ie. ab,ac € G, and bc € G1.);
e (a,b)T'1,(a,c) (i.e. ab,ac € Gy, and be € G.);

e ab e G, and bc,ac € G1.

Let us call the last of the conditions in the definition of I' a straddle relationship, since
the edges ac,bc € G; “straddle” edge ab € Gj,.

By analogy to I', we let the A implication classes be the equivalence classes of the
transitive symmetric closure of A, and the A color classes be the union of each equivalence
class and its transpose.

Theorem 6.5 FEvery interval orientation of Gi, in an interval matriz consists of one A
implication class from each A color class.

Proof: For every edge ab € Gy, exactly one of (a,b) or (b,a) appears in any interval
orientation. An interval orientation is a transitive orientation of Gy, so if (a, b)I',, (a, ¢) then
both or neither appear in any transitive orientation of I';,. It is also a transitive orientation
of Gy, so if (a,b)['1,,(a, ¢) then both or neither appear in any transitive orientation of I'y,.
If (a,b)A(a, ¢) by the straddle condition, with ab € G,, and ac, bc € G, then a and b contain
opposite endpoints of ¢ in any interval realizer. The order of left endpoints must be (a, c, b)
or (b,c,a). Either both or neither of (a,b) and (a,c) appear in any interval orientation. O

We now show that A has the same dual relationship with a certain family of subsets
of V as I has with modules of a graph. We will call this family the A modules. Every
A module is a module, but some modules are not A modules. Like the set of modules,
the A modules have a decomposition tree where every node is prime or degenerate, and
where a set is a member of the family iff it is a node of the tree or a union of children of a
degenerate node. The tree is not the modular decomposition tree, however. Just as in the
case of I', the spans of the equivalence classes induced by A are nodes of the tree and pairs
of children of degenerate nodes.

Definition 6.6 Let T' be an interval matriz. Let U(T) denote the matriz obtained from T
by replacing each instance of D, or (D) with G, thereby “unorienting” the directed edges
in D.. Let us say that a set M of vertices overlaps a set E' of edges of T if T|M contains
some members, but not all members, of E'. A module of T or of U(T) is a A module if
it is a module that is a cliqgue of G(T), or else a module X such that for noy € V— X,
{y} x X - Gi.

It is well-known that no module of a graph overlaps a I' color color class [12]. The
following is an analogous result about A modules and A color classes:

22

Lemma 6.7 No A module overlaps a A color class.

Proof: A module M of U(T) is a module of G,, and a module of Gy,. Therefore, it
cannot overlap a pair of edges that are related by the first two conditions of the definition
of A. For the third condition, M must be a module of G;. If it contains {a,c}, it must

contain {b,c}, which implies that it contains {a,b}. If it contains {a,b}, then it is not a
clique. If c € V — M, then {c} x M C Gy, and it is not a A module of U(T). O

Definition 6.8 A family F of subsets of a set V is a tree-decomposable family if it
satisfies the following properties:

1. V and the members of {{x} : z € V} are members of F.

2. Overlap closure: If X and Y are properly overlapping members of F, then X UY,
XNY, X-Y,Y-X, and (X -Y)U(Y — X) are members of F.

The strong members of F are those members that properly overlap with no other mem-
ber of F.

Theorem 6.9 [21, 22, 5, 6] If F is a tree-decomposable family, then the transitive reduction
of the containment relation on strong members of F is a tree. There is a unique way to
label the nodes of this tree prime and degenerate so that a set is a member of F iff it is
a node of the tree or a union of children of a degenerate node.

Let us call this tree the tree decomposition of 7. The modular decomposition of a
graph or matrix is just the tree decomposition of its modules, which are a tree-decomposable
family.

Theorem 6.10 The A modules of U(T) are a tree-decomposable family.

Proof: The modules of a symmetric matrix are a tree-decomposable family [5, 6]. Let X
and Y be overlapping A modules. Since they are modules, X UY, X NY, X -Y,Y — X,
and (X —Y)U (Y — X) are modules. If X and Y are both cliques of G(T'), then vertices
in X —Y have edges in G(T') to X NY, hence to all of Y. X UY is a clique, so all modules
that are subsets of X UY are A modules, and the claim holds.

Otherwise, suppose without loss of generality that X is not a clique. Then there exists
no vertex w € V' —X such that {w}xX C G;. If XNY isa clique, it is a A module. If XNY
is not a clique, then neither is Y, so there exists no w € V —Y such that {w}NY C G;. It
follows that there exists now € V — (X NY) such that {w} x (XNY) C Gy, and X NY is
a A module in this case also.

If X —Y is a clique, it is a A module, since it is a module. If X —Y is not a clique, then
since X is a A module, any w € V — (X —Y) such that {w} x (X —Y) C G must reside in
XNY. Suppose such a w exists. Since w resides in Y and Y is a module, (X -Y)xY C G;.
For w' € Y — X, {w'} x X C Gy, a contradiction, since X is a A module.

23

Modular
decomposition

a b e d
u(T)
abecde Prime Delta tree
al*1 1 nn
b/l * 1 nn G G
cl11*1a 1 e c
dinn1l?*c¢c
elnnlcf*®*
a b e d

Figure 8: An interval realizer, U(T'), the modular decomposition of U(T'), and the A tree
AU(T)).

IfU=(X-Y)U(Y — X) is a clique, it a A module, since it is a module. Otherwise,
any vertex w € V — U such that {w} x U C G must lie inside X, since X is a A module.
Therefore, w € X NY. Since X is a module and (Y — X) x {w} C Gy, (Y —X) x X C G;.
(X=Y)U(Y — X) can only fail to be a clique if X —Y or Y — X fails to be a clique. Suppose
X —Y fails to be a clique. Then X fails to be a clique. (Y — X) x X C G; contradicts the
assumption that X is a A module. O

Definition 6.11 Let us call the tree decomposition of U(T) the Delta tree of U(T), and
denote it A(U(T)).

Just like the modular decomposition, A(U(T)) tree be represented in O(n) space by
creating a node of size O(1) to represent each node A(T), and giving each node a label
to indicate whether it is prime, G,, degenerate, G; degenerate, or linear, as well as a list
of pointers to its children in the transitive reduction of the containment relation. The set
U represented by a node can be retrieved in O(|U]) time by visiting its leaf descendants,
so there is no advantage to labeling a node with a list of its members. Figure 8 gives an
example.

The following Theorems 6.12, 6.13, and 6.14 show that A modules satisfy the remaining
properties of a class of set system described by Moehring in [21, 22]. In a forthcoming paper,
we will deal with similar properties of A modules on T' and on an interval orientation Dy
of T, as well as algorithmic applications of their decomposition tree.

24

Theorem 6.12 If X is a A module of U(T) and Y is a subset of X, then'Y is a A module
of U(T) iff it is a A module of T|X.

Proof: If Y is a clique, the claim holds because of the corresponding theorem about
modules of a matrix [5, 6]. If Y is not a clique, then neither is X, and since X is a A
module, there exists no y € V — X with an edge of G; to any member of X, hence to any
member of y. Then Y fails to be a A module in U(T') iff there exists y € X —Y with G;
edges to Y, which also determines whether it is a module of U(T")|X. O

Theorem 6.13 If X is a A module of U(T) and Y C V intersects X, then X NY is a A
module of U(T)|Y .

Proof: The analogous theorem for modules of a matrix is given in [5, 6]. Thus, X NY
is a module of U(T")|Y. X can only fail to be a A module of U(T')|Y if X NY is not a
clique and there exists w € Y — X such that {w} x (X —Y) € G;. But this would imply
that X is not a clique in U(T) and {w} x X € G; in U(T'), contradicting X’s status as a
A module in U(T). O

Theorem 6.14 If P is a modular quotient on U(T) consisting of A modules of U(T), and
P' C P, then P' is a A module of U(T)/P iff UP' is a A module of U(T).

Proof: By Lemma 6.7, if |JP' is a A module, then there is no straddle relationship
containing edges of U(T")||J P’ and other edges. By Theorem 6.13, applied to the submatrix
induced by one representative from each member of P, this is also true of P’ in U(T)/P.
On the other hand, if P’ is a A module in U(T')/P, then there exists y € V — |JP’ such
that {y} x UP' € G; iff this is true for P’ in U(T')/P. If there exists such a y, then P’ is
a clique of U(T)/P, and P’ can only fail to be a module if it fails to be a clique. This
would imply that there is some X € P’ that is not a clique. But because y € V — X and
{y} x X C G, this would contradict the assumption that X is a A module. O

Lemma 6.15 The set of vertices spanned by a A color class in an interval matriz T is a
A module of U(T).

Proof: (G5 isempty in T, since T is an interval matrix. Let S be the set of vertices spanned
by a color class C. Suppose that S is not a module. Then there exists z € V — S that has
different relationships in 7' to members of S. C is connected, as only coincident edges are
related by A. Therefore, x has different relationships between two vertices y,z € S such
that yz € C. At least one edge from z to {y, z} is an edge of G1,,; without loss of generality,
suppose that zy € G1,. If xz € G, then (z,y)T'1,(z,y), and zy € C contradicting z’s non-
membership in S.

Therefore, zy and zz are edges of G1,. Without loss of generality, suppose zy € G
and zz € G,. If yz € Gy, then (z,2)[',(y, 2), and we again get the contradiction z € S. If
yz € Gy, then (y,z)A(z, z) by the straddle rule, and again, we get the contradiction z € S.
Since z does not exist, we conclude that S is a module.

25

Suppose that S is a module that is not a A module. Then it is not a clique, and there
exists w € V — S such that {w} x § C Gj. Suppose there exist s1,s2 € S such that
$189 € G, and s189 € C. Then (w, s1)A(s2, s1), and w is among the vertices spanned by C.
Then Lemma 6.7 contradicts our demonstration that .S is a module. Otherwise, C' consists
exclusively of edges of G1, and there exist s3,s4 € S such that s3ss € G, and s3s4 is in a
different color class C'. Let P = (s3 = x1,%2,...,Tx = $4) be a simple path in C from s3
to s4. Since s3s4 is in a different color class from edges on the path, and the edges on the
path are edges of (1, it follows by induction on ¢ that syz; € G, and s4x; is a member of
C' for each i from 1 to k — 1. But this contradicts syzr_1 € G1. O

Theorem 6.16 A set of edges of Gy, is a A color class iff it is the set of edges of G1p
connecting children of a prime node in the A tree of U(T) or the set of edges of Gy,
connecting a pair of children of a degenerate node. If X and Y are two children of a node

of the tree, then no A implication class contains both directed edges in X XY and directed
edges in'Y x X.

Proof: Let uw be an edge of Gy,,. If uw connects two children of a prime node A, then
all A modules that contains u© and w contain A. The color class C containing uw must
span A by Lemma 6.15. C cannot span a larger set or contain edges that are internal to
a child of A, by Lemma, 6.7, and the claim follows for C. If uw connects two children B
and Bs of a degenerate node, an identical argument applies.

For the claim about the orientations of edges between X and Y, suppose first that X
and Y are two children of a degenerate node Z. If Z is a G, node, the claim is vacuous.
Otherwise, suppose that a,b € X and ¢ € Y such that (a,c) and (c,b) are in one implication
class. Let A and B be the partition of X such that A x {c} and {c} x B are in the same
implication class. If Z is a GG, node, then by transitivity of orientations of GG,, in interval
orientations, A x B C Gy, and BUY is a A module of U(T'), contradicting X’s status as
a strong A module. If Z is a G; node, then X and Y are cliques of G(T'). By transitivity
of interval orientations of Gi,, A x B C G1, and BUY is a A module, which is again
a contradiction. If Z is A prime, then by Theorem 6.14, the submatrix induced by one
representative vertex from each child of Z has only trivial modules. The orientation of an
edge of this substructure cannot be reversed in an interval orientation without reversing all
edges in it. If a is the representative of X and c is the representative of Y, then replacing
a with b gives an interval orientation of an isomorphic submatrix that differs only in the
orientation of a single edge, a contradiction. O

Lemma 6.17 Let x be a source or sink in some interval orientation of Gi,, and let P
denote {z} and the mazimal modules of U(T) that do not contain x. Then every member
of P is a A module.

Proof: Suppose M is a member of P that is not a A module. Then M is not a clique of
G(T), and there exists y € V — M such that {y} x M C G;. Let s1,s2 be two nonadjacent
vertices of M, and assume that s;’s right endpoint precedes s3’s left endpoint in a realizer
where z is a source or sink. There exists a sequence (z = z1,T2,...,z = y), with k& > 1,
such that for each ¢ from 1 to k — 1, z; € V — M and has a different relationship to x;41

26

from the relationship it has to M. Since z is a source or sink and has the same relationship
to s1 and s9, it can have no endpoint between s;’s left endpoint and ss’s right endpoint.
By induction on ¢, the same is true for each z; in the sequence. But s; and so properly
overlap x; = y, a contradiction. O

Lemma 6.18 Let T be an interval matriz, R be an interval realizer of T, and D1, be the
interval orientation assigned to G, by R.

1. IfY is a node of A(T) that is a clique of G(T), the left endpoints of Y are consecutive
in R and the right endpoints of Y are consecutive in R.

2. If Z is a node of A(T) that is not a clique, the endpoints of Z are consecutive in R.

Proof: The lemma follows almost immediately from Theorem 6.16. For Part 1, the left
endpoints of Y precede the right endpoints of Y, since it is a clique. Let x €¢ V — Y. If
{z} xY C D,, then the endpoints of x lie between the left endpoints of ¥ and the right
endpoints of Y. If {z} x Y C (D.)T, then the left endpoint of x precedes all endpoints
of Y, and the right endpoint of z follows all endpoints of Y. If {z} x Y C Gy, then z is
disjoint from all intervals in Y. If {z} x Y C G;, then, by Theorem 6.16, one endpoint of
z lies in the common intersection of intervals in Y, and the other is disjoint from them;
otherwise the interval orientation would contain a mixture of directed edges from = to YV
and from Y to z. Since z is an arbitrary member of V' — Y, no endpoint of a non-member
of Y appears among left endpoints of Y or among right endpoints of Y.

For Part 2, if Z is not a clique, then it has no incident overlap edges, since it is a node of
A(U(T)). If there existed z € V — Z such that {z} x Z C D,, this would force all intervals
in Z to contain both endpoints of z, making Z a clique. Thus, for every z € V — Z,
Z x{z} C D.or Z x{z} C Gy. In either case, = does not have any endpoints between two
endpoints of Z. O

Theorem 6.19 Any acyclic union of implication classes gives an interval orientation of
Gin inT.

Proof: If W is a node of the Delta tree, then by Lemma 6.18, the endpoints of intervals
realizing W in any interval realizer can be replaced with their mirror transpose. This
reverses the orientations of edges of G, in the interval orientation that the realizer gives.
Repeating this operation on the children leaves the net effect of reversing the orientations
of edges that go between children of W.

If A and B are two consecutive children in the interval orientation that a realizer assigns
to a a degenerate node C' labeled G, or 1, then either all endpoints of A are consecutive and
followed immediately by the consecutive endpoints of B, or the consecutive left endpoints
of A are followed immediately by the consecutive left endpoints of B, and the consecutive
right endpoints of A are followed immediately by the consecutive right endpoints of B. The
orientation of edges between A and B can be inverted without affecting other orientations,
by swapping the relative order of these groups of endpoints. By a sequence of such swaps,
an arbitrary permutation of children of C' can be induced.

27

By Theorem 6.16, all acyclic unions of implication classes can be obtained by a series
of these swaps. By Lemma 6.7, this gives all interval orientations of Gy, in T. O

Johnson and Spinrad have independently developed an idea that is related to the A tree.
Their tree, which they call an MD-PQ tree, has 2n leaves instead of n leaves, and each leaf
represents an endpoint of an interval in a realizer of G, rather than a vertex. The set of
permutations of the leaves represented by a set of allowable reorderings of children of nodes
on the tree represents all realizers of GG, rather than realizers of an intersection matrix. We
jointly give a definition of a A tree on 7T in [15] that allows us to obtain Theorem 5.10, as
well as a variant of the theorem that gives a linear time bound.

6.3 An algorithm for finding a realizer of an interval matrix

Given an interval orientation of an interval matrix in the form of a linear extension of the
orientation of Gy, it is easy to find the corresponding interval realizer in linear time. The
union of D, and the orientation of Gy, is a linear order on the vertices, and gives the
order of right endpoints of the intervals, since if z is a vertex, the vertices with earlier right
endpoints are those that are either predecessors in the orientation of Gy, or vertices whose
interval is contained in z’s interval. Similarly, the union of (D.)T and the orientation of
G1y, is also a linear order, and gives the order of left endpoints of the intervals.

Let P be the given linear extension of the interval orientation. To find the left-endpoint
order L of vertices given by the union of (D.)” and the interval orientation of Gy,, we
find the position of each vertex z in L. This is obtained by adding up the number 7, of
predecessors of = in D., the number n; of neighbors of in G; that are predecessors in
the orientation of Gy,, and the number n,, of neighbors of z in the orientation of G,, that
are predecessors in the orientation of Gj,. The first two of these can be easily found in
O(1 + N(G(T),z) time. Let p(z) be the position of z in P. We find n, by evaluating
nn, = (p(z) —1) — (nc+mn1). Doing this for all vertices takes time proportional to the sum of
degrees of the vertices in G(T'), or O(n +m) time. This is essentially the trick used in [18]
for finding a realizer of a permutation graph, given transitive orientations of the graph and
its complement.

We can create the full realizer by zipping these two permutations together in a way
that reflects the adjacencies of each vertex. Let wvi,vs,...,v, be the vertices in left-to-
right order of right endpoint. We place the right endpoint among the left endpoints
(I(v1),l(v2), ..., l(vy)), starting with r(v1), and working up through r(v,), placing r(v;)
in the first position that is both to the right of r(v;—1) and to the right of the rightmost
left endpoint of neighbors of v;.

Finding an interval realizer of an interval matrix therefore reduces to finding a linear
extension of an interval orientation. Let us consider the difficulty of finding whether an
orientation of G, given by a linear extension is an interval orientation. The currently
known O(n?) algorithms for transitive orientation fail to recognize that the result that
they produce is not transitive when the input graph is not a comparability graph. The
resulting orientation always contains a pair (a,b), (b, c) of directed edges such that there is
no edge ac. Such a pair is inconsistent with the I' constraint. The difficulty of recognizing
comparability graphs lies in the difficulty of finding such a pair when one exists.

28

In this paper, we use a variant of the O(n + m) transitive orientation algorithm of [18]
to produce an orientation that is consistent with A if the matrix is an interval matrix. For-
tunately, though A resembles I', we can quickly detect whether some pair of directed edges
in an orientation is inconsistent with A (or with the containment relation) by constructing
an interval realizer of it, and verifying that the realizer realizes T'.

We have given an algorithm for finding an interval realizer from a linear extension of an
interval orientation. The problem reduces to finding such a linear extension. We now give
an algorithm for this that is based on the transitive orientation algorithm of [18], which
uses the I relation to constrain the orientation it produces. We adapt the algorithm to use
the A relation instead of the I' relation to constrain the orientation.

Let (X1, X9,.... W, ..., X;—1,Y, Xi11, ..., Xx) be an ordering of partition classes on ver-
tices of T. (A requirement is that W # Y). Let w € W, let Y, = N(G,,w) NY,
Y1 = N(G1,w)NY, and Y. = N(G.,w) NY. A pivot on Y with pivot vertezr w consists
of the following refinement of the partition: (X1, Xo, ..., W, ..., X;-1, Yo, Y1, Yy, Xiy1, -,
X). If W is later than Y in the ordering, a symmetric operation also constitutes a pivot:
(Xl, XQ, ceey Xifl, Y, Xi—|—1: W, “eey Xk) becomes (Xl, X2, “eey Xifl, Yn, Yl, Y'c, Xi—}—l, “eey
W, ..., Xx). (Notice that the order of Y,,, Y1, Y,, is reversed.) We assume that if Y., Y7, or
Y, is empty, it is removed from the refinement. Thus, the refinement is not necessarily a
proper one, since as many as two of them might be empty. Finally, let us also allow a pivot
to fail to separate Y, and Y7 or Y7 and Y, leaving their union in the spot in the ordering
that would otherwise have been occupied by the two sets. This is a lazy pivot.

This definition is based on the pivot of [18], which divides Y into N (w)—Y and N(w)NY.
We have defined a lazy pivot on T to help with a reduction to pivoting on G, and G, that
we use below: a pivot in G, or Gy, is a lazy pivot in T'.

We will say that an ordering of partition classes on the vertices is consistent with an
interval orientation of T if all edges of G'1,, that go between two partition classes are oriented
from an earlier to a later class.

Lemma 6.20 Let T be an interval matriz.

1. If a sequence of partition classes on vertices of T is consistent with some interval
orientation D of Gi, in T, then they remain consistent with D after a pivot.

2. Let X be the rightmost class in a sequence of partition classes before a pivot, let X' be
the rightmost class after a pivot and let x € X'. If there exists an interval orientation
D' of G1y, where all edges of D' between V — Xand{z} are oriented toward x, then
all edges of D' between V — X' and {x} are also oriented toward x.

Proof: For Part 1, let ab be an edge of G1,, such that a occurs in a class that is earlier in
the sequence (Y, Y1,Y,,) than b does. Ifa € Y, and b € YUY, then (a, b)T'1,, (w, b), implying
(a,b)A(w,b). Suppose a € Y7 and b € Y,,. Then if ab € Gy, (a,b)Ty(w,d), implying again
that (a,b)A(w,b), and if ab € Gy, then (a,b)A(w,b) by the straddle condition.

If w is to the left of Y, then (w,b) and (w,a) are directed edges in D, hence so must
(a,b). The classes are ordered so that a is in an earlier class than b is, and (a, b) is oriented

29

from an earlier to a later class in the ordering. If w is to the right of Y, then (b,w) and
(a,w) are directed edges in D, and (b, w)A(b,a) or (a,w)A(b,a), so (b,a) is also a directed
edge in D. The classes are ordered so that b is in an earlier class than a is, and the classes
are again ordered so that the orientation (b, a) points to the right. Since ab is an arbitrary
edge whose endpoints were split into two classes by the pivot, the condition of Part 1
remains true after the pivot if it was true before.

For Part 2, the proof is identical, except that D’ takes the place of D, X takes the place
of Y, x takes the place of b, and the pivot w is to the left of X. O

This gives the following algorithm for interval orientation of an interval matrix, which
was originally given as a transitive orientation algorithm in [19], using a lemma analogous
to Lemma, 6.20 for the transitive orientation problem.

Algorithm 6.21 Orient(T) finds an interval orientation of an interval matriz T, using
recursive vertex partitioning.

Partition (T,P')
While there exists Y € P that is not a module

Perform a pivot that splits Y
Return P’

RPartition (T) // v is a vertez; vertices are numbered

Let P = (V)

While not every partition class in P is a singleton set
Let Z be non-singleton class of P
Let P’ be an arbitrary (“capricious”) partition of Z
Z :=Partition (T|Z,P")
Substitute Z for Z in the ordering on P

Return the ordering of V' given by P

HighLowSplit(T')
Select v to be the highest-numbered vertex in T

Return ({v},V(T) — {v}).

HighLowR Partition(T)
Run RPartition(T'), but each time a capricious partition of a set
is required, use HighLowSplit

Orient (T')
Number the vertices in any order
Run HighLowRPartition (1) to get an ordering of the vertices
Number the vertices in left-to-right order in this ordering
Run HighLowRPartition (7') to get a new ordering of the vertices
Return this ordering

Lemma 6.22 If M is a A module of U(T), the presence of vertices in V. — M has no effect
on the relative ordering of members of M produced by HighLowPartition.

30

Proof: In each call, if ¢ and b are two members of M, they are initially in the same
partition class, V, and in the end they are in two different partition classes, {a} and {b}.
The event that first splits them into two classes is either a call to HighLowSplit or a pivot
on some vertex w. In the former case, the presence of non-members of M has no effect
on the relative order of {a} and {b}, since this depends only on the order of the numbers
assigned to @ and to b. In the latter case, w € M, since it must distinguish a and b in order
to split them into separate classes. O

Lemma 6.23 Let M be a module of U(T).

1. After the first call to RPartition from Orient, the rightmost vertex in M is a sink
in an interval orientation of Gip|M.

2. If M is a A module of U(T), then after the second call to Rpartition from Orient,
the ordering of vertices in M is a linear extension of an interval orientation of G1p|M .

Proof: For Part 1, suppose by induction that the claim is true for modules that are proper
subsets of M. M is first split up when a single vertex of M is removed from a partition
class Z that contains M. Partition returns Z, where all members of Z are modules of
U(T). For each X € Z that contains members of M, X N M is a module in U(T)|M,
by Theorem 6.13, and collectively, these intersections partition M into modules of T'|M.
By Lemmas 6.22 and 6.20 (Part 2), and induction on the number of pivots in the while
loop of Partition, the rightmost class M’ in this partition of M is a sink with respect to
edges between M — M' and M'. By Lemma 6.22 and the assumption that Part 1 is true
for smaller modules than M, the subsequent partition of M’ places a sink s in an interval
orientation of G1,|M' in the last position of the ordering it returns. If M’ is a A module,
there can be no A constraints between edges of G| M’ and edges of G1,|M that are not
edges of G1,|M', by Lemma 6.7. If M’ is not a A module, there can be vertices of M — M’
that have G edges to M’', which interact with edges of G,|M’. But these constrain all
edges of G,|M' incident to s to all be directed toward s or all be directed away from s.
There is an acyclic union of implication classes where s is a sink, by Theorem 6.19.

Let us now consider the second claim. M is first split up when a source in an interval
orientation of T'| M is split off from M. The partition Z returned by Partition consists of
A modules, by Lemma, 6.17. Since M is a A module, the partition M that they induce in
M consists of A modules of T|M, by Theorem 6.10. The ordering of M is consistent with
an interval orientation of T|M, by Lemmas 6.20 and 6.22. By induction on the size of a
A module, the remaining pivots produce interval orientations of each member of M, and
since they are A modules, these orientations can be combined with the ordering on M to
give an interval orientation of T'|M, by Theorem 6.19. O

Since V is a A module, the second call to RPartition produces a linear extension of
an interval orientation. Once RPartition is run, an interval realizer may be constructed
and checked in linear time, using Algorithm 4.1. The bottleneck for the time bound is the
running time of RPartition.

31

6.4 An O(n+ mlogn)-time implementation

We have already shown that the time to construct a realizer of an interval matrix is given
by the running time of RPartition on the matrix.

Algorithm 6.24 gives an implementation of the while loop of RPartition that allows
RPartition to run in O(n+mlogn) time. The algorithm is similar to the approach of [19]
and [13]. Retrieving E’ takes time proportional to the sum of degrees of X. The grouping
operations on E’ take O(|E’|) time, by distributing the edges to buckets that are initially
empty, and maintaining a list of nonempty buckets to allow retrieval of the groups without
visiting empty buckets, leaving the buckets empty again. The selection of X ensures that
each time a vertex is used as a pivot, the partition class that currently contains it is at
most half as large as the class that contained it the last time it was used as a pivot. A
vertex is therefore used O(logn) times as a pivot. A pivot on z requires O(|N(z)|) time,
giving the bound.

This clever idea is due to Spinrad, and initially appeared in an unpublished but influen-
tial manuscript, which he has freely circulated beginning in 1985 [24]. (This paper was also
the first to propose vertex partitioning as an algorithmic tool, and to recognize its impor-
tance to the modular decomposition and transitive orientation problems.) Algorithm 6.24
is a variation of his time-bound argument that bounds the cost of partitioning inside all
recursive calls to RPartition, instead of just in the main loop.

Algorithm 6.24 Vertezx partitioning.

Partition (G, P)

If 1P| =1 return P

else
Let X be a member of P that is not larger than all others
Let E' be the edges of G in X x (V(G) — X).
Group members of E' by endpoint in X
Use each © € X as a pivot on all partition classes in V — X
Regroup members of E' by endpoint in V — X
Use each v € V — x as a pivot on all partition classes in X
Let Q be the classes of P' now contained in X
Let Q' be the classes of P' now contained in V(G) — X
Return Partition(G|X, Q) U Partition(G — X, Q')

Because of its simplicity, it would be the method of choice in a practical implementation
of the algorithm of this paper, in our view. This is a bottleneck in the circular-arc graph
recognition algorithm. To get a linear time bound for recognizing circular-arc graphs we
need a linear bound for RPartition. To do this we use a considerably more complicated
strategy, which we give below. First, however, we show how RPartition can be used to
obtain the A tree.

32

6.5 Linear-time implementation

From a theoretical standpoint, an O(n+mlogn) bound for RPartition would be a bottle-
neck in our circular-arc graph recognition algorithm, and would result in an O(n +mlogn)
bound for it also.

To get a linear bound, we must make use of the considerably more difficult linear-time
approach to vertex partitioning that is given in [18]. In this section, we prove the following:

Theorem 6.25 RPartition can be carried out in O(n + m) time.

This is the most difficult part of the paper, since it requires a summary description
of tricks that are explained in greater detail in [18]. There is no loss of continuity if one
accepts Theorem 6.25 provisionally on a first reading and skips to Section 7.

The following are given in [18]:

Theorem 6.26 Let G be a prime graph, and let P be an arbitrary initial partition of V.
Partition may be implemented so that it takes O(n + m) time to halt with all partition
classes singletons.

Theorem 6.27 It takes linear time to find the modular decomposition of an undirected
graph.

By Theorem 6.26, it is immediate that we can run Partition in linear time on a prime
graph; RPartition partitions V' down to singleton sets. The paper solves the general tran-
sitive orientation problem through a reduction to prime graphs. In addition, the algorithm
is specific to undirected graphs, and it is not immediate that it can be generalized even to
prime interval matrices. For our application, we must be able to run RPartition on U(T),
where T is an interval matrix that need not be prime, and still get a linear time bound for
RPartition.

We develop our algorithm in two steps. In the first, we show how to perform RPartition
on an undirected graph that need not be prime, in linear time, and in the second, we show
how to do it on U(T'), where T is an interval matrix that need not be prime.

6.5.1 Running RPartition on a graph that need not be prime.

Let G = (V, E) be an undirected graph, and let Mg denote the family of modules of G.
Let T be a family of subsets of V' where the transitive reduction of the containment relation
is a tree, and where V' and its singleton subsets are members of T'. Moreover, suppose that
each node of the tree be labeled prime or degenerate. Let F(T') denote the family of sets
where X € F(T) iff it is a node of T or a union of siblings whose parent is a degenerate
node. T is an M tree on G if Mg C F(T). If T is the modular decomposition of a graph,
then it is an M tree, and Mg = F(T).

In general, an M tree looks like the modular decomposition, except that when it is
interpreted as the modular decomposition, it exaggerates the number of modules of G.

33

Figure 9: An M tree is a tree of defined on G = (V, E). Each node of the tree is a subset of
V. Theroot is {V'} and the leaves are vertices of G. Each internal node is the set of vertices
given by its leaf descendants. Each node of the tree is labeled “prime” or “degenerate”,
and every module of G is either a node of the tree or a union of children of a degenerate
node. In contrast to the special case of modular decomposition, not every node or union of
children of a degenerate node is required to be a module of G. In linear time, one may sort
all adjacency lists of G in leaf order, so that members of each internal node are consecutive
in each adjacency list. Also in linear time, one may label each internal node U that is not a
module with a vertex s(U) € V — U that has both neighbors and non-neighbors in U, and
label U with a pointer to the consecutive region of s(U)’s adjacency list that is occupied
by N(s(U))NU. If U is a prime node, calling the restarting procedure a second time now
causes each partition classes in U to be contained in a child of U, and we may repeat the
process on the children. A similar set of observations apply when U is a degenerate node.

However, it never implies that a module of G is not a module. If T} and T, are M trees,
then T4 is more restrictive than Ty if F(Ty) C F(T1). The modular decomposition tree is
the most restrictive one possible for G. The least restrictive M tree possible has V as a
degenerate root and its singleton subsets as its children, since then F(T') is the power set
of V.

The modular decomposition algorithm of [18] constructs a series of length O(1) of M
trees, each one more restrictive than the previous, until the modular decomposition is
obtained. In constructing 7; from 7T;_1 in the sequence, the algorithm makes use of vertices
that demonstrate that each member of F(T;_1) — F(7;) are not modules. Each of these
vertices is a non-member of some of the sets that has both neighbors and non-neighbors in
them, which discredits them as modules. The main insight behind the transitive orientation
algorithm is that these same vertices can be used as pivots during vertex partitioning
whenever a class X € P arises that is a member of F(T;_1) — F(T;). Let us call these
vertices T;’s pivots.

Each node of an M tree is represented with an O(1)-sized structure that has a pointer
to a doubly-linked list of its children. The set that the node represents is given by its leaf
descendants.

The members of P are implemented with doubly-linked lists, and when splitting Y € P
with a pivot w, we remove neighbors of w from Y, and let what remains of Y stand for the
remaining partition class. This avoids the cost of touching non-neighbors of w in Y. Let
us call this a remowval operation.

34

Lemma 6.28 [18] (See Figure 9) Given an M tree T on graph G, one may perform the
following in time linear in the size of G:

1. Sort all adjacency lists so that the neighbors of each vertex x are given in order of
their left-to-right appearance as leaves of T. For each node of the tree, the members
of the node are therefore consecutive in the adjacency list of x.

2. Label each node U of the tree with a sorted list SN(U) of vertices in V. — U that
are adjacent to all members of U. SN(U) is sorted in left-to-right appearance of its
members as leaves of T, and the sum of lengths of these lists is linear in the size of

G.

3. Label each node U that is not a module with the leftmost vertex I(U) € V — U and
rightmost r(U) € V — U that is adjacent to some members of U and nonadjacent to
others; since U is not a module, at least one of these is defined. Let s(U) denote

one of them. U 1is also equipped with a pointer to the consecutive interval occupied by
N(s(U))NU in s(U)’s adjacency list.

The algorithm assigns a private copy of an adjacency-list representation of G to each T;,
and applies Lemma 6.28 to each. It uses a restarting procedure on each T;, which initiates
pivots on P, halting only when P C F(T;). (See Figure 10.) To do this, it makes a call
to the restarting procedure on T;_1. When that restarting procedure halts, it makes use of
T;’s pivots to split some classes, communicates these splits to T;_1 as capricious splits, and
then calls the restarting procedure on 7;_; to get the partitioning restarted. The procedure
fails to find any pivots to restart partitioning only if P C F(7;), in which case it is allowed
to halt.

The restarting procedure is linear if it may be restarted O(n+m) times without spending
more than O(n + m) total time, including the time to perform the pivots it generates and
to maintain the list of unprocessed nodes. All of the restarting procedures in the sequence
of M trees are linear ones.

Notice that a linear restarting procedure on the last tree in the sequence, M D(G),
would suffice for a linear-time implementation of RPartition. The restarting procedure
could perform the while loop of Partition, halting when every partition class is a member
of F(MD(G)) (i.e. a module). Capricious splits such as HighLowPartition could then
initiate arbitrary splits of these modules and call the restarting procedure again. By the
definition of a linear restarting procedure, the time for all calls to the restarting procedure
would be linear.

General linear restarting procedures are given in [18] for all trees in the sequence except
for the very last one, which is the modular decomposition of G. This is unfortunate, since
doing this requires only a straightforward extension of the techniques used for the other
restarting procedures, which must now be resurrected here. The reason that this was
not done is that when the modular decomposition is available, transitive orientation of a
comparability graph reduces to transitive orientation of prime graphs, and this step was
unnecessary for transitive orientation.

The reason pivoting risks being wasteful is that the class that contains a pivot vertex z
cannot be split by x, so time might be wasted traversing members of x’s class in splitting

35

Figure 10: A restarting procedure on an M tree performs pivots in G until every partition
class is a node or a union of children of of a degenerate node. The top illustration depicts
a node U of the M tree that intersects more than partition class in the partition of V.
The bottom illustration depicts the situation after the restarting procedure for the tree is
called. U now contains all partition classes that it intersects. At this point, U may be
“processed”, by performing a pivot on classes that U intersects, using the interval occupied
by N(s(U)NU) in s(U)’s adjacency list. By using the pointer to to this region carried by
U, this pivoting takes time proportional to |N(s(U) N U)|. These elements then become
irrelevant to future pivots, and may be discarded from s(U)’s adjacency list. If U is prime,
the partition classes that intersect U are each contained in a child of U. These can now
be handled by processing children of U. If U is degenerate, the iteration on children is
somewhat more complicated, but similar in principle.

36

up classes that do not contain z. After a sequence of later pivots, some of these might
lie in a different class from x, and these portions of z’s adjacency list might have to be
re-traversed to look for these elements. Bounding the number of re-traversals is the main
challenge.

The basic technique of [18] is to use the restarting procedure on 7;_; to impose an
organized structure on the partition classes so that a set of classes that are to be split by a
pivot z in T; occupy a consecutive region of z’s adjacency list, which is sorted by leaf order
in T;. This region of the list can then be discarded as it can have no effect on the results
of future pivots. No elements in the list have to be re-traversed later.

The last tree in the sequence before the modular decomposition is is called an M2 tree.
An M2 tree is an M tree with the following property: for any node U that is labeled
degenerate, every union of children of U is a module of G|U (but not necessarily of G).

To get the restarting procedure for the modular decomposition, let us insert a new M
tree M, in the sequence between the M2 tree and the modular decomposition. (M, is the
“penultimate” tree.) We do this by creating a copy of the M2 tree, and performing the
operations of Lemma 6.28 on it. For each degenerate node U, let A be its children that are
modules of G. A = {W : W is a child of U such that s(W) is undefined}. We install a new
child A of U representing |J.A, and remove the members of A and their subtrees from the
list of children of U and make them the list of children of A. We label A degenerate.

By concurrently traversing the lists {SN(A) : A € A}, we may either conclude that
A is a module of G, or else find a first vertex z that is adjacent to a proper subset A, of
A, and let A, be the remaining subset that are nonadjacent to x. When z exists, we let
s(A) = z, and create two new nodes A, and A,, standing for |J A, and J A,,. We remove
the members of A, from the doubly-linked list of children of |J A in O(]A,|) time and make
them children of A,, and then move the remaining list of children of |J A in O(1) time and
make it the list of children of A,. We then recurse on A, and A,, using what remains of
the SN lists in each of these sets. The base case is reached when a recursive call is made
on a single member of A or on a subset A,, of A such that |4,,| > 1 and J A, is a module
in G. The latter case is recognized when what remains of the SN () lists of members of
A, are exhausted without discovery of a splitting vertex . In this case, the corresponding
node A,, is labeled degenerate, and its children are A,,.

When we are done, we sort adjacency lists in M),’s private copy of G by leaf order in
M), so that each node of the tree occupies a consecutive portion of each adjacency list.

The restarting procedure given in [18] for the M2 tree is called M2Resolve(). As parti-
tioning on P proceeds, M2Resolve a list of “unprocessed” nodes of T;, each of which contains
every partition class that intersects it. Though it is not necessary for the algorithm, it helps
to understand it if one assumes that the list is ordered so that ancestors appear before de-
scendants. The list supports permanent removal of a maximal unprocessed node from the
front of the list. (This node is used to assist in identifying promising pivots.) When a pivot
is performed, it supports identification and insertion of all new nodes that now satisfy the
requirement of containing partition classes that intersect them, in an appropriate order at
the end of the list. The list can be regarded as an abstract data type that updates itself
each time a partition class is split.

37

This requires an initial overhead of O(n + m) time to set up. After that, the amortized
time to update this list when a partition class Y is split by removing a set Y, from Y is
O(]Y,]), which is the cost of the removal operation. This is true whether the split is the
result of a pivot, or is a capricious split of the class that is decided upon by some other
process.

To initiate the pivoting, we call M2Resolve, beginning with the initial partition P.
When it returns, each member P in the refined partition P is either a node of the M2 tree
or a union of children of a degenerate node of M2.

Let W be a maximal unprocessed node of M2. We remove W from the list. If the vertex
s(W) that splits W does not exist, W is a module, and we proceed to the next maximal
unprocessed node in the list. The reason this is justified is that M2Resolve has halted.
Each partition class that intersects W is either W itself, or contained in one of its children
if W is prime, or is contained in a child or a union of children if W is degenerate. If W is
a partition class, the class is a module, and no further work is required on it. A partition
class that is contained in one of its children, C, will be dealt with when the unprocessed
children of W are processed. If a partition class is a union of children, then since every
union of children of W is a module of G|W and W is a module of G, each such union is a
module of G, and no further work is required on it.

If s(W) exists, suppose first that W is prime in M2. We pivot on s(W) by traversing
only the portion of s(W)’s adjacency list that contains members of W. We find this portion
using the pointer carried by W to N(s(W)NW) in s(W)’s adjacency list. No members of
the partition class containing s(W) are encountered in this region of the list, since s(W)
is a vertex outside of W. Every partition class intersecting W is contained in W. These
elements may now be discarded from W’s adjacency list, as they are irrelevant to future
pivots. These pivots ensure that if W is not a module, it now contains more than one
partition class. W has now been processed, and we call M2Resolve again, which ensures
that every partition class that intersects a child C' of W is now contained in C. These will
be dealt with when C' is removed from the list of unprocessed nodes.

The procedure when W is degenerate is slightly more complicated, since W can have a
child A in M), that it does not have in the M2 tree. As in the prime case, we begin with a
pivot on W with s(W), discarding these members of W from s(W)’s adjacency list. Again
let A be those children of W that are modules of G. For each child C not in A, we pivot on
the regions occupied by W in s(C). Since C' is a module of G|W, s(C) lies outside of W.
We may then discard members of W from s(C)’s adjacency list. A call to M2Resolve now
returns with each partition class intersecting such a child C' contained in C. By default,
every partition class intersecting A = [J.A is also contained in A. Pivoting on s(A4) and
removing members of A from s(A)’s adjacency list makes this true for its children A, and
A,. We may do this recursively, halting when we reach the highest descendants of A that
are modules. If such a descendant D contains more than one child of W in the M2 tree,
then it is a module, and so is every union of its children in the M, tree. Calling M2Resolve
now halts only when each partition class is either a union of children of D, in which case it
is a module, or contained in a child C of D, in which case it will be dealt with when C' is
processed.

The procedure can only fail to generate effective pivots when every partition class is a

38

module. That is precisely the halting criterion for a restarting procedure on M D(G).

The total time preparing to restart M2Resolve is proportional to the number of ele-
ments discarded from adjacency lists, and is therefore linear. There are O(n + m) calls
to M2Resolve (), so the time these calls require is linear, since M2Resolve() is a linear
restarting procedure. As explained above, the total amortized cost of maintaining the list
of unprocessed nodes is linear. This gives the following:

Lemma 6.29 A linear restarting procedure may be constructed for the modular decompo-
sition of an undirected graph.

Corollary 6.30 RPartition takes O(n + m) time on an undirected graph.

6.5.2 A linear time bound for RPartition on an interval matrix.

If T is an interval matrix, then X C V is a module of T iff it is a module of both G,
and G1,. One problem is that we need to avoid working directly on these graphs, since
their size is not linear in the size of G(T'). Fortunately, vertex partitioning on G,, can be
simulated with vertex partitioning on G1., and vertex partitioning in Gy, can be simulated
with vertex partitioning on G.. The partition of a class induced by a pivot is identical
in the simulation; only the interpretation of the classes, hence the order given to them
in the linear order on P is changed. Adjusting the ordering of P to accommodate this
reinterpretation takes O(1) time per split, hence O(n) time total.

Let My(G.) and My(G1.) denote M, trees for G, and Gi.. We may use a restarting
procedure for each of MD(G.) and M D(G;.). Beginning with our initial partition, we
call the restarting procedure for M D(G.), which refines P until every partition class is a
module of G, using pivots in G, which are lazy pivots in T'.

It may be the case that not every partition class is a module of G1., S0 we communicate
the list of removal operations that have been performed as capricious splits to M,(G.), and
initiate the restarting procedure for M D(G1.). This performs pivots until all members of P
are modules of G1.. At this point, they may not be modules in G, so we may communicate
the new removal operations back to M,(G.) and return control to the restarting procedure
for MD(G,).

Alternating between the restarting procedure of M D(G.) and M D(G1.) continues re-
fining P, halting only when neither of the restarting procedures is able to refine P further.
This occurs only when every member of P is a module of both G, and G1., hence a module
of U(T). This is the halting criterion for a restarting procedure M D(U(T)).

Since each of the restarting procedures is restarted O(n) times, they take O(n+m(G.))
and O(n + m(G1.) time, respectively, for all pivots that they perform. This in linear in the
size of G(T'). This gives the following:

Lemma 6.31 RPartition on U(T), beginning with arbitrary starting partition, takes O(n+
m) time.

The following is now an immediate corollary;

39

Theorem 6.32 It takes O(n+m) time to produce an interval realizer of an interval matriz.

7 Finding a set of algebraic flips to turn an intersection ma-
trix into an interval matrix.

In this section, we give the implementation of Step 2 of Algorithm 4.2.

We proceed by incrementally performing flips to transform an intersection matrix for
the original input graph into an interval matrix. At each point, we will let 7' denote the
current state of the matrix, and let G., G, G1, and Go refer to those graphs in 7. The
matrix passes through the following stages:

To: Ty is an intersection matrix of the graph given as the input to the recognition problem.

Ty: T3 is a matrix that has a vertex vy of degree O(m/n), and all members of N(G(T1), vo)
have a single overlap relation with vy.

For notational convenience, let U = N(G(T1),v9) and W = N(G(T1),v0)- (It will
also be the case that U = N(G(Ty),v0) = N(G(T3),v), and W = N(G(T),v) =
N(G(T3),v0))- Let Py = {D1, Dy, ..., Dy} be the components of G1,|W. All edges
between these are edges of G.. We show that we may assume that all directed edges
of D, between these components are directed from left to right in this list. Let A(D;)
denote the smallest interval on the circle that is disjoint from vy and contains all
members of Dy. (A(D;) can be thought of as the region of the circle occupied by
D,). For 2 <4 <k, all arcs in D; contain A(D).

Ty: (See Figure 11.) T, shares the above properties with 77, but G,|U and Go|U are
empty, and all vertices in each component of G.|U cover a single endpoint of vy in
any circular-arc realizer of 715. Because of this, xy € G5 implies z,y € U, so G9 is
empty.

Let Q = {C1,Cy, ...,Ch} denote the components of G.|U that contain an arc with an

endpoint in A(D;p). If two members of Q cover opposite endpoints of vy, flipping all
members of one of them will make them cover the same endpoint.

T3: (See Figure 12.) The components of Q are flipped, as necessary, so that they all cover
the same endpoint of vy, and they all, therefore, fail to cover one endpoint, p, of
A(D;). T3 is the resulting intersection matrix. All arcs in V' — |J Q either contain
A(Dy) or are disjoint from it. These can be distinguished from each other by their
relationship to any member of Dy in Tj.

Ty: Flipping the arcs in T3 that contain A(D;) leaves the region of the circle adjacent to p
and outside of A(D;) uncovered by any arc. Ty is therefore an interval matrix.

7.1 Turning 7j into T}

For finding the flips we need to perform in Ty to obtain an interval matrix, we select a vertex
v of minimum degree in G. When vertices are tied for minimum degree, we select v to be

40

1 2
U Ci
A 1
Vo

Figure 11: The set W of non-neighbors of vy can be divided into components {D;, Dy,
... Di} of Gy, which are ordered by containment. In T3, the set U of neighbors of vy is
a clique and all pairs in U are adjacent in G, or G;. Each component G.|U covers one
endpoint of vy’s arc. Q is the set of components of G.|U that have a member with an
endpoint in the region of the circle occupied by D;. In this example, Q = {C{,C{, A}. C]
exemplifies Q' the set of components that have a member with different relationships to
members of Dy, and Cf exemplifies Q”, the set of components that are not members of
Q’, but whose members do not all have the same relationship to D1. A exemplifies A, the
members of Q that have an overlap relationship with all members of D;.

Figure 12: Flipping the members of Q, as needed, so that they cover the right endpoint of
vg, yields T3. At this point, one endpoint p of the area occupied by D1 is contained in those
arcs that contain all members of D; in T3, and only in those arcs. Flipping these yields
Ty, and leaving a region of the circle adjacent to p uncovered. Ty is therefore an interval
matrix.

41

one whose arc contains no others. An arc cannot contain another that has higher degree,
so v always exists. If v has no double-overlap relationships, we select vg = v. Otherwise,
we select a double-overlap neighbor of v that is contained in no other arc, flip it, and set
vg to be the corresponding vertex. In either case, vg now has no double-overlap relations,
and has at most the degree of v, which is O(m/n). We then flip every arc that contains vy.
Now all arcs that intersect vg have a single-overlap relationship with it. 77 is the state of
T at this point.

Lemma 7.1 Ewvery edge incident to v in G(T1) is a single-overlap relationship in a realizer
of Ty, and |U| is O(m/n).

7.2 Turning 7] into 75

If for a vertex ¢ € U, z contains vy’s right endpoint, then flipping x will make it contain
vo’s left endpoint instead.

If 2,4y € U and x and y contain the same endpoint, then they intersect, and since they
fail to contain the other endpoint, they do not cover the circle, and they do not have a double
intersection. Therefore, if zy is an edge of G5 or G, in T, then x and y contain opposite
endpoints of vg. Gao,|U is bipartite, and the arcs of two vertices in opposite bipartition
classes of a component of G, must contain opposite endpoints. If arc z contains arc y,
then they contain the same endpoint of vy, since they each miss an endpoint, so vertices
in the same component of D. contain the same endpoint of vg. These observations give
a unique bipartition of each component of (D, U Ga,)|U into sets of vertices containing
opposite endpoints. Flipping one of these sets makes them contain the same endpoint,
eliminating all edges of G,, and G2 from the component. Edges of D, internal to a flipped
set are flipped once at each endpoint, and remain edges of D,, but with their orientations
reversed. Edges leading out of the component are edges of G and are unaffected by flipping.
This flipping therefore turns the component of D, U Gg, into a component of D.. Doing
this for each component of (D, U G2,)|U makes Gy|U and G2|U empty.

Lemma 7.2 Lemma 7.1 applies to To. In addition, all arcs in each of the components of
G.|U contain the same endpoint of vy in any realizer of Ts.

7.3 Turning 7, into T;

(See Figure 11.) Let Q' = {C], (5, ..., C},} be the components of D.|U that have a member
that distinguishes members of Dy, and let Q" = {CY,CY,...,C},} be the set {C : C is a
component of D |U, C ¢ Q" and there is a member of D; that distinguishes members of
C}. Let A denote the set set {A : A is a component of G.|U such that A x D; C G1}.
Q=0 UQ"UA

We obtain T3 from 75 as follows:

Case A: If Q" is nonempty, we use a single rule to decide which members of Q@ = Q" U Q'
to flip to get them all to cover a single endpoint of vg;

42

Case B: If Q" is empty, we use a different rule to decide which members of Q' to flip to
get them all to cover a single endpoint of vg;

Let T, denote the resulting matrix. We show that there is a realizer of T, where all
members of A also cover this same endpoint, so T3 = T..

7.3.1 Case A: Q" is nonempty

Let us say that if zz € G, and yz € G, then y has a stronger relationship to z than z
does, since y and z intersect, but z and z do not. If zz € G; and yz € G,, then y again
has a stronger relationship with z than z does, since it is a full containment, rather than
a partial overlap. Similarly, if xzz € G, and yz € G., then the relationship of y to z is
stronger than the relationship of z to z.

For z,y € U, let z < y denote that for every z € W, the relationship of y to z is at least
as strong as the relationship of z to z. That is, z <X y if N(Gic,z) "W C N(Gie,y) N W
and N(G¢,z) NW C N(G¢,y) NW. If A and B are two components of G.|U, then let
A =< B denote that for every £ € A and y € B, t <y. Let A ~ B denote that A < B or
B < A.

Lemma 7.3 If A and B are components of G.|U and cover the same endpoint of vy in a
circular-arc realizer of To, then A ~ B.

Proof: Suppose A and B both cover the right endpoint of vy in some circular-arc realizer
R. Let A(W) denote the smallest interval of the circle that is disjoint from vy and contains
every arc in W. (Think of A(W) as the “region occupied by W”.) Then for x € A and
y € B, z and y both extend counterclockwise into A(W). If A < B and B < A, the lemma
holds. Suppose without loss of generality that y extends farther than z does, so that y £ z.
Then every arc in W that is contained in z is also contained in gy, and every arc in W
intersected by z is also intersected by y. Therefore, z < y.

Since A and B contain no arc that covers the left endpoint of vy, R' = R|({vo} UAUB)
is an interval realizer of 7" = T|({vg} U AU B). The order of right endpoints in this
realizer is a linear extension of an interval orientation of 7". The root node of the modular
decomposition of T” is a degenerate node whose children, {vg}, A, and B, are components
in the complement of G;. Gy, is transitively oriented in the interval orientation, so all
edges of G between A and B must either be directed from A to B, or from B to A by
Lemma 2.1. Since £ < y and y £ z, zy is oriented from z to y. Each arc of B extends at
least as far to the right as every arc of A, hence at least as far into the region occupied by
W in R. It follows that A < B. O

G9 is empty, D, is transitive, and {Dj, Dy, ..., Dy} are the children of the root of the
modular decomposition of G.|W. By Lemma 2.1, we may assume without loss of generality
that D; x D; consists exclusively of arcs of D, whenever 1 <17 < j <k.

Lemma 7.4 IfAc€ Q", Be Q"UQ' and A +# B, then A ~ B iff A and B cover the same
endpoint of vy in B.

43

Proof: Since A € Q", A contains two vertices u and w that each have uniform re-
lationships to all members of Dy, but such that u’s relationship to D is different from
w’s.

Case 1: {u} x D; C G, and {w} x D; C G,. Flipping A results in {u} x D; C G, and
w X D7 C G,,. In one of these cases, A and B cover the same endpoint of vy, so A ~ B in
one of these cases, by Lemma 7.3. In this case, either every member of B x D; C G, or

every member of B x D C G, but this contradicts membership of B in Q. We conclude
that Case 1 cannot occur.

Case 2: {u} x D; C G; and {w} x D; C G.. Suppose that we flip B as necessary so
that it covers the same endpoint as A does. If A < B now applies, then B x D; C G,
contradicting B’s membership in Q. By Lemma 7.3, B < A, so no member of B x D € G,.
By B’s membership in Q, there are pairs (a,b), (¢,d) € B x D; such that ab € G, and
cd € G (where it is possible that a = ¢ or b = d). Flipping B so that it does not contain
the same endpoint of vy as A results in ab € G, and ¢d € G1, and B £ A. We conclude
that the claim applies in Case 2.

Case 3: {u} x D1 C G; and {w} x D; C Gy,. The proof is identical to that of Case 2,
except that the roles of G, and G,, are swapped. O

Since every circular-arc realizer has a left-right mirror image, we may assume without
loss of generality that C] covers the right endpoint of vy in R. Lemma 7.4 gives a simple
criterion for flipping the remaining members of Q so that they cover the same endpoint of
vo-

7.3.2 Case B: Q" is empty

If Q" is empty, then by mirror symmetry, we can assume without loss of generality that C]
covers the right endpoint of vy.

Our strategy is summarized in Figure 13.

At certain points, we will have an interval orientation of T'|Y for some Y C W, and
a vertex x that we know can be added either as a source or sink to produce an interval
orientation of T'|(Y U{z}). Which case applies determines whether z must be flipped. The
interval realizer of the interval orientation of T'|Y is available. Rather than checking the
A relationships between edges of G1, incident to z and edges of G1,|Y directly, we work
with an interval representation of T'|Y, and use Algorithm 7.5:

Algorithm 7.5 Checking whether x can be added as a source to an interval orientation of
T|Y, given the interval realizer Ry of the orientation.

In the ordered-list representation of Ry, find the first point p in the list that is to the
right of all left endpoints of neighbors of x in G(T|Y') and to the right of all right endpoints
of neighbors of x in (D.)T|Y. If z can be added as a source, I(x) must be inserted at the
front of the list, and r(z) must be inserted at p. The test consists of checking that no non-
neighbor of x has a left endpoint to the left of p, and no overlap neighbor of x has a Tight
endpoint to the left of p. The first check may be accomplished by counting the intervals with
left endpoint to the left of p and halting if the count exceeds the degree of x in T|(Y U {z}).

44

Vo

Figure 13: The strategy for finding whether C? covers the same endpoint as C] when Q" is
empty. We find a vertex ¢; € Cf that distinguishes members of D;. By mirror symmetry, we
may assume that ¢; covers the right endpoint of vy in some circular-arc realizer R. Since c;
is the only vertex in {c; } UD; that intersects v, ¢; is a source (extreme leftmost interval) in
the corresponding interval realizer R|({c;}UD;). We use this and A relationships involving
edges incident to ¢; to find the interval realizer R|P; for some subset P; of arcs of D;. In
the illustration, the arcs other than vy and ¢; represent F;. In C’]’-, there is a vertex c; that
distinguishes members of D;. We are able to construct P; so that ¢; distinguishes members
z' and y' of P;, where z'y’ € G1,,. Now ¢; is either a source or sink in the interval realizer
R|({c;} U D1), and which of these cases applies is forced by a A relationship involving ¢;,
z', and y'. Whether it is a source or a sink tells whether ¢; covers the left endpoint or the
right endpoint of vg. In the illustration, ¢; must cover the right endpoint of vy, because
it contains z’ and overlaps y'. It could not realize those relationships if it covered the left
endpoint of vy and entered the top part of the circle clockwise.

45

The second check is conducted similarly.

To find whether = can be added as a sink, it suffices to use the mirror transpose of Ry
to model the transpose of the orientation of T'|Y, and test whether z can be added as a
source to it. The running time of Algorithm 7.5 is O(|N(G(T), z))|)-

Let R be a circular-arc realizer of T5. Let ¢; be a member of C] that distinguishes
members of D1, let ¢; be a member of C7 that distinguishes members of D1, let P be {vo}
and the maximal modules of T |({vg, ¢1 } U D;) that do not contain vy, and let P be any set
consisting of one representative from each member of P. Let P' = P — {{w}, {c1}}, and
let P’ =P - {U(),Cl}.

We may find R|P' as follows. Tb|({vg,c1} U D) is an interval matrix with interval
realizer R|({vo,c1} U D1). In R|({vo,c1} U D1), vy is the interval with the leftmost left
endpoint, hence a source in the corresponding interval orientation of T3|({vg,c1} U Dy).
Let us call Partition (Algorithm 6.21) on the initial partition {{vwo},{{c1} U D1}} in
Ty |({vo,c1} UDy), halting when each part is a module. The final partition is P, and
by Lemma 6.20, Part 1, the ordering of its parts gives the unique interval orientation of
(T2|({vo,c1} U D1))/P that is consistent with {vy} being a source. By Lemma 6.3, the
corresponding interval realizer R; is unique. This quotient is isomorphic to 75| P, which is
realized by R|P. In R|P, vy is also leftmost, so R|P is isomorphic to R;. By restriction,
this gives R|P'.

If there exists Z € P’ whose members have differing relationships to ¢;, let z1,z2 € Z be
two vertices whose relationships to c; differ. Let P, be z1 and one arbitrary representative
of each member of P’ — {Z}, and let P, be the result of replacing z1 in P; with z3. One
of these will serve as the P; mentioned in the caption of Figure 13. If Z does not exist,
let P, = P; consist of one representative of each member of P’. The algorithm for finding
R|P works identically on R|P; and R|P,, so R|P; and R|P» are isomorphic to R|P’, and
we do not have to recompute these interval realizers for each C]'-. The relationships of ¢;
R|P, and R|P, may differ, however.

Lemma 7.6 c; can be added as a source to both R|P1 and R|P, iff C| and C} cover the
same endpoint of vg.

Proof: Case 1: Z does not exist. Since c; distinguishes members of Dy, it distinguishes
X € P from Y € P'. Since G1,|D; is connected, there exist X', Y’ € P’ such that
X' xY' C Gyp. Let ' and ¢ be the representatives of X’ and Y’ in P;. Without loss of
generality, suppose z’ precedes ¢’ in R|P;.

If ¢; covers the same endpoint as c¢; in R, then c; has the leftmost left endpoint in the
interval realizer R|({c;}U P1), so c¢; can be added as a source to R|P;, and the relationship
of ¢; to 2’ is stronger than its relationship to y'. If ¢; is flipped so that it covers the opposite
endpoint of vy from ¢, R|({¢;} U P;) is still an interval realizer, but with ¢; rightmost. Its
relationship to =’ becomes weaker than its relationship to 3'. Since z’ is earlier than 3’ in
R|({¢j} U P1), ¢j can no longer be added as a source to R|P;.

Case 2: Z exists. Then c; distinguishes z1,z9 € Z. Since Dp is connected and P!
consists of modules of Ty|({vg, c1} U Dy), there exists Z’ in P’ such that Z x Z' C Gy,,. For

46

any y in Z', either ¢; has different relationships to z; and y or to 2z and y. Without loss of
generality, suppose it has different relationships to 1 and y. Now z1 and y have the same
properties as z’ and y' from Case 1, so ¢; can be added as a source to R|P; iff ¢; and ¢;
cover the same endpoint of vg.

The results now follows from Lemma 7.2. O

Lemma 7.6 and Algorithm 7.5 provide an efficient test for deciding how to flip members
of @ — {C1} so that they cover the same endpoint of vy as C] does, namely, the right
endpoint of vg.

7.3.3 Showing that 7, serves as T3

In T, all arcs in members of @' and Q" cover the right endpoint of vy in some realizer R,
of T.. With the exception of arcs in A, this is all arcs that have an endpoint in A(D;).

Lemma 7.7 There is a circular-arc realizer of T, where all members of @', Q", and A
cover the right endpoint of vy.

Proof: Let A be a member of A that covers the left endpoint of vy in T,. By the definition
of A, A x D; C Gy. Therefore, Ax D; C Gy for any i > 1, since D; x D; C (D.)T, and D;
lies in the intersection of all arcs in D;, which are, in turn, disjoint from both endpoints of
vo. Members of A are connected components of G1,,. The edges of G| are unaffected by
flipping, so flipping the members of A modifies T,|A without affecting other relationships
in T,.

Since they are components of G1,, they are children of the root of M D(T). Edges of
G, are unaffected by flipping, so flipping all members of A to cover the same endpoint of
vg will not change this fact. By Lemma 6.18, the left endpoints and right endpoints of
each A € A are consecutive in the realizer after the flipping. However, flipping does not
change the order of endpoints, only which endpoints are interpreted as left and which as
right endpoints. The left endpoints of A are consecutive and the right endpoints of A are
consecutive in R..

Since R.|A is an interval realizer, the flip replaces R.|A with (R.)°|A, getting A to cover
the right endpoint of vy, by Lemma, 6.2. The sandwich transpose operation on A is possible
in the new circular-arc realizer that results, since the left endpoints and right endpoints
of A are consecutive. Applying a sandwich transpose operation on A in this circular-arc
realizer now undoes all effects on T, of flipping A, while leaving A on the right endpoint of
(B

Doing this to each A that covers the left endpoint of vy realizes the claim in the lemma.
O

Lemma 7.7 justifies letting T3 = T,. The following is now immediate:

Lemma 7.8 There exists a circular-arc realizer of Ts where every member of U with an
endpoint inside the region of the circle occupied by D1 covers the right endpoint of vg.

47

7.4 Turning 75 into 7}

The following corollary to Lemma 7.8 is now obvious:

Corollary 7.9 In such a realizer, let p be the far endpoint of the interval A(D) as one
travels rightward from the right endpoint of vo. An arc contains p in its interior iff it is
one of the following:

o A member of Dy, ..., Dy,

o A member x of U such that © x D1 C D,.

We may obtain Ty from T3 by flipping all arcs that contain p according to this corollary.
This vacates the circle just to the right of p, so Ty is an interval matrix.

7.5 Linear-time implementation

For the analysis of the time bound, we must not assume that the input graph is a circular-arc
graph.

Theorems 5.8 and 5.9 ensure that we do not spend more than linear time finding neigh-
borhood containments, even if G is not a circular-arc graph.

We use a labeling of edges of G(T') with their intersection types for a sparse represen-
tation of 7. We may use an array to represent all intersection types in U x V. Since U has
O(m/n) members, the size of this array is O(m).

Turning Ty into 77 in linear time is trivial.

For turning 77 into T, we must find the bipartition of the components of Gap|N[vg]-
This takes O(|N[vp]|?) time using breadth-first search on the array, which is O(m) since
|N[vo]| is O(m/n).

For turning T5 into 7., we must compute the < relation in U in linear time in Case A.
Forz,y e Uin Ty, z Xy iff N[G.,z]NW C N[G.,y|NW and N[z]NW C N[y|NW in T5.
Since U U {wp} is a clique in G(Tz), N[z]NW C N[y]n W iff N[z] C N[y]. Theorem 5.8
gives this in linear time.

To evaluate N[G¢,z]NW C N[G,,y]|NW for each pair z,y of neighbors of vy, note that
if all members of N(vg) are flipped, N(vg) remains a clique, and the edges of G,, and G,
that are incident to each member of N(vg) are swapped. N[G¢,z] N W C N[G.,y]| N W iff
Nz]NW C N[y]|NW after N(vg) is flipped. We get the latter with Theorem 5.8 in linear
time. Flipping N (vg) takes O(n(m/n)) = O(m) time.

In Case B, we must perform a vertex partition on a submatrix that is an interval matrix,
and find a realizer for the resulting modular quotient. We have already given a linear-time
algorithm for this problem, in Section 6. The submatrix is T'|({vo} U {1} U D1). The
size of G(T')|({vo} U {c1} U Dy) is linear in the size of the input graph to the recognition
problem. If the algorithm does not give rise to an interval representation of the quotient,
G is not a circular-arc graph, and we halt. It takes linear time to find, for each X € P’,

48

another member #(X) € P’ that is adjacent to X in Gy,. Finding Z whose members are
distinguished by ¢;, if Z exists, takes O(|N(c;)|) time using an operation similar to a pivot
on ¢;. Then t(Z) then gives the neighbor y of z; and z5 that is needed in Case 2 of the
proof of Lemma 7.6.

We also have to evaluate for ¢; € U whether ¢; can be added as a leftmost interval to
two realizers Ry and Ry, and repeat this test after we flip ¢;. This takes O(n) time using
Algorithm 7.5, whether or not ¢; is flipped. The total time spent on this test is O(n) times
O(m/n) vertices in U. We halt if ¢; can be added as neither a leftmost nor a rightmost
interval.

Flipping a member of U takes O(n) time, and each member of U is flipped O(1) times.
The total time spent flipping neighbors of vy is therefore O(m). Since only neighbors of U
are flipped to obtain T3 from the initial intersection matrix, G(T3) has O(n(m/n)) = O(m)
edges.

For turning T3 into T}, we must flip members of U that contain A(D;), which again takes
linear time. If {Ds, ..., Dy} is nonempty, we also flip every vertex in this set in 73. If T3 is a
circular-arc matrix, then because D; X D; 1 C D, for each ¢ from 1 to k—1, every arc in D;
is contained in the intersection of arcs in D;,1, so D;11 is a clique. Since D, is transitive,
U{Da2, ..., Dt} is a clique in G(T3), U{D2,..,Dr} x D; C G(T3). The only non-neighbors
of these vertices are in N[vg], so they have degree Q(n —m/n) = Q(n — (n—1)/2) = Q(n).
We may check that this is the case in linear time, and halt if it is not. Otherwise, flipping
each of them takes time proportional to its degree, hence O(m) for all of them collectively.

The flip of vertices in Ds, ..., Dy can only increase the size of G(Ty) over G(T3) by adding
edges between these vertices and U, and therefore adds O(m) edges to G(T4). The size of
G(Ty) is O(n + m).

8 Relationship to Previous Work

Tucker was the first to recognize the importance of finding neighborhood containments in
recognizing circular-arc graphs [26]. This step was a bottleneck in his algorithm. Eschen and
Spinrad’s innovations for this step in [9] and their improvements given in [8] are obviously
critical for our time bound.

There is a strong relationship between the flipping operation and Hsu’s use of circle
graphs in [14] that is not apparent on first inspection. A circle graph is the intersection
graph of chords on a circle. Hsu uses the fact that replacing each arc in a circular-arc
representation with a chord connecting the same endpoints yields a circle graph representing
G1. One interpretation of this within the framework developed in our paper is that the
circle graph leaves each arc in an “indeterminate” state between its two possible flipped
states until its state in the circular-arc graph can be determined. In some sense, it can
be viewed as a representation of the entire flip-equivalence class to which G belongs. He
describes consistent modules of G1, which share some features of A modules of an interval
matrix obtainable from G by flipping, though the correspondence between these modules
is not perfect.

What makes it possible to exploit flipping as an algorithmic tool is representing the

49

intersection matrix explicitly. Hsu’s algorithm does not represent the matrix directly, as-
suming instead that it is given implicitly by the labeling 7'(G) described above in Section 5.
However, the class of matrices given by T'(G) for some circular-arc graphs is a proper sub-
class of intersection matrices. This subclass is not closed under flipping, or under restriction
to induced submatrices. Our approach appears to lead to a simpler algorithm, as it allows
us to reduce much of the problem to the well-understood domain of comparability graphs.

References

[1]

2]

[10]

[11]

[12]

[13]

[14]

S. Benzer. On the topology of the genetic fine structure. Proc. Nat. Acad. Sci. U.S.A.,
45:1607-1620, 1959.

K.S. Booth. PQ-Tree Algorithms. PhD thesis, Department of Computer Science, U.C.
Berkeley, 1975.

S. Booth and S. Lueker. Testing for the consecutive ones property, interval graphs, and
graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci., 13:335-379, 1976.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Algorithms. MIT Press, Cambridge,
Massachusetts, 1990.

A. Ehrenfeucht and G. Rozenberg. Theory of 2-structures, part 1: Clans, basic sub-
classes, and morphisms. Theoretical Computer Science, 70:277-303, 1990.

A. Ehrenfeucht and G. Rozenberg. Theory of 2-structures, part 2: Representations
through labeled tree families. Theoretical Computer Science, 70:305-342, 1990.

E.M. Eschen. Circular-arc graph recognition and related problems. PhD thesis, De-
partment of Computer Science, Vanderbilt University, 1997.

E.M. Eschen and J.P. Spinrad. An O(n?) algorithm for circular-arc graph recognition.
Forthcoming.

E.M. Eschen and J.P. Spinrad. An O(n?) algorithm for circular-arc graph recognition.
Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
4:128-137, 1993.

D.R. Fulkerson and O. Gross. Incidence matrices and interval graphs. Pacific J. Math.,
15:835-855, 1965.

T. Gallai. Transitiv orientierbare Graphen. Acta Math. Acad. Sci. Hungar., 18:25—66,
1967.

M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York, 1980.

M. Habib, R. M. McConnell, C. Paul, and L. Viennot. Lexicographic breadth-first
search: a partition refining technique. Theoretical Computer Science, 234:59-84, 2000.

W. Hsu. O(mn) algorithms for the recognition and isomorphism problems on circular-
arc graphs. SIAM J. Comput., 24:411-439, 1995.

50

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

J.L. Johnson, R.M. McConnell, and J.P. Spinrad. Counstruction of probe interval
models. Manuscript.

J.L. Johnson and J.P. Spinrad. A polynomial time recognition algorithm for probe
interval graphs. Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete
Algorithms, 12:477-486, 2001.

E. Marczewski. Sur deux proprietés des classes d’ensembles. Fund. Math., 33:303-307,
1945.

R. M. McConnell and J. P. Spinrad. Modular decomposition and transitive orientation.
Discrete Mathematics, 201(1-3):189-241, 1999.

R. M. McConnell and J. P. Spinrad. Ordered vertex partitioning. Discrete Math and
Theoretical and Computer Science, 4:45-60, 2000.

R. H. Mohring. Algorithmic aspects of comparability graphs and interval graphs. In
I. Rival, editor, Graphs and Order, pages 41-101. D. Reidel, Boston, 1985.

R. H. Mo6hring. Algorithmic aspects of the substitution decomposition in optimization
over relations, set systems and boolean functions. Annals of Operations Research,
4:195-225, 1985.

R. H. Mohring and F. J. Radermacher. Substitution decomposition for discrete struc-
tures and connections with combinatorial optimization. Annals of Discrete Mathemat-
ics, 19:257-356, 1984.

Fred S. Roberts. Graph Theory and Its Applications to Problems of Society. Society
for Industrial and Applied Mathematics, Philadelphia, 1978.

J. P. Spinrad. Graph partitioning. unpublished manuscript, 1985.

J.P. Spinrad. Doubly lexical ordering of dense 0-1 matrices. Inf. Process. Lett., 45:229—
235, 1993.

A. Tucker. An efficient test for circular-arc graphs. SIAM Journal on Computing,
9:1-24, 1980.

51

