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Abstract

Dependence relationships among the statements of a program are important to understand for
various software development and maintenance purposes. The program’s dependence graph is used
as a base for various types of program analyses. A dependence graph represents the potential for
one statement in a program to affect another in terms of the control and data dependencies among
a program’s statements. A dependence graph is a directed multi-graph; the vertices of the graph
represent the statements in a program and the arcs represent control and data dependencies sepa-
rately. During the past two decades the value of a dependence graph as a program representation
has been recognized by a wide audience and the definition has been extended in various ways in
order to incorporate dependence relationships in various types of programs.

This dissertation concentrates on the control dependence aspect of program dependence and
describes a new approach to identifying control dependencies in sequential, imperative, multi-
procedure programs. The approach is formal, compositional, and language independent. It ad-
dresses previously identified pitfalls associated with identifying control dependencies in programs
that contain procedure calls. Additionally, because it is rigorously defined, it provides a foundation
for reasoning about its potential use as a base for formal extension to other types of programs.

Models of control dependencies for uni-procedure programs are typically based on composing
two program representations: the control flow graph and the forward dominance tree. The key
observation underlying the work described in this dissertation is that the notion of forward dom-
inance has not been carried forward into approaches to computing control dependencies in more
complex types of programs. The forward dominance relationship, as previously defined, is not
effective for use in identifying control dependencies in non-inlined control flow representations of
multi-procedure programs.

In this thesis we extend the definitions of control flow, forward dominance, and control de-
pendence for application to multi-procedure programs. We describe structures that represent the
interprocedural relationships in a program. We describe and define interprocedural forward dom-
inance and a related program representation called the forward dominance forest and its use to
identify control dependencies in multi-procedure programs.
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Chapter 1

Introduction

Dependencies of many types exist among elements of software systems. Understanding the nature

and extent of these interdependencies is critical to many software development and maintenance

tasks. For instance, during compilation of source code it is helpful to identify dependencies among

program statements so that various optimizing code transformations can be made without affecting
the functionality of the program [3], and during debugging it is helpful to isolate all the code

on which an error-producing statement depends for calculating its result in order to more easily

determine the source of the error [42]. One can exploit dependence information at higher levels of

abstraction in order to reason about possible effects of changing a component in a system [50].

Various forms of system description are available to system developers based upon the phase
of the software life cycle to which the description applies and the type of system being developed.
Early work in understanding system dependencies concentrated on programs that are comprised
of a single procedure written in sequential, imperative programming languages [17, 41]; in this
dissertation these types of programs are referred to as wni-procedure programs. More recently,
research has been directed at more complex types of languages used to describe programs with
procedure calls [22, 27, 33, 37, 47], object-oriented programs [31, 57], concurrent programs [14,
23, 56], concurrent object-oriented programs [57], software architectures [48, 55], and hardware
architectures [15].

Work in the area of identifying control dependencies in uni-procedure programs produced two,
very similar formal models, one by Ottenstein and Ottenstein [39] and the other by Podgurski and
Clarke [41]. These formal models are based on combining control flow and forward dominance
information to produce control dependence information. There have been several attempts to
directly extend these models for application to programs with procedure calls [22, 27, 37, 47],
which we refer to as multi-procedure programs. These attempts fall into two categories. In the
first, a program control flow graph is constructed by inserting individual copies of each procedure’s
control flow graph after each call to a procedure [22]. This is known as an inlined control flow
graph (ICFG). In the other, one copy of a procedure’s associated control flow graph is used, then
control flow arcs are inserted between each call site and the appropriate procedure’s control flow
graph to represent the call to, and return from, the procedure. This is referred to as a one-to-one



CFG representation in this dissertation.

The inlining approach works because it represents the program as a super control flow graph with
the same characteristics as the CFG used to define the forward dominator tree. However inlining is
impractical to use, due to the growth in the size of the representation when procedures are called
from multiple call sites. Approaches based on the one-to-one CFG representation have encountered
several issues with respect to both the precision and the conservativeness of the identified sets of
dependencies. Lack of conservativeness (i.e., not identifying all potential dependencies), results
from failure to address the effects of program control mechanisms such as halts, non-terminating
loops, and infinite recursion. Lack of precision results from failure to reflect the calling context
of a procedure when calculating dependencies. To deal with these issues, researchers have created
ad hoc extensions to the control flow graph and the program dependence graph in the form of
dummy vertices and additional types of control dependencies, each intended to deal with a specific
type of dependence created by a specific type of control control mechanism.

1.1 A New Approach

Horwitz et al. recognized that it would be useful to be able to use methods based on dependence
graphs to identify dependencies in programs that are incomplete or are composed of precompiled
libraries [27]. To our knowledge, no method exists that provides support for such analysis for
programs in which global interactions may lead to non-termination of the program or non-return
to calling procedures. This thesis describes an approach to interprocedural control dependence
analysis that provides this support. The approach consists of a model and a set of algorithms for
automatically constructing the structures that comprise the model. The model consists of a set of
structures including a call graph, and extensions of the control flow graph, the forward dominance
tree, and the control dependence graph. The model is presented in Chapter 3 and algorithms for
constructing it are described in Chapter 4.

1.1:1 Guiding Principles

Three guiding principles were followed during development of our model: we wanted to create
a model that is compositional, language independent, and defined with mathematical rigor. Our
reasoning was as follows:

Compositional It is useful to be able to determine intraprocedural dependencies once for each
procedure then use that information when composing programs.

Current trends in system development point towards increased use of prefabricated components
known at COTS (commercial, off-the-shelf) components. Our vision is to extend this compositional
model for use with COTS components. A component manufacturer can opt to calculate intra-
component dependencies once and supply them along with the component for use in identifying
program-wide dependencies at program composition time.



Language Independent Modern programs are generally comprised of procedures written in a
variety of languages. Thus, any model for program-wide analysis must be based on a language
independent representation. Additionally, language independence allows for a particular analysis
technique to be applied to a larger number of programs than is possible for analyses that are
tailored for specific languages. The language independence of the model is currently restricted to
sequential, imperative languages. Extension to other types of languages is left as an area for future
work.

Rigorously Defined We wish to use this model as a foundation to be used when developing
dependence models of other types of programs. As such, it must be possible for one to recognize
its limitations and power. A mathematically defined model provides support for reasoning about
such properties.

The model is based on Podgurski and Clarke’s formal model of control dependencies for uni-
procedural programs [41]. The key insight of the work presented in this dissertation is the limita-
tions of the applicability of forward dominance, and the power that would result from extending
this notion in a way that supports interprocedural dependence analysis in a one-to-one graph
approach. This extension is called procedure forward dominance. It recognizes the potential for
non-return from procedure calls. That is, it is not possible to know until a program is composed
whether statements within a procedure that follow a procedure call will forward dominate the
procedure call. Each procedure is represented by a new representation of control flow within a
procedure called a procedure control flow graph (PCFG). From this PCFG, a procedure forward
dominance forest (PFDF) is constructed; these two graphs are used in combination to identify
control dependencies among statements in a procedure and these are represented in a procedure
control dependence graph (PCDG).

The primary contributions of this dissertation are the formal description of a language inde-
pendent, compositional model of dependencies in multi-procedure programs and the algorithms for
constructing the structures that comprise the model. A forward dominance forest (FDF) is defined
to support reasoning about program-wide forward dominance relationships. At program composi-
tion time, statement-level control dependencies among procedures are identified by using the FDF,
the program’s call graph (CG), and the program’s PCDGs in combination. Alternatively, the FDF
may be used in conjunction with a CG to identify control dependencies among procedures. An
additional contribution of this thesis is extension of Podgurski and Clarke’s notion of weak control
dependence to reflect that non-return from a procedure call may be due to embedded halts or it
may be due to non-termination of loops in called procedures, or infinite recursion among subse-
quently called procedures. While other work has considered the potential for non-return due to
embedded halts [22] and arbitrary control flow [47] in the form of Java exceptions, to our knowledge
accounting for potential non-return due to loops and recursion has not been previously addressed.

1.2 Evaluation

We evaluate the model in several ways:
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Figure 1.1: Structures of a Dependence Model and the Relationships Among Them.

Correctness We evaluate the model’s ability to support modeling of all control mechanisms
supported by commonly used, sequential, imperative programming languages. We show that the
same set of control dependencies are identified through application of our compositional model as
those obtained using traditional control dependence applied to an inlined control flow graph.

Complexity We evaluate the algorithm’s complexity and compare it to the complexity of other,
published, interprocedural analysis algorithms.

Size of the Representation We compare the space requirements of the structures of the model
to those used in other interprocedural dependence models.

Usefulness We show that our algorithms are conservative and at least as precise as other pub-
lished interprocedural control dependence algorithms. Additionally we show that the model satisfies
the guiding principles for its development in that it possesses the positive characteristics of com-
positionality, formality, simplicity, and language independence.

1.3 Scope and Contribution

This dissertation confines itself to discussion of the control dependence aspects of dependence
analysis. Figure 1.1 describes a model of program dependence analysis that is composed of both
data and control dependencies. The graph shown in that figure represents the relationships among
structures that comprise dependence models that have been developed for application to sequential,
imperative programs with arbitrary control flow. An arc in the graph represents the fact that the
source of the arc is used in the creation of the target of the arc. We extend one such model for



application to multi-procedure programs; we describe and defined the following structures associ-
ated with this extension in Chapter 3: the procedure control flow graph (PCFG), the procedure
forward dominance forest (PFDF), the procedure control dependence graph (PCDG), forward dom-
inance forest (FDF), program call graph (CG), and compound control dependence graph (CCDG)
and its associated resolved control dependence graph (CDG). Algorithms for the construction of
all structures are provided in Chapter 4 with the exception of the procedure control flow graph.
As mentioned earlier, construction of the procedure control flow graph is a language-dependent
operation.. Availability of a PCFG for each procedure in the program is assumed in our algorithms.

1.4 Roadmap

This dissertation is organized as follows: Chapter 2 contains a review of dependence analysis
and related graph theoretic terminology and an introduction to dependence analysis including
an historical overview of prior work in the area, discussion of some related topics, and ending
with a description of the limitations of earlier approaches to interprocedural dependence analysis.
Chapters 3 and 4 describe the contributions in terms of both the model and the algorithms used
to construct the structures that make up the model. Chapter 5 contains an evaluation of the
usefulness of the model. Chapter 6 describes related work in the area of interprocedural program
dependence analysis and positions this work in that field. Chapter 7 summarizes the contributions
of this work and describes some promising areas for follow-on research.



Chapter 2

Foundations and Background

This chapter provides background necessary to understand the research described in this disser-
tation, the context in which the work was carried out, and the contributions of this research. A
dictionary of graph theoretic terminology, which contains an alphabetized listing of related terms
and their definitions, is provided in Appendix B. The reader should consult this dictionary as
needed while reading this and subsequent chapters of the dissertation. We begin this section with a
description of dependence analysis and continue with an historical look at dependence analysis re-
search. We finish with discussion of difficulties encountered in prior work in the area of graph-based
interprocedural dependence analysis.

2.1 Dependence Analysis

Informally, dependence analysis is the automatic identification of the potential for one element
(e.g., a program statement) of a program or system to affect or be affected by other elements of
the program or system or its environment. Work in this area has focused primarily on identifying
dependencies among statements in computer programs. Generally, analyses that are based on
dependence analysis, such as program slicing, are concerned with identifying dependencies with
respect to a specific statement by determining which other statements have the potential to affect
the value of data used in the computation performed at a statement or the potential to determine
whether or not the statement will be executed.

Before one begins a study of dependence analysis it is helpful to understand some related
concepts: static versus dynamic analysis, direct versus indirect dependencies, conservativeness
versus precision of analysis, and aliasing among program elements.

e Static: Static analysis is based solely on the program code. It applies to all possible runs of
a program. Dependence analysis algorithms are generally based on static analysis.

e Dynamic: Dynamic analysis provides information that is run specific. That is, the results
apply to the program given the initial condition of the program and the inputs that it received
during execution. Program testing is an example of dynamic analysis.



e Direct: A direct dependence (u,v) exists if v depends on u and does not depend on any other
element w that depends on © and for which there exists a w-v path.

e Indirect: An indirect dependence (u,v) exists if there exists an element w # u and w # v
such that v directly depends on w and w directly or indirectly depends on w.

¢ Conservativeness: A dependence algorithm is said to be “conservative” if it produces a set of
dependencies that is a superset of the set of dependencies that would exist given all executions
of the program (i.e., the set must contain at least all true dependencies and may contain some
false dependencies). This is not a hard problem for dependence analysis. In fact, it is easy
to be conservative; one simply assumes that every statement in the program can affect every
other statement. The problem with this approach is that the information that results from
such an algorithm is useless.

e Precision: A dependence algorithm is said to be “more precise” if it contains fewer false
dependencies than some other conservative algorithm. Any useful dependence analysis algo-
rithm must not only be conservative but it must also be precise enough to be useful. given a
specific set of criteria.

e Aligsing: Aliasing occurs in programs when the same memory location is referenced by vari-
ables with different names. In dependence analysis we are most concerned with the possibility
of aliasing among variable or procedure names. This is an issue for static dependence analy-
sis because it is difficult to create precise algorithms when it is difficult to determine which
variable names reference a given memory location.

There are several types of analysis that are used in order to identify dependencies in programs:
control flow analysis, data flow analysis, control dependence analysis, and data dependence analysis.
We describe each of these briefly below.

2.1.1 Control flow analysis

Control flow analysis is the process of identifying which statements in a program have the
potential to lead directly to the execution of other statements based on the syntax of the program
code. Control flow analysis is the most fundamental aspect of dependence analysis. Faithful
representation of potential flows among program statements is essential to the identification of
which variable definitions can reach variable uses and which statements control the execution of
other statements. Control flow relationships among statements in a program are transitive and can
be represented in a graph, referred to as a control flow graph (CFG) in which the vertices represent
the program statements and the arcs represent the potential for control to flow from the statement
represented by the source of an arc to the statement represented by the target of the arc. If the
vertices in the graph are annotated with information about which variables are defined and which
are used in the statement represented by the vertex, then the graph is referred to as a def/use
graph (DUG).



1: read A
2: 1f A < O
3: Print
“no root”
else |
4: while A = 0
5: B = sgrt(A)
6: Print B
7
8

: A=A -1
: Print A

Figure 2.1: Example Code and its Def/Use Graph (DUG).

Constructing a CFG is a language dependent task and lies outside the scope of this dissertation.
The exact form of CFG that is required for use in this model is defined in Chapter 3. Figure 2.1
contains pseudo code for a sequence of statements in a program along with the related DUG. As
examples of control flow relationships, referring to the code in the figure, execution of statement 1
can only lead to execution of statement 2. After statement 2, either statement 3 or statement 4 will
be executed depending on evaluation of the condition in statement 2. If statement 4 is executed
then, depending on whether A > 0, either the loop beginning with statement 5 will be executed
or the program will finish. The vertices and arcs of the graph shown in the right side of the figure
represent the flow of control in the program. The def/use graph for this code is shown in the right
side of the figure.

2.1.2 Data flow analysis

Data flow analysis is the process of identifying the potential for a value computed in one state-
ment to affect the computation in another. There are a variety of ways in which data flow in-
formation can be computed. The first, and still most widely used method is known as iterative
data flow analysis. Its introduction is attributed to Vyssotsky and Wegner [52] while working on



analysis methods for FORTRAN at AT&T Bell Laboratories in Murray Hill, New Jersey. During
data flow analysis sets of variable information known as “gen” and “kill” sets, representing the
variable values that are generated (defined) and killed (undefined) respectively are computed for
each statement in the program. These sets are manipulated by data flow equations in order to
solve problems relating to the potential for a variable definition to affect a computation later in a
program’s execution.! This information is most widely recognized as being useful for identifying
opportunities for safe code transformations in optimizing compilers [1, 38].

Two basic data flow problems are the “reaching definitions” problem and the “live variable”
problem. Solutions to the reaching definitions problem are sought relative to a specific statement.
The goal is to identify all the locations of definitions for all variables that may reach (i.e., are
available for use at) a particular statement in a program. The solution to a reaching definitions
problem for a particular statement S is a set of tuples where each tuple (z, dloc(x)) represents the
fact that statement dloc(x) defines z and there is a sequence of statements leading from dloc(z) to
S that does not contain any other statements that define z. Solutions to the live variables problem
provide the set of similar tuples for all variable values that may be used after a given statement.
Solutions to these two problems can be used to create variable def-use and use-def chains. These
chains provide information that is sufficient to support many powerful code optimizations and
software maintenance activities. For instance, if a def-use chain for a particular variable terminates
with a definition at a particular statement, then it is clear that that definition is not used later
in the program and it can be removed from the optimized code [1, 38]. On the other hand, such
an anomaly could be the result of a typing error when entering the program’s code. The static
detection and resolution of such anomalies is an important software maintenance activity [18].

As an example of def-use chaining, referring again to the code in Figure 2.1, a set of reaching
definitions for statement 2 is {(4,1)}. The set of live variables for statement 2 is {(4,4),(4,8)}. The
set of reaching definitions for statement 8 is {(4,1),(B,5),(A,7)}. In order to find all the statements
that contain definitions that could affect the value of A at statement 8 we calculate the reaching
definitions for statement 7, since the value of A defined there reaches statement 8. Reaching
definitions for statement 7 are {(B,5),(4,1),(4,7)}. Thus a def-use chain for A at statement 8 is 1-7-8
with some number of possible definitions at statement 7 due to its inclusion in a loop.

There are an infinite number of paths over which data can flow from statement 1 to statement 8
depending on the exit condition of the loop headed by statement 4: 1-2-3-8, 1-2-4-8, and infinitely
many beginning with the prefix 1-2-4-5-6-7, continuing with zero or more additional traversals over
4-5-6-7, and ending at 8. This detail of infinite numbers of paths that result from the existence
of loops in programs requires special handling during data flow analysis. Other issues that cause
difficulties during data flow analysis are variable and procedure aliasing, procedure calls, non-local
jumps, and recursion.

!The level of abstraction at which data flow analysis is applied can vary. We use the word “statement” in order
to simplify the explanation, but it should be noted that the analysis can be applied at other levels of abstraction.



2.1.3 Graph-based Program Dependence Analysis

Graph-based program dependence analysis is the process of determining when one statement of
a program has the potential to affect or be affected by the computation made at another statement
in the program. Two types of dependencies are used in combination to identify statements that
have potential to affect another: control and data dependencies.

o Control dependence analysis is the process of identifying, from the program syntax, the poten-
tial for a statement represented by a vertex in a control flow graph to determine the number
of times a program statement will be executed. For instance, an if-statement branches one
way or the other, and thus the statements in only one side of the branch will be executed; the
condition of a “while” determines whether a loop is entered and when it is exited, and thus
determines the number of times the statements in the loop are executed. Control dependence
analysis is used in conjunction with information about the locations of definitions and uses
of variables to determine program dependencies.

e Data dependence analysis is the process of identifying when there is a path in a control flow
graph that connects a definition of a variable to a use of the variable. A def/use graph can
be used as a base for def-use chaining, which can be computed efficiently using data flow
analysis, to identify data dependencies in a program; the results of def-use chaining can be
recorded in a dependence graph.

The results of data and control dependence analysis can be recorded in a directed multi-graph of
the program’s dependencies. If a chain of control dependencies and /or data dependencies leads from
one vertex to another in a dependence graph, then there is a dependence between the statements
represented by the vertices. The use of dependence graphs as a base for code optimization allows
many optimizations to be performed more quickly than with other program representations, since
irrelevant ordering among unrelated statements that is a feature of the control flow graph are
removed in the dependence graph. For example, the order of statements 6 and 7 of Figure 2.1 is
irrelevant; as shown in Figure 2.2, they are both control dependent on statement 4 and there is
no data dependence between them so there will be no connection between them in the dependence
graph. The dependence graph makes explicit which parts of the program are independent and
thereby exposes opportunities for automatic parallelization. ,

Many program understanding problems can be solved by performing a transitive closure over the
dependence graph beginning at specific vertices. The dependence graph can be used in this way to
identify program slices. Weiser defined a program slice as being the set of statements in a program
that could possibly affect the value of a variable at a specific statement in the program [54]. He
proved that the problem of identifying “statement minimal” slices is unsolvable. That is, it is not
possible in general to statically identify the precise set of dependencies for a particular variable at
a particular statement in a program. Weiser’s data flow-based algorithms for computing program
slices are proved to be conservative for structured programs; precision is a secondary concern about
which he makes no claims. Slicing based on dependence graphs is a less costly approach and can
produce more precise slices [17, 25, 39].
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Figure 2.2: Dependence Graph for Example Code in Figure 2.1.

2.2 History of Dependence Analysis Research

Our search of the literature finds that the first discussion of automated program dependence
analysis should be attributed to Prosser [43], who in 1959 made the observation that graphical
representations of the control flow among program statements and the related dominance relation-
ships among vertices of the graph could be used to automate identification of dependencies among
program statements. In the late 1960s researchers observed that automated identification of depen-
dencies among instructions in computer programs could be used as an aid to safe code restructuring
“during code optimization [2, 36], thereby allowing programmers to write more flexible, higher-level
code that could later be optimized into the inflexible, highly-efficient code that machines prefer as
input. By the late 1970s Denning and Denning [16] were using program dependencies to reason
about secure information flow within programs. Fosdick and Osterweil suggested the use of data
flow analysis to identify anomalies in program code and for producing program documentation
about various aspects the definitions and uses of variables in the program [18]. During the last two
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Figure 2.3: Timeline of Research in Program Dependence Analysis.

decades Weiser and others [23, 27, 40, 47, 56, 50] have applied program dependence analysis to a
wide variety of software maintenance and understanding activities. Figure 2.3 shows a chronology
of major steps in dependence analysis research. The remainder of this section contains a concise
history of dependence analysis, including descriptions and discussion of major contributions along
the way.

2.2.1 1959

In December 1959, Prosser, a scientist at MIT’s Lincoln Laboratory, introduced the notion of
automated reachability analysis [43] by way of applying matrix addition and multiplication to three
types of matrices: one that records the potential for control to flow from one statement directly
to another, another that records the def/use relationships among statements, and another that
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records the dominance relationships. It appears, after an extensive search of the bibliographies
of research papers in this area, that Prosser was the first to describe the use of the graph-based
dominance relationship to identify relationships among program statements. He talks about appli-
cations such as automated debugging and identification of opportunities for creating subroutines.
Questions reported in the Q/A section of the conference version of the paper ask about issues such
as identifying conditions that could cause a loop to be executed different numbers of times and
also issues related to correctly accounting for the calling context of procedures when traversing
interprocedural control flow graphs. Prosser confirms that a much more sophisticated analysis is
required to address these issues.

2.2.2 1960 — 1969

Although there are a few earlier references to the use of various structures to represent computer
program flows, most notably that of Prosser described above, the main thread of program depen-
dence analysis research appears to have begun with Allen, Cocke, and others at IBM’s Thomas J.
Watson Research Center during the late 1960s. These scientists recognized that knowledge about
flows in a program could be used as an aid to various code optimizations that involve code re-
structuring. Work in the area was also carried on in other settings such as the work of Lowry and
Medlock at Sun Oil Co. [36].

2.2.3 1970 — 1979

The use of dependence information to aid code optimization became a very active research topic
in the early 1970s and has remained so to this day. Early in the decade Kuck et al. introduced the
notion of recording data dependence information in a digraph [30], but for the remainder of the
decade this idea took a back seat to exploration in the area of data flow analysis. Aho et al. [1] and
Muchnick [38] provide excellent reviews of the literature at the end of Chapters 10 and 8 of those
books respectively. The decade produced on the order of hundreds of research papers describing
various aspects of data flow analysis research focusing on identification of opportunities for program
optimization based on data flow analysis [4], issues related to interprocedural analysis [5, 46],
improved efficiency [20, 29], the definition of data flow problems and their related solutions [6],
algorithms for use at the source-level [45], complications due to variable aliasing [35], more powerful
approaches to data flow analysis [28], general improvements to flow analysis algorithms [8], methods
to deal with the huge amounts of information that exhaustive data flow analysis generates [9],
application to other areas of computer science including secure information flow [16], and most
important to this dissertation, the application of data flow techniques to software maintenance
problems [18, 53].

2.2.4 1980 — 1989

The early 1980s saw increasing interest in the area of applying data flow techniques to software
maintenance problems. The value of statically analyzing a program for errors that may not reveal
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themselves until the program has been executed grew in appeal as people realized that the early
identification of programming errors would produce programs that were more reliable and less likely
to exhibit unexpected behaviors. Program debugging was another area of expected benefit. Weiser’s
Ph.D. thesis of 1979 introduced the notion of “program slicing”. Informally, a program slice is the
subprogram that contains the set of statements that could affect the value of a variable at a specific
statement in the program. The idea of a program slice is to extract just the lines of code that need
be considered when trying to determine the fault associated with a program failure, thus reducing
the effort required to locate the problem statement. Weiser used data flow techniques to identify
slices. He worked in the area for the better part of a decade looking at applications for program
slicing technology as well as ways to improve the efficiency and the precision of his algorithms.
Literally hundreds of research papers have focused on program slicing since its introduction.

Also during the first half of the decade the idea of using a dependence graph to perform code
optimizations resurfaced. Using dependence graphs provides a means for performing many opti-
mizations more quickly than can be accomplished using data flow equations. The program de-
pendence graph was first described by the Ottensteins [39], and was later shown to be a suitable
representation for performing compiler optimizations by Ferrante et al. [17].

Before long, researchers became interested in formally evaluating the appropriateness of using
program dependence graphs as a base for program evaluation. Horwitz et al. [25] proved that
it is possible to define a program dependence graph that is adequate for faithfully representing
the behavioral aspects of sequential, imperative programs with structured control flow. Their chief
concern is showing that if two programs can be represented by the same program dependence graph
they are equivalent. That is, if the two programs have the same initial state they either halt or
diverge with the same final state. If this is a required property of a program dependence graph,
then a distinction must be made between loop-independent and loop-carried data dependencies.
We describe these briefly in Section 2.2.5.

Also during the second half of the decade, Podgurski and Clarke proved that the combined set
of data and control dependencies is a superset of the statements in a program that could affect
the execution behavior of a particular statement. They defined a graph-based model of program
dependencies for use in software maintenance activities [41, 42]; for instance, the identification of
semantic errors in programs such as the use of an incorrect operator in an arithmetic statement.

The PDG and the Podgurski and Clarke models of dependencies are very similar. Each is based
on combining control and data dependencies. Data dependencies are identified through the use
of reachability analysis and control dependencies are identified through the combination of control
flow and forward dominance information. The Podgurski and Clarke model is described in detail
in Section 2.3.2.

2.2.5 1990 — 1999

With Podgurski and Clarke’s formal model of intraprocedural dependencies in place, dependence
analysis research in the 1990s turned to addressing challenges in a more broad class of programs
as well as to developing dependence-graph-based software maintenance tools [44, 37, 10]. Table 2.1
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Table 2.1: Dependence Analysis Research in the 1990s.
[ References | Multi-proc | Obj-Orient | Concurrent | Con-OO [ Reactive |
11
14 X
15 X
[21, 31, 22, 47] X X
3] X
[25, 27]
33
37
49
[55, 56] X

Fel Bl e

b

Table 2.2: System Types and Related Dependence Relationships.
[ Reference | Dependence Type | Uni-proc | Multi-proc [ OO | Con | Con-OO [ Reactive |

Control X X X X X X

Data X X X X X X

41 Strong Control X X X X X X
41 Weak Control X X X X X X
41 Strong Syntactic X X X X X X
41 Weak Syntactic X X X X X X
41 Semantic X X X X X X
23 Divergence X X X X X X
27 Call X X X X X
27 Parameter X X X X X
22 S-control X X X X X
14 Selection X X X
14 Synchronization?! X X X
14 Communication X X X
14 Interference X X X
23 Synchronization? X X X
23 Ready X X X

provides references to works that address issues in a variety of types of programs. These approaches
are generally based on either the PDG, the Podgurski and Clarke model of dependencies, or a com-
bination of the two. The primary focus for the decade was the extension of dependence analysis
definitions to include the more complex communication mechanisms available to programmers in
these richer languages. These approaches generally involved defining additional types of dependen-
cies among program statements and adding new types of arcs and various types of dummy vertices
to the PDG in order to represent the additional dependencies.

The 1990s saw major expansion in the types of programs targeted by dependence analysis
algorithm designers. Table 2.2 contains a list of dependence types, the research papers in which
they are defined, and the indications of the types of programs in which the particular type of
dependence is encountered. A listing of these definitions, including brief characterizations of their
meaning, is given below.

The formal definitions of the dependence types listed in Table 2.2 depend on many variations
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of basic graph theoretic terminology; therefore, rather than present the definitions given in the
various works, we present characterizations so that the reader may gain an intuitive idea of the
meaning of each. In order for the reader to get a feel for what they mean in terms of a program,
the characterizations are given in terms of program statements instead of the vertices in a CFG.

Dependence Type 1 A statement sy is directly control dependent on a statement s, if sy can
affect the number of times sy is erecuted and no sequence of statements leading from s1 to so
contains o statement on which s9 is control dependent. A statement so is control dependent on a
statement sy if s1 is in the backwards transitive closure of direct control dependencies beginning at
59.

Dependence Type 2 A statement so is directly data dependent on a statement sy if there is a
walk from sy to sa, so uses a value v that is defined at statement sy, and v is not redefined along the
walk from sy to sy. A statement s9 is data dependent on a statement sy if sy is in the backwards
transitive closure of direct data dependencies beginning at ss.

Several types of data dependence have been distinguished in order for the dependence graph to
provide adequate information to solve specific problems. These include output and anti depen-
dence [30], and def -order, loop-independent, and loop-carried [25].

Dependence Type 3 Strong control dependence is the same as control dependence as described
above.

Dependence Type 4 Statements following a loop header are weakly control dependent on the
loop header. This dependence type recognizes that the exit condition of a loop may delay execution
of a statement indefinitely. A statement s is directly weakly control dependent on a statement sy
if 8o is weakly control dependent on s; and is not weakly control dependent on any statements on a
walk from s1 to ss.

Dependence Type 5 A statement is strongly syntactically dependent on a statement sy if there
is a chain of data and/or strong control dependencies from s to si.

Dependence Type 6 A statement so is weakly syntactically dependent on a statement sy if there
is a chain of data and/or weak control dependencies from so to sy.

Dependence Type 7 A statement s, is semantically dependent on a statement sy if the function
computed by s; affects the execution behavior of sy; that is, if the value computed at sy or the
number of times so is executed can be affected by the function computed at sq.

Dependence Type 8 Divergence dependence is the same as weak control dependence except that
it 1s defined less rigorously and not in terms of strong forward dominance.

Dependence Type 9 A procedure entry is call dependent on statements that contain calls to that
procedure.
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Dependence Type 10 Parameter dependencies exzist between actual and formal parameters.
Parameter-in dependencies are the dependence of the formal parameter on the value passed in
during a procedure call. Parameter-out dependencies are the dependence of variables used after a
procedure call in which the variable may be redefined and returned to the calling procedure.

Dependence Type 11 S-control dependence relates control dependencies of statements in mul-
tiple procedure programs to the control dependencies of sets of vertices of an inlined control flow
graph representation of the program. A statement sy is said to be s-control dependent on another
statement s if any vertex representing statement sy in the inlined interprocedural control flow graph
18 control dependent on any vertex representing so.

Dependence Type 12 Selection dependence is similar to strong control dependence but differs
in that rather than depending on a decision in a conditional statement in sequential, the selection
depends on non-deterministic choice in a concurrent program.

Dependence Type 13 If s; and so are two statements in a concurrent program and the start
(termination) of s1 determines whether sy starts (terminates), then so is synchronization dependent
on sy according to the first definition of synchronization dependence given in the table.

Dependence Type 14 If s; and se are two statements in different processes, then ss is commu-
nication dependent on sy if the value v defined at s1 can reach so by way of interprocess commu-
nication and v is used at so.

Dependence Type 15 Given threaded program P, there is an interference dependence between
two statements s1 and so if s1 and s9 are in different threads and access the same variable.

Dependence Type 16 If m; and mg are entry and exit monitors of a critical region CR, and
s s a statement enclosed in CR, s is synchronization dependent on mi and mso according to the
second definition of synchronization dependence listed in the table.

Dependence Type 17 A statement sy is ready dependent on another statement sy if the failure
of s2 to ezecute indefinitely delays the execution of s1. For example, if s1 is reachable from ss and
sg @8 a wait then sy is ready dependent on s3. The authors claim this is a cost effective alternative
to interference dependence for gaining precision when slicing Java programs.

The fact that this list of dependencies contains duplicate as well as conflicting definitions is a

by-product of the immaturity of the research area and points to the need for increased rigor and
improved generality of these solutions to specific problems.
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2.3 Related Topics

In this section we present descriptions of three areas of research that are fundamental to the
work described in this dissertation: forward dominance, also known as postdominance and inverse
dominance; the Podgurski and Clarke model of program dependencies that we use as a base for our
definitions and theorems; and the program call graph, which is used in conjunction with information
about dependencies in individual procedures to compute program-wide dependence information.

2.3.1 Forward Dominance (ak.a. postdominance or inverse dominance)

Computing the forward dominators in a control flow graph is equivalent to computing domi-
nators in its reversed graph, that is the graph that results from reversing the direction of all arcs
in the control flow graph. The dominance relationship among vertices of a rooted digraph can be
used to automatically identify loops in a program based on the program’s language-independent
control flow graph representation. It is therefore used in algorithms for performing many types of
program analyses. Informally, one vertex u in such a graph dominates another vertex v if every
path from the entry to the graph to v includes u. When a path beginning at a vertex v in a control
flow graph contains a dominator u of v then v is contained in a loop. An immediate dominator of
a vertex v is the first dominator encountered during a reverse traversal over the control flow graph
beginning at v. If a vertex u is the immediate dominator of two different vertices, v and w, then
it is a branch statement and v and w lie on different paths originating at u. A formal definition of
dominator can be found in Appendix B.

In this dissertation we are concerned with a variation of the dominance relationship called
forward dominance. Forward dominance applies to digraphs that have a single point of exit. A
reverse graph of a digraph G is referred to as the inverse graph of G and is denoted G~!. This
is the source of the alternative term, “inverse dominance” that is used by some researchers [54].
Informally, a vertex v in a single exit digraph forward dominates a vertex u if every path from u
to the graph’s exit vertex includes v. This concept is important to dependence analysis algorithms
because forward dominators identify joins in a program, and the lack of forward dominance is used
to identify control dependencies.

As examples of dominance and forward dominance relationships, referring again to the control
flow graph shown on the right in Figure 2.1:

e Vertex 2 is the immediate dominator of vertices 3 and 4.
o Vertex 4 is a dominator of vertices 5, 6, and 7 but not of vertex 3.
e Vertex 4 also forward dominates vertices 5, 6, and 7.

e Vertex 8 is the immediate forward dominator of vertices 2, 3, and 4.
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2.3.2 Podgurski and Clarke Dependence Model

A guiding principle for the model developed in this dissertation is that the model be rigorously
defined. Podgurski and Clarke provide a formal model of dependencies for programs that can be
represented by traditional control flow graphs. The rigorous development of that model provides a
solid foundation for the model developed here. The structure of the Podgurski and Clarke model is
similar to that depicted in Figure 1.1. In addition to the structures shown in this figure, the model
contains definitions of important graph theoretic terms that are useful when discussing dependence
analysis. These are reproduced in Appendix B. Additionally the Podgurski and Clarke model
distinguishes two types of forward dominance, forward dominance and strong forward dominance,
and distinguished two types of control dependence, strong and weak, based on these. The purpose
of making these distinctions is to recognize the fact that the execution of statements in a program
that follow loops is dependent on the exit condition of the loop. In other words, a statement
following a loop will never be executed if the program’s execution ends up looping infinitely many
times because of an error in specifying the exit condition of the loop. Podgurski and Clarke provide
formal graph theoretic definitions for these terms.

Definition 1 [42] Let G be a control flow graph. A vertex u € Vg strongly forward dominates a
vertez v € V(Q) if and only if u forward dominates v and there is an integer k > 1 such that every
walk in G beginning with v and of length > k contains w. ‘

Definition 2 [/2] Let G be a control flow graph, and let u,v € V. Vertez u is strongly control
dependent on vertex v if and only if there exists a v—u walk vWu in G not containing the immediate
forward dominator of v; this walk is said to demonstrate that u is strongly control dependent on v.

The strong control dependence relation on Vg is denoted by sedg (u,v) in sedg if and only if u is
strongly control dependent on v.

Let G be a control flow graph, and let u,v € Vig. Vertex u is directly strongly control dependent
(or dsc-dependent) on v if and only if there is a walk vWwu in G such that both of the following are
true:

o vWu demonstrates that u is strongly control dependent on v and

o u is not strongly control dependent on any vertex of W.
The walk vWu is said to demonstrate that u s directly strongly control dependent on v.

Definition 3 [{2] Let G be a control flow graph, and let u,v € V. Then u is directly weakly
control dependent (or dwc-dependent) on v if and only if v has successors v' and v" such that
u strongly forward dominates v' but does not strongly forward dominate v"; u is weakly control
dependent (or wc-dependent) on v if and only if there exists a sequence, vy, v, ..., v, of vertices,
where n > 2, such that u = v, v = vy, and v; is directly weakly control dependent on v;r1 for
1=1,2, ... ,n—1.
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The combination of strong/weak control dependencies with data dependencies is defined to
be strong/weak syntactic dependence, which can be represented as the dependence graph at the
bottom of Figure 1.1. In addition to these definitions, Podgurski and Clarke provide a formal
definition of semantic dependence that describes the conditions under which one statement of a
program has the potential to affect another statement. This definition is quite complex and is
provided in Appendix B along with other definitions of the model. Semantic dependencies may be
classified as being “finitely demonstrated” in which case they can be conservatively identified using
strong control dependence algorithms.

A semantic dependence relationship between two statements in a program is required in order
for one statement to affect another. While it is not possible, in general, to know if the seman-
tics of one statement can affect another, it is possible to compute sets of syntactic dependencies.
Podgurski showed that a syntactic dependence must exist between two statements if a semantic de-
pendence exists and, as such, provides a conservative, though imprecise, approximation of semantic
dependencies.

2.3.3 Program Call Graph

It is useful for many types of interprocedural analysis to build a structure known as a program
call graph. A call graph represents the calling relationships among the procedures of a program.

Definition 4 A call graph for a given program P is a digraph CG = {V, A} where V is a set of
vertices, one for each procedure in the program; and A is a set of arcs {ay,...,an} where each a; =
(P1,Ps) for some Py,Ps € P and the procedure represented by P, contains one or more calls to the
procedure represented by Pa. The arcs in the call graph may be annotated with call site identifiers
for its associated calls if that information is deemed useful to the analysis for which the call graph
is to be constructed. We call this an annotated call graph.

In the absence of procedure aliasing it is simple to construct a call graph by scanning the code of
each procedure, constructing vertices and arcs as needed when calls are encountered in the scanning
process.

In this dissertation we assume a distinguished procedure associated with each program that
represents the main procedure of the program. The vertex in the call graph associated with this
procedure has zero in-degree. We also assume the arcs of the call graph are annotated with unique
call site identifiers.

Loops in a program call graph indicate the presence of recursive procedure calls. Sets of proce-
dures that are involved in a recursive sequence of calls can be identified through the application of
algorithms designed to identify strong components in digraphs. When strong components have been
identified, the vertices of the call graph that belong to the strong component can be combined into
a single vertex of what is referred to as the contracted call graph. There are many such algorithms
available; we frame the discussion in Section 3.3.6 in terms of an algorithm recently developed by
Gabow [19].
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2.4 Pitfalls for Interprocedural Dependence Analysis

Interprocedural dependence analysis has been an active area of research throughout the 1990s.
In this dissertation we consider the work of three major projects in this area:

e Loyall and Mathisen [37] focus on creating algorithms for identifying the potential for one
procedure in a program to impact another.

e Horwitz et al. [27] focus on interprocedural slicing of structured programs.

e Harrold et al. [22, 47] focus on enhancing interprocedural dependence algorithms for applica-
tion to a wider class of programs.

Each of these projects centers on calculating dependencies based on some form of interprocedural
control flow representation in which a given procedure is represented one time in the program’s
control flow graph and arcs are inserted in the graph to connect the call and return of the pro-
cedure to each of its call sites. A common theme among these works is that there are problems
associated with this type of representation that create difficulties in identifying conservative sets
of dependencies using traditional definitions of control and data dependence. We describe these
projects in detail in Chapter 6.

In this section we describe several issues that have been raised by researchers working in this
area; we call these the “pitfalls of interprocedural dependence analysis.” We use the program Sum to
illustrate the effects of these pitfalls as a running example through this dissertation. This example is
borrowed from Harrold et al. [22]. Pseudo code for Sum is shown in Figure 2.4. This example allows
us to discuss several pitfalls that one encounters when developing control dependence algorithms
based on non-inlined control flow representations. We briefly describe them below.

2.4.1 Valid Walks

A valid walk in the graph is a digraph walk that represents a potential execution of the program.
Assuring that a walk is valid requires that an algorithm ensure that traversals over the control flow
graph contain sequences of vertices that represent valid execution paths in the program. Loyall and
Mathisen [37] described an interprocedural control flow graph in terms of a collection of control
flow graphs where each call site is connected to the entry and return vertices of the called procedure
by call and return arcs. When using this view it is possible to traverse the arcs of the graph in
a way that does not represent any potential execution of the program because a procedure entry
may be incident from many call arcs. Return vertices may be incident to many arcs, each of which
is associated with one call site; when exiting a procedure’s control flow graph while performing a
forward traversal, the one chosen for return must match the current call. The choice of any other
return arc would not represent any potential execution of the program; these are referred to as
invalid walks. Referring to the example of Figure 2.4, when returning from procedure B it must be
possible to determine whether the appropriate return is with respect to the call at statement 4 of
procedure M or the call at statement 5. Loyall and Mathisen provide a definition for “interprocedural

21



proc M | proc B

l: read i, j 8: call C

2: sum = 0 9: 1if (j>= 0) then

3: while 1 < 10 do 10: sum = sum + J

4: call B 11: read j
endwhile endif

5: call B 12: 1 = 1 + 1

6: print sum 13: return

7: return

proc C
14: if (sum > 100) then
15: halt

endif
16: return

Figure 2.4: Pseudo Code for Program Sum.

walk” that assures only valid walks are considered. Horwitz et al. deal with this issue through the
use of an attribute grammar [27].

2.4.2 Calling Context

Both control and data dependencies within procedures depend on those that exist at call sites.
Additionally, control and data dependencies of statements to be executed upon return from the
procedure call may exhibit dependencies on statements that are executed as a result of the procedure
call, or may in fact cross the procedure call boundary and return to the calling procedure. It is
this potential that requires that only valid paths be traversed when identifying dependencies using
a non-inlined interprocedural control flow representation. Harrold et al. [22] discuss the fact that
identification of control dependencies can be masked by the existence of multiple call sites when
one of the call sites forward dominates a conditional statement and another does not.

The Loyall and Mathisen definition of interprocedural control dependence correctly accounts for
the calling context. However, their definition of direct interprocedural control dependence suffers
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from the effect described by Harrold et al. The definitions are as follows:

Definition 5 Let G be an interprocedural CFG and let G; and G be CFGs in G. Letu € Vg,, and
v € V;. Node u is directly strongly control dependent on v if and only if v has successors v' and
v" such that u forward dominates v' but does not forward dominate v". Node u is strongly control
dependent on v if and only if there exists a v-u interprocedural walk not containing the immediate

forward dominator of v.

The primary difference between this definition and Definition 2 is the use of the term “inter-
procedural walk”. Prior to providing the definition of strong interprocedural control dependence,
Loyall and Mathisen defined “interprocedural CFG” as we described above as well as well as an
extended definition of digraph walk for application to interprocedural control flow graphs. The
interesting thing to note about this Definition 5 is that the definitions of direct strong control
dependence and strong control dependence are independent. In fact, the definition of direct strong
control dependence is based on the Ferrante et al. [17] definition of control dependence, not the
definition given by Podgurski in his thesis [42]. However, the definition of strong control depen-
dence is based on the Podgurski and Clarke [41] definition. In Podgurski’s thesis the definition of
direct strong control dependence is given as:

Definition 6 Let G be a control flow graph, and let u,v in V. Vertez u is directly strongly control
dependent (or dsc-dependent) on v if and only if there is a walk vWwu in G such that both of the
following are true:

o vWu demonstrates that u is strongly control dependent on v and

e u is not strongly control dependent on any vertex of W.

In his thesis, Podgurski proves that this definition is equivalent to the Ferrante et al. definition.
This proof is based upon using an inlined control flow graph representation. The difference between
an extension of this definition and the extension of the Ferrante et al. definition is that this one is
given entirely in terms of the absence of an immediate forward dominator.

Harrold et al. pointed out that if one uses Definition 5 above to determine control dependencies
in the code of Figure 2.4 one finds that statements in procedure B are not identified as being control
dependent on statement 3 even though they should be due to the call at statement 4. This is because
all execution paths in the program beginning at statement 3 eventually execute statement 5 and
consequently the statements in procedure B.

They call this condition the “multiple context effect” and distinguish it from the “calling context
effect”. In our view both effects are related to recognizing the need to consider the dependencies
of the call site when identifying dependencies of statements that may subsequently be encountered
in an execution trace of a program. Taking this view allows us to identify dependencies equivalent
to those identified using an inlined control flow representation.

We recognize that if, however, one applies an extension to Definition 6 that says that a vertex v \
is directly control dependent on another vertex u if u is control dependent on v and not on any other
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vertex on a valid walk from v to u in the interprocedural CFG, then the statements in procedure B
would be identified as being control dependent on statement 3. In this case the valid walk in
the interprocedural CFG, 3-4-8, does not include statement 5, which is the immediate forward
dominator of statement 3. According to Definition 5, statement 8 is strongly control dependent on
statement 3. Using the idea we propose at the beginning of this paragraph, statement 8 is directly
strongly control dependent because statement 8 is not strongly control dependent on statement 4.

This was a key insight leading to the development of the model described in Chapter 3. The
absence of forward dominance was useful in determining interprocedural control dependencies, but
its presence, as traditionally viewed, was not. We recognized that the notion of forward dominance
does not apply to interprocedural control flow representations in the same way that it does to
inlined control flow representations.

2.4.3 Potential for Non-Return

There are three reasons why control may not return after a call to a procedure.

e Embedded halt — The existence of an embedded halt within a called procedure or its de-
scendents creates potential for non-return to the calling procedure. This situation results in
control dependencies of vertices within the calling procedure on the called procedure or its
descendents.

e Non-termination of loops — As we discussed in Section 2.1, it is sometimes useful to consider
the potential that loops may not terminate due to errors in their exit conditions. Naturally,
if a loop in a called procedure or one of its descendants in the call graph does not terminate,
then control will not return to the calling procedure.

e Infinite recursion — If a called procedure or any of its descendents is involved in a recursive
sequence of calls, then there is potential for infinite recursion and the possibility of non-return
from a call to that procedure.

The first of these is addressed by Harrold et al. [22]; to our knowledge the second and third have
not previously been addressed in the literature.

2.4.4 Incomplete Programs

Performing dependence analysis on multi-procedure programs that perform calls to procedures
that exist in the form of precompiled libraries provide a challenge to interprocedural dependence
analysis because it is not possible to determine control and data dependencies that may result from
calling such procedures. Normally, a conservative approach is taken to data dependence analysis.
It is assumed that all global variables and all in/out parameters are modified during the procedure
call. It is also assumed that control returns from calls to such procedures.
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2.4.5 Function Pointers

Function pointers or indirect procedure calls create problems because it is not possible to know
statically exactly which procedure will be called. This effect is similar in nature to that of variable
aliasing and as is the case when considering aliases, target programs are either restricted from using
function pointers or a conservative approach is taken and all possible procedures are considered
targets of indirect procedure calls.

Any model of interprocedural dependencies must provide support for addressing these pitfalls
when designing dependence algorithms based on the model.

We take a compositional approach to the identification of program dependencies. We have rig-
orously defined a language-independent model that addresses these difficulties. The model supports
development of algorithms intended to identify dependencies among procedures that are created
in isolation and in cases where access to the source code may be restricted such as is often the
case with precompiled libraries. The following two chapters of this dissertation contain a descrip-
tion of our new approach to interprocedural program dependence analysis, a set of algorithms for
constructing the structures of the model, and an evaluation of the complexity of the algorithms.
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Chapter 3

The Model

This chapter contains a description of a model of interprocedural dependence analysis. The model
supports the identification of intraprocedural dependencies in isolation; at program composition
time the interprocedural implications of the intraprocedural dependencies are computed. This
model avoids pitfalls described in Section 2.4 that are associated with performing dependence
analysis using one-to-one control flow graph representations of sequential, imperative programs
that contain procedure calls.

As described in Chapter 1 the guiding principles followed during the design of this model were
that it be a rigorously defined, language independent, and compositional. To motivate our decision
to follow these principles we begin with a discussion of the underlying cause of the difficulties
described in Chapter 2. We then define interprocedural control dependence and present a graph-
based model that supports identification of such dependencies that does not suffer from these
difficulties. In Chapter 4 we present a set of algorithms for constructing the structures that comprise
the model and present an analysis of their complexity.

3.1 The Meaning of Control Dependence Among Procedures

A key insight upon which the thesis of this dissertation is founded is that defining the meaning
of a semantic relationship among elements of a system is the most fundamental aspect of developing
a model of dependencies for a given type of system. More generally stated, a semantic dependency
exists between two elements of a system when there is potential for one element to affect another
in some way. Before one can begin to develop dependence analysis algorithms one must answer two
questions: first, what type of system element is to be the target of the analysis; and second, what
types of relationships among the elements constitute an “affects” relationship. The answer to the
second question will be based on both the type of systems being analyzed and the purpose of the
analysis.

Consider for example a question about the potential impact of reordering instructions when
performing code optimization. Dependencies must be calculated considering not only their ordering
within the code but also considering latency associated with execution of instructions that occur
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on paths between them [38]. However, when the objective of the analysis is to determine the affect
of changing the condition associated with a decision statement, one need not be concerned with
low-level details such as instruction latency. The level of abstraction at which dependence analysis
is performed should be appropriate to the purpose for which dependencies are being identified.

In this discussion, we are interested in identifying the potential for the calculation made in one
program statement to affect the calculation made in another statement. The transitive closure
over control and data dependencies beginning at a particular statement will contain a superset of
semantic dependencies [41] given finite execution of loops in the program.’ This dissertation focuses
on identifying control dependencies in sequential, imperative programs that contain procedure calls.
Previous work in this area has concentrated on computing dependencies based on one of two forms
of a super control flow graph: either an inlined interprocedural control flow graph that contains a
copy of each procedure’s control flow graph at each call site or a one-to-one interprocedural control
flow graph that contains just one copy of a procedure’s control flow graph that is connected to
all call sites via call and return arcs. Our approach differs from these in that dependencies are
identified in a compositional manner; dependence information for each procedure is calculated in
isolation then combined at program composition time to identify interprocedural dependencies.
This is a unique approach to interprocedural summary analysis used by Fosdick and Osterweil [18],
that is appropriate for use in programs that are composed of procedures that are created in isolation
and is particularly useful in the case that the procedure’s author wishes to conceal the procedure’s
source code.

The following definition of control dependence applies to sequential, imperative multi-procedure
programs and supports identifying dependencies useful in software maintenance activities such as
impact analysis and regression testing.

As noted earlier, interprocedural communication among statements in a program creates several
challenges for the dependence analyst. These challenges fall into two areas: consideration of the
effects of calling context and failure to return from a procedure call. These result in very different
types of dependence-related problems:

e Ignorance of calling context results in identification of unnecessarily imprecise sets of depen-
dences.

e Ignorance of the potential for non-return from procedure calls introduces the possibility of
creating non-conservative sets of dependences. ‘

The definition of interprocedural control dependence presented here reflects the recognition of these
two concerns.

'Podgurski and Clarke define strong and weak control dependence. Our use of the term control dependence refers
to strong control dependence unless otherwise specified.
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3.1.1 Sources of Interprocedural Control Dependence

Informally, if © and v are statements in a multi-procedure program P, v € P where P € P, is
control dependent on u if the number of times v is executed with respect to the same invocation of
P or the number of times P is invoked can be affected by a decision made at u.

The first condition for control dependence is the same condition that applies to uni-procedure
programs. However, when this condition is considered for multi-procedure programs, then the
control dependence of v may rest on a statement in another procedure; for example, if v follows a
procedure call from inside a while loop, then its execution depends upon the resumption of P after
the procedure call. The second condition is equivalent to considering a procedure call to be an entry
to a region of code in which all statements are dependent on the condition that determines whether
entry to the region is executed. We call these two types of dependence resumption and invocation
dependence and provide definitions for them below. Additionally, we define a third type of control
dependence, potential control dependence that is required due to the compositional nature of our
model. Potential control dependence provides a means for refining certain intraprocedural control
dependencies during the interprocedural control dependence identification stage of analysis.

Before we proceed to define interprocedural control dependence, we define each of these types
of control dependence. For illustrative purposes we introduce Figure 3.1 containing pseudo code
for two procedures that comprise a program Compute_tax. In addition to the code associated with
the two procedures we add lines indicating that there is a single start and a single stop for the
program. These are the lines labeled S and F. These are added because we consider the entry to
procedure M to be control dependent on the Start of the program. The procedure on the left of the
figure is the main procedure for the program. The amount of tax depends on whether the purchase
is for more or less than $10. The procedure on the right is called from Compute_tax to perform the
multiplication; mult takes one in/out parameter num. In the following paragraphs we describe the
types of control dependence in terms of the statements of Compute_tax.

Potential Control Dependence

Potential control dependence indicates the potential to inherit the control dependence of a call
statement. A potential control dependence is converted to a control dependence if, after program
composition, it is determined that control is certain to return to a procedure after a call at that
call statement, otherwise it is converted to an inherited control dependence. Referring again to
Figure 3.1, if the code for mult were not available it would not be possible to tell for certain whether
statements 7 and 8 are control dependent on statement 6. Therefore, when creating a procedure
control dependence graph for Compute_tax in isolation we say that statement 8 is potentially control
dependent on statement 6. The actual control dependence depends on the structure of the called
procedure, mult.
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S: Start Compute_tax
proc M proc mult (num)
1: read price 11: rate = 1.06
2: if price < 10 12: if (num > 0) then
3: print “Low Tax” 13: num = rate*num
else else
4: call mult(price) 14: halt
5: print price 15: return
6: call mult (price)
7: print price
8: return
F: Finish Compute_tax

Figure 3.1: Example Pseudo Code for Program Compute_tax.

Resumption Control Dependence

If it can be determined that there is potential for non-return from the called procedure, then
the control dependence of statements within the calling procedure that follow the procedure call
is inherited from that of the return statements of the called procedure. We call this kind of
control dependence resumption control dependence. Statement 15, the return from mult, is control
dependent on statement 12 because statement 14 is a halt; therefore, statements 5, 6, 7, and 8 are
resumption dependent on statement 12.

Invocation Control Dependence

If there is a statement in a procedure that is not control dependent on any decision within the
procedure or a called procedure, then that statement will inherit direct control dependencies from
each call site from which its enclosing procedure can be called or from the start of the program
in the case that its enclosing procedure is the program’s main procedure. We call this invocation
control dependence because the execution of the statement depends on whether or not its enclosing
procedure is invoked. As examples, statements 1, 2, and 5 are invocation control dependent on
S. Because the call to mult at statement 4 is control dependent on statement 2, statements 11
and 12 are invocation control dependent on statement 2. Statements 5, 6, 7, and 8 are resumption
control dependent on statement 12 and statements 11, 12, and 15 are invocation control dependent
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on statement 12 because they inherit the control dependence of the call at statement 6 which is
control dependent on statement 12 by way of the call at statement 4.
Each of these types of control dependence is formally defined below.

Definition 7 Given program P and a procedure P € P, a statement x and a sequence of consecutive
statements Y = yi,yo,...,Yn sSuch that:

e © € P is a call statement,
e y; is the first statement to be executed if control returns to P from the call at x, and

o for every y; €Y, y; is not a conditional statement or a call statement,

we say that each y; € Y is directly potential control dependent on x. This relationship is denoted
Yi M z. y; s potential control dependent on x if and only if there is a chain of direct potential
control dependencies sy, ...,s, such that sy = y, s, = z, and 8;_1 dp—csi si, 1 < i < mn. This
relationship is denoted y ped z.

Definition 8 Given program P and two procedures Py, Py € P, statements w, x, and y such that:

e w € P is a call statement to Py,

° CEE’PQ,
dped
e y€ P andy =5 w,

if any return statement in Py is control dependent on x, y is directly resumption control dependent
on z. This relationship is denoted y dred o, y 48 resumption control dependent on z if and only

. . . . . dred
if there is a chain of direct control dependencies si,..., s, such that s, == s,_1 where s; = v,

Sp =, and $j—1 dreg si, 1 <1 < n. This relationship is denoted y red o

Definition 9 Given program P and two procedures Py, Py € P and statements x, y, and z in P
such that:

o © € P is a call statement to P,

e cither y € P; for some P; € P and z is directly control dependent on y or y is start” and P,
is the main procedure of P,

e 2z is the entry to Py or a statement in Py that is not otherwise control dependent on any vertex

n P;
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then z is directly invocation control dependent on y. This relationship is denoted z dicq Y. Z 18

invocation control dependent on y if and only if there is a chain of direct control dependencies

S1s--.,8n Such that s1 = vy, s, = 2z, and $;_1 dicd si, 1 <1 < n. This relationship is denoted

o ed, Y.

With these definitions in place it is now possible to present an extended definition of control de-
pendence that is sufficient for describing control dependencies among statements of multi-procedure
programs. When it is necessary to make a distinction between intraprocedural control dependence
and this extended definition we refer to the former as intraprocedural control dependence and the
following as interprocedural control dependence.

Definition 10 Given program P, a statement y in P; € P is directly control dependent on another
statement x in Po € P if and only if one of the following conditions holds:

1. Py = P, and y is directly intraprocedurally control dependent on z, or

dred
2.y =% 2, or

dicd
3.y Sz, or

d . .
4.9y P 2 in P, y;ﬂ on any statement in P, and z ded x;

and there exists a chain of statements C = s1,. .., s, such that s1 = = and s, =y, there is potential

for control to flow directly from s; to s;41 for all i € {1,...,n}, and y is not control dependent on

any s; i C. Direct control dependence is denoted y ded g y is control dependent on x if and

only if there exists a chain cy,...,c, such that ¢ =y, ¢, = x, and ¢;_1 ded, ¢, 1 <i<n. This

relationship is denoted y < g

To illustrate the use of this definition, referring again to the code for program Compute_tax

shown in Figure 3.1, condition 1 states that 3 ded 2, condition 2 tells us that 5 ded 12, condition 3

. . .. . d, .
implies 12 ded, 2, and condition 4 tells us that the potential control dependence, 5 dpeq 4, is resolved

at program composition time to identify 5 44 19, The fourth condition serves a dual purpose:
first, it distinguishes direct and indirect dependencies, since it does not allow intervening control
dependencies and, second, it permits multiple control dependencies to be defined for statement 5,
which is not only directly control dependent on statement 12 but also on Start.

The goal of this dissertation is to provide automated support for identifying control dependence
relationships among statements in a program. Traditionally, automated identification of control
dependencies among program statements is accomplished by way of algorithms based on control
dependence definitions stated in terms of the forward dominance relationships that exist among
vertices in a control flow graph representation of the program’s potential execution behavior. In a
like manner we provide a graph-based definition of interprocedural control dependence called com-
positional control dependence in Section 3.3.5 that is based on an extension to the notion of forward
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dominance. This extension allows us to compute control dependence relationships compositionally
that are equivalent to those identified based on inlined control flow graph representations. As mo-
tivation for this extension, in the following section, we explore problems associated with identifying
forward dominance relationships among statements of a program based on non-inlined control flow
graph representations such as the one-to-one control flow graph representation introduced in Chap-
ter 2. We follow this explanation with a description of our model and continue in Chapter 4 with
a description of the algorithms for creating the structures associated with this model.

3.2 Forward Dominance and Interprocedural Control Flow

The difficulties described in Section 2.4 are due in part to the fact that forward dominance of
one graph vertex over another, as applied to a non-inlined interprocedural CFG, does not represent
the forward dominance relationship between the associated program statements. This is because
a given statement in a procedure represents many statements in a program when the procedure’s
calling contexts are considered. Thus, the graph theoretic definition of forward dominance is not
directly useful for determining the forward dominance relationships among statements of a program
when these statements are represented in non-inlined control flow representations. We can see this
most readily by studying the relationships among the vertices of Figure 3.2, in which we represent
a program composed of two procedures, A and B. Procedure A contains calls to procedure B at
statements 4 and 6.

Clearly, any execution of the program associated with this control flow graph would involve
executing the statement associated with vertex 5 and thus, vertex 5 should be identified as a
forward dominator of vertices in procedure B and vertices 1, 2, 3, and 4 of procedure A. However,
even though the walk Start-1-2-4-11-12-13-15-7-8-Stop does not represent any potential execution
trace for the program represented by the graph, it is a walk from 2 to the final vertex of the graph
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that does not include vertex 5, and therefore vertex 5 is not recognized by traditional forward
dominance definitions as being a forward dominator of vertex 2. However, vertex 11 is recognized
as being a forward dominator of vertex 2 since it is encountered on either path originating from
vertex 2, and is in fact identified as the immediate forward dominator of 2. This fact then incorrectly
causes traditional dependence analysis definitions to identify a dependence of vertex 5 on vertex 2
since there is a path from vertex 2 to vertex 5 (2,3,5) that does not include vertex 11, vertex 2’s
immediate forward dominator.

Although the notion of forward dominance is critical to most traditional definitions of control
dependence, its limitations have not been addressed in previous work on interprocedural dependence
analysis. We recognize this importance and extend the notion of forward dominance to represent
the expected relationships among program statements. We call this extension the forward domi-
nance forest and use it as part of our compositional, graph-based model of interprocedural control
dependencies.

Our model is based on earlier work by Ferrante et al. [17] and by Podgurski and Clarke [41].
We have chosen to use the Podgurski-Clarke model as a foundation for our model for two reasons:

1. A detailed description of the model is available in Podgurski’s doctoral dissertation [42].

2. It is a simpler model in that it does not include the notion of regions, but can be extended
to include this optimizing feature of the Ferrante et al. model if desired.

The scope of applicability of the Podgurski-Clarke model is sequential, imperative, uni-procedure
programs in which control flow may be unstructured. The definitions and theorems of the
Podgurski-Clarke model that are used as the foundation for our model are included in the body of
this dissertation when appropriate and are duplicated in Appendix B, which contains a dictionary
of dependence-related terminology. Our model also leverages the experiences of researchers who
have developed algorithms for identifying dependencies in multi-procedure programs; we described
four of these projects in Chapter 2.

Podgurski and Clarke [41] state that one statement in a program is semantically dependent on
another if a value that it uses or the number of times it is executed during a run of the program
can be affected by the other statement.

Definition 11 (Informal)? A statement so is semantically dependent on a statement s; if the
function computed by sy affects the execution behavior of ss — that is, if the value computed at so
or the number of times sg is executed can be affected by the function computed at sq.

It is the second condition of Definition 11 that is of concern in this dissertation. Control
dependencies are used to identify when one statement has the potential to directly affect the number
of times another statement is executed. The purpose for this concern with numbers of times that
a statement is executed is to identify the potential for a variable assignment to be affected by an

*The formal definition is given by Podgurski and Clarke [41].
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Figure 3.3: Example Interprocedural Control Flow Graph With a Halt.

evaluation of a conditional statement. This can happen either because the statement is avoided,
such as is the case for assignments made along the paths in the body of if-statements or within
loops that have conditional entry, or it can happen because execution of the statement is indefinitely
delayed due to non-termination of a loop.

These concerns must be reflected in a definition of interprocedural control dependence. This
is a point of confusion and was the subject of a related discussion by Harrold et al. [22] in which
they note that the recognition or non-recognition of control dependencies between statements in a
procedure and its calling procedures depends upon the definition of control dependence used. We
say a statement is control dependent on another if a control dependence would be recognized when
applying traditional control dependence definitions to an inlined control flow representation. If the
statements are in different procedures, then we qualify the control dependence with respect to a
given call site. '

Consider the control flow graph shown in Figure 3.3. This graph is identical to that shown
in Figure 3.2 except that the arc incident from vertex 14 now is incident to vertex Stop rather
than vertex 15. This change represents the fact that the statement associated with vertex 14
is a halt. The existence of this halt statement produces control dependencies of vertices 5, 6,
7, and 8 of procedure A on vertex 12 within procedure B’ since the decision made at vertex 12
determines whether these vertices in procedure A will be executed. More interesting is the fact
that this definition identifies vertex 11 as being control dependent on vertex 12. This is because the
invocation of procedure B’ associated with vertex 6 is control dependent on the decision made at
vertex 12 during B”’s invocation by the call at vertex 4. Thus, vertices within the same procedure
can exhibit context-related interprocedural control dependencies among themselves.

34



3.3 The Structures

In review, the Podgurski-Clarke model of control dependencies that we are using as a founda-
tion for our model describes the control dependence relationships among statements in a program
in terms of control flow among the program’s statements and the forward dominance relationships
among vertices of a control flow graph. These relationships can be represented as a graph, thereby
providing a base for automated identification of control dependencies. The control flow graph and
the forward dominance tree are described in detail in Section 2.2.4. In this section we describe ex-
tensions to these structures for the purpose of representing the control-related relationships among
statements of individual procedures independent of the context in which the procedure is called.
We then describe how these structures can be combined at program composition time in order to
determine dependencies in terms of calling contexts.

Figure 3.4 represents the model. A program is comprised of a set of procedures. Each pro-
cedure has an associated procedure control dependence graph (PCDG). The procedure control
dependence graphs are computed using the procedure control flow graph (PCFG) in combination
with the procedure forward dominance forest (PFDF). Once these structures are available they
are used in combination with the call graph of the program to create the composed control depen-
dence graph (CCDG). And then the control dependence graph (CDG) is created by tracing back
from sources of inherited control dependencies to the first direct control dependence relationship
encountered in a path in the CCDG.

Before we can provide a graph-based definition of interprocedural control dependence we must
understand the effect of procedure calls on the control flow graph, we must understand what it
means for one vertex of such a graph to forward dominate another, and we must understand how
to identify paths in the graph that represent valid execution paths for the represented program.
We describe and define each of these below.

3.3.1 Intraprocedural Control Flow

The control flow graph is the most basic program representation used in our model. It is in
the building of the control flow graph that the language-dependent aspects of a program’s code
are interpreted and expressed in terms of vertices that represent executable statements and arcs
that represent the potential for program execution to progress from one statement to another.
Our model is based upon the ability to faithfully represent all language constructs within the
confines of procedure control flow graphs, described below. Sequence, decision/junction, and loop
are sufficient for representing all control mechanisms supported by commonly used sequential,
imperative programming languages. We add procedure call/return to the list because we focus on
non-inlined control flow representation. There may be language-specific differences in the order in
which the control primitives are assembled to compose a specific mechanism, but the primitives
listed have been proven sufficient for capturing the semantics of the associated mechanism [12, 34].

In this section we define the procedure control flow graph as an extension to a traditional control
flow graph. Traditional definitions of control flow graphs are not sufficient to capture the semantics
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of control flow within procedures that contain procedure calls. This is because flow of control from
call statements to their intraprocedural successors is interrupted by flow to the called procedure,
which may result in non-return to the calling procedure due to the existence of embedded halts,
infinite recursion, or non-terminating loops within the called procedure or its descendents in the
call graph.

We extend the control flow graph with the addition of an interrupted-flow arc, and two dis-
tinguished vertices: an initial vertex v/ and an annotated return verter v. The initial vertex
represents the procedure declaration. The return vertex succeeds each return or explicit exception
in the procedure. Embedded halts are vertices with zero out-degree that are not return vertices;
their control flow successor is the program’s global Stop vertex. Any other type of non-local jump
is not representable in the procedure control flow graph. We do not consider this restriction to be
a serious limitation of our model since the model is intended for application to programs composed
of procedures that have no knowledge of the internal structure of the procedures with which they
interact. Therefore, knowledge of jump targets in other procedures is not available and it is not
possible to write procedures for use in this type of environment.

It is important to distinguish control flow among statements within a procedure that naturally
leads from one vertex to the next from that which crosses procedure boundaries and, thus, may .
be affected by manipulations within the called procedure or, transitively, the procedures that it
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3: whilei < 10 do

:call B
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Figure 3.5: Example Procedure Control Flow Graph for Procedure M of
Program Sum Shown in Figure 2.4.

calls. The former are called direct control flow arcs and are denoted (x,y) where x is the source of
control flow and y is target. The latter are called interrupted-flow arcs (x,y) where x is a call to a
procedure and y is the next statement to be executed should control return to the calling procedure.
We make this distinction in recognition that resumption of the called procedure is dependent upon
the behavior of the called procedure and the procedures it calls. Figure 3.5 shows the procedure
control flow graph for the main procedure of the program Sum example introduced in Section 2.4.
The code for Sum is shown in Figure 2.4. For sake of convenience, we display the code associated
within each vertex. In Figure 3.5 the arcs from vertex 5 to vertex 4 and from vertex 6 to vertex 7
are interrupted-flow arcs. '

Definition 12 Given a procedure P, and statements s,t € P, where s is a call statement, an
interrupted-flow arc (u,v) is an arc incident from a graph vertexr u representing s and incident to
vertex v representing t. An interrupted-flow arc represents the expectation that, in the absence of
abnormal termination, program execution will eventually resume at t after a call at s. u is called
an ifa-source or call vertex and v is called an ifa-target or resumption vertex.

37



Definition 13 An annotated vertex is a wvertexr that contains zero or more predefined
attribute/value pairs.

Definition 14 Given a procedure P = {si,...,sn}, a procedure control flow graph

(PCFG) G = (V. A) is a digraph where V. = {v1,...,v5,v 0%}, A = (Fg,Ig). V contains
two distinguished vertices: an initial vertex v! associated with invocation of the procedure, and an
annotated return vertex v, Fg is a set of control flow arcs and I is a set of interrupted-flow arcs.
For every vertez v with zero in-degree there exists a control flow arc (v!,v) and for every vertex v;
that represents a procedure return, there exists a control flow arc (v;,vf) € Fg. G satisfies each of
the following conditions:

e in G there exists exactly one v € V to represent each s € P.
s [For every call statement in P there exists exactly one arc in Ig.

The procedure control flow graph for the procedure M of program Sum shown in Figure 3.5 is
composed of sequence, loop, and procedure call/return control primitives. In this PCFG v! = 1,
v = Return, and I = {(4,3),(5,6)}.

With these definitions in place we can proceed to describe interprocedural control flow and the
composed control flow graph we use to represent the potential flows within and among procedures
of a program.

3.3.2 Interprocedural Control Flow

During program execution, flow of control proceeds directly from a call site to the first executable
statement in the called procedure. At the end of a procedure invocation, control can be transfered
back to the calling procedure by way of normal return or exceptional return, or execution can jump
directly to the program exit. Each of these situations results in identification of a different set of
dependencies within the calling procedure. We now define an interprocedural control flow graph as
a set of procedure control flow graphs connected by call/return arcs and jump arcs that connect
non-returning exits from the procedure to the program exit.

Definition 15 Given a program P = {P1,...,P,}, an interprocedural control flow graph is a
digraph G = {G1,...,Gp,v°,v" C, R, J} where

o there exists exactly one procedure control flow graph G; € G for each procedure P; € P;

S

e v is a distinguished start vertex that has zero in-degree and represents the start of P;

F

e v is a distinguished finish vertex that has zero out-degree and represents the stop of P;

e C is a set of call arcs (u,v) where u is a call vertex in Vg, and v = véj is the initial vertezx
for some procedure control flow graph G;; G;,G; € G;
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e R is a set of return arcs (u,v) where u = fugj is the return vertex in procedure control flow
graph G; and v € Vg, is also incident from an interrupted-flow arc in Ig,; G;,G; € G

that satisfies each of the following conditions:

o There is a one-to-one correspondence between C and R. For each ¢; = (u,fU(I;j) € C there

ezists exactly one r; = (vgj,v) € R, and there ezists (u,v) € Ig;.
o Euvery vertex of Vg occurs on some vl — v path.

The last two conditions specify first, that each procedure must have at least one return state-
ment and second, that any statement in the program that is syntactically recognizable as being
unreachable is not represented in the control flow graph.

The interprocedural control flow graph G for Sum, the program introduced in Section 2.4 as our
running example, is shown in Figure 3.6. In this example there are three control flow graphs: G; =
M,Gy=B,and Gz =C. vé is the vertex labeled “Start Sum” and vg is the vertex labeled “Finish
Sum”, C = {(4,IB),(5,IB),(11,1IC)}, R = {(RC,12),(RB,3),(RB,6)}, and J = {(22, F)}.

Modeling Exceptions in an ICFG

Support for the definition and handling of exceptions in programming languages provides a
challenge for dependence analysts due to the extensive implications for control dependence that
result from the unpredictable nature of control flow paths associated with exception handling. Rep-
resentation of control flow related to handling exceptions is a language specific activity associated
with building a program’s control flow graph. The definition for the procedure control flow graph
provides support for modeling exceptional control in the form of the annotated return vertex. The
return vertex may optionally contain the names of exceptions that can be triggered within the
procedure. If exceptions are to be considered, then a dummy decision vertex is inserted as the
ifa-target that tests the return to see if it is a normal or exceptional return. Arcs incident from the
dummy vertex lead either to the vertex that represents the first statement within the procedure that
should be executed upon return from the related call or, in the case of exceptional return, leads to
a vertex that begins a further set of tests on the exception name. This can be represented similarly
to a case statement defaulting with a jump to the procedure’s return vertex and annotating it with
exception information.

The semantics of exceptions vary considerably among languages that support them. For in-
stance, in ML control is returned to the point of error after an exception is handled whereas in
Ada the subprogram containing the exception handler is terminated immediately after the excep-
tion is handled. As mentioned earlier in this section, such language-dependent differences must be
faithfully represented in the procedure control flow graph. We do not support, nor do we suggest
attempting to model dependencies that result from the potential for implicit raising of exceptions
such as “divide by zero” as this would result in creating control dependencies on virtually every
statement in a program, immediately rendering the dependence analysis useless.
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Figure 3.6: Interprocedural Control Flow Graph for Program Sum.

3.3.3 Interprocedural Walk

The calling context effect described in Chapter 2 is a result of the fact that there are paths in
an interprocedural control flow graph that do not represent any executable sequence of program
statements. While it is not possible to determine syntactically exactly which walks in a control flow
graph represent valid execution sequences, it is possible to improve precision by illiminating walks
that are syntactically recognizable not representing any potential execution. For example, referring
to Figure 3.6, there is a path beginning at vertex 5, (5-IB-11-12-15-16-RB-3) that includes vertex 3.
Clearly execution of statement 3 cannot follow that of statement 5 in any execution of Sum. This
is an invalid walk of Sum’s ICFG that results from the existence of more than one return arc from
vg. Each of these arcs is associated with exactly one call arc. In any execution of a program, the
relationship between procedure calls and returns is like that of matching parentheses, with the call
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being the left parenthesis and the return being the right parenthesis.

Definition 16 An interprocedural walk W in an interprocedural control flow graph G is a digraph
walk that satisfies the following conditions:

e For any two vertices v; and viy1 € W there does not exist (v;,vi+1) in Ig

e Given any (c,r) € Ig,, where for some G; € G where cYr is a subsequence of vertices in W,
then if for any vertex v in ) there exists an interrupted-flow arc (u,v) in G then uSv is a
subsequence in Y for some sequence of vertices S.

Informally, the first condition of this definition prevents traversal over interrupted-flow arcs and the
second condition says that if a walk from a call vertex of a procedure flow graph to its associated
resumption vertex contains any other return arcs, these arcs must be preceded in the walk by
associated call arcs. In our running example, this condition assures us that a walk beginning at
vertex 4 will return to vertex 3 because traversal of return arc (vE,6) is prohibited by the lack of
existence of vertex 5 in the 4-v% walk. Additionally, the walk from vertex 5 to vertex 6 cannot
include vertex 3 because the walk 5—'01}92 does not include vertex 4.

Definition 17 An execution trace of a program P is a sequence of strings Tpy = t1,l2,...,tn
where each t; € Tp(r) represents the execution of