Using Expander Graphs to Find Vertex Connectivity
Harold N. Gabow

CU-CS-908-00

DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Using Expander Graphs to Find Vertex Connectivity

Harold N. Gabow *

September 4, 2000

Abstract

The (vertex) connectivity x of a graph is the smallest number of vertices whose deletion
separates the graph or makes it trivial. We present the fastest known algorithm for finding
k. For a digraph with n vertices, m edges and connectivity x the time bound is O((n +
min{x®/2, kn®/*})m). This improves the previous best bound of O((n + min{x?, kn})m). For
an undirected graph both of these bounds hold with m replaced by xn. Our approach uses
expander graphs to exploit nesting properties of certain separation triples.

1 Introduction

The (vertex) connectivity k of a graph is the smallest number of vertices whose deletion separates
or trivializes the graph. (Other basic terminology is defined at the end of this section.) This is a
central concept of graph theory [11]. Computing the connectivity is posed as Research Problem
5.30 in [1] where in fact a linear-time algorithm is conjectured. Yet relatively little progress has
been made on computing connectivity.t If the conjectured linear-time algorithm exists it involves
techniques that are radically different from the known ones.

Here we present the most efficient known algorithm for computing graph connectivity. We
first summarize the results most relevant to ours. Other work on vertex connectivity, including
randomized algorithms, is surveyed in [10]. To compute the connectivity means to find x and a
corresponding separator. Throughout this paper n and m denote the number of vertices and edges
of the given graph, respectively.

Henzinger, Rao and Gabow give an algorithm to compute the connectivity of a digraph in time
O(min{x3+n, kn}m) [10]. This algorithm applies two different high-level approaches to finding the
connectivity, due to Even and Tarjan [7] and Even [6]. For undirected graphs the bound improves
using the maximal forest decomposition of Nagamochi and Ibaraki [15]. This allows the graph to
be pruned to O(kn) edges. So the time bound of [10] for undirected graphs is the above bound
with m replaced by &n.

Our algorithm runs in time O((n + min{x%2, kn%*})m) for digraphs. For undirected graphs
m can be replaced by xn in this bound. To compare our digraph bound with [10] observe that
both bounds are O(nm) when k < n'/3. For larger values of x the new algorithm is faster: For
n'/® <k < /n, [10] is O(k%m); in this range the new bound is O(nm) for £ < n?5 and O(k%?m)
for k > n?/°. For k > /n, [10] is O(knm) and the new bound is O(kn®/4m).

To check k-connectedness for a given k means to verify that « > k or else find x and a cor-
responding separator. Let J denote the minimum degree of the given graph. Henzinger [9] uses

"Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309. e-mail:
hal@cs.colorado.edu
"This contrasts with a fairly large number of diverse and efficient algorithms for computing edge connectivity.

maximal forest decompositions to check §/2-connectedness of an undirected graph. The time is
O(min{x, /n}n?). Henzinger’s algorithm is also based on the relation § — k > x that holds when
k < 6/2. Our work (for both finding connectivity and checking k-connectedness) investigates gen-
cral properties of this “gap” § —x. We show how to check ad-connectedness, where a is an arbitrary
fixed constant < 1, in time O((k + \/n)y/nm) for digraphs and the same bound with m replaced
by sn for undirected graphs. This is faster than our general connectivity finding algorithm.

We present a nesting property of certain separation triples in undirected graphs, and a general-
ization to digraphs. This eventually leads to a two step algorithm to compute vertex connectivity.
The first step enlarges the gap § — x to some guaranteed size. (Initially the gap can be 0.) The
second step is an algorithm to find the connectivity of a graph with a large gap.

Expander graphs play a crucial role in the second step. There are many diverse important
applications of expander graphs (see e.g. the lists in [3, 17}, and [4], [16]) but we are unaware of
similar applications to graph algorithms. :

Here is a simple example illustrating how expanders can help find vertex connectivity: Suppose
in an undirected graph G' = (V, E) we want to check that any set of exactly n/3 vertices has > n/3
neighbors. (This is clearly necessary to have x > n/3.) Let X be a graph on vertex set V, such
that any set of n/3 vertices has at least n/3 neighbors in X. Such an X with O(n) edges can be
constructed using an expander graph. If A is a set of n/3 vertices with < n/3 neighbors, some edge
e of X joins A to a nonneighbor. So the ends of e can be separated by < n/3 vertices. We can test
for the existence of such an e by computing a maximum flow for every edge of X.

Although our asymptotic time bounds for undirected graphs are implied by those for digraphs,
we present a separate algorithm for undirected graphs. Undirected graphs have a stronger nesting
property, which results in a simpler algorithm. Section 2 presents the connectivity algorithm for
undirected graphs with large gaps. Section 3 gives the undirected gap enlargement algorithm.
Sections 4-5 give the analogous results for digraphs, Section 4 first reviewing digraph fundamentals
and then presenting the gap enlargement algorthm, Section 5 presenting the more involved gap
algorithm. Section 5 also presents our algorithm to check ad-connectedness. Section 6 combines
the gap enlargement and large gap algorithms to get our connectivity algorithm. Readers interested
only in undirected graphs can skip Sections 4-5. The rest of this section gives notation, definitions
and some background.

We usually denote singleton sets {v} by v, as in S —v. Consider a graph G = (V, E). Assume
G is undirected; the minor changes needed when G is directed are discussed in Section 4. If H is
not the given graph we usually refer to its vertex and edge set as V(H) and E(H) respectively. &
denotes the minimum degree of a vertex of G. A neighbor of a set of vertices X is a vertex y ¢ X
on an edge (z,y) for some z € X. A nonneighbor of X is a vertex y ¢ X that is not a neighbor. If
a function refers to a graph we include the graph as an extra argument if it is not clear, e.g., §(G),
n(Q).

A separation triple is an ordered triplet (S, X,Y) of sets forming a partition of V, with X and
Y nonempty and no edge going from X to Y. S is the separator and X and Y are the shores of
the triple. The vertex connectivity x is the smallest cardinality of a separator, or n — 1 if the graph
is complete. A x-separation triple has |S| = . In that case S is a x-separator and X and YV are
k-shores.

For z,y € V, s(z,y) = min{|S|,n — 1 : (5,X,Y) is a separation triple with z € X, y € Y'}.
Note that x(z,y) = n — 1 exactly when z = y or (z,y) € E. The rooted connectivity at z is
k(z) = min{x(z,y) : y € V}.

We also use a notion introduced by Even [6]: For a set of vertices S, sy (S) = min{|S], |C] :
(C, A, B) is a separation triple of G with S C AU C}. (The “W” stands for weak separation.) To
compute sy (S) first form the graph Gw(S) by starting with G and adding a new vertex s with

edges (s,v), v € S. Then s (S) = k(s, Gw(9)).

A quantity k(z,y) can be computed using one max flow computation on a network with unit
vertex capacities [2]. The time is O(y/nm). Alternatively for any value k the time is O(km) if we
must either find x(z,y) or verify that x(z,y) > k. A quantity x(z) can be computed in O(nm)
time [10]. Alternatively the time is O(n(n — 6)2). This follows from [10, p. 233]. There the bound
O(n(n — k)?) is shown, but the same argument proves the stronger bound. (We prove a similar
result for max flows in Lemma 2.5(iii).)

2 Gap Algorithm

A set R C V is p-rich if it contains at least p vertices from each shore of some x-separation
triple. Hence |R| > 2p. R is p-superrich if it contains at least p vertices from each shore of every
k-separation triple.

Lemma 2.1 (i) The neighbors of a vertex v with x(v) > Kk form a p-superrich set for p =
min{x(v),d} —x + 1.
(ii) Any set S CV with kw(S) > & is p-superrich for p = min{kw (S),d + 1} — k.

Proof: (i) Let (C, A, B) be any k-separation triple. Clearly C contains v. Let S be the set of
neighbors of v and assume |[ANS| < p. Since every vertex has degree at least 6, |A| +|C| > §. Thus
|A| > 0—k+1 > p. We conclude that A—S # (. Now it is easy to see that (CU(ANS)—v, A—S, BUv)
is a separation triple. This implies x(v) < |[CU(ANS) —v| < K+ p—1 < k(v), a contradiction.
(ii) As in part (i) for any x-separation triple (C, A, B) with |[ANS| < p, (CU(ANS),A- S, B)
is a separation triple. This implies sk (S) < |[CU(ANS)| <k +p < kw(S), a contradiction. O

A shore of a separation triple (C, A, B) is extreme if each of its nonempty subsets has at least |C|
neighbors. As examples, a separation triple (C, A, B) has B extreme if it is a s-separation triple,
or it is a separation triple corresponding to x(z) (i.e, z € A and |C| = k(z)) or it is a separation
triple corresponding to sk (S) (i.e, S € AUC and |C| = kw(S)). The next lemma is illustrated in
Fig. 1.

Figure 1: The two separation triples in Lemma, 2.2.

Lemma 2.2 Let (C, A, B) and (C', A’, B') be separation triples with B' extreme and B N B’ # 0.
i) [B'nC|=]|AncC".
(it) AN A’ has at most |C| neighbors.

Proof: We first show that for two arbitrary separation triples (C,A,B) and (C',A',B'), the
neighbors of BN B’ are contained in (B' N C) U (C' — A). In proof since no edge joins B’ and A’,
any neighbor of B N B’ belongs to B’ or C". Since no edge joins B and A, any neighbor of BN B’
actually belongs to B'NC or C' — A.

(i) Since B’ is extreme, B N B’ has at least |C"| neighbors, i.e., |B'NC|+|C’ — A| > |C']. This
implies the desired inequality.

(ii) The preliminary observation shows the neighbors of AN A’ are contained in (ANC") U (C —
B'). By (i) the size of this set is [ANC'|+ |C — B'| < |B'NC|+|C - B'| = |C). o

We apply the lemma to prove the following nesting property, an important ingredient in the
gap algorithm.

Lemma 2.3 Let (C, A, B) be a separation triple with B extreme. Either
(i) A or C contains a k-shore, or
(ii) A or B is contained in a k-separator, and C is min{|A|,|B|}-rich.

Proof: Let (C', A', B') be a s-separation triple. We can assume
(1) A'gc, B'¢C

since otherwise (i) clearly holds. Next we show that we can assume the first part of (ii), more
precisely either A C C' or B C C'. Suppose not, i.e.,

(2) AgcC', BgcC.

After possibly interchanging sets A’ and B’ we have AN A', BN B’ # (. (To see this choose A’ so
ANA" # 0 by (2). If this makes BN B’ = () then BN A’ #) by (2) and AN B’ # () by (1).) Now
apply Lemma 2.2(ii) (with the primed and nonprimed triplets interchanged) to show that AN A’
has at most |C’'| = « neighbors. Since AN A’ is nonempty and has nonneighbors, it is a x-shore
and (i) holds.

It remains to show the second part of (ii). This argument will not use the extremeness of B,
i.e., it is symmetric in A and B. So without loss of generality assume B C C’. Then (1) implies
A'NA, B'NA# 0. Lemma 2.2(i) with A" extreme and A'N A # 0 shows [A'NC| > |BNC'| = |B|.
Similarly Lemma 2.2(i) with B extreme and B’ N A # 0 shows |B'NC| > |BNC’| = |B|. This
gives the second part of (ii). O

Recall that an (n,d, c)-ezpander is a d-regular bipartite multigraph (V, W, F') where |V | = |W| =
n/2 such that any subset S C V' has at least (1 + ¢(1 — 2|S|/n))|S| neighbors [14]. Our techniques
can be applied using linear-sized (n, d, c¢) expanders, such as the graphs of Gabber and Galil [14].
This leads to a vertex connectivity algorithm with the same bounds as this paper for graphs with
rk < n3/%. To achieve the full range of our results (allowing £ < n) we rely on graphs with a stronger
expansion property.

We use the family of graphs X, 4 constructed by Lubotzky, Phillips and Sarnak [12] and Margulis
[13] with the following property. There is a constant Cy such that for any integer d where d —1 is a
prime power congruent to 1 modulo 4, and any positive integer r, there is an integer n, r <n < Cyr

and a regular graph X, 4 that has n vertices, degree d, and every eigenvalue of its adjacency matrix
except for the trivial eigenvalue d has magnitude at most 2v/d — 1. Furthermore the graphs X, 4
can be constructed in time linear in their size, O(nd). The graphs can be constructed edge-by-edge
using no auxiliary storage. The eigenvalue property implies the following expansion property: Any
two sets A, B C V(X,, 4) are joined by an edge if

(3) |A||B|d > 4n®.

This property follows trivially from [5, p. 122, Corollary 2.5] (also see [14, p. 160, Problem 6.27]).

Consider our given graph G = (V, E). For any set R C V and any positive value d, define a
graph Ry = (R, F') as follows. Take d’ to be one more than a prime power congruent to 1 modulo
4 with d < d" < 4d. Choose n so that |R| <n < Cy|R| and the above expander graph X, s exists.
Identify each vertex of R with a unique vertex of X, »#. Let I consist of the edges induced by X, o
on R.

Lemma 2.4 Take any k > s and let R be a p-rich set of r vertices. Set p' = max{p, (r —k)/2}
and d =1+ 4(Cor)?/(pp'). Then

k = min{k(z,y) : (z,y) an edge of Ry}

Proof: The assumption on R shows there is a x-separation triple (C, A, B) such that, writing
a=|ANR|and B8 = |[BNR|, we have & > B > p. Also a > (r — k)/2 > (r — k)/2. Hence
aBd > p'pd > 4(Cor)?. Thus (3) implies Ry has an edge (z,%) joining vertices of A and B. So
k(z,y) = K. O

Now we present our first algorithm. All the algorithms in this paper calculate a number of
separation triples. They maintain (Cy, Ag, Bp) as a triple having the smallest separator Cjy seen so
far. We say the algorithm has found x when |Cy| = k. So |Cy| > k as long as the algorithm has
not found .

The Gap Algorithm checks k-connectedness, i.e., given k it finds a k-separator if k < k or it
determines that x > k. Define the “gap” 7 by

y=0—k, T="7/2.

Assume v > 4. (This assumption can be weakened but it suffices for our purposes.) As we present
the algorithm we also verify its correctness. The comments verifying correctness assume that & < k.

Gap Algorithm

Step 1. If n < 26 then set R to V and go to Step 4. Note that V is 7-rich since a s-shore has
>d+1—k>086—k =27 vertices.

Step 2. Let a be a vertex of degree . Find x(a) and a corresponding separation triple (C, A, B)
with a € A. Initialize (Cy, Ay, By) to this triple.

Step 3. If k has not been found, this step either finds x or makes R a 7-rich set of < § vertices.

If k(a) > k+ 7 then let R be the set of neighbors of a and go to Step 4. Since x(a) < §, Lemma
2.1(i) implies that R is the desired 7-rich set.

Consider the opposite case x(a) < k + 7. We will apply Lemma 2.3 to the separation triple
(C,A,B). Let D be any set of k vertices in AU B. (D exists since n > 26 > 2k +71 > k + |C].)

Compute sy (C) and k(D) and corresponding separation triples and update (Cy, Ag, By). Set R
to C and go to Step 4.

Observe that if A contains a s-shore then k = ky (C) (since we can assume |C| > k). Similarly
if C' contains a k-shore then s = ky (D). The remaining case is Lemma 2.3(ii). Since every vertex
has degree at least § = k + 27 and |C| < k + 7 we have |A|,|B| > d +1—|C| > 7. So either we
have found x or C is the desired 7-rich set.

Step 4. If k has not been found and x < k then R is now 7-rich and either R = V with n < 24,
or [R| <0 <n/2. If R# V add vertices to make |R| = 2. Apply Lemma 2.4, constructing the
expander Ry and computing the values x(z,y) specified in the lemma. Update (Cy, Ay, By) for
these values. At this point if x < k the algorithm has found x. |

The next lemma gives three time bounds for this algorithm. (i) is the main bound. (ii) and
(iii) are used when x and d are very close to n (Lemma 6.2). These two bounds assume max flow
and rooted connectivity computations are performed as described in the proof.

Lemma 2.5 If vy > 4 then the Gap Algorithm either verifies that k > k or finds a r-separator.
(i) If n > 2§ the time is O ((n + % min{Jd, \/ﬁ}) m)

(ii) Alternatively if n > 26 the time is O ((———‘/——_—))

Y108 4nj5m
(iit) In general the time is O (——10?9:12—60

(iv) If v > €d for some fized € > 0 the time is O((y/n + 6)y/nm).

Proof: (i) We will show the time for the Gap Algorithm is dominated by the time for O(1) rooted
connectivity computations and O(6%/y) max flow computations. As mentioned in Section 1 we
compute a rooted connectivity in O(nm) time and a max flow in O(min{k,/n}m) time. These
bounds imply (i).

Steps 2 and 3 compute 3 rooted connectivities. Step 4 does a max flow computation for each edge
of Rgq. Thus the time to construct the expander R, is dominated by the max flow time, and there are
< (4d)r max flow computations. Since r = 2§ > ¢ + k Lemma 2.4 gives d = O(62/(76)) = O(3 /7).
This implies the desired bound.

(ii) To achieve this bound Step 4 computes max flows using the algorithm of [8]. This algorithm
finds a maximum flow on a graph with unit vertex capacities in time O(y/nm/ logyn) for b = n?/m.
If F' is the flow graph in our computations then n(F) = 2n, m(F) = 2m +n > én [2]. Thus
b(F) < 4n/d. The desired time bound now follows as in part (i).

(ili) As mentioned in Section 1 a rooted connectivity computation uses O(n(n — §)?) time. This
is dominated by the desired time bound since we can assume n%/2 > ylogn. Hence we need only
analyze the time to compute max flows in Step 4.

When n < 26 we have R =V and Lemma 2.4 gives d = O(n?/(7(n — k))) = O(n?/(y(n —9))).
This bound also holds when n > 2§ since part (i) shows d = O(§/v). Thus O(n®/(y(n — 6))) max
flows are computed. It suffices to compute each flow in time O(n + (n — §)%2/log (n —).

Recall the flow graph for computing x(z,y) has two vertices vp,vs and a unit capacity edge
(vr,vs) for each v € V, and infinite capacity edges (vs,wr) and (wg,vr) for each (v,w) € E.
The source is x5 and the sink is yr. Each edge (zg,vr) can be contracted into the source, and

each edge (vs,yr) can be contracted into the sink. This leaves < n — § vertices of each type vg
and vr. Hence the contracted graph has O(n — §) vertices. We construct the contracted graph in
time O(n + (n — 0)?) (using an adjacency matrix for the given graph) and find a maximum flow
on this graph in time O((n — 6§)*/2/log (n — 6)) (since a maximum flow in a graph with unit vertex
capacities can be found in time O(n%?2/logn) [8]). This implies the desired bound for computing
a max flow in Step 4. _ O

3 Gap Enlargement

This section gives an algorithm that modifies the given graph to enlarge the gap § — &.

Say that a digraph G' = (V', E') is sub-conformal to G = (V, E) if V! C V and the s-separators
of G are precisely the minimum separators of G’ with vertices V — V' added in. When V' =V say
that G’ is conformal to G.

Lemma 3.1 (i) Let R CV be I-superrich. Any vertez x with k(z) = x has k = min{s(z,y) : y €
R}.

(i) For any vertex x with k(z) > k, G — x 1is sub-conformal to G.

(iii) For any vertices z,y with x(z,y) > k, G + (z,y) is conformal to G.

Proof: (i) Some k-separation triple (C, A, B) has « € A. R contains a vertex y € B. Thus

K5(z,y) = k.
(ii) = belongs to every k-separator of G. Hence k(G — z) = k — 1 and (ii) follows.
(iii) No k-separation triple has z and y on opposite shores. Hence (iii) follows. a

Now we present the gap enlargement algorithm. It is called with a value A. It either finds a
k-separator or increases the gap ¢ — k by at least A.

The algorithm transforms the given graph G into a new graph H. During the algorithm H
always denotes the current graph. Initially H is G.

We shall see that H is constructed by deleting vertices of G and adding edges. This implies
that a separation triple (C, A, B) of H gives a separation triple (C U (V — V(H)), A, B) of G. Call
(CU(V =V (H)), A, B) the expansion of (C, A, B). As before the algorithm maintains (Cy, Ay, By)
as a separation triple of G' with the smallest separator Cy seen so far. So each time the algorithm
finds a separation triple of H, we use its expansion to update (Cy, Ao, Bo).

The algorithm maintains this invariant:

If % has not been found then H is sub-conformal to G.
As before we present the algorithm along with a verification of its correctness.

Gap Enlarger Algorithm

Let a be a vertex of degree §. Initialize (Cj, Ao, By) to the separation triple that has Cy consisting
of the neighbors of a. Repeat the following two steps A times:

Step 1. Choose a vertex # a. Find x(z, H) and a corresponding separation triple. Use the triple’s
expansion to update (Co, Ao, Bg). Delete & from H. If we have not yet found x then x(z, H) > x(H)
and the minimum separators change as specified in Lemma 3.1(ii). Thus the invariant is preserved.

Step 2. Repeat the following until §(H) = 6: Let S be the set of vertices of degree < §. (Each
vertex of S has degree § — 1.) Choose a vertex y # a that is adjacent to the fewest number of

vertices of S. Find x(y, H) and a corresponding separation triple. Use the triple’s expansion to
update (Co, Ag, Bo). Add an edge from y to each vertex z € S that is not currently adjacent to .
If we have not yet found & then x(y, H) > x(H) and Lemma 3.1(iii) shows the new edges do not
change the minimum separators of H. Thus the invariant is preserved. O

The analysis uses the value

Lemma 3.2 Assume the Gap Enlarger is called with n > § + A.

(i) The final graph H has n(H) =n— A, m(H) <m, §(H) = 6. Furthermore the expansion of
a separation triple of H is a separation triple of G.

(ii) Either the Gap Enlarger finds k, or H has gap > A and is sub-conformal to G.

(iii) The time is O(Anmin{m, (n — §)*}logsn).

Proof: (i) —(ii) Assume for the moment that the algorithm halts. Most details of (i) - (ii) are
clear so we just check three points. m(H) < m holds since Step 2 adds an edge incident to a
vertex z only if Step 1 has deleted such an edge. §(H) = 4 holds because vertex a belongs to
H and has degree 0. If the algorithm completes without finding s the final graph H has gap
S(H)—r(H)=6—-(k—A) > A.

Now we show the algorithm halts. In fact we prove that each execution of Step 2 iterates at
most loggn times. This is a finite number since the lemma’s hypothesis makes 3 > 1.

If § = 1 obviously there is only 1 iteration of Step 2. Hence assume 6 > 1. The current graph
H has at least n — A vertices. So the pigeonhole principle guarantees that y is adjacent to at most
[S|(6 —1)/(n — A — 1) vertices of S. Hence every iteration of Step 2 reduces |S| by a factor that is
at least (n — A —1)/(6 — 1) > . This implies the desired number of iterations.

(iii) The time for Step 1 and for one iteration of Step 2 is dominated by the time for a rooted
connectivity computation. As mentioned in Section 1 this is O(n min{m, (n—3)?}), implying (iii). O

When § < y/n an alternate implementation of the Gap Enlarger is faster. We require a con-
ditional computation of k(x) to return the correct value along with a corresponding separator if x
has not been found and x(z) = . Otherwise (if x has been found, or if k(z) > &) the computation
can return any valid separator and corresponding value. Clearly the Gap Enlarger remains correct
if it uses conditional rooted connectivity computations.

The alternate implementation of the Gap Enlarger works as follows. Before Step 1 find x(a)
and a corresponding separation triple. Initialize (Cy, Ag, By) to this triple. Initialize R to the set
of neighbors of a. If k has not been found then Lemma 2.1(i) shows R is 1-superrich.

Now in Step 1 compute s (z, H) conditionally by finding the values x(z,y, H) specified in Lemma
3.1(i). Similarly for x(y, H) in Step 2. Whenever Step 1 deletes a vertex z, delete it from R also.
Note that R remains 1-superrich if we have not found x. Hence each conditional rooted connectivity
computation works correctly.

Lemma 3.3 Assume the alternate implementation of the Gap Enlarger is called with n > 2A and
Vn> 6> 2.

(i) Lemma 8.2(1)-(ii) continue to hold.

(ii) The time is O((n + 62A)m).

Proof: (i) The assumption n > § + A of Lemma 3.2 holds since § + A < \/n+n/2 <n.

(ii) Before Step 1 we find x(a) in time O(nm) [10]. In Steps 1 and 2 every max flow computation
takes time O(dm) since we can stop when a flow of value ¢ has been found. It remains only to show
there are O(Ad) max flow computations.

As shown for Lemma 3.2 each execution of Step 2 iterates at most log pn times. This quantity
is O(1) since B = (n — A)/é > (n/2)/v/n = y/n/2. Hence there are O(A) conditional rooted
connectivity computations. Each one consists of |R| < § max flow computations, as desired. a

4 Digraphs and Gap Enlargement

This section reviews our terminology for digraphs and presents the results corresponding to Section
3 for gap enlargement on digraphs.

For a digraph we use superscripts ~ and * to refer to incoming and outgoing edges respectively.
For instance % is the smallest out-degree of a vertex, k™ (z) = min{x(y,) : y € V}, etc. Define
§ = min{d",67}, k(z) = min{k*(z), k" (z)}. (In contrast x(z,y) retains its usual meaning, distinct
from k(y,z).) An out-neighbor (in-neighbor) of a set of vertices X is a vertex y ¢ X on an edge
(z,y) ((y,z)) for some x € X, respectively. All other terminology defined in Section 1 remains
unchanged, and the time bounds for computing s(z,y) and k(z) are still valid. In addition if
(S, X,Y) is a k-separation triple, X is a k™-shore and Y is a s~ -shore. We adopt the convention
that a s-separation triple is always denoted by (C*, A*, B*).

We now present the results in Sections 2-3 that have close directed analogs. We begin with
Lemma 2.1. The notions of rich and superrich are defined as before. An analog of part (i) holds
but is not useful so we only generalize (ii).

Lemma 4.1 Any set S CV with kw(S) > & is p-superrich for p = min{kw (S),d + 1} — .

Proof: Let (C*, A*, B*) be any s-separation triple and assume [A* N S| < p. Since every vertex
has out-degree at least d, |[A*| + |C*| > §. Thus |A*| > —x + 1> p and A* — S # (. This makes
(C*U(A*NS), A* — S, B*) a separation triple. Hence sy, (S) < |C*U(A*NS)| < k+ p < ks (8),
a contradiction. O

Lemma 2.4 applies to digraphs without change. We turn to the directed version of Lemma 3.1.
This lemma will be applied in both the Gap Enlarger of this section and the Gap Algorithm of the
next section. The new lemma also contains some related facts that are used in the Gap Algorithm.

We first extend the sy notation as follows. For S C V and z € V, kw (S, z) = min{|S|, |C| :
(C, A, B) is a separation triple of G with S C AUC, z € B}. (If z € S then s (S,z) = |S].) To
compute Ky (S, z) when = ¢ S first form the graph Gy (S) as described in Section 1 (add a vertex
s to G along with directed edges (s,v), v € S). Then kw(S,z) = k(s,z,Gw(9)). kw(z,S) is
defined and computed analogously.

Lemma 4.2 (i) Let R C V be 1-superrich. Any vertez x with k™ (z) = x has k = min{x(z,v) :
y € R}. Similarly any set of vertices S with ki};(S) = k has k = min{kw(S,y) : y € R}.

(ii) For any vertez x with k(z) >k, G — x 1s sub-conformal to G.

(iil) For any vertices z,y with k(z,y) > k, G + (x,y) is conformal to G.

(iv) For any vertex x and any set of vertices S with ™ (z) < ki, (S), x*(z) = min{x(z,y) : y €
S}.

} (v) For any set of vertices S, any separation triple (C, A, B) and any vertex b € B — S,

v (8,5) < €|+ 1S N B,

Proof: (iv) Let (C, A, B) be a separation triple corresponding to x¥(z). If B and S are disjoint
then § € AUC and so &{y(S) < |C| = x*(2), a contradiction. Thus BN S # @, which gives (iv).
(v) The hypothesis makes (C'U (SN B), A, B — S) a separation triple. This implies (v). O

Now we show that the algorithms of Section 3 for gap enlargement extend naturally to digraphs,
with the same time bound.

The Gap Enlarger Algorithm works as before with minor changes to Step 2: S is defined to
be the multiset of vertices whose in-degree or out-degree is < J; a vertex is included twice if both
degrees are < 6. The remaining changes are to use the natural interpretation of how edges are
directed. Lemma 3.2 and its proof apply unmodified.

The alternate implementation of the Gap Enlarger for § < /n is changed to use the following
procedure before Step 1:

Let a be a vertex with in-degree or out-degree §. Let R be a set of § + 1 vertices, specifically
vertex a and its § in-neighbors or out-neighbors. Find kw (R) and a corresponding separation
triple. (Obviously kw (R) < 4.) Initialize (Cp, Ag, Bo) to this triple. Observe that if a x-separator
has not been found then Lemma 4.1 shows that R is 1-superrich.

The rest of the algorithm is unmodified. Lemma 3.3 holds as before.

5 Digraph Gap Algorithm

Our nesting property for directed separation triples is weaker than its undirected counterpart
Lemma 2.3. This leads to a more involved directed Gap Algorithm. In addition the directed Gap
Algorithm needs to be more general (i.e., handle low connectivities) since Henzinger’s algorithm [9]
applies only to undirected graphs. Nonetheless the same asymptotic running time can be achieved
for the directed Gap Algorithm. This section begins with the directed nesting property. Then two
versions of the Gap Algorithm are presented, the first more efficient for large connectivities and the
second more efficient for small.

In a separation triple (C, A, B), B is in-extreme if each of its nonempty subsets has at least
|C| in-neighbors; similarly for A out-eztreme. As examples, a separation triple (C, A, B) has B
in-extreme if it is a x-separation triple, or it is a separation triple corresponding to x*(z) (i.e,
z € A and |C| = x*(z)) or it is a separation triple corresponding to s, (S) (i.e, S C AUC and
€] = wiy(S)).

Lemma 5.1 Let (C, A, B) be a separation triple with B in-extreme. Ezther

(i) A contains a k™ -shore, or

(ii) for every k-separation triple (C*, A*, B*) either AN A* or BN B* is empty. Furthermore
ANA* # 0 implies (BUC)NA*| > |B|, and symmetrically BNB* #) implies |(AUC)N B*| > | Al.

Proof: We begin by considering two arbitrary separation triples (C, 4, B) and (C’, A', B') (see
Fig.1). First observe that the out-neighbors of AN A’ are contained in (A'NC) U (C' — B). In
proof since no edge goes from A’ to B’, any out-neighbor of A N A’ belongs to A’ or C’. Since no
edge goes from A to B, any out-neighbor actually belongs to A’ N C or ¢’ — B, as desired. Next
observe that if AN A’ is nonempty its out-neighbors form a separator. This follows since no vertex
of B is an out-neighbor.

Now let (C*, A*, B*) be a k-separation triple with AN A* # (and BN B* = {. The previous
remarks show that [A* N C| + |C* — B| > |C*|, or equivalently |A* N C| > |C* N B|. Thus
[(BUC)NA*| = |BNA*|+|CNA* > |BNA*+|C*NB| =|B|. Hence ANA* # 0 and BNB* =
implies |(B U C) N A*| > |B] as in the second part of (ii). Applying this assertion to the reverse

10

graph we get that BN B* # () and AN A* = 0 implies |(A U C) N B*| > |A|, as in the second part
of (ii).

Finally assume the hypothesis of the lemma, i.e., (C, A, B) is a separation triple with B in-
extreme. For any s-separation triple (C*, A*, B*), if B N B* is nonempty it has at least |C| in-
neighbors, by extremeness. This implies | B*NC|+|C*—A| > |C/|, or equivalently |C*NB| > |CNA*|.
Thus the number of out-neighbors of ANA* is at most |A*NC|+|C*—B| < |C*NB|+|C*~B| = |C*|.
We conclude that AN A*, BN B* # () implies AN A* is a x¥-shore. So if (i) of the lemma does not
hold, the first part of (ii) holds. The second part of (ii) now follows from the previous paragraph. O

We turn to the directed Gap Algorithm. As before the algorithm checks k-connectedness for a
given k. Define

D = min{2k,0}, y=D —k, 7 =/2.

Assume y > 4. The comments verifying correctness assume that x < k.

As in the Gap Enlarger we modify the given graph to a new graph H. Initially H is G, and H
always denotes the current graph. H is constructed from G by adding edges, so a separation triple
of H is a separation triple of G. The algorithm maintains these invariants:

I1. If k has not been found then H is conformal to G and for every x-separation
triple (C*, A*,B*), XN B* =Y N A* = 0.

I2. After each iteration of Step 3, every vertex of X (Y') has in-degree (out-degree)
n — 1, respectively.

Directed Gap Algorithm

Step 1. If n < 2D then set R to V and go to Step 4. Note that V is 7-rich since a k-shore has
>6+1—k>0~—k > 27 vertices.

Step 2. Let S be a set of 2D vertices. Initialize (Cp, Ag, By) to a separation triple with |Cp| = §
(use a vertex of in- or out-degree §). Initialize sets X and Y to 0.

Step 3. Repeat Steps 3.1-3.2 until Step 3.2 either halts or goes on to Step 4:

Step 8.1. Find kw (S, H) and a corresponding separation triple (C, A, B) if one exists. In the latter
case update (Cy, Ao, Byp).

Step 3.2. If kw(S,H) > k + 7 then let R be the set S and go to Step 4. Note that R is a 7-rich
set of 2D vertices, by Lemma 4.1 with p = min{xw (S, H),6(H)+ 1} —x > (k+7) —k = 7. (Since
the algorithm never deletes edges, 6(H) > §.)

The other possibility is sy (S, H) < k+7. We first discuss the case ki (S, H) = &}y (S, H) and
then sketch the symmetric case Ky (S, H) = sy, (S, H).

If Ky (S, H) = £7(S, H) then S C AUC and B is in-extreme. We will apply Lemma 5.1 to
(C,A,B). Compute sw (A, H) and sy (C, H) with corresponding separation triples and update
(Co, Ao, By). Add B to X. If this makes |X| > k then compute ky (X, H) and a corresponding
separation triple, update (Cy, Ao, By) and halt. Otherwise add edge (z,y) to H for every z € V,
y € B where this edge does not exist.

Observe that if A contains a xT-shore then k = ry (C, H) (note that |C| > & if x has not
been found). Hence we can assume Lemma 5.1(ii) applies. If a x-separation triple (C*, A*, B*) has
AN A* =0 then ky, (A, H) = &, since |A] > |S| = |C] > 2D —k —7 > D > k. Hence assume that
AN A* # 0 and, by Lemma 5.1(ii), B N B* = (), for every s-separation triple (C*, A*, B*). Now

11

adding B to X preserves invariant I1. If [X| > k invariant I1 shows we find x as (X, H). If
|X| < k Lemma 4.2(iii) shows that the new edges (z,%) preserve invariant I1, as well as 12.

If kw (S, H) = £y, (S, H) proceed symmetrically, adding A to Y and adding edges directed from
the vertices of Y. In both cases after adding the edges, go back to Step 3.1 to start the next
repetition.

Step 4. If has not been found and x < k then R is now 7-rich and either R = V with n < 2D,
or |R| = 2D. Apply Lemma 2.4, constructing the expander Ry and computing the values x(z,y)
specified in the lemma. Update (Co, Ao, Bo) accordingly. At this point if & < k the algorithm has
found «. O

For the efficiency analysis we show that Steps 3.1-3.2 are executed O(k/7) times. It suffices
to prove that each execution with sk (S, H) < k + 7 increases | X| + |Y| by at least 7, since this
implies there are at most 2k/7 such executions.

To prove this assume sk (S, H) = (S, H), the case sy (S, H) = Ky (S, H) is symmetric.
Invariant 12 shows that right after Step 3.1, X N B =). (In fact this holds for any separation triple
(C, A, B).) Since every degree is > 6, |B| > 6+1—|C| > (k+7) — (k+7) = 7. Thus adding B to
X increases | X| by at least 7, as desired.

Next observe that m(H) = O(m). This follows since Step 3.2 only adds edges when | X| < k
(or |Y] < k). Hence O(kn) edges are added to H. This quantity is O(m) since m > én and § > k.

Now we show the total time for Step 3 is O(kn + knmin{m, (n — §)?}/7). An execution of
Steps 3.1-3.2 performs O(1) rooted connectivity computations. As mentioned in Section 1 each
such computation uses time O(nmin{m, (n — §)?}), so this is within the bound. The remaining
time in Step 3 is for adding edges, and it is easy to see this can be done in total time O(kn).

The next lemma gives four time bounds for the algorithm, similar to Lemma 2.5.

Lemma 5.2 If v > 4 then the Digraph Gap Algorithm either verifies that k > k or finds a k-
separator.

(i) If k > /n/2 and n > 2D the time is O (%2—\/5771)

(ii) If k > /nlogn and n > 2D the time is O (M>

v10g 4n/sn

(iii) In general the time is O (ﬁgj)-

(iv) If v > €D for some fized € > 0 the time is O((v/n + D)/nm).

Proof: For each part we first verify that the time for Step 3 is within the desired bound. Then we
use an argument similar to Lemma 2.5 to estimate the time for Step 4.

(i) The assumption k > \/n/2, with D > k, implies kn = O(Dn) = O(D?/n). Hence the time
for Step 3 is O(knm/v) = O(D*/nm/v). For Step 4 it suffices to show there are O(D?%/v) max
flow computations. Since r = 2D > D + k Lemma 2.4 gives d = O(D?/(rD)) = O(D/~). Just as
in Lemma 2.5 Step 4 performs O(dr) max flow computations, as desired.

(ii) The assumption on k implies D > (/nlogn. Similar to part (i) we get O(knm/y) =
O(D?*\/nm/(~logn)), which is within the desired time bound. For Step 4 we combine the estimate
of O(D?/v) max flow computations of part (i) with the time bound of Lemma 2.5(ii) for one max
flow. (This time bound is valid for digraphs.)

12

(iii) Step 3 uses time O(kn + kn(n — 6)2/7) = O(n*/~). This is within the desired bound since
v/n > log (n — §). The time for Step 4 is estimated exactly as in Lemma 2.5(iii). (The estimate is
valid for digraphs.)

(iv) By assumption v > €D > €k, so Step 3 uses time O(knm/y) = O(nm). Step 4 does O(D)
max flow computations since in Lemma 2.4 we have » < 2D and d = O(1). The latter holds because
T > €D /2 implies d = O(r?/p?) = O(D?/7?) = O(1).]

Now we present a version of the Directed Gap Algorithm that is more efficient when k < /n.
For definiteness we refer to the original Directed Gap Algorithm as the basic algorithm. The idea
is to use Lemma 4.2(iv) to replace the rooted connectivity computations in Step 3 of the basic
algorithm by max flow computations. But in order to satisfy the hypothesis of Lemma 4.2(iv) we
need to separate out a subcase of Step 3. (This is done in Step 2 below.)

As in the alternate Gap Enlarger we use conditional computations of x(z). We also use con-
ditional computations of sy (S5), defined similarly. (If s has been found or kw (S) > s the com-
putation can return any valid separator and corresponding value.) We use Lemma 4.2(i) to do
conditional computations. Clearly any algorithm that does some of its computations condition-
ally still maintains (Cy, Ag, By) as a valid separator and finds &, if at some point it conditionally
computes a value x(z) or kK (S) that actually equals x.

All assumptions of the basic Directed Gap Algorithm remain unchanged. Invariants I1-12 still
hold. In addition we assume n > 4D for convenience.

Directed Gap Algorithm, Flow Version

Step 1. Let S be an arbitrary set of 2D vertices. Initialize (Cy, Ag, By) to a separation triple with
|Cy| = ¢ (use a vertex of in- or out-degree §). Initialize sets X and Y to 0.

Find xw(S). If a corresponding separation triple exists, update (Cy, Ag, By). From now on
we can assume that S is l-superrich (else x has been found). We will use S in all conditional
connectivity computations (i.e., in applying Lemma 4.2(i) take R to be S).

If k7, (S) and k- (S) are both < k + 7 go to Step 2, else go to Step 3.

Step 2. Now &, (S), kiy(S) < k+ 7. Let xi;,(S) (ky(S)) correspond to the separation triple
(Ct,A*,BT) ((C~,A™,B™)) respectively. Conditionally compute sy (T) for T = A+, Bt C*,
A™, B7, C~ and update (Cy, Ao, By) for the separation triples that are found. Then set R =
(BT UCT)U (A~ UC™) and go to Step 4. ‘

Observe that |[AT| > |S| —|CF| > 2D — (k+7) > D > k. Hence if AT N A* = () for some
k-separation triple (C*, A*, B*) then sy, (A") = x. Thus we can assume A+t N A* # § for every
k-separation triple (C*, A*, B*). Apply Lemma 5.1 to the separation triple (C+, A*, BT) with BT
in-extreme. If part (i) of Lemma 5.1 holds then x3;,(C™) = k. So assume part (ii) holds. We claim

(BTUCT)nA*| >

In proof part (ii) shows the left-hand side is > |B™|, so it suffices to show |BT| > 7. A vertex of
B* has > ¢ > k + 27 in-neighbors, all belonging to BY UC*. Now |C*| = s, (S) < k + 7 implies
the desired inequality.
Part (ii) also implies B¥ N B* = { for every s-separation triple (C*, A*, B*). Hence if |[B*| > k
then sy, (B*) = k. So assume
|BT| < k.

13

A symmetric argument shows we can assume the analogs of the displayed inequalities for sep-
aration triple (C~, A™, B7), specifically (A~ UC~)NB* > 7 and |[A™| < k. Together these 4
inequalities show that the set R is a 7-rich set of < 2(2k + 7) < 4D vertices.

Step 3. At this point one or both ki, (S) and sy, (S) is > k + 7. Assume ry,(S) > k + 7. If
only K;,LV(S) > k + 7 then proceed in a symmetric manner, applying what follows to the reverse
graph. (If both &} (S), 17, (S) > k+ 7 we could go directly to Step 4 as in the basic Directed Gap
Algorithm.) Recall that Step 3 will preserve invariants 11-12.

Initialize the set 7" to S, sets X and Y to (), and graph H to G. Repeat Steps 3.1-3.2 until they
halt or go on to Step 4:

Step 3.1. If T = (then set R to S and go to Step 4. Otherwise let b be a vertex of 7. If
kw (S —b,b, H) > k + 7 then delete b from 7' and repeat Step 3.1. Otherwise go to Step 3.2.

Let us show that if 7" becomes empty then we go to Step 4 with R = S a 7-rich set. We first
show

1SN AY > 7

for every r-separation triple (C*, A*, B*). If not then £y, (S) < s +|SNA* <k +7 (as in Lemma
4.1) contradicting the initial assumption of Step 3. Next we show that if T becomes empty then

|ISNB* >

Suppose the opposite inequality holds for some k-separation triple (C*, A*, B*). Initially T contains
a vertex b of B*, since S is 1-superrich. If b is ever chosen in Step 3.1 then Lemma 4.2(v) shows
kw (S —b,b,H) <k +|(S —b) N B*| < k+ 7. Hence T never becomes empty.

Step 3.2. We have k(S — b,b,H) < k+ 7. Apply Lemma 4.2(iv) to calculate (b, H) as
min{x(y,b, H) : y € S}. The hypothesis of Lemma 4.2(iv) holds since £~ (b, H) < sy (S —b,b, H) <
kE+71 < Ky (S) < 6y, (S, H). (The last inequality holds since H is the result of adding edges to G.)
Let (C, A, B) be a separation triple corresponding to k™ (b, H).

Apply Lemma 5.1 to (C, A, B) with A out-extreme as follows. Conditionally compute xy (C, H)
using Lemma 4.2(i) and update (Cp, Ag, By). We can now assume part (i) of Lemma 5.1 does not
hold, so part (ii) does. At least one of the sets A, B has size > k, since n > 4D > 3D + k+ 1 >
2k +|C|.

First suppose |A| > k. Use Lemma 4.2(i) to conditionally compute xw (A, H) and update
(Co, Ag, By). So we can now assume sy (A, H) > k. Thus every k-separation triple (C*, A*, B*)
has AN A* # 0. Lemma 5.1(ii) implies BN B* = (. Add B to X. If this makes |X| > k then
conditionally compute sy (X, H) and a corresponding separation triple, update (Cp, Ag, Bp) and
halt. Otherwise add edge (z,y) to H for every z € V, y € B where this edge does not exist.

Note the additions to X and H preserve I1-12. Also when |X| > k the algorithm halts having
found «, by I1.

Next suppose |B| > k. Follow a symmetric procedure (adding A to Y and adding edge (z,v)
for every z € A, y € V). In both cases after adding the edges, go back to Step 3.1 to start another
iteration.

Step 4. If k has not been found and x < k then R is now 7-rich with at most 4D vertices. Add
vertices to make |R| = 4D. Apply Lemma 2.4, constructing the expander Ry and computing the
values k(z,y) specified in the lemma. Update (Cy, Ag, Bo) accordingly. At this point if £ < k the
algorithm has found &. O

14

Enlarger works correctly and its time is given by Lemma 3.3(ii), i.e.,
O((n +6°A)m).

Now consider the Gap Algorithm executed on H. We will apply Lemma 5.3 (2.5(i)). We need
the hypothesis n(H) > 46(H). This holds since n — A > 62 — |/§| > 156. Applying the lemma
with v = A, n(H) <n and m(H) < m gives time

O((n +8*/A)ym).

Finally note that the two displayed quantities are within the time bound of the lemma because
k>6/2and A= V5] >6/2. O

Lemma 6.2 When § > \/n we find s and a k-separator in time O(kn3/m).

Remark: The analysis is complicated by two phenomena which emerge as 0 becomes large. First,
the factor logsn in the time for gap enlargement (Lemma 3.2(iii)) is O(1) for small 6, e.g., n > 35¢
for any fixed e > 1. But this factor grows for larger 4, e.g., it is about n'/4logn when § = n —n'/8.
Second, the degree of the expander graph is O(§/v) when n > 26 (Lemma 5.2(i)). When n = 2§
this is O(n/-y). For larger values of ¢ the degree bound is a factor n/(n — d) larger (Lemma 5.2(iii)).
So when & = n —n'/® this is a factor n!/® larger.

Proof: We consider the same three cases as in the definition of A. Observe that we always have
A < ndlt,
Case 1. 6§ < n?/3.

Consider the Gap Enlarger. The requirement n > § + A of Lemma 3.2 is satisfied since
n > §%% > 46 > § + A. Hence the Gap Enlarger works correctly. To compute the time note that
B=(n—A)/5>(n—n3*/5 > (n/2)/n?? > n'/3/2. Hence Lemma 3.2(iii) shows the time is

O(Anmloggn) = O (0

i nm> = O(kn**m).

To estimate the time for the Gap Algorithm observe that n(H) =n — A > n —n3/* > n/2 >
§%%/2 > 25. Also k =6 — A > §/2 > /n/2 > /n(H)/2. Hence part (i) of Lemma 5.2 (2.5)
applies. Using n(H) < n, m(H) < m we get time

o0& _o 2 = O(kn*/*
Z\/ﬁm = 5/n1/4\/ﬁm = O(kn°/*m).

Case 2. n?/3 <§<n/3.

We will use several times the fact that for any constant ¢ > 1/3, log (en/d) = O(log (n/d)).

Consider the Gap Enlarger. To show the requirement of Lemma 3.2, n > § + A, observe that
n > 36 > 26 + A. Hence the Gap Enlarger works correctly. To compute the time note that
B =(n—A)/0>n/(20) since A < § <n/2. So Lemma 3.2(iii) shows the time is

O(Anmloggn) = O < nm log n/g(;n) = O(kn*/*m).

ni/4log /s

17

To estimate the time for the Gap Algorithm observe that n(H) =n — A > 3§ — § = 26. Also
k=0—A>5/2>n3/2> /n(H) logn. Hence part (ii) of Lemma 5.2 (2.5) applies. Now using
n(H) <n, m(H) < m gives time

0 (M) =0 (K/) = O(kn®/*m).

v10g 4510 W”fg—m 10g 4n/6m

Case 3. n/3 <& <n—n'/8,

In this case the desired time bound is O(n!%/%), since k > §/2 > n/6 and m > nd/2 > n2/6.
Consider the Gap Enlarger. The requirement n > § + A is satisfied since n > § +n7/8 >
6 +n3%* > 6§+ A. Define € so that
d=(1-¢e)n.
The assumption of Case 3 implies 1/n'/® < ¢ < 1. Lemma 3.2(iii) shows the time for the Gap

Enlarger is
T4 (y _ 5)2 15/4 2
o2 _ n*(n—0)"\ n>/%e
O(An(n —6)“loggn) = O (_logﬂ) = O(o2) .

Hence it suffices to show Inf > ¢/2. First observe that 8 = (n— A)/6 > (1 — 1/nt4)/(1 —).

Hence InB > —2/n'/* 4 ¢. For sufficiently large n, € > 1/n'/® > 4/n1/4. This implies In 3 > €/2.
We estimate the time for the Gap Algorithm using part (iii) of Lemma 5.2 (2.5), which with

n(H) < n gives time
| nd/2 _ n'%/4logn
N <vlog (n(H) - 5)) ¢ (mg (n(H) - é)) |

Hence it suffices to show n(H) — § > n®* for sufficiently large n. This follows since n(H) — § =
n—A—§>n7/8_n3/4, O

This completes the analysis of the connectivity algorithm for digraphs. For undirected graphs
we use the same algorithm with this preprocessing step: Find a maximal forest decomposition and
discard all edges except those in the first § + 1 forests. The new graph has the same minimum
separators as the original and has O(dn) edges. Using the algorithm of [15] the time is O(m).

Now combining Lemmas 6.1 and 6.2 gives our main result.

Theorem 6.3 In a digraph the vertex connectivity k and a corresponding separator can be found
in O((n+min{x5/2, kn®*})m) time. In an undirected graph the same bound holds with m replaced
by kn. The space in both cases is O(m).

Acknowledgments

We thank Noga Alon, Avi Wigderson and David Zuckerman for help with expander graphs.

References

(1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, MA, 1974.

18

(2] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms and Appli-
cations. Prentice Hall, Englewood Cliffs, NJ, 1993.

[3] N. Alon. Eigenvalues and expanders. Combinatorica, 6(2):83-96, 1986.

[4] N. Alon, M. Blum, A. Fiat, S. Kannan, M. Naor, and R. Ostrovsky. Matching nuts and bolts.
In Proc. 5th Annual ACM-SIAM Symp. on Disc. Algorithms, pages 690-696, 1994.

[5] N. Alon, J.H. Spencer, and P. Erdds. The Probabilistic Method. Wiley Interscience, NY, 1992.

[6] S. Even. An algorithm for determining whether the connectivity of a graph is at least k. STAM
J. Comput., 4(3):393-396, 1975.

[7] S. Even and R.E. Tarjan. Network flow and testing graph connectivity. SIAM J. Comput.,
4(4):507-518, 1975.

[8] T. Feder and R. Motwani. Clique partitions, graph compression and speeding-up algorithms.
J. Comp. and System Sci., pages 261-272, 1995.

[9] M.R. Henzinger. A static 2-approximation algorithm for vertex connectivity and incremental
approximation algorithms for edge and vertex connectivity. J. Algorithms, 24(1):194-220,
1997.

[10] M.R. Henzinger, S. Rao, and H.N. Gabow. Computing vertex connectivity: new bounds from
old techniques. J. Algorithms, 34(2):222-250, 2000.

[11] L. Lovész. Combinatorial Problems and Ezercises, 2nd Ed. North-Holland, NY, 1993.

[12] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8(3):261-277,
1988.

[13] G.A. Margulis. Explicit group-theoretical constructions of combinatorial schemes and their ap-
plications to the design of expanders and superconcentrators. Problemy Peredachi Informatsii,
24:51-60, 1988. In Russian; English translation in Problems of Information Transmission 24,
1988, pages 39-46.

14] R. Motwani and P. Raghavan. Randomized AlgO’l"Ztth Cambridge University PI‘QSS, NY,
g g

[15] H. Nagamochi and T. Ibaraki. A linear-time algorithm for finding a sparse k-connected span-
ning subgraph of a k-connected graph. Algorithmica, 7:583-596, 1992.

[16] D.A. Spielman. Linear-time encodable and decodable error-correcting codes. In Proc. 27th
Annual ACM Symp. on Theory of Comp., pages 388-397, 1995.

[17] A. Wigderson and D. Zuckerman. Expanders that beat the eigenvalue bound: explicit con-
struction and applications. In Proc. 25th Annual ACM Symp. on Theory of Comp., pages
245-251, 1993. ‘

19

