An Infrastructure to Generate Experimental Workloads for
Persistent Object System Performance Evaluation

Thorna O. Humphries

CU-CS-906-00

_.,H__J‘-_]i?j U L4 L3
T« niversity of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

An Infrastructure to Generate Experimental Workloads
for
Persistent Object System Performance Evaluation

Thorna O. Humphries

Department of Computer Science

University of Colorado
Boulder, CO 80309-0430 USA

University of Colorado
Department of Computer Science
Technical Report CU-CS-906-00 August 2000

© 2000 Thorna O. Humpbhries

Abstract

Performance evaluation of persistent object system implementations requires the use and eval-
uation of experimental workloads. Such workloads include a schema describing how the data are
related, and application behaviors that capture how the data are manipulated over time. Currently,
these experimental workloads generate data in a manner that does not support sharing of applica-
tions or data among researchers either because it is specific to a particular hardware platform or it
is specific to a particular persistent object system. Using trace-driven simulation as a technique for
analyzing the performance of persistent object systems, an infrastructure for generating experimen-
tal workloads and capturing their behavior is designed and implemented in this dissertation. This
infrastructure consists of a common trace format that allows data to be shared among researchers
and a modeling toolkit that reduces the effort to model, implement, and instrument applications.
This infrastructure also consists of a new technique to generate multi-user workloads.

PTF (POSSE Trace Format) is a general-purpose trace format that is the specification of a set
of events characterizing application operations on persistent object stores. PTF is novel in that the
semantics of the higher-level application is maintained through the trace events (e.g., the notion of
an object is captured in the trace events). It also captures the information about an application
that is not specific to a particular persistent object system implementation.

AMPS (Application Modeling for Persistent Systems) is a toolkit that consists of a set of C+-+
classes and a TCL interface to ease the creation of self-tracing applications. The set of classes
provides mechanisms for specifying a schema, coding application operations on the schema, and
transparently instrumenting an application to record trace events. The TCL interface provides an
interactive mechanism for specifying the workload of an application.

Several benefits can be derived from the use of the infrastructure of this dissertation. These
benefits are as follows: the process of building new experiments for analysis is made easier; experi-
ments to evaluate the performance of implementations can be conducted and reproduced with less
effort; and pertinent information can be gathered in a cost-effective manner.

Keywords: experimental workloads, performance evaluation, trace formats, persistent object sys-
tems, benchmarking, multi-user workloads

Contents

Introduction

1.1 The Problem e

1.2 Approach

1.3 Evaluation. e e

1.4 Contributions and Benefits e
1.4.1 The Common Trace Format
1.42 The AMPS Toolkit
1.4.3 A New Technique to Generate Multi-user Workloads

1.5 Organization of Dissertation

Background

2.1 Basic Terminology e

2.2 Overview of Trace-Driven Simulation in Evaluation of Persistent Object Systems . .

Trace Format

3.1 Design Goals e
3.2 Overview of PTF Design e
3.3 Trace Events e
3.3.1 Trace Format
3.3.2 Events that Manipulate Objects of the Persistent Store
3.3.3 Garbage Collection Directives
3.4 Representation Formats e
3.4.1 Binary Format e
3.4.2 ASCII Format o i
3.5 SUmMMATY e e e e
Modeling Toolkit
4.1 Motivation and Overview
4.2 Architecture
- 4.3 Modeling an Application Workload
4.3.1 Implementing the Persistent Store Schema
4.3.2 Implementing Application Behaviors
4.3.3 Implementing the Workload
4.4 SUumMmary . ..o e e e

5 Experience Modeling OO7
5.1 007 OVerview o v i e

5.2 Using AMPS to Model OO7 v
5.2.1 Modeling the OO7 Benchmark Schema
5.2.2 Modeling Extents

5.2.3 Modeling a Traversal
5.3 Comparison of PTF Traces
5.4 Summary e e

6 Infrastructure to Support Generation of Multi-user Workloads
6.1 Setting the Stage L
6.1.1 Design Goals e

6.1.2 Approach To Support Generation of Multi-user Workload
6.1.3 Assumptions
6.2 Design Issues e
6.2.1 Enforcing Correctness of Interleaved Traces
6.2.2 Data Sharing
6.2.3 ConCurrency i
6.3 PTF Extensions e e e e e
6.3.1 Trace Formats for Transaction Events

6.4 Generation of the Workload
6.4.1 Enhancement to AMPS Toolkit
6.4.2 Implementing Several Single-user Workloads

6.5 Scenarios e
6.5.1 Scenario 1: Treatment of Creation of Objects
6.5.2 Scenario 2: Example of an Interfering Transaction
6.5.3 Scenario 3: An Example of a Non-Conflicting Transaction
6.5.4 Scenario 4: Example of Structural Change to Shared Region

6.6 An Example Trace Merger
6.6.1 The Notionof Time
6.6.2 Synchronization Algorithm
6.6.3 Garbage Collector Interaction
6.6.4 Overview of Implementation

6.7 SUmMmary e

7 Experience with OO7 Multi-user Workload Specification
7.1 Overview of the Multi-user OO7 Benchmark
7.1.1 Description of the OOT Persistent Store
7.1.2 Description of the OO7 Multi-User Workloads
7.2 Modifications to OO7 Multi-user Specification
7.3 Experiments. e
7.3.1 Experiment 1: Three Client Producer/Consumer Multi-user Workload
7.3.2 Experiment 2: Two Client Multi-user Workload with Reorganizations
7.4 Observations e

i

>8 Related Work 85

8.1 Trace-Driven Simulation e 85
8.2 Trace Formats for Performance Evaluation. "85
8.3 Performance Evaluation Based on Workload Models 86

9 Conclusion 88
9.1 Future Work e 89

A Parameters of PTF Trace events 93
Al Traceh File 93

B Interface Specifications for Components of the Example Trace Merger 99
B.1 Functions of the Trace Merger, 99
B.1.1 Main Function e 99

B.1.2 Scheduler Function 100

B.1.3 Swapper Function 100

B.2 The C++ Classes of the Trace Merger 101
B.2.1 The LockManager Class 101

B.2.2 ClientCoordinator Class i i e 102

B.23 Lock Class e e 109

B24 LRQueue Class e 109

B.2.5 LRQueueltr Class vt e 110

B.2.6 LockRequest Class i i it 111

il

Chapter 1

Introduction

In the 1980s, the complexity of data-intensive applications surpassed the support level of traditional
database management systems. These applications were typically in such areas as computer-aided
design (CAD), document preparation, and software engineering. These applications required the
manipulation and management of complex objects that traditional database management systems
were not designed to manage. Therefore, researchers in the database community as well as re-
searchers in the programming language community developed solutions to solve the problem of
managing complex object storage. The database researchers developed object-oriented database
management systems while the programming language researchers extended languages to allow data
to persist after a process terminated and called their systems, Persistent Object Systems (POS).
Persistent object systems were developed to effectively move data between main memory and sec-
ondary storage. Thus, research in the area of persistent object systems is directed toward the design
and implementation of efficient persistent stores that are type safe.

One of the earliest persistent object systems was POMS (Persistent Object Management Sys-
tem) [12], which was developed for the language PS-Algol. A major concern in the implementation
of POMS was how to actually organize the data structures on disk. As with POMS, the central
subsystem of persistent object systems is the storage manager. The storage manager has several
responsibilities, such as placement of objects on secondary storage, transferring data between sec-
ondary storage and main memory, creating and updating objects, and concurrency control. Because
of its crucial role, the performance of the storage manager is an important factor in the evaluation of
a persistent object system. Therefore, much emphasis is placed on the design and implementation
of algorithms that make up the storage management subsystem. These algorithms fall into such
categories as clustering, the use of indexing, and storage reclamation.

To evaluate the performance of the storage management subsystem, several techniques have
been employed. They are as follows:

¢ Implementation of a Prototype. This technique requires that a prototype of a persistent
object system is implemented. Examples of prototypes that have been used to investigate
storage management algorithms are Exodus [22] and more recently PJAMA [4], a system that
adds orthogonal persistence to JAVA.

¢ Benchmarking. Benchmarking is a technique that has been widely used to evaluate the
performance of various relational as well as object database commercial products for over a
decade [37]. It is therefore no surprise that it has been adopted as a technique for evaluating
the performance of persistent object systems. Conceptually, a benchmark consists of two
elements: the structure of the persistent data and the workload, in other words, the behavior

1

of an application accessing and manipulating the data. The process of using a benchmark to
assess a particular persistent object system involves executing or simulating the behavior of
the application while collecting data reflecting its performance.

e Simulation. Discrete event simulations have been developed to evaluate the performance of
persistent object systems. These simulations have been used in the evaluation of clustering
algorithms and storage reclamation. At the core of the simulation technique is a model of a
persistent object system. Examples are the client-server model of a persistent object store
developed by Yong et al. [46] and more recently the generic discrete-event random simulation
model, VOODB (Virtual Object-Oriented Database) [18]. VOODB has been used to simulate
the behavior of the Texas persistent object store [42] as well as an object-oriented database
management system.

e Trace-driven Simulation. A proven assessment technique for evaluation of proposed sys-
tems is trace-driven simulation [44] and at the heart of this technique is the sequence of ap-
plication events called a trace. A trace-driven simulation consists of three phases: collection,
reduction, and processing [27]. Performance evaluation of storage management algorithms is
concerned with dynamic behavior; therefore, the application must be instrumented in such a
way that the relevant events can be collected in a trace during execution. The trace is then
used as input to the reduction and processing phases of the simulation. These phases use the
trace events to evaluate the performance of algorithms related to persistent object systems.
Trace-driven simulation has been used in the study of storage reclamation [13, 15, 16].

e Analytical Models. Analytical models are also used to evaluate storage management al-
gorithms. These models cost less to implement then both prototypes and simulations. The
models are usually not as detailed as those of simulations. An example of the use of analytical
modeling is the work by Butler [7] on storage reclamation.

As shown in the literature [8, 12, 22, 33, 42], prototyping has been widely used to evaluate
persistent object systems implementations. However, the cost of implementation and the lack of
generality of prototypes have increased interest in simulation techniques that allow researchers
to evaluate algorithms without implementing prototypes. Through simulations, components of a
persistent object system can be implemented so that system-dependent information can be included
as needed. Furthermore, alternative algorithms can be incorporated in the implementation of
a model of a persistent object system. Because of its track record in the area of performance
analysis of caches and main memory designs, this dissertation is based on the premise that trace-
driven simulation is a viable technique for evaluating the performance of persistent object systems.
Further, evidence of its use in the area of storage management was shown by the work of Cook
et al. [13, 15, 16]. However, since trace-driven simulation has not been used extensively in the
evaluation of persistent object systems, there is a need for a better infrastructure to alleviate some
of the problems that researchers encounter in the application of this technique for evaluating storage
management algorithms of persistent object systems.

1.1 The Problem

A key component of trace-driven simulation is the accurate representation of the behavior of an
application through trace events. Unlike TPC [23], the benchmark for evaluating transaction
processing, there are no benchmarks for storage reclamation. There are several reasons why such

a benchmark has not been developed. First, vendors of persistent object systems place controls on
the publishing of performance numbers of their products as noted by Carey et al. [10]. Thus, it is
difficult to obtain timings to perform direct comparisons of implementations. Secondly, accessibility
to real applications is very difficult. These applications are not available because of the sensitive
nature of the data that is stored in the persistent object store. This sensitivity may be due to the
privacy rights of a person represented by the data, as in an accounting or a health care application,
or to the proprietary nature of the data with respect to a specific company or organization (e.g., in
a CAD application, a design that has not been patented). In any case, vendors of persistent object
systems are not readily giving their test applications and data to academicians.

Without a benchmark, researchers in the POS community perform their analysis of storage
algorithms by developing a variety of applications using several different platforms. Since there is
no common data format, the implementations of the applications as well as the data generated are
not typically shared among researchers.

In addition to the above, a lot of analysis has been performed using single-user workloads to
generate data. However, very little analysis has been done with data generated from a multi-user
workload, thus limiting the exploration of storage management algorithms. Evidence to substan-
tiate the above claim was shown in the experimentation by Banerjee and Gardner [5], whose ex-
perimentation with the MMST/WORKS program lead them to the observation that multi-user
testing was necessary in order to measure the amount of process interaction. They found that
the interaction between processes provided insight into how to tune database activities such as
clustering. They state that the support of a multi-user environment and workload would not only
bring out the ability of an object database system to handle the workload but also throw light on
the concurrency semantics of the object database system [5].

To date only the developers of the OO7 benchmark have investigated the design of a multi-user
benchmark [9]. They found the development of a multi-user benchmark was more difficult due
to the increased number of dimensions in which the workload can vary and due to the complex-
ity of interactions among many concurrent activities. Although the developers performed some
preliminary experimentation with their specification, they did not pursue it further because of
insufficient information about what would constitute a multi-user workload for a typical object
database application.

Finally, another problem with trace-driven simulation is the process of instrumentation to gen-
erate the trace. The instrumentation process is very time consuming, error prone, and costly. It is
time consuming because it may take several attempts to correctly instrument an application. Also,
the process of instrumentation, especially by hand, is error prone in that it is easily to miss some
operations inadvertently, thus requiring careful inspection of the instrumented application. Cost of
instrumentation is thus measured in terms of the time to complete instrumentation and whether
the instrumented application is reusable on a variety of platforms.

Since all of the above problems cannot be addressed in one dissertation, the work in this disser-
tation is geared to answering the following two questions that arise with trace-driven simulation.

1. What is a good representation for a trace that allows one both to capture a wide range of
application data and behaviors, and to share the traces among analysts?

2. How do we minimize the effort needed to instrument an application to create traces?

Thus, the goal of this dissertation is to identify and design mechanisms and tools that allow efficient
gathering of more accurate information for effective performance evaluation of persistent object
systems.

1.2 Approach

Although trace-driven simulation has three phases, there are several ways to approach each of these
phases. In the collection phase, a component of a system is usually instrumented to generate trace
events as the component is executing. From experimentation with garbage collection algorithms [13,
15, 16}, it was observed that information that is needed to analyze these algorithms is not dependent
on a particular persistent object system. This information consists of creations of new objects
and modification of inter-object references. Thus, trace events can be collected by executing an
instrumented persistent object application independently of a persistent object system. Thus, the
approach shown in Figure 1.1 was developed. This approach to trace-driven simulation is based on
AMPS (Application Modeling for Persistent Systems) and PTF (POSSE Trace Format), the two
central components of the infrastructure investigated, designed, and developed in this dissertation.

AMPS consists of a set of C++ classes and a TCL interface to ease the creation of self-tracing
applications. The set of classes provides mechanisms for specifying a schema, coding application
operations on the schema, and transparently instrumenting an application to record trace events.
The TCL interface provides an interactive mechanism for specifying the workload of an application
in terms of persistent store behaviors such as generation, traversals, and updates.

Using AMPS, as shown in Figure 1.1, an application is modeled using a combination of a schema
specification, an application specification, and the AMPS library; the schema and application
specifications are defined using C++ classes derived from classes in our library. The application
model is instrumented to produce PTF trace events using a library of the AMPS toolkit. The
application model then runs without the need for an actual persistent object system, producing a
PTF trace file that can then be fed into an analyzer.

PTF is a portable general-purpose trace format; in other words, it is a specification of a set
of events that characterize application operations on persistent object stores. It is novel in the
following respect: The semantics of the higher-level application is maintained through the trace
events (e.g, the notion of an object is captured in the trace events). By maintaining the notion of an
object, PTF traces can be used for a variety of purposes, including simulation studies, application
visualizations, debugging, and statistical summaries of application behavior.

Typically, in the area of persistent object systems, instrumentation is accomplished at the
system level, thus the trace events capture references and updates to data as in the MaStA trace
format [39] as opposed to objects. At this level of instrumentation, it is more likely that platform
dependencies are introduced into the trace. To avoid such dependencies, we have designed PTF so
that it is devoid of system dependent information such as physical offsets and data sizes. Thus,
PTF traces can be used across several platforms and by a variety of persistent object systems.

While PTF can be used independently of AMPS, using them together gives substantial leverage
to a researcher interested in assessing persistent object systems, reducing both the time and effort
required to create experiments. In general, the advantages of our approach include the following.

e Applications can be modeled independent of any particular persistent object system.

e The instrumentation necessary to perform experimentation and analysis is abstracted from
the application layer.

e The effort of developing benchmark applications can be reduced through the reuse of classes
provided as libraries.

e Trace event files can be generated once and then used in many different experiments by
different experimentors.

Application
Specification

AMPS
Libraries

Instrument
Using AMPS

T T

< Instrumented ™\
_ Application f,,/

T

Y

Execute l A

/,/// \\
/ Performance
‘. Resuts

.........) _

Figure 1.1: An Approach to Trace-driven Simulation for Persistent Object Systems Performance
Analysis.

1.3 Evaluation

Prior work has shown that trace-driven simulation is a feasible technique for evaluating the per-
formance of POS storage management algorithms [13, 15, 16]. In order to validate the work of
this dissertation, a detailed case study of the OO7 benchmark specification as well as its multi-user
extension was completed. The C++ implementation of the OO7 benchmark that is provided as
free software by the Shore group at the University of Wisconsin was modified and instrumented
using AMPS to generate single-user workloads. Traces were then generated independently of a
persistent object system. These traces were compared with a hand-instrumented version of the
007 benchmark implemented under Exodus.

The comparison showed that trace files generated from the C++ implementation instrumented
with AMPS and that those generated from the hand-instrumented verion of the OO7 benchmark
under Exodus contained trace events that were identical in order and content. Since the traces that
were generated from a hand-instrumented version of the O0O7 benchmark were verified through a
simulator of a persistent object system to check their correctness, the comparison also showed that
the AMPS instrumented version also correctly captured the structure and behavior of the OO7
benchmark.

A case study of the OO7 multi-user benchmark was also conducted to validate the feasibility
of the instrumentation infrastructure that was designed and implemented to generate multi-user
workloads. The OO7 multi-user application was instrumented using AMPS and then used to
generate single-user workloads. These single-user workloads were then merged in a variety of ways to
generate interesting multi-user workloads. Two experiments were performed. The first experiment
showed that the infrastructure could be used to test aspects of a multi-user environment with respect
to a given application such as contention between clients. The second experiment showed how the
persistent store could be reorganized under the instrumentation infrastructure of this dissertation.

Through the OO7 multi-user case study, we were able to show that our instrumentation infras-
tructure was well suited for the OO7 multi-user benchmark. Furthermore, we were able to generate
a variety of multi-user workloads without rerunning the OO7 multi-user application, thus providing
a flexible framework for generating multi-user workloads.

1.4 Contributions and Benefits

This dissertation makes three major contributions: a POS-independent common trace format, the
AMPS toolkit, and a new technique to generate multi-user workloads. Each of these contributions
are discuss below.

1.4.1 The Common Trace Format

PTF captures the structure and manipulation of a persistent store by abstracting the logical be-
havior from the details of the physical implementation. Since physical attributes about the data
of an object are not recorded in the trace events, the trace files generated using PTF are portable
across several platforms. The portability of PTF makes it possible for researchers to interchange
application workloads captured in trace files. This potential for sharing data could greatly reduce
the effort in performing new experiments to evaluate the performance of components of persistent
object systems. Researchers are also able to perform direct comparisons of POS implementations
with PTF. Furthermore, PTF could be used to gain information about the behavior of a persistent

object application over some period of time in a manner similar to the way logs are used in database
management systems.

The final benefit of the research on PTF is that the trace format provides a starting point
toward the development of a standard trace format for the POS community of researchers. The
need for a standard trace format has been discussed at the International Workshop on Persistent
Object Systems (POS), but no unified action has been taken by the POS community of researchers
to date.

In addition to the above benefits, PTF affords its users two advantages by maintaining the
semantics of objects. These advantages are

e The objects recorded in the trace can be mapped to the physical layout of any persistent
object system.

e Traces can be used to study the behavior of a persistent store at an application level (e.g., a
visualization tool).

1.4.2 The AMPS Toolkit

In general, the implementation of an instrumented application is a time consuming process. With
the AMPS toolkit, classes are provided as libraries that can be reused thus reducing both the time
and effort to implement and instrument models of applications. By restricting all instrumentation
functionality to access methods for data members of objects within an application, instrumenta-
tion is localized to specific methods and the process of instrumentation becomes less error prone.
Lastly, by using the language C++, a language that is supported on many hardware platforms, and
instrumenting at the application-level, the reusability of an instrumented application is greatly
increased.

1.4.3 A New Technique to Generate Multi-user Workloads

The third contribution of this dissertation is an investigation of how to generate multi-user work-
loads in a flexible manner. Currently, the effects of concurrency are studied by either actually
running more than one client on a prototype or artificially adding concurrency in the workload.
In this dissertation, an approach for artificially introducing concurrency between single-user work-
loads to form a multi-user workload is investigated, designed, and implemented. This approach
is novel in that single-user workloads are captured in traces that are generated by executing an
application instrumented using AMPS and later merged under a concurrency control model and a
transaction model to generate a multi-user workload. This approach provides several advantages.
First, the single-user workloads can be combined a variety of ways, thus allowing for a broader
range of experimentation with respect to multi-user workloads. Second, the process of combining
single-user workloads does not require an re-running of the application to generate a multi-user
workload. Third, the approach provides a framework for using alternative scheduling algorithms,
transaction models, and concurrency control models to generate multi-user workloads.

1.5 Organization of Dissertation

A detailed discussion of PTF and the AMPS toolkit is provided in the remainder of the dissertation.
The dissertation is organized as follows:

Chapter 2 provides a more detailed discussion on the state of trace-driven simulation as a
technique for performance evaluation in the area of storage management of persistent ob-
ject systems. It also introduces the terminology that will be used in the remainder of the
dissertation.

Chapter 3 introduces PTF (POSSE Trace Format). It presents the goals and motivation
behind the design of PTF. An overview of PTF is presented that includes an example illus-
trating the use of PTF in capturing a workload generated from a two-behavior application
that builds a binary tree. The remainder of the chapter describes the semantics and structure
of each of the trace events of PTF.

Chapter 4 provides a detailed discussion of the AMPS toolkit. A brief overview of the ar-
chitecture of AMPS is presented. Using a simple binary tree persistent object application,
the process of modeling an application using the AMPS toolkit is then described. Once the
application is implemented, a discussion of how to generate a single-user workload using the
TCL front end is provided.

Chapter 5 presents the details of the case study that was performed on the OO7 bench-
mark. It provides a brief overview of the OO7 benchmark. The remainder of the chapter
presents experiences using the AMPS toolkit to model the persistent store and behavior of
the OO7 benchmark. A comparison is then presented between trace files generated using the
AMPS toolkit and trace files generated by executing a hand-instrumented version of the OO7
benchmark under Exodus.

Chapter 6 describes the instrumentation infrastructure for generating multi-user workloads
that was designed and implemented as part of this dissertation. The chapter begins by
presenting the design goals of the infrastructure and the design issues that were encountered
while designing this infrastructure. The infrastructure is then described. Enhancements to
PTF and AMPS to support the implementation of the infrastructure are then presented.
The chapter concludes with a description of an example implementation of the trace merger,
the component of the infrastructure that merges single-user workloads to form a multi-user
workload.

Chapter 7 presents a discussion of the case study that was performed on the OO7 multi-user
benchmark to show the feasibility of our approach to generating multi-user workloads. The
chapter presents an overview of the OO7 multi-user benchmark specification. It provides a
discussion of modifications that were made to the OO7 multi-user benchmark for the case
study. It then presents an overview of two experiments: one to evaluate the contention among
clients and the other which evaluated a reorganization function. The chapter concludes with
observations about the instrumentation infrastructure that were made as a result of studying
the OO7 multi-user benchmark.

Chapter 8 reviews related work in the areas of trace-driven simulation and trace formats with
respect to performance evaluation of persistent object systems. It then provides a discussion
on how prior work relates to the work of this dissertation with respect to trace formats and
application benchmarking and modeling.

Chapter 9 summarizes the work completed in this dissertation and concludes with a discussion
of future research directions.

Chapter 2

Background

For years, trace-driven simulation has been a popular approach for evaluating the performance
of proposed cache and paging designs and has proven to be a cost-effective method for estimat-
ing the performance of primary-memory system designs. As a result of the effectiveness of the
technique, many trace-driven simulation tools have been developed. In a recent survey, Uhlig and
Mudge [44] compared over 50 trace-driven simulation tools as part of an effort to formulate criteria
for evaluating trace-driven methods.

Trace-driven simulation has been used for a wide vanety of purposes, including the evaluation
of dynamic storage management implementations. For example, in the early 90s, Zorn [47] and
Wilson [45] used trace-driven simulations to study the performance impact of garbage collection on
caches. The success of this approach in the domain of primary memory led Cook et al. [13, 15, 16],
the POSSE (Persistent Object SyStems Evaluation) group at the University of Colorado, to apply
the approach to the related study of performance of the storage manager of persistent object system
implementations.

Through trace-driven simulations, Cook et al. investigated methods to improve the performance
of algorithms for automatic storage reclamation, focusing on policies to effectively select partitions
to collect and the rate at which to perform the collection. Others have also used this approach.
Specifically, Scheuerl et al. [40] used event traces to analyze the I/O performance of various recovery
mechanisms.

In this chapter, we present an overview of the use of trace-driven simulation as a technique to
evaluate the performance of the storage manager of a persistent object system. Before providing
this overview, some basic terminology that will be used throughout the remainder of the dissertation
is presented.

2.1 Basic Terminology

There are few terms that are used throughout the dissertation. Below, definitions are provided for
these terms.

¢ Application. An application is a specification/program that uses a persistent object system
for a specific purpose. An application consists of a schema and a behavior.

¢ Schema. A schema is a description of the data manipulated by an application. This de-
scription includes the legal operations that can be performed on the data (i.e., the data are
abstract data types).

Task. A task is a legal operation or a specific combination of legal operations that can be
performed on the data defined by the schema. Examples of tasks are: to create an initial
object store, to delete every other object, and to search for all objects satisfying a given
predicate.

Behavior. A behavior is a set of tasks that can be performed by an application.

Object Store. An object store is an instantiation of a schema. In other words, it is a
container of data. In some instances the object store is a simulated container of data and
therefore it is just a representation of data rather than the actual data themselves.

Workload. A workload is a specific combination of tasks that is performed by an applica-
tion on a specific object store. The tasks of the workload can be instrumented to produce
trace events that capture the manipulations of a persistent store during the execution of the
application.

Multi-user Workload. A multi-user workload is the combined workload of multiple clients
or users concurrently accessing a persistent store during the execution of an application.

Trace. A trace is a record of the effect of simulating or executing a workload.

Logical Workload Trace. A logical workload trace is a trace containing trace events that
capture information about the manipulation of a persistent store that is independent of the
physical characteristics of either the in-memory representation of the objects of the persistent
store or the on-disk representation of these objects by the persistent object system.

Physical Workload Trace. A physical workload trace is a trace that consists of information
specific to a particular persistent object system implementation. Within the physical workload
trace, the trace events are augmented with information such as the size of an object, numeric
offsets of data within the object, and the physical location of the object on the disk.

Synthetic Application. A synthetic application is an application that is developed for the
purpose of exercising and/or studying a persistent object system. A synthetic application can,
of course, be derived from a real-world application through some sort of modeling activity.

Benchmark. According to the Encylopedia of Computer Science [35], a benchmark is a
standardized computer program for which there is a history of measurement data (typically
timings) for execution of the programs with specifically defined input and reproducible output.
In the context of this dissertation, a benchmark is a standard in the sense that it has been,
or is proposed to be, adopted by the community of persistent object systems researchers.
Evidence of acceptance is its use by several people. Furthermore, for our purposes, the
benchmark consists of an application, schema, and a set of one or more workloads.

2.2 Overview of Trace-Driven Simulation in Evaluation of Persis-

tent Object Systems

As stated above, Cook et al. effectively used trace-driven simulation to perform analysis of garbage
collection policies. In the first generation of experimentation, Cook et al. built a synthetic applica-
tion whose persistent store consisted of a forest of binary trees in which some trees had additional
edges. The application simulated a single process that probabilistically created, accessed, and

10

deleted objects of the persistent store. The application made direct procedure calls to the simula-
tion system, ODBsim [14], that was built to simulate a persistent object storage manager. Using
this application, Cook et al. [16] investigated different partition selection policies for garbage col-
lection, resulting in the design of a policy that performed better than any existing implementable
policy with respect to collecting more garbage with less I/O. As a result of their experiences, they
decided to investigate a way to make the experimental input (not just output) available to other
researchers. To accomplish this goal, a general-purpose trace format, PTFF (POSSE Trace File
Format), was developed. The set of trace events of the PTFF specification capture the effect of
tasks of an application on a persistent store (e.g., object creations, accesses, and modifications).

PTFF was then used in instrumenting applications, thus forming the second generation of exper-
imentation with a trace-driven approach to performance evaluation of persistent object systems. In
the second generation, Cook et al. hand instrumented an implementation of an application to col-
lect application traces as illustrated in Figure 2.1. In this approach, the application is implemented
in a language supported by a given persistent object system. To perform hand instrumentation
correctly, the source code of the application must be completely understood to identify the appro-
priate places to insert instrumentation functions. During the process of hand instrumentation, if a
single event is overlooked, the state recorded in the trace does not reflect the state of the persistent
store created by the application. Once the application is hand instrumented, it is then executed
using an actual persistent object system. The execution results in the creation of a persistent store
and traces that capture the persistent store as well as the behavior of the application. The traces
are then used as input to an analyzer. In this case, the analyzer is a simulator of a persistent object
system.

Using this approach, Cook et al. [13] investigated the impact of garbage collection rate on
application behavior. They developed two semi-automatic, self-adaptive policies to control the
garbage collection rates. For this set of experiments, the researchers hand instrumented an E [21]
implementation of the OO7 benchmark [10] to generate several trace files as the application exe-
cuted under Exodus. In order to assess correctness of the hand instrumention of the application,
Cook et al. created very small stores by altering the parameters of the benchmark. The traces were
then submitted to the simulator ODBsim as a means of verification. For example, the simulator
was used to check the connectivity of the store that was generated from the trace. In order to get
the instrumentation correct, several tests were run. Cook et al. found that the process required a
significant amount of manual labor and the hand instrumentation was error prone. Furthermore,
the instrumented application was not reusable with respect to other persistent object systems.

Although hand instrumentation proved to be problematic, Cook et al. found that the generation
of the traces proved invaluable to their experimentation process. They were easily able to organize
and document their experiments. They had more control over the running (and rerunning) of the
same experiments multiple times (e.g., in the face of resource limitations or simulator errors). They
were also able to gather statistical information about the various workloads.

The work of Cook et al. formed the foundation for the work completed in this dissertation.
Specifically, PTF was based on the specification of PTFF. Also, their experience with hand instru-
mentation lead to the conceptualization of AMPS, which allows applications to be instrumented
more easily and flexibly.

11

Application

Instrument
By Hand

Y
Instrumented
Application

Execute

PTF Trace)

|

Analyze

Performance
Results

Figure 2.1: An Approach to Application Instrumentation.

12

Chapter 3

Trace Format

The POSSE Trace Format (PTF) is a first effort toward the development of a common trace
format. It is novel in that the trace format characterizes the structure of an object store and the
time-varying behavior of an application as manipulations of persistent objects during the execution
of the application. For simplicity, we always assume that the object store is initially empty, and
that the application begins by populating the store.

During the execution of an application, objects manipulated by the application fall within one
of the following categories:

e Transient objects.

e Evolving objects which are newly created objects that have not been attached to a persistent
root or have not been explicitly made persistent.

e Objects that are already persistent.

Of these objects, PTF captures the creation and manipulation of only the persistent objects that
are generated by the application layer.

With PTF, we are able to conduct a direct performance comparison, by which we mean that the
performance of two implementations can be compared based on a single trace. As much as we can,
our intent is to capture the logical workload in PTF events abstracting away details of a particular
persistent object system implementation that would appear in a physical workload. For example,
while events in the logical workload carry information such as object type and symbolic offsets to
object fields, the physical workload augments this information with information about object size,
numeric offsets, and the physical location of the object on the disk. This goal is similar in spirit to
the design of the Java Virtual Machine [29], which also abstracts away physical information in its
representation.

PTF has been used to capture the structure of simple persistent stores. It was also used to
capture the structure of the persistent store as described in the schema specification of the OO7
benchmark [10] as well as the behavior of the tasks that make up single-user workloads of the
OO7 benchmark. PTF traces can be used for a variety of purposes, such as simulation studies
of storage management in persistent object systems, application visualizations, debugging, and
statistical summaries of application behavior.

This chapter describes PTE. We present the design goals in the first section. We then provide -
an overview of the PTF design followed by a description of the syntax and semantics of each trace
event. A description of the binary and ASCII representations is then provided. The chapter then
concludes with a summary of PTF.

13

(1
Old: 44 \
value: 3/

© (H

Old: 45 OId: 47 OId: 48
value: 5 value: 7 value: 0

Figure 3.1: A Simple Persistent Store Organized as a Binary Tree.

3.1 Design Goals

The initial design goals of PTF are as follows:

e To develop a trace format that can be used to study and evaluate performance issues of
persistent object systems, such as storage management, as well as other analysis activities
including comparative experimentation of implementations of persistent object systems.

e To dévelop a system-independent representation of a workload.

e To promote the creation of a collection of representative application behaviors in a common
trace format. '

3.2 Overview of PTF Design

PTF captures the persistent objects of a persistent object application and their relationships to
other persistent objects within the application as a directed graph. The persistent objects form
the nodes of the graph and the relationships between objects are edges of the graph. The lifetime
of a persistent object is from the point that the object becomes persistent to the point at which
the object is either implicitly deleted by a garbage collector after disconnection from the graph or
explicitly deleted. Within PTF, each object is represented by a logical object identifier (OId). To
illustrate this view of a persistent store, we present a simple example of a persistent store organized
as a binary tree. Figure 3.1 depicts a state of the binary tree persistent store, in which each node
contains a data value and pointers to left (offset 0) and right (offset 1) subtrees. The logical OlIds,
used in the PTF trace to identify each object, are also shown.

PTF uses the logical object identifier to maintain independence from physical address imple-
mentations. At the creation of an instance of a class, an event is generated to represent the creation
of an object and the assignment of an OId to the object. From that point on, any reference to the
object is made through the assigned OId. Within an application, an OId is never reused.

14

Table 3.1: PTF Trace Events.

| Category | Event Name | Abbreviation | Arguments |
Format Object | format object fo super class format OId, number of
pointers, length of object name,
number of data attributes, number
of array data attributes, list of for-
mat OIds, list of array format OIds
and number of elements for each ar-
ray, name of format
Object | create object co | format OId, OId
create array object cao format OId, OId, container OId,
number of elements
delete object do format OId, OId
set root sT format OId, OId
get root gr
Atomic Data data read dr format OId, OId, offset
data write dw format OId, OId, offset
Array Data array data read adr format OId, Old, offset, number of
indexes, index
array data write adw format OId, OId, offset, number of
indexes, index
Connections edge read er format OId, OId, offset
edge write ew format OId, from OId, offset, to OId
Directives | begin no collection ngs ‘
end no collection nge

PTF contains events that reflect operations to create, delete, access, and modify persistent
objects. Table 3.1 outlines the events in PTF, placing them into six categories. We model the
data in an object (but not the values of those data) and the pointer connections between objects.
The manipulation of the data of an object is represented using the events data read, data write,
array data read, and array data write, where each event indicates that a single value or a
range of values has been read or written. Although we do not describe nor illustrate this here,
actual data values optionally can be recorded in the trace as annotations on the events. We model
manipulations of the pointer connections between objects with the edge read and edge write
events. Each edge is referred to by its unique offset within the object, and edges are numbered
starting from zero.

The events create object, delete object, and set root determine the lifetime of objects
that can be accessed by an application. The event create object additionally records information
about the format of the object created, specifically the OId of a “format” object. The format
object describes the fields of an object in terms of their formats and their relative positions in the
representation of the object. The event format object records this information. ,

Dynamic data are treated as a separate object and thus the allocation of dynamic data are
captured through the event create array object. From the perspective of the containing object,
the dynamic data is considered in the same manner as a pointer. The data contained in the dynamic
allocation is manipulated using the events array data read and array data write. The array
object cannot contain pointer values. More details on how to capture dynamic data structures
containing pointers are provided in the detailed discussion of the event create array object.

Our persistence model uses the mechanism of persistence by reachability [3]. The event
set root indicates that the object contains the root set to be used in the reachability analysis.
This object is referred to as the super root object and is attached to the root that is maintained

15

by the persistent object system. At the application level, any number of objects can be designated
as roots and are contained in the root set. These roots are captured through manipulations of the
super root object. The event get root captures a reference by the application to the super root
object.

It is important to understand that PTF does not enforce any notion of access consistency.
Nor does it require any particular storage reclamation scheme, namely manual versus automatic
storage reclamation. Clearly, the operation delete object leaves an application vulnerable to such
inconsistencies. But we assume that applications will be written to behave “properly”, respecting
access consistency and, therefore, also respecting persistence by reachability.

Explicit deletion of objects is only one approach to persistent storage reclamation. Automatic
garbage collection is an alternative that does not require the use of the event delete object.
On the other hand, automatic garbage collection requires careful control over when the garbage
collector can operate. The events begin no collection and end no collection are necessary to
identify atomic sequences of operations with respect to the creation of new objects. In particular,
the garbage collector must be prevented from running between the time a new object is created
(signified by the event create object) and the time that the new object becomes reachable from
the persistent root (signified by the event write edge or the event set root). We note that the
begin no collection and end no collection events provide a very weak form of a transaction.

Before proceeding with a detailed description of each trace event, we now present an example to
illustrate the use of PTF in capturing a workload. Figure 3.2 contains the PTF trace for a simple
two-behavior application that first builds the binary tree of Figure 3.1 and then sums the values
contained in the nodes. (The text to the right of each event is not part of the trace, but only an
annotation added by hand to aid the reader’s understanding of the figure.)

The first behavior, bracketed by the protective events ngs and nge, creates the objects in the
store and then links them together using a combination of events co and ew. The writing of data
is represented by the event dw. After the persistent store is created, the second behavior of the
application traverses the tree in a breadth-first manner, accessing the data value at each node. To
reduce the complexity of the example, we assume that the application knows the depth of the tree
and, hence, does not need to read the edges at the leaves.

3.3 Trace Events

This section describes the overall format of the trace event stream, as well as each trace event in
detail. The semantics of every event is described. The description of an event is independent of the
representation format of the event (i.e., either a binary format or an ASCII format). Representation
formats are described separately in Section 3.4.

3.3.1 Trace Format

The structure of PTF traces is described by the following grammar:

trace_file <begin> <events> <end>

begin := "Trace begin\n"

end := "Trace end\n"

events 1= <event> "\n" <events> | <null>
event := <event_id> <core_event>
event_id := <integer>

16

Trace begin
fo 41 0 2 1 0 11 BinTreeNode Format object for the BinTreeNode object

ngs Disallow garbage collection until after Te event

co 41 42 Create object with 0ID 42 whose format 0ID is 41

dw 41 42 1 Write data value to position 1 in object 42 of format 41
sr 41 42 Set object 42 of format 41 to be a persistent root

co 41 43 Create object with 0ID 43 whose format OID is 41

dw 41 43 1 Write data value to position 1 in object 43 of format 41
ew 41 42 0 43 Write edge 0 from object 42 of format 41 to object 43

co 41 44 Create object with 0ID 44 whose format O0ID is 41

dw 41 44 1 Write data value to position 1 in object 44 of format 41
ew 41 42 1 44 Write edge 1 from object 10 of format 41 to object 44

co 41 45 Create object with 0ID 45 whose format 0ID is 41

dw 41 45 1 Write data value to position 1 in object 45 of format 41
ew 41 43 0 45 Write edge O from object 43 of format 41 to object 45

co 41 46 Create object with 0ID 46 whose format OID is 41

dw 41 46 1 Write data value to position 1 in object 46 of format 41
ew 41 43 1 46 Write edge 1 from object 43 of format 41 to object 14

co 41 47 Create object with 0ID 47 whose format 0ID is 41 .
dw 41 47 1 Write data value to position 1 in object 47 of format 41
ew 41 44 0 47 Write edge O from object 44 of format 41 to 47

co 41 48 Create object with 0ID 48 whose format OID is 41

dw 41 48 1 Write data value to position 1 in object 48 of format 41
ew 41 44 1 48 Write edge 1 from object 44 of format 41 to object 48
nge Allow garbage collection to occur

dr 41 42 1 Read data value from position 1 in object 42 of format 41
er 41 42 0 Read value of edge 0 from object 42 of format 41

er 41 42 1 Read value of edge 1 from object 42 of format 41

dr 41 43 1 Read data value from position 1 in object 43 of format 41
er 41 43 0 Read value of edge 0 from object 43 of format 41

er 41 43 1 Read value of edge 1 from object 43 of format 41

dr 41 44 1 Read data value from position 1 in object 44 of format 41
er 41 44 0 Read value of edge 0 from object 44 of format 41

er 41 44 1 Read value of edge 1 from object 44 of format 41

dr 41 45 1 Read data value from position 1 in object 45 of format 41
dr 41 46 1 Read data value from position 1 in object 46 of format 41
dr 41 47 1 Read data value from position 1 in object 47 of format 41
dr 41 48 1 Read data value from position 1 in object 48 of format 41
Trace end

Figure 3.2: Annotated PTF Trace Generated from a Binary Tree Application.

17

where <integer> and <null> have the usual meaning.
The general specification of an event is as follows:

core_event <ev_type> <ev_parameters>

ev_type <identifier>

identifier = <lower_case_char> | <lower_case_char> <identifier>

string = <non_digit> | <string> <non_digit> | <string> <digit>

ev_parameters = <integer> <ev_parameters> | <string> <ev_parameters> | <null>

non_digit := _ | <lower_case_char> | <upper_case_char>

lower case char :=a [blcldlelflglhliljikiliminlol
plaglrlsiulviwlxlylz

upper.case char ;= A [B{ C|ID|EI|F|GIHIII|JIKILIMI|INIO]J
PIQIRISIUIVIWIXIY]Z

digit =0 1112131415161 718129

An event always starts with an identifier that indicates its type, followed by an arbitrary number
of parameters, which are not specified by the above grammar. Each event type has a specific
number of parameters. In addition to the number of parameters, the order, size, and semantics of
each parameter are also described with the individual event. Below, the semantics of each event
are described in a uniform manner.

3.3.2 Events that Manipulate Objects of the Persistent Store
Format Object

Event: <format_object>

Parameters: (int) FormatId format OId
(int) SuperFormatId format Id for super object
(int) NumberOfPointers number of pointer values
(int) NumberOfDataMembers number of data members
(int) NumberOfArrayMembers number of array members
(int) LengthOfClassName length in bytes of name
(int) DataMemberFormatId format Id of data members
(int) ArrayDataMemberFormatId format Id of array members
(int) NumberOfElements number of elements in arrays
(string) NameOfClass name associated with class

Associated with each object is a format object. The format object specifies a layout for each of
the class specifications in a schema. The layout does not capture the physical representation in the
same manner as a class specification nor does it capture the object format of a particular object
store. Its primary use is to capture the relevant information about an object such as the number
of pointer values and the format and the position of the data values of an object. This information
can then be used to adapt the PTF trace files to a specific object format of a particular POS.
There must be an object format for each persistent class in the persistent object application. An
object must be created for each of these object formats prior to the execution of behaviors of an
application.

18

l Primitive Format Object] Object Identifier '

char 10
int 11
short 12
long 13
unsigned 14
unsigned char 15
unsigned long 16
float 17
double 18
long double 19
array of char 30
array of int 31
array of short 32
array of long 33
array of unsigned 34
array of unsigned char 35
array of unsigned long 36
array of float 37
array of double 38
array of long double 39

Table 3.2: Object Identifiers of Primitive Format Objects

The format object trace event has ten parameters. The parameter FormatId contains the
object identifier for the format object represented by the format object trace event. PTF sup-
ports single inheritance so the format contains a parameter to indicate the format of the super
object SuperFormatId. This field contains a zero value if the object does not inherit its format
from another object. The number of pointer values of an object is provided by the parameter
NumberOfPointers. The parameter NumberOfDataMembers indicates the number of all the data
attributes that are primitive object formats (e.g. integers, floating points) excluding fixed sized
array object formats. Parameter DataMemberFormatId is a list of format object identifiers for the
data attributes. There are zero or more format object identifiers in the category of the parameter
DataMemberFormatId depending on the value of the parameter NumberOfDataMembers.

In the case of fixed sized arrays, the parameter NumberOfArrayMembers indicates the num-
ber of data members that are arrays. Fixed sized arrays are specified using two parameters,
ArrayDataMemberFormatId and NumberOfElements. The format object identifier for a fixed sized
array is stored in the parameter ArrayDataMemberFormatId. The number of elements of the array
is stored in the parameter NumberOfElements. All arrays, fixed sized or dynamic, are treated as
one dimensional arrays and therefore, multi-dimensional arrays must be converted to their one
dimensional equivalent.

The format object identifiers for the primitive format objects are shown in Table 3.2. Object
identifier values from 10 to 40 have been reserved for the primitive format objects.

The object format augments the other trace event types during the processing of the trace files.
The size of the data portion of objects can be calculated using the parameters NumberOfDataMem-
bers, DataMemberFormatId, ArrayDataMemberFormatld, and NumberOfElements.

To illustrate how to translate a class type specification to an object format event, let us look

19

at a portion of the CompositePart C++ class specification of the OO7 benchmark shown in Fig-
ure 3.3. Figure 3.3 shows the application view of the composite part object using C++, the PTF
layout format, and a possible object format of a persistent object system. We begin by trans-
lating the the super class DesignObject into a format object event. A logical object identifier is
assigned to the format object and recorded in the second field of the trace event format. Since
the DesignObject does not have a super class, the second parameter SuperFormatId takes on the
value of a 0 to indicate that it is NULL. The DesignObject class contains no pointers; thus, the
parameter NumberOfPointers contains the value 0. The parameter NumberOfDataMembers con-
tains the value 2 and the parameter DataMemberFormatId will be repeated twice containing two
. integer format object identifiers. The parameter NumberOfArrayMembers contains the value 1.
ArrayDataMemberFormatId contains the logical object identifier for an array of characters, which
follows the data member format object identifiers in the format object layout, and the parameter
NumberOfElements contains the value 10. The parameter Name0fClass will contain the string “De-
signObject” and the parameter LengthOfClassName will contain the length of this string. A logical
object identifier is then assigned to the format object representing the CompositePart class. The
parameter SuperFormatId contains the logical object identifier of the DesignObject format object.
Since the CompositePart class contains five pointers, the parameter NumberOfPointers, which is
the fourth field in the trace event format, contains a 5. The parameter NumberOfDataMembers
contains the value 0 and the parameter Name0fClass contains the value “CompositePart” with its
length recorded in the seventh field of the format.

Create Object

Event: <create_object>
Parameters: (int) Formatld format OId
(int) OId logical object Id to be created

Creates a new object with logical object identifier 0Id. Using the FormatId, the format of the
created object can be used to calculate the size of the object and the number of pointers can be
ascertained. This information may be required by the POS back end.

The total object size depends on the storage requirements for the POS backend and consists
of the data size of the object and the size for the object’s out-edges or pointers. The number of
out-edges can be taken as a hint by the POS. A POS that is capable of dynamically adjusting the
number of out-edges of an object does not need to reserve enough space to hold all edges but can
add them dynamically as they are written.

0Id 0 is reserved to represent the NULL object. All out-edges without a specific initial value
point to the NULL object. i

Create Array Object

Event: <create_array_object>

Parameters: (int) FormatId format OId

int) OId logical object Id to be created

int) ContainerOId logical object Id of containing object
int) NoOfElements number of elements

N — e~

20

class DesignObject {
public:

=

C++ Class

int id;
char type[TypeSize];
int buildDate;

class CompositePart: public DesignObject {

public:

N

class Document *documentation;

class Assoc *parts;

class AtomicPart *rootPart;

/1 list of assemblies in which part is used
// as a private component

Assoc *usedInPriv;

/1 list of assemblies in which part is used
// as a shared component

Assoc *usedInShar;

fo Old (DO) 0 0

12

old (int)

Old (int) Old (array of char)

10

DesignObiject

PTF Object
Format

fo Old (CP) | Old (DO) 5

13

5 (number of pointers)

TotalSize

Old (documentation)

Old (parts)

Object Format of

Old (rootPart)

the Persistent Store

Old (usedinPriv)

Old (usedinShar)

int (id)

10 chars (type)

int (buildDate)

Figure 3.3: Three Levels of Object Layout Descriptions.

21

CompositePart

Since some languages support the creation of arrays both statically and dynamically, PTF han-
dles both fixed size and dynamically allocated arrays. This event is used to capture the allocation
of dynamic data. The dynamic data structure is treated as a separate object and is given a logi-
cal object identifier. The number of elements of the array is specified through the NoOfElements
parameter. The parameter FormatId indicates the format object identifier of the elements of the
array object. The ContainerQId links the array object to its containing object and maintains the
object’s identity as a data member of the containing object. There can be only one containing
object per array object. :

The create array object event must be preceded by a create object event for the contain-
ing object. The forward link from the containing object to the array object is captured through an
edge write event.

Deletion of an array object either occurs when the array object is explicitly deleted through a
delete operation or implicitly deleted using garbage collection. If garbage collection is in effect, the
array object or its containing object may become unreachable from a persistent root, thus making
the array object eligible for garbage collection. In cases where a reference to either the containing
object or the array object is overwritten, an edge write event should appear in the trace event
stream to capture the overwriting of the reference.

With explicit deletion, a request to delete the containing object may have occurred and thus
the array object is deleted prior to deleting the containing object. If a request is made to delete
the array object only, an edge write event that captures the overwriting of the reference to the
array object must occur prior to the delete object event that captures the deletion of the array
object.

This event should not be used to capture the creation of a dynamic structure that contains
pointers. It is important to be able to capture the overwriting of pointer values and thus a dynamic
array of pointers should be captured by first using the event create object and then using the
events edge write and edge read to capture the writing and reading of pointer elements.

PTF does not contain an event type to represent the resize operation. The effect of such an
operation can be obtained by using the create array object event and adjusting the value of the
NoOfElements parameter.

Delete Object

Event: <delete_object>
Parameters: (int) FormatId format OId
(int) OId logical object Id to be deleted

Explicitly deletes the existing object associated with the logical object identifier specified by
parameter 0Id. Deleting a non existent object is an error. Depending on the semantics of the
delete operation of the persistent object system, the object might actually be deleted, marked as
invalid, or marked as garbage to be collected. After deleting an object no data or meta-data of the
object should be read or written.

22

'Edge Write

Event: <edge_write>

Parameters: (int) FormatId format OId
(int) FromOId logical object Id of from-object
(int) ToOId logical object Id of to-object
(int) Edge number of edge to be written

Changes edge Edge of object 0Id to reference object To0Id. Any previously existing reference
of this edge is automatically overwritten. ToOId must be an existing object or the null object.

Edge Read
Event: <edge_read>
Parameters: (int) FormatId format OId
(int) FromOId logical object Id of from-object
(int) Edge number of edge to be read

Queries the reference of edge Edge of object 0Id. If this edge has not been written prior to the
read, then the resulting value is the null object; otherwise, it is the ToOId most recently written
into this edge. '

Data Write
Event: <data_write>
Parameters: (int) Formatld format OId
(int) O1d logical object Id to write to
(int) Offset position of the attribute within

format object

Writes a number of bytes of data starting from the physical offset of the given attribute, deter-
mined by the FormatId and Offset parameters of the event. The Offset parameter contains the
position of the data member with respect to all of the data members associated with the object.
The number of bytes to be written is determined using the format object identifier of the attribute
located at the position indicated by the 0ffset parameter. The format object identifier is associ-
ated to a format object which has been assigned a specific number of bytes corresponding to the
requirements of the hardware platform on which the persistent object system executes.

The calculated physical offset to start writing must be within a legal range. The actual data
written is not contained in the event since it is not part of the structural information needed to
reproduce the behavior of the persistent store. However, it is assumed that the persistent object
system writes to (or simulates a write operation on) the specified region of the object.

23

Data Read

Event: <data_read>

Parameters: (int) FormatId format OId
(int) OId logical object Id to read from
(int) Offset position of the attribute within

format object

The parameters FormatId and 0ffset determine the starting offset of the object addressed by
0Id to begin reading and the number of bytes to read. The data block read must be contained
completely within the data block defined at object creation time. Similar to data writes, the actual
data that is read is not included.

Array Data Write

Event: <array_data_write>

Parameters: (int) FormatId format OId
(int) OId logical object Id to write to
(int) Offset position in containing object
(int) Index the index into the array
(int) Length number of elements

The array data write event captures writing of data for both fixed arrays and dynamically
allocated arrays. The parameter Index indicates which index within the array to start writing
data. The parameter Length specifies the number of elements to be written. Using the Index and
the Length parameters, a range can be specified, beginning at the offset calculated using Index
and ending at the offset calculated using Index + Length.

For dynamic arrays, the parameter 0ffset contains a negative one and the parameter 0Id is
the logical object identifier of the array object. The offset to begin writing is calculated using the
parameter Index and the number of bytes per element, which can be obtained from the parameter
FormatId. Using the number of bytes per element along with the parameter Length, the total
number of bytes to be written can be calculated.

In the case of a fixed array, the parameter 0Id refers to the logical object identifier of the
containing object and the parameter FormatId contains the format object identifier for the fixed
array object format. The starting offset is calculated using the Offset parameter to obtain the
position within the containing object and the Index parameter. The number of bytes per element
to be written is obtained from the format object. As with the dynamic array, the number of bytes
per element and the parameter Length are used to calculate the total number of bytes to be written.
The actual data written is not included.

Array Data Read

Event: <array_data_read>
Parameters: (int) Formatld format OId

24

(int) OId logical object Id to read from
(int) Offset position in containing object
(int) Index ‘ the index into the array

(int) Length number of elements

As with the array data write event, the array data read event reads data of both fixed arrays
and dynamically allocated arrays. The parameter Index indicates the first index to begin reading
data. The parameter Length specifies the number of elements to be read. Using the Index and the
Length parameters, a range can be specified, beginning at the offset calculated using Index and
ending at the offset calculated using Index + Length.

For dynamic arrays, the parameter 0ffset contains a negative one and the parameter 0Id is the
object identifier of the array object. The offset to begin reading is calculated using the parameter
Index and the number of bytes per element, which can be obtained from the parameter FormatId.
Using the number of bytes per element along with the parameter Length, the total number of bytes
to be read can be calculated.

In the case of a fixed array, the parameter 0Id refers to the logical object identifier of the
containing object and the parameter FormatId contains the format object identifier for the fixed
array object format. The starting offset is calculated using the 0ffset parameter to obtain the
position within the containing object and the Index parameter. The number of bytes per element
to be read is ascertained from the format object. As with the dynamic array, the number of bytes
per element and the parameter Length are used to calculate the total number of bytes to be read.
Similar to array data writes, the actual data that is read is not of interest, but it is assumed that
the persistent object system performs a read of the specified region or simulates such a read.

Set Root
Event: <set_root>
Parameters: (int) FormatId format OId
Parameters: (int) OId logical object Id to move to root set

This event has one parameter, the OId of the super root object, which contains the root set of
the persistent store. It can be thought of as the starting point of the store. The objects of the root
set indicate which objects are persistent through reachability.

Get Root

Event: <get_root>

This event captures a reference to the super root object.

25

3.3.3 Garbage Collection Directives
No Garbage Collection Start

Event: <noGC_start>
Parameters: none

The no garbage collection start event serves as an indicator to the POS to prevent the
garbage collector from executing until a no garbage collection end event has been reached.
These events bracket trace events that are representing the creating of objects or the updating of
references within objects.

No Garbage Collection End

Event: <noGC_end>
Parameters: none

The no garbage collection end event serves as an indicator to the POS to allow the garbage
collector to run as necessary.

3.4 Representation Formats

The PTF implementation allows the creation of trace files in either binary format or ASCII format.
The binary format was developed to reduce the size of trace files and increase the efficiency of
processing the trace files. The ASCII format is provided to allow manual inspection of the trace
files by a developer. Below, we briefly describe each representation format.

3.4.1 Binary Format

The binary format of PTF requires that the trace begin with a header followed by the trace events.
The header is in ASCII format and consists of a version number on the first line of the header,
followed by several lines of user notes. The separator $$binary$$ is used to end the header and
must appear on a separate line. Each binary event consists of n + I bytes where n is determined
by the event type. The first byte of each event represents its type. The format and number of
bytes for each event type are provided in the Trace.h file, which can be found in the appendix.

3.4.2 ASCII Format

The ASCII format consists of one event per line with the line ending in a carriage return. Each
event begins with an event identifier followed by the parameters of the event. A sample trace in
ASCII format can be seen in Section 3.2.

26

3.5 Summary

A large variety of trace formats have been developed to capture information about the behavior of
applications in various areas of computer systems design and evaluation. Trace format designers
are primarily concerned with the following issues:

e Trace compactness. Often traces represent literally billions of operations, and as such, their
physical size can be of great concern if one needs to store and distribute them. Studies
have shown that data-specific compression techniques (e.g., for compressing program address
traces [38]) have significant advantages over standard text compression algorithms. We do
not anticipate generating traces as large as address traces get, and so expect traditional
compression to be sufficient for our purposes.

e Trace usability. Usability is directly related to how much information the trace contains,
and how easy that information is to manipulate. Including extra information in a trace can
make it more usable, but at the same time also increases its size. Our initial goal for the
design of PTF has been to ensure that it supplies all the information necessary for our storage
management performance studies. Additionally, information has been added to enhance trace
processing performance. For example, we include the logical object identifier of the object
format in each of the trace events that capture the manipulation of an object. The resulting
redundancy only slightly increases the size of the trace files. In fact, we observed only a
10% increase in compressed file size over a trace without the format object information. The
advantage of including the object layout identifier with each event is that tools processing
the trace do not have to always look up the format of each object, thus increasing the speed
of trace processing. We feel that this is a reasonable trade off between space and time.

e Trace accuracy. Accuracy reflects how effectively the information contained in the trace
captures the data necessary to evaluate system performance. For example, traces are often
truncated because a full trace requires too much computation to process. Likewise, approx-
imations may be made in the workload to simplify the generation of a trace. Our current
goal with respect to accuracy is to provide a completely accurate single-user trace; our cur-
rent work with multi-user traces requires that we make approximations that reduce the trace
accuracy.

PTF is implemented in C++ and includes converters to translate a binary trace file to an ASCII
trace file and vice-versa. In the case of the ASCII format, it also contains a verifier to check the
correctness of an event type with respect to the number and type of each of its parameters.

The current version of PTF does not support dynamic resizing, embedded classes, multiple
inheritance, and multiple versions of the object layouts. Furthermore, some objects and data
structures are part of the implementation of the persistent object system (e.g., indexes, extents)
and not a part of the application. These objects and their behaviors need to be represented in the
PTF trace. Extents are captured by creating data structures to represent them in the application
and then instrumenting the operations applied to these structures. Currently, although we realize
the importance of indexes, we do not support the manipulation of indexes.

27

Chapter 4

Modeling Toolkit

In this chapter, we motivate the need for our persistent application modeling toolkit, AMPS, and
then describe it in detail, providing a simple example of its use based on the binary tree example
of the previous chapter.

4.1 Motivation and Overview

Experimental performance evaluation requires that performance be measured with respect to a
particular workload. Unfortunately, in the field of persistent object systems, standardized exper-
imental workloads have not been developed. Experimental results are presented based on a wide
variety of benchmarks, including the OO7 benchmark suite [10], the Hypermodel benchmark [6],
the OO1 benchmark suite [24], and the Trouble Ticket Benchmark [31].

As an example of this situation, consider that currently there exist no workloads specifically
designed for use in analyzing storage reclamation techniques in persistent object systems [1]. There-
fore, researchers have developed their own synthetic applications and workloads. Amsaleg et al. [2]
used linked lists of 80-byte objects in their studies on efficient incremental garbage collection.
Yong et al. [46] used a subset of the OO7 benchmark suite in their study of storage reclamation
and reorganization of persistent object stores. Maheshwari and Liskov [30] used a homogeneous
collection of 30-byte objects in their study of partitioned garbage collection of a large object store.
Lastly, Cook et al. [15] used a forest of augmented binary trees of objects containing some number
of non-tree edges.

We feel that the lack of standard workloads is based in part on two factors: first, the effort
required to develop a good workload, and second, the lack of infrastructure to share workloads
once developed. We have already described PTF, a format for sharing workload traces. We now
describe AMPS, a toolkit facilitating the creation of such traces through the modeling of persistent
object system workloads.

We assume that AMPS users have in mind a workload that consists of a schema describing the
structure of the store and a collection of behaviors associated with an application that manipulates
the store. Common behaviors include the creation of the persistent data, the reorganization of the
data, and traversals that update and query the objects in the store. Behaviors are then combined
together to create a complete workload. AMPS allows complex workloads to be created quickly,
allows the user to rapidly script different combinations of application behaviors, and supports the
generation of PTF trace files that result from executing the workload. Thus, the goal of AMPS is
to provide a rich shared infrastructure for developers of persistent object systems to evaluate their
designs. ‘

28

Set parameters

and sequence TCL
of operations of
the workload

i

l TCL Interpreter

[S — TCL ——> C++
Interface

/// T
4”// T \‘
i Application Behaviors: . ‘
Traversal Traversal Gt | Generate Store, Cit Trace File Cet |
Operation Library | Traversals, Manager 1
| Reorganizations |
N]
o ,,// .
. / h L
w ‘ \\ ‘
Trace Generation
Representation GraphNode C++ ﬂ Library C++
////// ‘‘‘‘‘‘ ™
(Trace PTF)
- e

Figure 4.1: AMPS Architecture.

4.2 Architecture

Figure 4.1 presents the architecture of the AMPS toolkit. The user of AMPS is responsible for
the dark portions of the diagram, while the remaining portions are provided by AMPS itself. As
the diagram shows, AMPS consists of several components: a TCL interpreter, a collection of C++
classes for modeling objects of the persistent store and creating traversals, and a trace generator.!
Let us examine Figure 4.1 from bottom to top.

The schema for the persistent store, depicted as the box Schema Representation, is provided
by the user of the AMPS toolkit. The user takes the object types represented in this schema
specification and converts them to C++ classes that inherit from an abstract class, GraphNode,
provided by AMPS. This class interacts with other AMPS classes, depicted as the box Trace
Generation Library, to generate the appropriate PTF events during execution of the application.

The box Application Behaviors depicts the implementations of the application behaviors (e.g.,
traversals, reorganizations, etc.) created by the user. A library of traversals, depicted as the box
Traversal Library, is provided by AMPS to help the user in creating traversals. As a starting point,

'While the AMPS prototype currently requires the use of C++ for modeling applications, any class-based object-
oriented language would be appropriate. For example, we anticipate that a port of AMPS to Java would be straight-
forward.

29

the library currently contains generic facilities for a pre-order depth-first traversal, a post-order
depth-first traversal, and a breadth-first traversal. The library is designed to allow additional
. traversal types to be added by subclassing its type hierarchy. The actual actions taken during the
traversal (e.g., read or write an object’s data value), depicted as the box Traversal Operation, are
specified by the user as traversal operations written in C++. The box Trace File Manager depicts
facilities for managing the trace files created during execution of an application.

The user must design a workload and implement it so that it executes in a TCL environment,
as indicated by the presence of the box TCL Interpreter in Figure 4.1. This workload consists
of several TCL commands that are implemented in C, with an interface to C++ methods. Once
the commands of the workload have been implemented, the user may interactively execute them,
generating PTF trace files.

4.3 Modeling an Application Workload

AMPS provides support for modeling a persistent object application through C++ classes and a
TCL environment. Through the use of AMPS, an in-memory version of the persistent object store
can be generated and then manipulated. Here we illustrate the process of modeling a persistent
application with AMPS using the simple binary tree object store from the example in Section 3.2.
In our example application, each node of the tree contains an integer value. A diagram of the
binary tree persistent store is shown in Figure 3.1.

We first discuss the process of translating the schema of the persistent store into AMPS. We
then discuss the process of implementing some behaviors of the application, including populating
the store and traversing it. Finally, we describe how an application workload is implemented and
executed under the TCL environment.

4.3.1 Implementing the Persistent Store Schema

AMPS is implemented in C++. Prior to using the classes of AMPS, a developer of a persistent
object application identifies the objects of the persistent store and the relationship among these
objects. The developer then specifies these objects as C++ classes.

In AMPS, objects are treated as nodes of a graph with directed edges. By modeling the
persistent store as a graph, AMPS captures the relationship between objects through the directed
edges of the graph. AMPS provides the class GraphNode to support the manipulation of an object
of the persistent store as a node of a graph. GraphNode uses other C++ classes from AMPS to
instrument the application so that the structure of the persistent store and the behavior of the
application are captured in a PTF trace.

Viewing the persistent store structure as a graph, the developer of the persistent object appli-
cation translates C++ specifications of the classes representing objects of the persistent store so
that they are treated as nodes of a graph. In this translation, all classes representing objects of
the persistent store inherit from GraphNode. Also, all fields of the classes are accessed and updated
through methods. Using methods to manipulate fields allows instrumentation of the application to
be restricted to those methods. In addition to the above, edges are formed from fields that contain
pointers to other objects. Thus, these fields are no longer explicitly declared within the class. All
edges are read and updated through their offsets.

A portion of the specification for GraphNode is shown in Figure 4.2. We briefly mention some
interesting aspects of it here. The constructor takes as input information that is needed to capture
the structure of a persistent store. The constructor also allocates a structure to hold the edges of

30

class GraphNode {
friend class GraphNodelter;
public:
GraphNode(int objectType, int edges, char *noteBuf = NULL);
int setEdge(GraphNode *toVertex, int edgeNum,
char *noteBuf = NULL);
GraphNode *getEdge(int edgeNum, char *noteBuf = NULL);
void setRoot(char *noteBuf = NULL);
void getAdjacentVertexList(GraphNode **adjacentList);
void readData(int position, char *noteBuf = NULL);
void writeData(int position, char #*noteBuf = NULL);
int getNumber0fEdges();
int getNodeIdentifier();
“GraphNode () ;

Figure 4.2: C++ Class Specification of GraphNode.

the object. The method setEdge writes an edge given an offset. The method getEdge returns the
object associated with a given offset. The method setRoot records a trace event to indicate that
the current object is a root in the persistent store. The method getAdjacentVertexList returns,
through a vector, all of the objects that are connected to a given object. The method readData
records the access of a field that does not contain a pointer value, and the method writeData records
the updating of a field that does not contain a pointer value. The method getNumberOfEdges
returns the number of edges associated with an object. The method getNodeIdentifier returns
the object identifier that AMPS has associated with a given object. Each of the methods that
create an event in the trace have an optional input parameter (noteBuf) that can be used to attach
an ASCII string as an annotation on the trace entry for the event.

We now consider a specific example. Suppose we want to model the binary tree node of our
simple example in which we need left and right children and a data value. The class specification
for this binary tree node constructed using AMPS is shown in Figure 4.3. In this figure, the
class BinTreeNode inherits from GraphNode. The only field of the class is nodeValue, so the
methods refNodeValue and setNodeValue are added to the class specification to manipulate the
value associated with the field nodeValue. In addition to the above, the references to the left
and right children are implemented as edges referring to objects of class GraphNode manipulated
through methods setLeftChild, setRightChild, refLeftChild, and refRightChild. Figure 4.3
also shows the implementation for the access method refNodeValue, which returns the value of
nodeValue. In the method refNodeValue, there is an invocation of the method readData, which is
used to record the reading of data from the location referred to by the field nodeValue. Furthermore,
this figure shows the implementation of the access method setRightChild, which illustrates the
use of the method setEdge.

31

class BinTreeNode: public GraphNode {
public:
BinTreeNode(int typeldentifier,int edges, char *noteBuf = NULL):
GraphNode (typeIldentifier, edges, noteBuf)
{ nodeValue = 0; }

int refNodeValue(int position);

void setNodeValue(int position, int val);

void setLeftChild(GraphNode *parentNode);

void setRightChild(GraphNode *parentNode) ;
GraphNode *refLeftChild();

GraphNode *refRightChild();

private:
int nodeValue;
+;

// Example implementations of two of the access functions

// Method to reference the nodeValue data member

//
int BinTreeNode: :refNodeValue()
{ .
// POSITION_IN_TYPE indicates attribute’s
// position within type definition
readData(POSITION_IN_TYPE, NULL); // NULL => empty comment
return(nodeValue) ;
}

// Method to update the RightChild reference
//
void BinTreeNode::setRightChild(GraphNode *parentNode)

{
parentNode->setEdge(this, 1, NULL); // 1 => RightChild
+

Figure 4.3: C++ Class Specification of BinTreeNode.

32

4.3.2 Implementing Application Behaviors

A persistent object application consists of a collection of behaviors that manipulate the data of
the application. These operations perform a variety of tasks, such as updating an object of the
persistent store, referencing the data of an object, or updating the structure of the persistent store
by adding or deleting an object. As mentioned, AMPS provides a library of traversals in order to
support standard graph traversal algorithms.

In AMPS, traversals are implemented as C++ objects. The operations performed on each object
in the course of traversing the persistent store are also implemented as C+-+ objects. Normally an
operation of a persistent store would be implemented as a method of a class with optional formal
parameters and an optional return value. By treating operations as objects, the formal parameters
and return value become fields of the class representing the operation object. The fields representing
the formal parameters are then initialized using the constructor of the class. The field representing
the return value is accessed via a method of the class.

Now, suppose a developer is implementing an application that manipulates the binary tree
persistent store of Figure 3.1. Also, suppose that the application consists of a breadth-first traversal
to sum the integer values contained at each node of the binary tree. Using AMPS, the developer
would implement an operation object that would add the integer value of a node to the sum. By
combining the operation object with the breadth-first traversal object, the binary tree persistent
store can be traversed using a breadth-first algorithm and the total of the integer values can be
calculated.

By implementing traversals and operations as objects, we were able to design a set of generic
traversals. In addition to the above, the implementation supports the development of complex
traversals. Complex traversals are traversals that consist of several simple traversals, where the
type of traversal employed is determined at run time while manipulating an object.

The traversal classes inherit from the virtual class Traversal, which sets up the interface
for the traversal classes. At the top of Figure 4.4 is the specification for Traversal. The method
traversalApply implements the traversal algorithm, such as breadth first or depth first. It takes as
input the starting node for the traversal. In the middle of Figure 4.4 is the class specification for the
breadth-first traversal object. The constructor for the breadth-first traversal object takes as input
the number of objects in the persistent store and a pointer to the operation object to be performed
at each object of the persistent store. The method traversalApply invokes this operation at each
object that is visited while performing the breadth-first traversal on the persistent store structure.
The method getCurrentNode returns a pointer to the object that is the last visited node during
the processing of the traversal. The traversal class has three fields as shown in Figure 4.4. The
fields represent the current node (currentVertex), an array to keep track of the visited nodes
(visitedArray), and a pointer to the operation object (queryOption).

In the generic traversals supported by AMPS, an operation is performed at each node in the
graph traversed. These operations are implemented as classes that inherit from the virtual class
TraverseOption, which is shown at the bottom of Figure 4.4. In this specification, the method
apply takes as input a pointer to a node of the persistent store and performs the task defined by
the method on this node.

Using the binary tree persistent store, we illustrate how to define the operation on a node as
an object. Recall that in our example, the operation on the node was to take the integer value of
that node and add it to a total. The class representing this operation is called SumNodes. A C++
class specification for this operation is shown in Figure 4.5. SumNodes consists of a constructor that
initializes the field totalSize, which is the result of applying this operation to each of the nodes of

33

class Traversal {
public:
virtual GraphNodePtr getCurrentNode() = 0;
virtual void traversalApply(GraphNodePtr startVertex) = O;
};

class BreadthFirst : public Traversal {
public:
BreadthFirst(int noOfNodes, TraverseOption *queryFunction);
void traversalApply(GraphNodePtr startVertex);
GraphNodePtr getCurrentNode ()
{ return (currentVertex); }
“BreadthFirst();

protected:
GraphNodePtr currentVertex;
int *visitedArray;
Traverse(Uption *queryOption;
3
class TraverseOption {
public:

virtual int apply (GraphNodePtr currentNode) = 0;
Y

Figure 4.4: Class Specifications of Traversal, BreadthFirst, and TraverseOption.

34

class SumNodes: public TraverseOption {
public:
// initialization of the operation object
SumNodes() { totalSize = 0; }

// operation performed at each visited node of the Traversal
int apply(GraphNodePtr Node) {

totalSize = totalSize + ((BinTreeNode *) (Node))->RefValue();
}

// result of traversal, if there is one
int getSum() { return(totalSize); }

private:
int totalSize;

};
Figure 4.5: C++ Class Specification of SumNodes.

the binary tree persistent store. The method getSum returns the value associated with totalSize.

By combining this operation object with the breadth-first traversal object, the binary tree
persistent store is traversed using a breadth-first algorithm and the total of the integer values is
calculated. In order to apply the SumNodes operation to each node of the binary tree persistent
store, the breadth-first traversal constructor is invoked with a pointer to a SumNodes object as an
actual parameter. Upon the completion of the execution of the method traversalApply for the
breadth-first traversal, the method getSum can be invoked for the instance of the class SumNodes
to obtain the sum of all the integer values of the binary tree persistent store.

4.3.3 Implementing the Workload

Prior to using AMPS, developers must have some idea of the workload that they wish to perform
for a specific persistent object application. With AMPS, once the specific behaviors of the workload
are implemented, the actual execution of the workload can be performed interactively using the
TCL interpreter.

To use TCL, the developer must implement TCL commands that reflect the individual behaviors
of the workload. For example, there might be a TCL command to generate the persistent store or
there might be a TCL command that represents a specific query of the application.

AMPS provides an example application along with two TCL commands to illustrate how to
design and implement the commands of the workload for use under TCL. These commands are
TG_DBbuild and TG_Traversalbuild. The command TG DBbuild builds a binary tree persistent
store. The command TG_Traversalbuild invokes either a breadth-first or a depth-first traversal
on a persistent store given a specific operation to be performed. These examples can easily be
specialized to the needs of a particular persistent object application.

TCL allows user-level commands to be implemented with C functions. In Figure 4.6, the
C implementation of the TCL command TG.DBbuild is shown. In this case, the TCL command
TG_DBbuild is bound to the C function TG_DBbuildCmd. All inputs to the TCL commands are ASCII

35

int TG_DBbuildCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[])
{

// Error checking code omitted
int numOfLevels = atoi(argv([1i]);

// Disable garbage collection during database generation
//

Traceobject_BeginNoGC();

DBptr = BinTree_new(numOfLevels);

// Enable garbage collection after database generation
Traceobject_EndNoGC();

// Setup result string and return
interp->result = "Database generated";
return TCL_OK;

Figure 4.6: Implementation of the TCL command TG.DBbuild.

character strings, which first must be converted to the proper type. For example, TG_DBbuild takes
as an argument the depth of the binary tree in the persistent store. The argument representing
the depth is converted to an integer value and stored in the variable numOfLevels as shown in
Figure 4.6. In implementing the binary tree persistent store, we implemented a class to represent
the binary tree structure. This class contains a method to create the persistent store. Also, notice
that the output from the function that implements the command is a string value. The variable
interp->result contains the ASCII value to be printed as the result.

In a manner similar to TG_DBbuild, a TCL command to invoke the operation SumNodes (called
TG_SumNodesCmd) can also be constructed.

Finally, using the binary tree persistent store example, we illustrate in Figure 4.7 how to script
a workload using AMPS. In this example, we create a seven-node binary tree persistent store. We
then traverse the persistent store using the breadth-first traversal and the operation SumNodes,
which sums the integer value at each node of the persistent store. In this scenario, we compute the
sum and then close the trace file. The TCL commands that an AMPS user types are located next
to the percent sign and the responses to these commands are shown on the following line.

4.4 Summary

This chapter described the AMPS toolkit, which is a framework for creating an instrumented
application. A simple application was used to show how to use the toolkit to effectively model
and implement a persistent object application. Through the C++ libraries of the toolkit, the
effort to implement an instrumented model of an application is reduced in three ways. First, the
generic traversals provided by the toolkit reduce the effort to implement and model traversals of

36

sheriff), TGenApp
% TG_OpenTraceFile btree3d
Trace file opened
% TG_DBbuild 3
Database generated
% TG_Traversalbuild breadthfirst SumNodes
Traversal processing completed
% TG_CloseTraceFile
Trace file closed
% exit
sheriffy,

Figure 4.7: Scripting a Workload Using AMPS and TCL.

the application. Second, the methods of the toolkit can be used to generate trace events. Third,
the effort to instrument an application is reduced by mimimizing the likelihood of errors because
instrumentation is restricted to access methods of classes of the application.

This chapter also illustrates how to generate workloads using the TCL interpreter of the AMPS
toolkit. With the TCL interpreter, a researcher can easily script a variety of workloads.

As mentioned at the end of Chapter 3, there are some objects and data structures that are
part of the persistent object system implementation (e.g., indices, extents) and not the application
itself. Conceptually, objects of the persistent object system are separate from and should be
modeled separately from the application objects. AMPS currently does not allow objects of the
persistent object system to be distinguished from application objects and, as a result, someone
using AMPS must implement the objects of the persistent object system necessary to accurately
model the situation. To be more concrete, in the next chapter we discuss the fact that extents were
required in our modeling of the OO7 benchmark.

37

Chapter 5

Experience Modeling OO7

The OO7 benchmark [10] has been used in evaluation studies of persistent object storage manage-
ment [13, 46]. Because of its availability and its use in these evaluation studies, we selected it as the
primary application to study the feasibility of the AMPS toolkit. The OO7 benchmark is intended
to mimic CAD/CAM applications, but does not model any specific application. In a study evaluat-
ing the suitability of the OO7 benchmark as an application benchmark, it was found that the data
structures mapped reasonably well to those of a large mechanical CAD/CAM application [43].

The developers of the OO7 benchmark distribute several implementations, including an E ver-
sion and a C++4 version. Cook et al. [13] hand instrumented a subset of the E version, which is
based on the Exodus storage manager, and used it to generate traces to drive their analyses. After
developing the AMPS toolkit, we created an AMPS-based C++ version of the benchmark. Using
these two implementations of the same benchmark we were able to assess the correctness of the
automation provided by the toolkit simply by comparing the generated traces from each implemen-
tation. This chapter describes our experience building the the AMPS-based implementation and
the results of the assessment.

5.1 OO0O7 Overview

The OO7 benchmark provides a schema for a persistent store together with several detailed scenarios
for creating and accessing data. The largest logical unit of the OO7 schema is the module. A
particular persistent store may contain one or more modules. Each module consists of a manual
and a hierarchy of assemblies. Manuals are used to represent large objects in the store, and
have associated with them a dynamically allocated amount of text. The hierarchy of assemblies
consists of complex assemblies, and below that, base assemblies. There is a bi-directional association
between complex assemblies and their subassemblies. A diagram of the structure of a module
(absent the manual) is shown in Figure 5.1.

The complexity of assembly objects can be controlled through parameters provided by the
benchmark, such as the number of subassemblies associated with an assembly, the degree of con-
nectivity among components of the subassemblies, and the number of levels in the assembly hier-
archy. The base assemblies are composed of composite parts, some of which are shared and some
of which are unshared among base assemblies. Each base assembly has a bi-directional association
with its composite parts. In Figure 5.1, the composite parts are represented by grids. The grid
is meant to indicate that each composite part consists of a graph of atomic parts. Each atomic
part can be connected to 3, 6, or 9 other atomic parts. There is also a bi-directional association
between the atomic parts that make up a composite part and the composite part. Similar to the

38

Module

Complex //
Assemblies - \

Base
Assemblies

Composite Parts

Figure 5.1: Diagram of the Module Object of the OO7 Benchmark.

manuals of whole modules, a composite part has associated with it a document object whose text
is dynamically allocated. :

The benchmark specifies that a single transaction is used to create a persistent store. Traversals
that manipulate the store navigate through the graph of objects, invoking methods associated with
the visited objects. The original specification of the benchmark did not include any behaviors that
modified the store. Therefore, Yong et al. [46] defined several additional behaviors, including two
reorganization functions that target some set of the atomic parts for deletion. New atomic parts
are then created to replace them. In the remainder of this chapter, when we refer to the OO7
benchmark, we are referring to this enhanced version.

5.2 Using AMPS to Model 007

Building an implementation of an experimental application is a significant undertaking. It involves
defining the schema and programming the behaviors. Instrumentation adds a further burden.
AMPS requires the definition of the schema to be built in terms of the AMPS class library, but
with the benefit that instrumentation is achieved with little extra effort. Moreover, AMPS was
designed so that the analyst can take advantage of any pre-existing C++ implementation code
with little additional modification. This was the case for us in building the OO7 benchmark, since
there was a publicly available C++ implementation.

To assess the quality of the AMPS-based implementation, we set the goal of generating traces
whose contents were very similar, if not identical to, the traces produced through the hand in-
strumentation of the E version of the benchmark that was implemented by Cook et al. [13]. To
achieve this goal, we slightly modified the publicly available C-++ implementation so that it better
mimicked the E version of the benchmark. These modifications were restricted mainly to the order
of object creation. '

39

Below, we describe our use of AMPS in modeling the OO7 schema, modeling class extents, and
modeling one of the traversals of the OO7 benchmark, T1. Following that, we compare the PTF
traces resulting from the two implementations of the benchmark.

5.2.1 Modeling the OO7 Benchmark Schema

Using the publicly available C++ implementation of the OO7 benchmark as a starting point, we
made the following modifications to the class specifications constituting the schema. First, we
restored the class DesignObject from the original benchmark specification. This class serves as an
abstract base class for the application classes Module, Assembly, CompositePart, and AtomicPart.
Second, root classes in the inheritance hierarchy, in particular DesignObject, were changed so that
they inherited from the AMPS class GraphNode. Third, we added access methods to retrieve and
modify fields of the application classes. This modification allowed us some level of transparency
between instrumentation and the application by restricting instrumentation to the access methods.
Finally, pointer fields within the implementations of the classes were reformulated as explicit AMPS
edge objects.

Figure 5.2 shows the C++ specification of class CompositePart before our modifications
for use with AMPS. Figure 5.3 shows the modified versions of the C++ class specifications for
DesignObject and one of its subclasses, CompositePart. Each field, such as id in DesignObject,
now has a pair of access functions, such as refId and setId. Each pointer field in the original
version, such as documentation in CompositePart, has been replaced by a pair of access functions
and, although not shown, now has its value maintained by an edge structure in GraphNode (see Fig-
ure 4.2). A depiction of an instance of CompositePart is shown in Figure 5.4. Notice that pointer
fields documentation, usedInPriv, usedInShar, parts, and rootPart are treated as elements of
a vector of pointers in GraphNode.

In addition to the above modifications, non-shared dynamic data were inlined, since they are
not treated as persistent objects. Examples of non-shared data within the OO7 schema are the
text of manuals and documents. The size of the manual and document objects were changed so
that they included the size of the text associated with them.

5.2.2 Modeling Extents

As mentioned in Section 4.4, some objects that are modeled in AMPS are actually part of a POS
implementation. Here we describe how we used AMPS to model extents in QO7.

Most persistent object systems support the concept of extent, which is the set of instances of a
class. In the language E, sets of objects are represented as collections. Each collection is instantiated
with a specific type that indicates the type of its members. The members of the collection can be
either of the type or subtype of the type that was used to instantiate the template of the collection.
The C++ implementation of OO7 models extents a bit differently, using a so-called association
implemented as the class Assoc. In order to capture the behavior of extents in our traces, we
modified Assoc to be a compliant subclass of GraphNode.

The original C++ specification for Assoc is shown in Figure 5.5, while the version implemented
using AMPS is shown in Figure 5.6. In the original version, the pointers representing the associ-
ation’s elements are stored in a fixed-size array denoted by the variable members. BaseSize is a
constant value that indicates the size of the array. In the AMPS implementation, the contents of
this array are treated as edges managed by the superclass GraphNode.

40

class CompositePart {
public:

int id;
char typel[TypeSize];
int buildDate;
class Document *documentation;
class Assoc *parts;
class AtomicPart *rootPart;
// list of assemblies in which part is used as a private component
Assoc *usedInPriv;
// list of assemblies in which part is used as a shared component
Assoc *usedInShar;

CompositePart (int cpId);
“CompositePart () ;

int traverse(BenchmarkQOp op);
int traverse7();

int reorgl();

int reorg2();

Figure 5.2: Original C++ Class Specification of CompositePart.

5.2.3 Modeling a Traversal

While the OO7 benchmark contains a number of traversals, many are quite similar. Traversal T1
serves well as a representative of the group. In this traversal, the assembly hierarchy is traversed by
visiting each of the base assemblies. Upon visiting a base assembly, each of its unshared composite
parts is visited. A depth-first traversal is then performed on the graph of the atomic parts for each
composite part. As an atomic part is visited, it is counted to produce a total number of atomic
parts visited during the traversal.

We chose to implement traversal T1 in two ways. In our first approach, we used the generic
traversal library that comes with AMPS to implement T1 fully. In traversal T1, the object to
visit next is based on the type of the current object. As a result, the traversal operation applied
to each node in AMPS has two distinct components, a computation component and a navigation
component. The navigation component is defined through a boolean list that indicates which edges
should be taken. Each object type contained in the schema specification of the OO7 benchmark is
given such a list. As an object is visited during the processing of the directed depth-first traversal,
the boolean list is retrieved and used to determine which objects should be visited next. In T1,
computation is only performed when an atomic part is visited. Thus, in the apply method of the
traversal operation, shown in Figure 5.7(a), the type of the node is checked to determine if it is
an atomic part and, if so, the method DoNothing of the atomic part class is invoked. DoNothing
references the id attribute of the atomic part object and checks for a negative value. Also, the
apply method accumulates the sum of all atomic parts that are visited during the traversal. In the
generic depth-first traversal, a list of all atomic parts is maintained per composite part to prevent
cycles during the traversal.

41

class DesignObject: public GraphNode {
public:
DesignObject (int typeldentifier, int edges, char *noteBuf = NULL):
GraphNode (typeIdentifier, edges, noteBuf){ };
int reflId();
void setId(int value);
void setType(char *&typestring);
void setType(char *typestring, int length);
int refBuildDate();
void setBuildDate(int value);

private:
int id;
char type[TypeSize];
int buildDate;
s

class CompositePart: public DesignObject {
public:

Document *refDocumentation();
void setDocumentation(Document *value);
Assoc *refParts();
void setParts(Assoc *value);
AtomicPart *refRootPart();
void setRootPart (AtomicPart *value);
Assoc *refUsedInPriv();
void setUsedInPriv(Assoc *value);
Assoc *refUsedInShar();
void setUsedInShar (Assoc *value);

CompositePart(int cpld);
“CompositePart();

int traverse(BenchmarkOp op);
int reorgi();

int reorg2();

Figure 5.3: Class Specification of AMPS Versions of DesignObject and CompositePart.

42

»
- — | Trace Data Object Pointer
? GraphNode ‘ -
R outEdges [documentation
P id parts
T e e /
| DesignObject : type rootPart
S
\\ buildDate usedInPriv
Y
usedinShar

Figure 5.4: Graphical Representation of an Instance of CompositePart.

class Assoc {
public:
Assoc();
“Assoc();
void add(void *member);
void remove(void *member) ;

private:
int allocated; // actual size
int curSize; // number of elements used
int scanPtr; // index into members array
void *members[BaseSize]; // connection pointers
Assoc *overflow; // beginning of the overflow chain
+;

Figure 5.5: Original C++ Class Specification of Assoc.

43

class Assoc: public GraphNode {
public: '

Assoc(char *noteBuf = NULL);
“Assoc();
void add(GraphNode *member) ;
void remove(GraphNode *member) ;
int refAllocated();
void setAllocated(int value);
int refCurSize();
void setCurSize(int value);
int refScanPtr();
void setScanPtr(int value);
Assoc *refOverflow();
void setOverflow(Assoc *value);
GraphNode *refMemberSubI(int index);
void setMemberSubI(GraphNodePtr member, int index);

private:
int allocated; // actual size
int curSize; // number of elements used
int scanPtr; // index into members ac:

+;

Figure 5.6: C++ Class Specification of AMPS Version of Assoc.

44

int Traversel::apply(GraphNodePtr currentNode)

{
if (currentNode->getType() == ATOMICPARTTYPE){
count++;
// Perform the AtomicPart::DoNothing method
((AtomicPart *) currentNode)->DoNothing();
}
return(0);
}

()

int DFSTraverse::apply(GraphNodePtr currentnode)
int count;
// benchOp --> Traversal Type
// benchOp is a data member of the DFSTraverse class

// and is initialized in its constructor.

count = ((Module *) currentnode)->traverse (benchOp);
return (count);

(b)

Figure 5.7 AMPS-Native (a) versus Existing-Code (b) Invocations of the Traversal T1 Apply
Method.

45

Table 5.1: Parameters for a Small 007 Persistent Store.

Parameter Value
NumAtomicPerComp 20
NumConnPerAtomic 3

DocumentSize (bytes) 2000
ManualSize (bytes) 100000

NumCompPerModule 150
NumAssmPerAssm 3
NumAssmLevels 6
NumCompPerAssm 3
NumModules 1

Using the traversal class provided by AMPS as the base class, new traversal classes can be
implemented that reuse existing code of an application already available in C++. In the second
implementation of traversal T1, we created a new traversal class that uses the original T1 C++
code. The apply method of the traversal operation is shown in Figure 5.7(b). This method is only
invoked once, unlike its counterpart in the generic implementation of traversal T1. The root node,
a module object, is supplied as input to the apply method. As shown in Figure 5.7(b), the apply
method invokes the method traverse of class Module from the existing C+-+ implementation. This
method returns the number of atomic parts visited. The variable benchOp indicates which variant
of OO7 traversals to execute. The navigation of the traversal is handled directly by the methods
that are called.

In order to reuse the existing C++ code in the second implementation of traversal T1, references
to fields were changed to calls to access methods, which provide the instrumentation functionality.
Secondly, the pointers to objects that are obtained through the iterator for the association class
are cast to their proper type. It is important to note that the changes to the original code were
very minor.

5.3 Comparison of PTF Traces

To demonstrate the degree to which traces gathered from an AMPS-instrumented implementation of
an application can remain faithful to the traces gathered from a hand-instrumented implementation,
we performed a comparison of traces from both implementations. Using the OO7 benchmark
parameters listed in Table 5.1, we gathered traces from the hand-instrumented E version of the
OO7 benchmark implementation and the AMPS-instrumented C++ version. (Although not shown
here, we also executed both implementations of traversal T1, based on the original traversal code
and the generic AMPS traversal code, and collected traces from each. The traces were identical
with respect to navigation and the number of atomic parts that were visited during the execution
of the traversal.)

To compare the traces, a post-processing program collected the number of occurrences of a given
event type per object type. In Table 5.2, the number of occurrences per object type are shown for
both the AMPS trace and the hand-instrumented trace. Notice that the number of occurrences of
trace events are identical for all object types. The only exception is for association objects. This
difference can be attributed to a small difference in the implementations of the association type in
the two versions.

46

Table 5.2: Comparison of AMPS-Instrumented and Hand-Instrumented Traces.

007 Object Types | Trace Event | AMPS/C++4 | Hand-Instrumented
Types Version E Version

Module co 1 1

er 243 243

ew 3 3

dr 0 0

dw 3 3

Complex Assembly co 121 121

er 363 363

ew 242 242

dr 0 0

: dw 484 484

Base Assembly co 243 243

er 1458 1458

ew 729 729

dr 0 0

dw 972 972

Composite Part co 150 150

er 4458 4458

ew 750 750

dr 0 0

dw 450 450

Atomic Part co 3000 3000

er 18000 18000

ew 9000 9000

dr 0 0

dw 18000 18000

Connection co 9000 9000

er 0 0

ew 18000 18000

dr 0 0

dw 18000 18000

Association co 7252 7253

er 35443 5576

ew 104636 104647

dr 166060 134135

dw 71102 78358

47

5.4 Summary

Modeling the OO7 benchmark using the AMPS toolkit provided more insight into the modeling
of persistent object applications in general. In the simple persistent application of Chapter 4, we
did not use any extents and thus did not look at how to model extents until we were faced with
modeling them to capture the behavior of the OO7 benchmark. In addition to extents, we were
faced with issues of how to treat dynamically allocated data such as the text of documents. This
led to enhancements to PTF (e.g., trace events to create and manipulate dynamic arrays). Last but
not least, we found that the graph model, on which AMPS is based, was well suited in capturing
the relationship of the objects of the persistent store generated by the OO7 benchmark.

In order to validate the traces generated by the AMPS-instrumented C++ implementation of
the OO7 benchmark, we compared them to traces that were generated by a hand-instrumented
E version. These traces were previously verified through the use of a simulator of a persistent
object system. The comparison showed that for all of the objects of the application, the AMPS-
instrumented version produced the same number of events as the hand-instrumented E version.
From this, we concluded that the traces generated by the AMPS-instrumented version correctly
captured the behavior of the OO7 benchmark.

48

Chapter 6

Infrastructure to Support Generation
of Multi-user Workloads

Generally, real applications of persistent object systems are executed in a multi-user environment.
Thus, in order to understand and evaluate the performance of a persistent object system, it is
critical to understand how these systems perform under a multi-user environment. However, per-
formance studies provide little insight into the performance characteristics of a multi-user environ-
ment. Although two efforts [9, 41] were made to develop a multi-user benchmark, the community
of persistent object systems’ researchers have not adopted either as a standard. To date, there
is no consensus as to what constitutes a representative multi-user workload, which is a combined
workload of multiple clients concurrently accessing a persistent store. This is especially true in
performance studies of storage management algorithms of persistent object systems. Due to the
lack of a standard benchmark, researchers continue to generate their own workloads to perform
experimentation on storage management algorithms, thus limiting the sharing of data between
researchers and hindering the ability to perform direct comparison of persistent object systems.

The work described in this chapter attempts to address the issue of sharing of data through
a trace-driven approach that captures the behaviors within a multi-user workload. It is novel in
that single user workloads are generated and captured in trace files and these trace files are later
interleaved using a concurrency control model and a transaction model to generate a multi-user
workload.

Multi-user environments in which multiple users access a persistent object system have several
features that impact both the correctness and the ability to model a multi-user workload. Some of
these features are as follows:

e Concurrency: Within multi-user environments, multiple users can access the persistent store
concurrently under the transaction management of the persistent object system. An approach
that models this environment must be able to capture an interleaving of the transactions in a
manner that supports serializability. Each transaction must guarantee the ACID properties
(e.g., atomicity, consistency, isolation and durability), as defined in the ODMG standard [11].

e Data Sharing: When multiple users access a persistent store, some data are typically ac-
cessed by more than one user and thus there must be some mechanism to prevent interference
between competing users. When modeling a multi-user environment, a desirable feature is
one that provides some control over the amount of sharing among users.

e Atomic Transactions: Transactions within a multi-user environment may abort. The

49

update events of aborting transactions are not captured in the trace representing the multi-
user workload.

In this chapter, we describe a trace-driven approach to collecting data that captures the be-
havior of an application in a multi-user environment. The trace-driven approach has the following
characteristics:

1. A trace file is generated for each client used to model the multi-user workload independently
of a persistent object system as described in Chapter 4.

2. Events indicating transaction boundaries enclose trace events that are generated by operations
manipulating the persistent store as part of a given transaction.

3. The traces are processed under a simulated multi-user environment to capture the combined
behaviors of the multiple users. These traces contain flat transactions that are processed
under a concurrency control policy.

4. Experimentation with alternate transactions model and concurrency control policies is possi-
ble since the transaction model and the concurrency control mechanism are orthogonal.

5. The final trace file represents the results from interleaving transactions of the participating
clients and captures the behavior of a multi-user workload.

The remainder of this chapter is organized as follows. In the second section, the design goals of
the instrumentation infrastructure are presented and a brief overview of the approach is provided. It
concludes with a list of assumptions upon which the design of the infrastructure is based. The third
section describes the design issues that affect the implementation of the infrastructure. The fourth
section presents the PTF enhancements to capture the behavior of transactions. The fifth section
presents scenarios to illustrate how the single-user workloads are merged to form an interleaved
trace and presents issues related to the creation of the interleaved trace. The sixth section pr0v1des
an overview of an example implementation of the trace merger.

6.1 Setting the Stage

In this section, we briefly describe the trace-driven approach that has been designed in this dis-
sertation to create a trace file that captures the behavior of persistent object applications that are
executed in a multi-user environment.

6.1.1 Design Goals
The design goals of this instrumentation infrastructure are as follows:

¢ To design a flexible technique for generating workloads that allows the number of clients to
vary as well as the tasks that make up the workloads.

e To generate a multi-user workload without dependence on the concurrency control algorithm
enforced by either an implementation of threads or by the underlying operating system on
which the single-user workloads are generated.

e To generate workloads whose behavior is repeatable and reusable without re-running the
application to produce the workloads.

50

e To build a flexible experimental environment in which alternative scheduling algorithms,
concurrency control models, and transaction models can be tested. '

e To generate a trace file that can be used in studying storage management policies.

6.1.2 Approach To Support Generation of Multi-user Workload

Figure 6.1 presents an approach to instrumentation of multi-user workloads to generate a trace
for use in analysis of persistent object systems. In Figure 6.1, the new steps to the trace-driven
approach that was shown in Figure 1.1 are highlighted through the use of light gray shading. As
shown in Figure 6.1 there are two phases in the trace-driven approach: a collection phase and a
processing phase. In the collection phase, AMPS is used to instrument a given persistent object
application. From the instrumented application, a single-user workload, represented by Client
Workload in Figure 6.1, is specified for each client. Several single-user workloads are then executed
to produce PTF traces. These traces are then used in a two-step processing phase. In the first
step of the processing phase, multiple traces representing single-user workloads are input to the
trace merger. The trace merger simulates the execution of the single-user workloads under a multi-
user environment. Transactions of the multiple client workloads are interleaved to form a trace
consisting of events that manipulate the persistent store and provide directives to the persistent
object system.

The trace merger consists of a scheduler, a swapper, a transaction manager, and a lock manager.
Each client represented by a trace is simulated as a process. The scheduler determines the order
of execution of these pseudo-processes. Once a process has been given a time slice, the swapper
processes the events of the trace corresponding with the selected client. The transaction manager
processes the events of a simulated transaction and interacts with the lock manager to enforce a
given concurrency control model. As the simulated transactions are processed, an interleaved trace
is generated. This interleaved trace is then used as input to a simulator for analysis of storage
management algorithms.

6.1.3 Assumptions

Our design of an instrumentation infrastructure to support the generation of multi-user workloads
depends on several assumptions. These assumptions are as follows:

e Assumption Al: All operations of an application that manipulate the persistent store
are executed as part of a transaction under a concurrency control mechanism, guaranteeing
atomicity and consistency.

e Assumption A2: The data value of an attribute of an object cannot be used to guide the
behavior of the operations of a transaction. The data value also cannot determine whether a
transaction executes or does not execute.

e Assumption A3: The set of transactions that are serially executed to form the single-user
workload can be executed concurrently with the set of transactions of another client to form
an interleaved schedule that is serializable.

e Assumption A4: Transactions that abort due to locking conflicts will eventually complete
successfully.

e Assumption A5: Structural changes can only occur within a region of the persistent store
that is only accessible to the client issuing the structural change.

o1

Application
Specification

I

J—

(AMPS
Libraries

Schema

Instrument
Using AMPS

Instrumented

Performance
Results

—

_ PTF Trace /#—
N~

Figure 6.1: Approach to Generation of Multi-user Workloads.

52

Assumptions Al, A2, A3, and A4 guarantee the correctness of the interleaved trace that is
produced by merging the single-user traces. They also guarantee that the persistent store generated
by the trace is consistent. Assumption A5 prevents inconsistencies from occurring in the interleaved
trace.

6.2 Design Issues

Several issues were investigated in the process of designing the multi-user workload instrumentation
infrastructure. The major issue was determining how clients interact with one another. Key to this
interaction is how to model concurrency and how to allow multiple clients to access shared data.
These issues are addressed below.

6.2.1 Enforcing Correctness of Interleaved Traces

The interleaved traces must satisfy the following two invariants to provide semantic consistency.
Semantic consistency means that no reference to an object occurs before an object is allocated or
after an object is deleted in the final interleaved trace. The invariants are as follows:

e Invariant I1: Each client’s operations must be executable with any transaction-granularity
interleaving of the other client’s operations (including possible retries of aborted transactions)
with the result being semantically consistent.

¢ Invariant I2: Each client’s operations within a transaction must be replayable, with the
result being semantically consistent.

Invariant I1, in conjunction with a concurrency control policy, allows the interleaving of trans-
actions of the single-user workloads by the trace merger such that they form a serializable schedule.
This interleaving in turn produces a correct trace from the events of the participating transactions.
Invariant 12 allows transactions of the single-user workloads that are aborted by the trace merger
due to lock conflicts to be retried until they eventually complete successfully.

6.2.2 Data Sharing

There are two types of updates that must be considered when determining the amount of sharing
that can occur among clients. The first type of update is applied to non-pointer data members.
This kind of update only requires that a locking mechanism prevent interference from conflicting
clients. The second type of update is a modification to the structure of a persistent store, such as
a pointer overwrite. Within the design of the PTF trace, pointers are treated as edges of a graph.
The object referenced by the pointer is then manipulated by its object identifier. With a pointer
overwrite, the object referenced by a given edge changes.

Within our framework, a persistent store can be partitioned into regions. Regions that are
accessed by only one client are referred to as private regions and those that are accessed by many
clients as shared regions. When updates to edges are allowed in shared regions of the persistent
store, all clients must be made aware of these updates since the single-user traces are generated
sequentially. Thus, a barrier synchronization primitive is necessary to prevent interfering clients
from traversing or even holding pointers into the shared region while the update occurs. This
primitive creates a global ordering among the single-user workloads. Such an ordering is contrary to
our goal of minimizing the dependencies between operations of the single-user workloads. Therefore,

53

a synchronization barrier is not supported in the implementation of PTF and structural changes
are restricted to private regions (e.g, regions that are accessible by only one client).

6.2.3 Concurrency

Capturing the behavior of a concurrent environment is desired in order to study its effect on the
performance of a persistent object system. As a result, several approaches have been designed to
achieve concurrency in experimental studies of persistent object systems. These approaches range
from actually generating data using a persistent object system under a client-server architecture
as in the work of Amsaleg et al. [2] to generating concurrency synthetically as in the work of
Maheshwari and Liskov [30] and the work of Schreiber [41].

In our instrumentation infrastructure, one of the goals as stated earlier is to create a multi-user
environment independently of a persistent object system. In order to achieve this goal, we modeled
concurrency through simulating a multi-user environment. Below, we describe some approaches
other researchers have used to model concurrency followed by the approaches that we considered
when designing the multi-user workload infrastructure.

Several researchers have modeled concurrency in a manner that prevents clients from interfering,
thus avoiding issues related to locking conflicts and serialization of transactions. Maheshwari and
Liskov [30] simulate the effect of concurrent applications through random selection of portions of
the persistent store to create and modify objects. Schreiber [41] simulated the effect of concurrency
within applications by running concurrent transactions on a persistent store that consisted of
multiple structurally identical sections. Thus each client had its own copy of the application’s
persistent store.

Our design takes on the challenge of managing the processing of clients that may interfere with
each other. As part of our design process, the following approaches to modeling or generating
concurrency were considered.

One approach is to guarantee that there is no interference among clients accessing the persistent
store. In this approach, at the collection phase, a stream of events can be generated by executing
the workload of each client in sequential order. At the processing phase, a simulator can be used
to create concurrency. With this approach, the collection of the data can be done independent
of a lock manager, leaving locking and concurrency control to the processing phase of the trace-
driven simulation. The advantage of this approach is that experiments can be done on different
concurrency control policies using the same trace as input. The downside of this approach is
that workloads are constructed with no interference among clients, which is not the case in real
application workloads.

Another approach is to specify the kinds of operations that are going to be manipulated in an
abstract way. For instance, one client might be allowed to produce ten reads while another client
might be allowed an arbitrary combination of reads and writes. In order to apply this approach,
the queries and traversals of an application must be thoroughly inspected to abstract information
about the number of reads and writes. One advantage of this approach is that the synthetic
operations would be generic. Another advantage of this approach is that the developer could have
more control over the interactions between operations since the operations are modeled at a high
level. A disadvantage of this approach is that a query language would have to be designed and
implemented to support the creation of these synthetic operations.

A third approach is to execute the workload of clients using a lock manager to enforce con-
currency control. The advantage of this approach is that no restrictions are placed on conflicting
transactions among clients. The downside of this approach is that the traces are not generic; in

54

other words, they contain information specific to the concurrency control policy that was used to
generate the traces, thus introducing a dependency between the collecting and processing phases of
the traces. This approach would also require us to include a mechanism to support the logging of
data values as the transactions were executing so that updates to data would be applied properly.
To adequately support the third approach, we would end up implementing a lock manager and a
transaction manager. Thus, if we selected this approach, we would have to implement one or more
components of a particular persistent object system.

A fourth approach, which is a variation of the first approach, allows limited interference among
clients. Limited interference means that clients will share access to the persistent store in a con-
trolled way. At the application level, events generated by operations are enclosed in events that
identify the boundaries of transactions. During the processing phase, a concurrency control pro-
tocol is applied to the single-user workloads to simulate execution in a multi-user environment.
The advantage of this approach, as in the first approach, is that the traces are independent of a
concurrency control policy and thus can be used with greater flexibility. Another advantage of
this approach is that some sharing is allowed among clients. After considering the alternatives de-
scribed above, the fourth approach was adopted in our implementation of the multi-user workload
instrumentation infrastructure.

6.3 PTF Extensions

In order to support the generation of a multi-user workload, PTF was enhanced to capture the
structure of a flat transaction. According to the ODMG standard [11], a transaction is a unit of
logic that guarantees the ACID properties. At the application level, this unit of logic consists of a
group of operations that are atomic, that is, the effect of the operations is visible to the persistent
store only if the transaction finishes.

The structure of a flat transaction consists of the operations that indicate its boundaries and
simple actions that manipulate the persistent store. In order to capture the structure of a flat trans-
action within the trace format, there must be events to represent the operations of the transactions
(i-e., begin, commit, abort, and checkpoint). For example, using the transaction start and the
transaction end events as brackets allows one to capture the effects of a transaction without
placing any restriction on the concurrency control model that is used to mediate concurrent access
to objects of the persistent store.

The simple actions of the transaction are represented by the PTF events that manipulate objects
of the persistent store. To correlate these events with a transaction, each of the other PTF events
(excluding the format object event), contains two new parameters, TransId and ClientId. These
new parameters have been added to the front end of the list of parameters for each event type. The
parameters of each trace event with the additional parameters to support transactions are shown
in the Appendix A. Below, the trace formats for the events that represent the operations of a
transaction are described.

6.3.1 Trace Formats for Transaction Events

The trace formats for the transaction events are as follows:

Transaction Start

Event: <transaction_start>

55

Parameters: (int) Transld transaction identifier
(int) ClientId logical client identifier

The transaction start event demarcates the beginning of a new transaction. A transaction
identifier is assigned to the transaction and recorded in the parameter TransId. The client number
is also recorded in the ClientId.

Transaction CheckPoint

Event: <transaction_checkpoint>
Parameters: (int) Transld transaction identifier
(int) ClientId logical client identifier

The checkpoint event directs the transaction manager to commit the updates of the transaction
without requesting that the lock manager release the locks acquired during the execution of the
transaction.

Transaction Abort

Event: <transaction_abort>
Parameters: (int) TransId transaction identifier
(int) ClientId logical client identifier

This event indicates that the updates should be aborted and the locks associated with this trans-
action should be released. It also indicates that the abort operation was issued at the application
level.

Transaction End

Event: <transaction_end>
Parameters: (int) TransId transaction identifier
(int) ClientId logical client identifier

The transaction end event indicates that the transaction indicated by the field TransId has
successfully completed and thus all updates of the transaction are eligible to be committed.

6.4 Generation of the Workload

There is very little variation in the process of generating single-user workloads from that discussed in
Chapter 4. In this section, we describe modifications to AMPS to support the generation of single-
user workloads that can later be processed under a transaction model by modeling the structure of a
transaction within the application. We then describe how to generate several single-user workloads

56

using the TCL interpreter of the AMPS toolkit. We use the binary tree example of Chapter 4 to
illustrate how to generate several single-user workloads.

6.4.1 Enhancement to AMPS Toolkit

As described in Section 4.2, the AMPS toolkit consists of a collection of C++ classes for modeling
objects of the persistent store and creating traversals. To capture the structure of a transaction,
a new class is added to the collection of C++ classes, the class TransactionGenerator. The
specification of TransactionGenerator is shown in Figure 6.2. The constructor takes as input
the client identifier and assigns a unique transaction identifier to the transaction generator object.
The method transactionStart records the transaction start event in the trace file. The method
transactionEnd records the transaction end event in the trace file. The abort transaction event is
recorded in the trace file by the method transactionAbort. The method transactionCheckPoint
records the transaction checkpoint event in the trace file. The method getTransactionId returns
the transaction identifier of the instance of the TransactionGenerator class.

The other C++ classes of the AMPS toolkit have been modified to generate the new version of
PTF as described in the previous section. The modifications consist of adding two new parameters
to the methods of the GraphNode class and the constructors of the traversal classes, transId to
represent the transaction identifier and clientId to represent the client identifier.

6.4.2 Implementing Several Single-user Workloads

The persistent store is implemented as described in Chapter 4 to generate the single-user workloads.
The class specifications for each object of the schema must include the input parameters transId
and clientId within each of its methods that manipulates the persistent object store. The class
specifications of the operations of the application must also include these two input parameters as
shown in the apply method of the class representing the operation RemoveLeafNodes, of Figure 6.3.
The RemoveLeafNodes operation removes the leaf nodes of the binary tree persistent store and
then replaces them with newly created nodes. The RemoveLeafNodes is used with the DepthFirst
traversal of the AMPS library. As shown in Figure 6.3, the values of transId and the clientId
are used as input to the methods of the BinTreeNode class that are invoked in the apply operation.

We now consider how to generate multiple single-user workloads using the TCL interpreter. As
described in Chapter 4, it is assumed that the developer has some idea of the workloads that are to
make up the single-user workloads of a multi-user workload. Prior to scripting the workloads, the
developer must implement the operations of application as TCL commands. Once all the desired
commands are implemented, several combinations of these commands can be used to generate
single-user workloads using the TCL interpreter.

In Figure 6.4, we illustrate how to script several single-user workloads using AMPS. In this exam-
ple, there are two clients and we generate a single-user workload for each client. We begin by assign-
ing a number to the first client and then invoking the TCL command TG.TransactionBegin. The
command TG _TransactionBegin creates a TransactionGenerator and then invokes the method
getTransactionld to return the transaction identifier as its result. The workload of the first client
consist of two transactions. The first transaction consists of an operation that creates a seven-node
binary tree persistent store. After all of the operations of the transaction have been executed,
the TCL command TG TransactionEnd is invoked. The command TG_TransactionEnd invokes
the method transactionEnd of the TransactionGenerator class followed by its destructor. The
second transaction of the workload contains a breadth-first traversal that performs the operation
ReadXValue as it visits each node of the binary tree. Although all transactions of this example

57

class TransactionGenerator {

public:
TransactionGenerator (int traceFd, int clientNum);
void transactionStart();
void transactionEnd();
void tramsactionAbort();
void transactionCheckPoint();
int getTransactionId();
“TransactionGenerator();

private:
int traceFileFd;
int clientNumber;
static int currentTrlId;

Figure 6.2: C++ Class Specification of TransactionGenerator.

only contain one operation, a transaction can consist of multiple operations. Upon generating the
workload of the first client, the trace file associated with that client is closed. The workload of the
second client is generated in a similar manner as shown in Figure 6.4.

6.5 Scenarios

In this section, scenarios are presented to show how single-user workload traces are interleaved.
Each scenario was chosen to demonstrate a specific point. To aid in the illustration, traces are
shown from the execution of a simple persistent object application that was introduced in Chapter
3. The persistent store consists of a binary tree whose nodes consist of an integer value. The
operations of this application are as follows: CreateTree, a create operation that builds the binary
tree structure, UpdateXValue, a breadthfirst traversal that updates the integer value of each node
of the tree, ReadXValue, a breadth-first traversal that reads the integer value of each node of the
tree, and RemoveLeafNodes, a depth-first traversal that creates new leaf nodes for the binary tree.

6.5.1 Scenario 1: Treatment of Creation of Objects

In this scenario, there are two clients, Client 1 and Client 2, that are manipulating the persistent
store. The first client creates the persistent store and then references the integer value at each node,
and the second client updates the integer value of each node. Table 6.1 illustrates the traces that
would be generated for Client 1 and Client 2 along with a possible interleaving of their workloads.
The first field of each trace event is the transaction identifier. The workload of Client 1 consists of
two transactions, T1 and T2, and the workload of Client 2 consists of one transaction T3.

The trace merger receives a list of clients that participate in the creation of the multi-user

58

class RemoveLeafNodes: public TraverseOption {

// operation performed at each visited node of the Traversal
int apply(int transId, int clientId, GraphNodePtr currentNode) {
int noOfEdges;
static GraphNodePtr parentNode;
static int edgeCount = 0;
BinTreeNode *newChild;
int edges = 0;

noOfEdges = (* currentNode).getNoOfAdjEdges();

if (noOfEdges != 0)
{

// processing the non-leaf nodes

parentNode = currentNode;
}
else
{
// processing the leaf nodes
// typeNode is an attribute the RemoveLeafNodes Class

newChild = new BinTreeNode(transId, clientId, typeNode, edges, NULL);
(* newChild) .setValue(transId, clientId, 1, 1);

if (edgeCount == 0)
{
// got the left child
(* newChild) .setLeftChild(transId, clientId, parentNode);
edgeCount = 1;
}
else
{
// got the right child
(* newChild).setRightChild(transId, clientId, parentNode);
edgeCount = 0;

return (0);

Figure 6.3: Implementation of the Apply Method of the RemoveLeafNodes Class.

59

sheriffy, TGenApp

% TG_OpenTraceFile Clientl1Trace
Trace file opened

% TG_SetClientId 1

% TG_TransactionBegin
1

% TG_DBbuild 3
Database generated

% TG_TransactionEnd 1

% TG_TransactionBegin
2

% TG_Traversalbuild breadthfirst ReadXValue
Traversal processing completed

% TG_TransactionEnd 2

% TG_CloseTraceFile
Trace file closed

% TG_OpenTraceFile Client2Trace
Trace file opened

% TG_SetClientId 2

% TG_TransactionBegin
3 .

% TG_Traversalbuild depthfirst pre RemoveLeafNodes
Traversal processing completed

% TG_TransactionEnd 3

% TG_CloseTraceFile
Trace file closed

% exit

sheriffy

Figure 6.4: Scripting a Multi-user Workload Using AMPS and TCL.

60

workload. Suppose that Client 2 appears first in the list. Using a round-robin scheduling algorithm,
Client 2 is selected for processing. In order for the transaction T3 of Client 2 to execute, the
persistent store has to exist. Since the persistent store has not been created at this point, transaction
T3 cannot run. The trace merger creates a synchronization barrier to prevent transactions from
running until the objects manipulated by the transaction are available in the persistent store.
Thus, Client 1 will be selected for processing. Now, suppose that the time slice only allows for the
processing of T1. T1 is processed and Client 1 is placed back on the ready queue. At this point,
Client 2 is processed. Since the persistent store has been created, T3 can now be processed. Upon
completion of T3, the workload of Client 2 is completely processed so Client 1 will be processed to
completion. Thus, the order of the transactions is the following:

« BOT(T1) EOT(T1) BOT(T3) EOT(T3) BOT(T2) EOT(T2)

where BOT stands for beginning of transaction and EOT stands for the end of transaction. The
resulting interleaved trace is shown in Table 6.1. The following points should be noted about the
interleaved trace.

1. The no garbage collection events ngs/nge protect the newly created objects from being col-
lected.

2. As shown in T1, the newly created objects are written to the interleaved trace along with the
updates to them as they are encountered in the single-user trace. The fact that create events
are processed in this manner does not affect the consistency of the trace or the persistent
store that is created from the trace. If at some point T1 had aborted, the objects created
by T1 up to the abort would eventually be garbage collected, making them invisible to any
future transactions because they are not attach to the reachability graph. Also, note that the
set root event, which attaches the objects to the reachability graph, is the last event written
from the processing of T1. This ensures that the newly created objects do not get attached
to the reachability graph until T1 successfully completes.

6.5.2 Scenario 2: Example of an Interfering Transaction

The workloads of Client 1 and Client 2 are the same as described above in Scenario 1. However,
in this scenario, the duration of the time slice of Client 1 is longer so that T2 is allowed to start
processing but not complete. Now, suppose that after processing the event, er 2 1 41 43 1, the
time slice of Client 1 expired. Client 2 is then selected for processing. The first event of T3 is
processed and then a locking conflict occurs. The second event, dw 3 2 41 42 1, requires that T2
acquire a write lock on the object represented by the object identifier 42. However, a write lock
cannot be granted to T3 because it is already locked in read mode by T2. Thus, Client 2 is placed
in a wait state until T2 committed. The execution order of the transactions is the following:

« BOT(T1) EOT(T1) BOT(T2) BOT(T3) EOT(T2) EOT(T3)

The interleaved trace is shown in Table 6.2.

61

Table 6.1: Example of an Interleaving of the Workload of Two Clients.

| Client 2 Trace l Interleaved Trace |

Client 1 Trace

(3] < [T} O [[ee)
< < < Sy <t <t
- - O — -l O — - o — O - OO e B o B R B H O e O O o e
NN OO AN WM O ONNS NP0 0N NN M <t <P N M 0O M~ AN NN ¢ H DO~
A R S R R S R S A A S A LS S L LIS S R R < St TS AU S S S Ao RS R S S R R S L U U
ot o o o o o e o H A A H o o o N o o o ot o v o o e
14444444444444444444441 444444244444442 <P < PP
o o A A A v v v o vt v o v e 222222232222222311111111111111
i —
11111111111111111111163333333 3333333622222222222222
n n
00 & O F ® O B 2 O F B O & & O 2 O B H M H H M H HHDBERBRRERZB2 2 0HHHHMHBMHSEMRBSSB®SHNHHSHEHHN-H
VT ULUT O ULVT O ULVYOOLOYOULVT O OLVT OV S WY OO OO AV TV YYTYTY S OTY O OY Y OT O OT TV TT
™M O ™ H O O v o
N AN ANMMMOO I WO~ 0
R S U R R U A A A LR
o vl o vt e v v e
A U SR R G A A S A LS
AN NN AN AN NN N NN N
MmO OMHOHONHDONHOOHOMONMMEOONN
0N oHBE N MHBE N NBHNBEBEBEBEOQ
¥ 80T 0 0T O 0T O 0T T T T L
[32] <t [To] (=] P~
<# <t <t <t <t [e0]
i - o ol - o] - O — H O ™M HAO A O A
N AN ANOOANHTHF N WOMOOONDNS-SEO W0 N AN ANOOMMSE WO~ 0
A RS U RS U U L U U A S U S R A A5 aES R S USRS U AR U L LS U LS
o e vl e vl e e o v o v o o o o e e oy v v v o v o o e o
A A R A R S A R A R A A L A L o A A A S U R R A A LS A
R I e R I R I B I R I e A e I I I I I I B I B R R B B R I I I I I IR I
o o A A A v v e v 1 v v A H H AN NN NN NN NN NNNN NN
w o B 4 O R OB B OPRERROREREOIRDEODREIDREOW®VHHNHMHMNSHMHMNBMBEMZ.SGBS®LGHHHNDO
£ OT W OV 0 VT O VT O LVT O OVTV O UVT O L L 0T O OTY O VT O 0TV T T T P

62

Table 6.2: Example of an Interleaving as a Result of Conflicting Transactions.

| Client 2 Trace | Interleaved Trace |

Client 1 Trace

2] <t Lo © ~ e}
< < < <t < <
i — O i v -« O it - O — O O v O H O H A A O OO oyt v o v
AN ANMMNONTFNWODMOOOMNDN 000 F AN N NN MMmmM < PO N0 NNM M S S N M ¢ WO N
Ao A A A A A S R A A A A RS R A A H P P H AR A R D AR A A U RS A A RS S S A
s A s I A s e I r s s I I T I I R I T vt o v v e v ot v v oy v v v v v v e vt v e v v o
14444444444444444444441 < P S 4444444444444244444442
R R e I e I I I e I R e 1111.1.11.21.111111222222322222223
i —
51111111111111111111113222222232222222333333533333336
800 2 o & 2 0B & O B B O B B OB 2 OB I &4 60 M M 8 H H H H 8 H H 8 H H H S H 8 8 &4 84 4 O3 B2 = 2 3 3 3 80
VY ULUT O UV O COCT O UTOOLVTVOOLVTOL®N S WY OV VO WY O T VYT OO O Y O O ATV TVTT VT A
O A O A O o e
AN AN NMOM<H P F WO~ 0
A A S S RS S R AR A AR
LA A A I I I I i
A R S A R R R A U A U
Ao NN NN NN NN N
MOMOMMOMOONHONONDONHONDMNNHONDNMmN
W H B H H B MHMBEHHBE B BE 3O
$ 00T 0 0T 0O 0TV O O TV UV YT P
(2] < w o] N~]
<# <t < < <t <
i - O o — O ot - O — O A A O A O A A
AN AN AN OANHETNWLWNMOO®MNSDNH 0P N ANMMOM IS KW O~ 0
A AR S RS S R A A A R T RS A S R R A A AR G S R R A U L
LA A AN A A A s I I I B Ir i B T L A I I I I
A AR S A R R A S A A L A LS A A O A A A S RS A S A U~ L S A S
Ll R o N IR N B e R e R B e e B e e B e e B R B e B I e A R I I e A R I B I I R e]
oA A A A e e e A A A e A - AN NN NN ANNNNNNNN NN
w o ® 4 O R OEBDEORBDZOIREZORIEOOIREIREO®HHRMNLHNUNGNSYS-SHNHMNMHHSNLSNDO®
£ OV B OV C VUT O VT O OVOT O VT O OLVT O P P WY O OV OOV O O T T YT P

63

6.5.3 Scenario 3: An Example of a Non-Conflicting Transaction

The workload of Client 2 now consists of the ReadXValue traversal. Thus, transaction T3 consists
of the events shown in Table 6.3. As in Scenario 2, the duration of the time slice of Client 1 is longer
so that T2 is allowed to start processing but not complete. Now, suppose that after processing the
event, er 2 1 41 43 1, the time slice of Client 1 expired. Client 2 is selected for processing. Since
T3 does not conflict with T2, it is processed to completion. The execution order of the transactions
is the following:

« BOT(T1) EOT(T1) BOT(T2) BOT(T3) EOT(T3) EOT(T2)

The interleaved trace is shown in Table 6.3.

6.5.4 Scenario 4: Example of Structural Change to Shared Region

The workload of Client 2 consists of the operation RemoveLeafNodes. The events of transaction
T3 are shown in Table 6.4. In this scenario, the execution order of the transactions is the following:

« BOT(T1) EOT(T1) BOT(T3) EOT(T3) BOT(T2) EOT(T2)

The resulting interleaved trace is shown in Table 6.4. In T3, the objects associated with object
identifiers, 45, 46, 47, and 48, were replaced with objects whose object identifiers are 49, 50, 51, and
52, respectively. Since the workload of Client 1 was generated prior to the the workload of Client
2, the interleaving results in a semantically inconsistent trace. Therefore, structural modifications
to shared regions of the persistent store are not allowed.

6.6 An Example Trace Merger

In this section, we present an example implementation of the trace merger. The trace merger
simulates the execution of the single-user workloads in a multi-client environment. Before describing
the implementation of the trace merger, we discuss the intuition behind the design of the trace
merger.

6.6.1 The Notion of Time

Clients normally execute their workloads at varying rates. This may be due to some idle time
because some data are being examined interactively or because the processor on which one client
is executing is slower than another client’s processor. Regardless of the reason, there is a need
to simulate varying rates of execution among clients. Thus, the term tick represents the rate of
execution of a client. A tick is equivalent to one or more executed events. Thus, one client whose
tick rate is 1 event might process N events during a time slice while a slower client whose tick rate
is 2 might process N/2 events during its time slice (e.g., the higher the tick rate the slower the
client is running).

6.6.2 Synchronization Algorithm

In most traditional database management systems as well as some of the older persistent object
systems (e.g., Exodus), serialization of concurrent transactions is enforced using the two-phase
locking protocol. The two-phase locking protocol is defined as follows [19]:

64

Table 6.3: Example of an Interleaving of Two Non-Conflicting Transactions.

E Client 2 Trace ‘ Interleaved Trace]

Client 1 Trace

l

(3] < el © b~ 2]
< < <t < <t <
— - O Rl - O ~ - O el - O H O H O A A O v vt Ol vl v v O vt v v v et
AN ANOO NI AWM OOONDN 00N NN NMMM NN NMOMOOF F W ON 0O 0N~ 0
AU A R R R A R A R AR L AR U A AR S L A S A AR S R R R R A S S USRS A S -
LA A S AN s I I N B I I s I I I r I I s B vt v v o ed R A A A S A B s s I I B e B T r B
14444444444444444444441 < S S AR R S R R A S A S S A A A S
R I I I R I I e R R I] o A H A AN AN NN ANNNNNNNNNN A A
i ~
111111111111111111111622222223333333333333332222222
2]
B0 0 = O B & O & E O B I OB I O 2 1 O 2 B & 80 M H H H H H H HH HHHHKS8HHHHHHHHS8 Y5 HHHH
VT VTV O VT ® VUT O VT O ULUVTY OLVTY ON S WY O OTY OO T 0OV O OV O O0YUYDdIY O T DY T T
H O A A O O A
AN ANANMOMMF < WO 00
AR U R R R S
i I I I I T T
A A A S R AR A A
AN AN NN AN N NN NN N
M OMMMONOHOMOONOONODNONNN
W oH H M HH MM H MMM HH RO
£ 80T ©®© 0V O O T 0 0T T T T P
o < [1e] © N~ o]
i < <H < < <
i — O o - O o - O — O O O o v
AN NNMOONSHFADLWMWONNDNTEO 0T AN NN MMM P WD O N 0
A S S AR S GRS S A U A A S RS AR AR S S U U A S A L
LA R s s R B I - I B T I I I B B L I B R s I]
A S U U U R U R R U A A - A A S S A A AR A S A S R A
oA o o o v v o o o v o v vl v v v o v v v o v o v o v e
oA A A A A A A A A A A A A A A v e A NN NN NN NN NN NN AN AN
n o B M O B2 O RROERORREORROBEDREOQO®VHHN-HHSHMNHNHHMHEHE®HNSNHNDO
£ OTW wn VTV O VWO VWO UT O UVT VT OL L OY O OT O QT C 0TV T T T L

65

Table 6.4: Example of a Semantically Inconsistent Interleaved Trace.

Interleaved Trace

|

Client 2 Trace

Client 1 Trace

OO A O o o
AN AN NMMOM S S 0O N0
A S S R S S S R
o v v v v v v v vt o
A AR LI SR A A A S U U
R B B B I e e e R R R R
AN AN NN ANANNNN NN NNNNN
Mo oH H M H M HH HHH M NN
0w 0 Y O 0”Y OO Y YT T
(3] <t wn © N~ [ee) [o 4 o
< < <t < < < hl w0 w0 w
i -l O — ~- O iR - O - o [e3¥e] — O - O - O v —
NN MO AT HTNWWMOO®MNSDNSS 00 N N M DO MM OO MAN P v v ot NN
A AR S A MR LR S I L S LS S U A A LR LS S U O S N S A5 RS SR R To R T I U A Y 2B Yo TS A LR Vo R Vo IS
oyt rd v vl v o v v o o o v e e v o - IR A IR I IR I I I e e B B A B e B
14444444444444444444441 44244444444444444442
1111111111111111111111 222322222222222222223
-t
R R B e B N N R B I e e B B] M omm 33333333333333336
0 [) 0
0o B O BB & O 2 B O 2 3 O 3 3 O 3 & O 3 3 MM 00H H H Q00 2 3 4 OB B M M O R = H O 2 2 b0
H VUT” UV O LUTW O LT O UT O LT O UTY O g Y HOVOT OO VT OO O UVUT OO UT O S
D (=3 i N
<t w [Te] [T
oo o — O - O o
N OO MMOOMOAON < v~ < < NN <
<H P WO P H OO DWW
ol v v v v v o o o o o o H o e v
AR RS S R AR A S A A A A A AR
AN AN AN NN
333Q933333333333333333
W H H M O RBBEH OB RE HNMODRZDREZNHODREDEO
£ B0 0 VY 0O O OT O OO OVOT OO0 VT O P
o) < Lo (o] &~ o]
<t < < <t <t <#
- - O — - O — - O R H O ™ rH O A H O v
AN AN AN O AN IANWWMNOOMNSN D 00 <P N AN AN OO P P WO~
A RS A U U S A A L S U S A A A A S U U S S S R S A A S U U U
LR R A I A I A I A A A I s I B I B B s o v o o A o o e
AR SR U A U U R S S S AR S U U A A A
Ll I B I R I I I I R I I B I B I B I B B I I IR I I I I I IR I B I R B
iR BRI R R R R I I e e A I I B B I IR I BN B o I o\ B o o B o B o B o B oS B o B o i ot B ot B o B o B
W o B N O3 B OB 3 O 3B B OB B OB B OB B O 1 H H H HHH H H H MM MM MO
£ OV ¥ VY O VT O T @ VT @ VTV O VT O L £ 80T 0 T 0 T @ 0T T T T L

66

1. Before operating on any object, a transaction must acquire a lock on that object.
2. After releasing a lock, a transaction must never go on to acquire any more locks.

A transaction following this protocol thus has two phases. In the first phase, the locks required
by the transaction are acquired. The second phase is completed in an atomic operation of the
transaction, that is, either a commit operation or a rollback operation.

Within our prototype of the trace merger, the two-phase locking protocol is implemented.
When a transaction is encountered, a lock request is issued for each object manipulated within
the transactions. Upon acquiring locks for all objects, the transaction is committed by copying all
update events (e.g., edge write events and data write events) to the interleaved trace.

There can be a variety of locking granularities associated with locks. For instance, an example
of coarse granularity is the entire persistent store or a page of the persistent store. With the
notion of object-oriented data management systems, data can be viewed as objects and thus the
granularity of a lock can be in terms of an object. Access to an object can be in terms of shared
access and exclusive access (e.g., read access and write access, respectively). At the level of the
trace, manipulations to objects can be identified by the trace event type. These events can be
classified as either a read access or a write access. Thus, we have chosen only to support read
and write locking. We looked at the possibility of supporting update locks to avoid the common
deadlock problem of two processes requesting a read lock on an object and then later requesting a
write lock on the same object to update it. However, we did not implement the update lock mode.

6.6.3 Garbage Collector Interaction

In analyzing garbage collection algorithms, in the context of a multi-user environment, the following
two invariants have been identified by Amsaleg et al. [2]:

1. When a transaction cuts a reference to an object, the object is not eligible for reclamation
until the first garbage collection that is initiated after the completion (i.e., commit or abort)
of that transaction.

2. Objects that are created by a transaction are not eligible for reclamation until the first garbage
collection that is initiated after the completion of that transaction.

These invariants help to protect objects that have been disconnected and reconnected to the
reachability graph as well as newly created objects. The interleaved traces produced by the trace
merger must prevent premature garbage collection of objects. The garbage collection events, no
garbage collection begin and the no garbage collection end, are incorporated into the in-
terleaved trace produced by the trace merger to protect objects that cannot participate in a garbage
collection. These events are used as “weak transaction begin/end” indicators. Thus, if a garbage
collector is executing, it cannot collect partitions that contain objects protected by the no garbage
collection events.

In addition to the above, Amsaleg et al. [2] found that the two-phase locking protocol guar-
anteed the correctness of the persistent store in the presence of a garbage collector that ran as
an independent process without holding locks. That is, all accesses to pointers in the persistent
store are performed under strict two-phase locking and this prevents the garbage collector from
reclaiming objects prematurely.

67

6.6.4 Overview of Implementation

The current implementation of the trace merger is a proof-of-concept implementation. It supports
only round-robin scheduling of the pseudo-processes representing clients manipulating a persistent
object store. It also supports only two-phase locking. The implementation supports the insertion
of alternative transaction models, concurrency control models, and scheduling algorithms. Below,
we present an overview of the trace merger implementation.

Architecture of the Trace Merger

Figure 6.5 presents the architecture of the trace merger. As the diagram shows, the trace merger
consists of several components: a Main, a Scheduler, a Swapper, a ClientCoordinator, and a Lock-
Manager. We consider Figure 6.5 from top to bottom. The file Workload.asc is created by the
user and contains the number of clients participating in the generation of the workload, the names
of the trace files generated from single-user workloads, a client number for each client, and the tick
rate at which clients are to execute. It also contains the maximum number of events that make up
a time slice. This file is used as input to the Main executable. Main creates a ClientCoordinator,
serving as a process in the simulation, for each client participating in the generation of the multi-
user workload. The ClientCoordinator keeps track of the state of the pseudo-process (e.g., state
of current transaction, locks owned by the transaction, state of the process, ready or blocked).
Associated with each ClientCoordinator is the trace file that was generated while executing the
workload in a single-user environment. Main creates a list of the ClientCoordinators and invokes
the Scheduler. The Scheduler selects an eligible client to be processed and keeps track of clients
whose workload has been completely processed.

Upon selecting a client to be processed, the Scheduler invokes the Swapper executable. The
Swapper also serves as the Transaction Manager. The events of the traces are processed by their
type. When a transaction start event is encounter, all events until the transaction end event or the
transaction abort event are processed as part of the transaction. The Swapper requests a lock for
each event of the transaction that manipulates an object (e.g., events such as a read data event,
a read edge event, a write data event, or a write edge event). Once a transaction commits, the
Swapper copies all update events to the interleaved trace.

The LockManager grants a lock request made by the transaction manager if there is no con-
flict. If a lock request conflicts with an existing lock request but does not cause deadlock, the
LockManager delays the lock request. Requests that may end up in deadlock are denied by the
LockManager. The LockManager returns the status of the lock request to the Swapper. Depending
on the status of the lock, the Swapper will either continue processing its current pseudo-process or
discontinue processing it by placing it in a wait state.

The Swapper updates the state of the ClientCoordinator when transactions are encountered
during the processing of the trace file associated with the ClientCoordinator. Upon completion
of a time slice, the Swapper again updates the state of the ClientCoordinator and returns to the
Scheduler to get its new pseudo-process.

Below, we discuss the following activities of the trace merger in more detail: scheduling a
process, transaction processing, and conflict detection by the lock manager.

Selecting a ClientCoordinator for Processing

The scheduler uses three criteria in selecting a ClientCoordinator to be processed. These criteria
are as follows:

68

Client 1 Trace

%\{\/ﬂl:k)a‘df& c1: ClientCoordinator
' A B Begin Trace
—~ __ reads / opens
creates
/
Main End Trace
\ creates
\\ - - Client 2 Trace
invokes \ c2:ClientCoordinator 1
l o —
Begin Trace
opens
7
Scheduler / P -
e -
List of y e
Clients — " updates ~ End Trace
. 7 " state
ci — ~ v /s / e
B @2 -~ selects from invokes e P " reads events
// -
s
/s ~
/ /
1 7
| Swapper requests locks LockManager
: and . -~)
Transaction releases locks IntHashTbl * lockTable
Manager
|
| writes events
Begin Trace IntHashTbl
Interleaved
Trace
End Trace
Figure 6.5: Architecture of the Trace Merger.
*

69

o The order of the ClientCoordinator in the original list that was sent to the Scheduler. Thus,
the ClientCoordinator is first selected based on a round-robin algorithm.

e The runable state of the ClientCoordinator. The ClientCoordinator may be in a ready or a
wait state. If the ClientCoordinator is waiting on a lock request, then it can not run until
the lock has been granted.

o The status of the current transaction of the ClientCoordinator. If the lock manager has
indicated that a ClientCoordinator must abort its current transaction and it is not the active
ClientCoordinator, the Scheduler will select the ClientCoordinator of the aborted transaction
when the Swapper requests a new ClientCoordinator to process.

Once a ClientCoordinator has completed processing, the Scheduler removes it from the list
of active ClientCoordinators. Scheduling of ClientCoordinators continues until all are completely
processed.

Process of Acquiring Locks

Objects are associated with locks through the use of the logical object identifier of the object. The
object identifier serves as the name of the lock. When an operation is applied to an object, a lock
must be acquired for the object. For example, the edge read event requires that a lock with a
locking mode read be acquired for the object that contains the edge.

The lock manager is responsible for determining which lock requests are granted. In order to
determine whether a lock request is granted, the lock manager uses the conflict detection algorithm
that is illustrated in Figure 6.6. The conflict detection algorithm is a simplified version of the
conflict detection algorithm implemented in the operation system for the Wang Laboratories main
frames. The first step of this algorithm is to check whether the lock request is compatible with
the current mode of the lock associated with the object of the request. To check the request’s
compatibility, the lock manager compares the mode of the lock request with the existing mode of
the lock using the compatibility matrix of Figure 6.6. This compatibility matrix was developed
by Daynes [20] in their implementation of a concurrency control model for persistent Java. As
shown in Figure 6.6, a compatibility matrix is a two dimensional table. One dimension of the
table represents the current mode of the lock associated with an object and the other dimension
represents the mode of the lock request. If there is no conflict, the lock request is granted. However,
if there is a conflict, the lock manager then checks to see if there is only one owner of the lock and
that owner is also the requester of the lock. If this is the case, the lock manager then grants the
lock. However, if there is more than one owner or the owner is not equivalent to the requester,
the lock manager checks to see if the requester can wait on the lock. In order to determine if the
requester can wait on the lock, the lock manager initiates a deadlock detection algorithm. If as a
result of waiting, the requester will not cause a deadlock, the requester is allowed to wait. However,
if a deadlock will occur, one of the conflicting ClientCoordinators is selected to abort its current
transaction.

Once a transaction is committed or aborted, the lock manager removes all of the lock requests
associated with the transaction by requesting the list of locks from the ClientCoordinator. If the
only owner of the lock is the ClientCoordinator of the committed transaction, the lock is removed
from the lock table.

70

Lock Request

Check Compatibility
of locking modes

Check if lock owner
is also requester

Check for
possible deadlock

Abort
Transaction

ClientCoordinator
L.ockMode
Lock Key Value

mode requested

R w
mode of Free| grant grant
thelock R | grant deny

w deny deny

Are locking modes compatible?

no

isOnlyOwner(LockOwner,ClientCoordinator)

no

deadLockDetected(Lock, ClientCoordinator)

Will a deadlock occur
if allowed to wait?

yes

Lock
denied

Lock
yes l:> granted

Lock
yes (:> granted

wait
for
o >

Figure 6.6: The Conflict Detection Algorithm of the Lock Manager.

71

ClientCoordinator] List
list<Lock> transLockSet Lock *transLock
Lock *waitLock
LockManager
IntHashTbl * lockTable
]
IntHashTbi | Lock LRQueue

LRQueue requestQueue

LRQueue waitQueue

LockRequest

Figure 6.7: Diagram of the Relationships of the Lock Object.

Lock Associations

Several objects of the trace merger are associated with a lock as shown in Figure 6.7. The lock
manager maintains a table of locks. These classes and their relationships are based on Gray’s
presentation of an implementation of a lock manager [25]. Each lock has two lock request queues, a
queue of granted requests and a queue of requests that are waiting to be granted access to the lock.
If a ClientCoordinator is allowed to wait on a lock, the pointer to the lock is kept until the lock
has been granted. All locks requested by an active transaction of a ClientCoordinator are saved in
a transaction lock list.

Processing of Aborted Transactions

A transaction may be aborted in two cases. First, the transaction is aborted due a decision by
an application of the single-user workload. While processing the trace file of a client, if an abort
trace event is encountered, the Swapper initiates the abort processing. If there are any events that
caused modifications to the persistent store, these events are discarded. The lock manager then
unlocks all of the locks on objects manipulated by the aborted transaction.

A transaction that is aborted by the lock manager due to lock conflicts is retried until it
completes successfully. In this case, the lock manager unlocks all of the locks associated with the
aborted transaction. Then the events of the transaction are setup to be processed again by the

72

Swapper.

6.7 Summary

This chapter described a new approach to generating multi-user workloads by executing instru-
mented applications to generate any number of single-user workloads and then merge them to
generate a trace that captures their combined behavior. The applications are instrumented using
the AMPS toolkit, described in Chapter 4, and PTF, presented in Chapter 3. The instrumented
applications are then executed under the TCL interpreter to generate several traces of single-user
workloads. Different combinations of these traces are then merged using a trace merger that com-
bines the traces by simulating the concurrent execution of the clients under a concurrency control
policy and a transaction model.

The goals and issues with their resolutions were also discussed. One of the most difficult issues
of the design of the instrumentation infrastructure was how to allow sharing of data of the persistent
store. With the goal of generating single-user workloads that were not dependent on one another,
we chose to limit the type of update operations to those that did not reorganize the structure of
the persistent store in regions that were manipulated by more than one client.

The chapter concluded with a description of an example implementation of a trace merger that
was written in C++. The trace merger supports flat transactions and implements the two-phase
locking protocol.

In the next chapter, we demonstrate the utility of the instrumentation infrastructure described
in this chapter through the use of a C++ implementation of the OO7 multi-user benchmark.

73

Chapter 7

Experience with OO7 Multi-user
Workload Specification

As part of this dissertation, a study of the OO7 multi-user benchmark was completed. In this
chapter, we describe our experiences using the infrastructure described in Chapter 6 with the OO7
multi-user benchmark as the application.

This chapter begins with a discussion of the design of the persistent store that is used in
the multi-user OO7 benchmark followed by a description of the parameterized workload. The
second section describes the modifications that were made to operations of the OO7 benchmark to
guarantee that the interleaved trace produced by the trace merger is correct semantically. In the
third section, we present some preliminary experiments based on single-user workloads that were
generated from an instrumented version of the multi-user OO7 implementation. We conclude this
chapter with observations made as a result of this study.

7.1 Overview of the Multi-user OO7 Benchmark

The designers of the original OO7 benchmark realized that there was a gap in the information
provided by the existing performance studies because very few provided insight into multi-user per-
formance [9]. To address this gap, they developed a multi-user persistent object system benchmark.
This benchmark is a customizable benchmark generator that consists of an extended design of the
OOT persistent store and a parameterized workload. By combining the primitives of the workload,
a variety of workloads can be generated. The benchmark generates symmetric workloads, which is
defined by Carey et al. [9] as a workload in which all the clients behave similarly with respect to
accessing data (e.g., all clients generate their workloads with the same set of input parameters).
According to Carey et al. [9], asymmetric workloads can also be generated using the parameterized
workloads. An example of an asymmetric workload is a workload consisting of two clients in a
producer/consumer relationship.

7.1.1 Description of the OO7 Persistent Store

The OO7 multi-user persistent store consists of modules as described in Section 5.1 with a few
modifications. In the original design, the base assembly of a module contained two associations: a
private association and a shared association. However, the composite parts that were selected for
each association were contained in one collection of composite parts. The private composite parts
were associated with only one module while the shared composite parts were randomly selected

74

from the collection of composite parts. Thus, there were no truly private parts. As stated in [9], it
(e.g., the design of the persistent store) provided no way to have a client transaction read from its
private composite parts and update shared composite parts with out interfering with the private
reads of other clients.

To address this problem, the designers of the OO7 multi-user workload removed the shared
association from the base assembly and created a shared module for shared access. The shared
module then introduced another set of composite parts that were referenced by the base assemblies.

A major goal of the designers of the multi-user OO7 persistent store was to design a scalable
extension to the single-user OO7 persistent store. In order to achieve this goal, the persistent store
contains one private module for each client and the shared module grows proportionately with the
number of clients. For each client, the shared module contains a base assembly that consists of 200
composite parts.

In our case study of the OO7 multi-user benchmark, the persistent store is slightly different from
that described above. The base assembly of modules still contains a shared association of composite
parts as described in the original OO7 benchmark. However, there are two sets of composite parts:
a private set and a shared set as shown in Figure 7.1. The composite parts of a private association
of a base assembly are assigned from the private set of composite parts. The shared composite
parts of a base assembly are randomly assigned from the shared composite part set. As shown in
Figure 7.1, the number of composite parts is represented by I where I equals 3/4(N) and N is
the number of private composite parts. The number of shared composite parts created is almost a
1:1 ratio to the number of private composite parts. It is slightly less to increase the possibility of
contention between clients accessing the shared composite parts.

As described above, the persistent store of our study consists of a private module for each
client. However, there is no one entity that is the shared module in the persistent store of our study.
Instead, it is formed from the shared associations of the base assemblies of all the private modules.
As in the original OO7 multi-user specifications of the persistent store, our design of the persistent
store is also scalable with the addition of more clients. In other words, the logical shared module,
consisting of the all the shared composite parts of the base assemblies of each private module as
well as their respective atomic parts, grows as the number of clients increases.

Lastly, the persistent store consists of only three connections per atomic part. This is consistent
with the specifications of original design of the multi-user OO7 benchmark specification.

7.1.2 Description of the O07 Multi-User Workloads

The multi-user OO7 workload consists of multiple clients running a series of parameterized trans-
actions. Each transaction consists of a combination of basic operations. These operations can be
categorized as follows: private reads, private writes, shared reads, and shared writes. The private
operations are operations that access the private modules of the persistent store and the shared
operations manipulate the shared module of the persistent store. In the study, the shared opera-
tions access the shared base assemblies of the private modules. Thus, a shared operation can access
shared data from any of the private modules.

The read-only operation is formed from traversal T1. A composite part of a base assembly is
selected and a depth-first traversal of the atomic part subgraph is performed on the selected com-
posite part. The read-write operation is formed from traversal T2b of the original OO7 benchmark.
In Traversal T2b, a depth-first traversal similar to T1 is performed on the atomic part subgraph
and as each atomic part of the subgraph is visited, the X and Y attributes of the atomic part are
swapped.

75

Module

Complex
Assemblies \\

— 0

Base
Assemblies
— AN
= NN
/ _ ~ L
T T A \\\
| o S
|
| |
‘ 1 2 N 1 2 |
‘ Private Composite Parts Shared Composite Parts

Figure 7.1: Diagram of the Module Object with Private and Shared Composite Parts.

76

beginTransaction;
for RepeatCount do

if this is a shared transaction
start at the root of the assembly hierarchy of the shared module;

else
start at the root of the assembly hierarchy of the private
module for the specific client;

Follow a single random path down the hierarchy to a base assembly;
From the base assembly, perform some operation on a base assembly;
Sleep(SleepTime) ;

end;

endTransaction;

Figure 7.2: Generic Multi-user Transaction.

A generic version of the pseudo-code for a traversal transaction for a given client, which was
extracted from [9], is shown in Figure 7.2. (This generic version is based on the original OO7 multi-
user benchmark specifications.) In Figure 7.2, RepeatCount indicates how many composite parts
will be visited during a given transaction. It can also be thought of as the number of basic operations
per transaction. The Sleep Time is used to control the level of activity during the transaction.
By assigning a value greater than zero to the Sleep Time, one can model transactions that reflect
the behavior of an interactive session. If its value is zero, the transaction does not consist of any
idle time.

To generate a workload for a client, input parameters are supplied to the workload generator.
The four input parameters are a vector of percentages representing each basic operation, a Re-
peatCount, a Sleep Time parameter, and a parameter to represent the number of operations per
transaction.

Operations of a workload are determined based on the input percentages supplied for a given
client. Each basic operation is represented by this vector,(rp,rs,wp,ws) where rp represents the per-
centage of private reads, rs represents the percentage of shared reads, wp represents the percentage
of private writes, and ws represents the percentage of shared writes. For example, suppose that
the vector is (50,0,50,0), the workload generated would consists of transactions that contain 50%
read-only operations and 50% update operations applied to the private module of a given client.

These percentages can be thought of as the probability that an operation is generated. A
random number is generated modulo 100 and the resulting value along with the input percentages
determines which of the basic operations is executed.

7

7.2 Modifications to OO7 Multi-user Specification

The multi-user workload does not include an operation for reorganizing the persistent store. In
our study, we have added the two reorganization functions, Reorgl and Reorg2, that were added
by Yong et al. [46]. Thus, there are six operation percentages, two additional ones to generate
transactions that contain one of the reorganization functions. The new operation vector is as
follows: (rp,rs,wp,ws,rl,r2) where r1 represents Reorgl() and r2 represents Reorg2(). The vector
of percentages must add up to 100%.

The original reorganization functions affected all of the composite parts of the OO7 persis-
tent store. For example, the function Reorgl() iterates through all of the composite parts, delet-
ing/inserting half of the atomic parts of the subgraph and counting up the number of atomic parts
processed in this manner. All modules are processed during the execution of this function. Thus,
one invocation of the original function affects the generation of all clients’ workloads regardless of
which client originated the reorganization operation.

To eliminate the dependency among client workloads that would occur by this function, the
reorganization functions have been modified so that structural modifications are applied only to
the atomic parts subgraph of private composite parts of the module owned by the client that issued
the reorganization function. To accomplish the same effect as the original reorganization functions,
each client’s workload would consist of a reorganization operation.

In our study, the SleepTime parameter is not used to generate the client workload. To model
idle time within transactions, a SleepTime parameter can be included on a per client basis to the
trace merger. The SleepTime parameter is in terms of events. It cannot be greater than the number
of events used as the value for a time slice. The Swapper subtracts the value of the SleepTime
parameter from the value of a time slice and then determines how many events of the trace to
process when a sleep time is associated with a Client.

7.3 Experiments

In this section, we describe two experiments conducted using workloads generated from an instru-
mented version of the OO7 multi-user application. The first experiment is designed to examine the
level of contention of three clients that are accessing the shared region of the persistent store. The
second experiment is used to compare the events generated by the original OO7 Reorgl() function
and the events generated by the reorganization function that was implemented to meet the needs
of our infrastructure.

7.3.1 Experiment 1: Three Client Producer/Consumer Multi-user Workload

In this experiment, a very small persistent store was generated using the input parameters shown
in Table 7.1. The persistent store was created as a separate transaction and its contents are shown
in Table 7.2. Table 7.3 provides a summary of the events generated during the creation of this
persistent store.

In this experiment, the clients interact with one another in a producer/consumer relationship.
The workload of Client 1 consists of 10% read-only operations to the shared composite parts
of the base assemblies and 90% update operations to the shared composite parts of the base
assemblies. The workload of Client 2 contains transactions whose operations consist of 90% read-
only operations to the shared region of the persistent store and 10% update operations to the
shared region. The workload of Client 3 contains transactions whose operations consist of 40%

78

Table 7.1: Parameters for a Very Small 007 Persistent Store with 3 Modules.

{ Parameter | Value |
NumAtomicPerComp 10
NumConnPerAtomic 3

DocumentSize (bytes) 2000
ManualSize (bytes) 100000

NumCompPerModule 15
NumAssmPerAssm 3
NumAssmLevels 3
NumCompPerAssm 5
NumModules 3

Table 7.2: Total Number of Objects by Type Contained in the Persistent Store.

| Type of Object | Total Number | .
Module 3
Complex Assembly 12
Base Assembly 27
Private Composite Part 45
Shared Composite Part 33
Atomic Part 780

Table 7.3: Number of Events Captured in Workload to Create Persistent Store.
Event Types l Client 0 |

co 5196
ew 34385
er 12337
dw 27926
dr 39001
ST 1
grt 0
ts 1
te 1

79

Table 7.4: Parameters to Generate Client Workloads.
| Workload Parameters | Client 1 | Client 2 | Client 3 |

Private Read Percentage 0 0 0
Private Write Percentage 0 0 0
Shared Read Percentage 10 90 40
Shared Write Percentage 90 10 60

Reorgl Percentage

Reorg2 Percentage

Number of Transactions
Number of Ops per Transaction

N ot OO
N OO O
N OO O

Table 7.5: Operations Executed to Generate Each Client’s Workload.
Client | Transaction | Private | Shared | Private | Shared | Reorgl | Reorg2
Number Read Read Write Write

Client 1

Client 2

Client 3

CUl WA = Ot R W N = Ot R W N =
coocoococoocoojoco oo
MNO R ONMN RN O oo
cCoocoocococ oo o
CONMNO O HFHOIN NN NN
coocooooocooloooco o
coocoojcoccoo oo oo

read-only operations to the shared region and 60% write operations to the shared region. The
input parameters to generate the workloads of the three clients are shown in Table 7.4. The first
six input parameters form the operation vector for each of the three clients. The repeat count
parameter is represented by the number of operations per transaction. These input parameters
produce the combination of operations shown in Table 7.5. The basic operations of Table 7.5 were
then used to generate a workload for each of the three clients. These workloads were captured in
traces, that are characterized by the number of events by type in Table 7.6.

These three traces were then used as input to the trace merger. The time interval input had a
value of 1000 events. The SleepTime parameter for each of these clients had a value of zero. Client
1 had a tick rate of one. Client 2 has a tick rate of 2. Client 3 had a tick rate of 1. The trace
merger used this input to generate an interleaved trace.

In this experiment, the trace merger was run several times. Some of the runs varied the number
of clients participating in the generation of the multi-user workload, (e.g., two clients or three
clients). The time interval input was also changed with the runs. The average number of lock
requests per workload was 2957. When three clients participated, the total number of lock requests
was 8870 when there was no contention and 8871 when there was one wait. In this experiment,

80

Table 7.6: Number of Events in the 3 Client Producer/Consumer Workload Traces.

Event Types | Client 1 | Client 2 | Client 3 |

co 0 0 0
ew 0 0 0
er 2513 1581 1588
dw 320 40 100
dr 2081 1221 1258
sr 0 0 0
grt 5 5 5
ts 5 5 5
te 5 5 5

Table 7.7: Parameters for a Small 007 Persistent Store with 2 Modules.

Parameter Value
NumAtomicPerComp 20
NumConnPerAtomic 3
DocumentSize (bytes) 2000
ManualSize (bytes) 100000
NumCompPerModule 150
NumAssmPerAssm 3
NumAssmLevels 6
NumCompPerAssm 3
NumModules 2

there was almost no contention for locks among the concurrent clients.

Further experimentation was then completed to determine why the contention between clients
was so little. New traces were generated using a persistent store that was produced with a set of
shared composite parts that was half the size of the set of private composite parts. This change had
little effect on the the contention. In an experiment in which three clients were used to generate a
multi-user workload, two of the clients waited once for a lock. ’

Thus, we have concluded that the lack of contention is mainly due to the actual OO7 multi-user
application. When traversing the hierarchy for each operation, the complex assemblies, the base
assemblies, and the chosen composite part of the shared subassemblies is randomly chosen. In
addition to a random selection of objects to visit, the shared subassemblies of the based assemblies
are randomly chosen. The combination of random selections is enough to reduce the amount of
contention to a minuscule amount.

7.3.2 Experiment 2: Two Client Multi-user Workload with Reorganizations

The small persistent store was generated using the input parameters shown in Table 7.7. The
persistent store was created as a separate transaction. The content of this persistent store is shown
in Table 7.8. Table 7.9 provides a summary of the events generated during the creation of this
persistent store.

In this experiment, the two clients generate workloads based on the operation vectors and other

81

Table 7.8: Total Number of Objects by Type Contained in the Persistent Store.

| Type of Object | Total Number |
Module 2
Complex Assembly 242
Base Assembly 486
Private Composite Part 300
Shared Composite Part 225
Atomic Part 10500

Table 7.9: Number of Events Captured in Workload to Create Persistent Store.
| Event Types | Client 0 |

co : 68218
ew 450111
er 179967
dw 36534
dr 546302
sr 1
grt 0
ts 1
te 1

input parameters shown in Table 7.10. Both operation vectors of Table 7.10 indicate that only
one type of operation, Reorgl(), is to be performed. The other input parameters indicate that the
workload should consist of one transaction containing one operation. The operations that were
used to generate the workloads for both clients are shown in Table 7.11.

The combined number of object creations for Client 1 and Client 2 are presented in Table 7.12
along with the number of object creations generated on the same persistent using the original OO7
Reorgl() function. As stated above, the numbers confirm that applying the reorganization function
of our study to all of the modules will give you results similar to that of the original Reorgl()
function. For example, the combined total of new atomic parts created during the execution of the
workloads of Client 1 and Client 2 is 2970 and the number of newly created atomic parts generated
through the execution of the original Reorgl() is 3000. For completeness, Table 7.13, a table of all
the events generated by the three workloads, is included.

7.4 Observations

As result of studying the OO7 multi-user workload benchmark, the following observations were
made:

e Observation 1: The infrastructure designed and developed in this dissertation is well suited
for the OO7 multi-user benchmark. Using AMPS to instrument the OO7 multi-user appli-
cation allows us to capture the workload of a client in a trace. Each of the single client
traces can then be combined in a variety of ways to generate a trace that reflects a multi-user

82

Table 7.10: Parameters to Generate the Reorganization Workloads.
| Workload Parameters | Client 1 | Client 2 |

Private Read Percentage 0 0
Private Write Percentage
Shared Read Percentage 0
Shared Write Percentage 0
Reorgl Percentage 100 100
0
1
1

o oo

Reorg2 Percentage
Number of Transactions
Number of Ops per Transaction

[S

Table 7.11: Operations Executed to Generate Each Client’s Workload.

Client | Transaction | Private | Shared | Private | Shared | Reorgl | Reorg2
Number Read Read ‘Write Write

Client 1 1 0 0 0 0 1 0

Client 2 1 0 0 0 0 1 0

Table 7.12: Number of Events Per Object Type Created by Reorgl() Functions.

| Event Types ! Client 1 | Client 2 | Client 1 + Client2 | Original Reorg1() |
Atomic Part 1470 1500 2970 3000
Connection 6009 6177 12186 12307
Assoc 2940 3000 5940 6000

Table 7.13: Number of Events Generated by the Reorganization Workloads.
Event Types | Client 1 | Client 2 | Original Reorgl() |

co 10419 10677 21307
ew 69735 71385 142535
er 173687 177459 346164
dw 68478 70235 140100
dr 238422 243916 477927
ST 0 0 0
grt 1 1 1
ts 1 1 1
te 1 1 1

83

behavior without rerunning the OO7 multi-user application.

e Observation 2: Although the time to generate an in-memory version of the persistent
store as well as the single-user workloads increases with the size of the persistent store, the
flexibility afforded during the processing phase compensates for the length of time taken
during the collection phase.

e Observation 3: Some researchers have based their experimentation on the assumption that
access to persistent object stores is random and thus there is rarely any contention in some
persistent object applications [36]. Our limited experimentation with the OO7 multi-user
benchmark that was performed in our study supports this assumption.

e Observation 4: Prior to experimenting with the multi-user workload, all workloads were
generated with the no garbage collection beginand no garbage collection end events
as “weak transactions”. With the multi-user workloads, we introduced the flat transaction
model that caused us to look at the creation of events more closely. Through the design
process, we became aware of the inadequacy of the events that were designed to capture
the creation of objects of the persistent store. Since we capture persistent objects at the
application level, we start recording the manipulations of objects as soon as an object is
created. This is partially due to the fact that the applications used in our study consist of
objects that are all persistent. These applications also have no operation to indicate when an
object becomes persistent.

“Although PTF does not adequately capture object creation, it does produce semantically
correct traces. However, the traces contain manipulations of the object prior to its persistence.
Thus, a persistent object system would need to keep track of which events occurred before it
made an object persistent and discard the extra events.

In summary, the OO7 multi-user benchmark has provided us with an application to illustrate
the feasibility of our instrumentation infrastructure for generating multi-user workloads. Analysis
of this application with respect to contention among clients and storage management of persistent
object systems can provide some initial insights that must be further tested in real applications.

84

Chapter 8

Related Work

Trace-driven simulation has been used effectively in many different areas within computer systems,
including the evaluation of persistent object systems. We begin this chapter with a short review
of this work. Next, we consider how this prior work relates to ours. Specifically, we consider prior
work in trace formats and in application benchmarking and modeling.

8.1 Trace-Driven Simulation

In addition to Cook et al. [13, 15, 16], whose work is described in Chapter 2, one other group has used
trace-driven simulation for performance studies of persistent object systems. Scheuerl et al. [40] used
event traces to analyze the I/O performance of various recovery mechanisms. Their analytical 1/O
cost model, MaStA, estimates performance for a given configuration, and consists of an application
workload, a recovery mechanism, and execution machine architectures. Using their system, accesses
are recorded as trace events during the executions of synthetic workloads. The traces are then used
in the following ways [39]: to analyze and validate assumptions of the actual MaStA model; to
examine real and simulated devices to calibrate the device simulators; and to compare 1/O costs of
the devices.

8.2 Trace Formats for Performance Evaluation

Trace formats have been developed to capture information about the behavior of applications in
various areas of computer systems design and evaluation, such as in studies of memory manage-
ment [26, 28] and storage management in persistent object systems.

Our PTF design is most closely related to the work of Scheuerl et al., who developed the MaStA
1/0 trace format [39] to study the cost of various recovery mechanisms with respect to I/O. The
trace events of MaStA record information on reading, writing, and synchronization. The format
for an event is a fixed size of two 32-bit words. Each event consists of 7 fields. The 7 fields of a
trace entry represent the following: an operation, an I/O category, a pattern, a region number, a
block number, and a stream number. Integer values are stored in bigendian format. In the trace
format, the use of different logical areas of storage are represented by regions. A synchronization
operation can occur over more than one of these regions. The stream field of the entry is used to
capture concurrency. A stream follows threads of I/O accesses; thus, reads and writes are recorded
with respect to a thread. The developers have defined four operations: read, write, sync (the
synchronization operation), and block. The trace format is designed to allow up to 250 new events.

85

Since the developers are categorizing I/O, the second byte for read and write entries is an I/O
category. There are four I/O categories: data, recovery, installation, and commit.

As shown in the description of MaStA provided above, the MaStA format captures device-level
physical behavior. Our traces capture workloads at a logical level. In designing PTF, we recognize
the need for capturing behavior in traces at many different levels. However, we have focused on an
implementation-independent representation to provide a trace that can be used in a wider variety
of contexts.

8.3 Performance Evaluation Based on Workload Models

In our approach to modeling application workloads, we facilitate modeling by providing a C++
framework for implementing and instrumenting a model of a persistent application, and by providing
a TCL interface for rapidly constructing model workloads. Relatively little related work in this area
has focused on providing explicit support for workload modeling. Here we mention three efforts of
which we are aware.

Missikoff and Toiati [32] have developed a system, MOSAICO, that supports the design, con-
ceptual modeling, and rapid prototyping of an object database application. The system consists
of a graphical user interface to model the application. The model is then encoded in the language
TQL++. This system also consists of a subsystem that compiles the conceptual model to generate
executable code. MOSAICO differs from AMPS in the level of support it provides. While we
support users with a C++ library and scripting interface, MOSAICO provides much higher-level
tools, such as a programming language and visual interface. Our approach, while more modest,
still has advantages. For example, we feel that AMPS is more likely to be adopted by users having
pre-existing applications that they would like to model.

Another approach to modeling an object application has been developed by Schreiber [41] in the
development of the JUSTITIA benchmark. Schreiber models an object application by categorizing
the objects of the applications into one of three types: static objects, simple dynamic objects, and
complex dynamic objects. Using these three types, Schreiber models the database of the application
.as a tree structure in which the number of leaves of the tree can vary at different levels. The major
disadvantage of this approach is that there are no clearly defined methods for transforming a
persistent store structure into a corresponding tree-like structure. AMPS differs from JUSTITIA
in that it allows application data to be modeled as an arbitrary graph structure.

The last approach that we discuss was developed by Darmont et al. [17]. Darmont et al. devel-
oped a generic benchmark, OCB (the Object Clustering Benchmark), to evaluate the performance
of clustering policies. The persistent store of the benchmark is modeled using several input parame-
ters: NC, MAXNREF, BASESIZE, NREFT, and NO. The parameter NC indicates the number of classes that
are to be contained in a persistent store. The parameter MAXNREF represents the maximum number
of references contained in an instance of a class, and the parameter BASESIZE represents the base
size of an instance. The parameter NREFT represents the number of different types of references.
By allowing different references to point to the same class, several kinds of relationships can exist
between the objects of the persistent store, zero-to-many, one-to-many, and many-to-many. The
types of references can be chosen randomly or they can be set by the developer. The parameter NO
represents the number of objects of the persistent store. The generation of the persistent store be-
gins with defining the various class structures up to NC. Once the classes are defined, a consistency
check is performed to eliminate cycles and discrepancies in the inheritance graph. Using a random
distribution to choose a class structure, objects are created up to NO. As with our modeling, the
persistent store is structured as a graph. In our model, we capture the specific information about

86

data members of a class; however Darmont et al. are only concerned with the pointers of a class
and the size of the object. One advantage of their approach to modeling is that it allows flexibility
in the preciseness of the model of classes of a given schema and the relationships between these
classes.

87

Chapter 9

Conclusion

The work of this dissertation addresses the problem of a lack of tools to perform research in the area
of performance evaluation of persistent object systems. This dissertation also provides a framework
in which data can be shared among researchers in the form of traces that capture the behavior of
the generated workloads.

Specifically, we described an infrastructure for generating and sharing experimental workloads
for the purpose of evaluating persistent object systems. The infrastructure is used to generate
both single-user workloads and multi-user workloads. Our approach consists of three components:
PTF, a common trace format, AMPS, a toolkit to aid in the modeling and instrumentation of
persistent object applications, and a processing component to merge single-user workloads to form
a multi-user workload. The development of an instrumentation infrastructure as described in this
dissertation provides the following benefits: the process of building new experiments for analysis
is made easier; experiments to evaluate the performance of implementations can be conducted and
reproduced with less effort; and pertinent information can be gathered in a cost-effective manner.

PTF captures the structure of a persistent application’s data and the time-varying behavior of
an application. PTF is novel in that it captures that behavior at the application level. In particular,
the events capture information about the manipulation of objects at a logical level independent of
the physical level. Because we used this approach, a single PTF trace can be used to evaluate any
number of different persistent object system implementations.

AMPS is designed to aid in the creation and instrumentation of a model of a persistent object
application. Through its C++ libraries, the effort required to implement a model of an application
is reduced in three ways. First, the process of instrumentation is not as error prone as it is with hand
instrumentation because instrumentation is localized to methods that access fields and to classes
provided by the toolkit. Second, modeling and instrumentation of traversals of an application are
reduced using the generic traversals provided by the toolkit. Finally, through the TCL interpreter
environment, once the schema and behaviors of an application have been modeled, workloads can
be easily scripted.

A trace merger is used to simulate a multi-user environment in order to create a multi-user
workload under a particular concurrency control policy. These workloads allow some sharing of the
data of the persistent store. The infrastructure for generating multi-user workloads is novel in that
traces of single-user workloads are processed by the trace merger to produce a trace that captures
the multi-user behavior of the combined single users. This infrastructure enriches the semantics of
multi-user workloads, thus allowing for a broader range of experimentation.

Both PTF and AMPS represent only the beginning of a more complete system. There are still
some issues that need to be addressed in developing a general, yet effective, trace format. In the

88

remainder of this chapter, we pose some questions that reflect open issues and future work.

9.1 Future Work

One of the major issues we have carefully considered is how to separate the logical and physical
workloads. Nevertheless, an important question that remains to be answered is at what application
level the workload should be captured. For example, are operations on collections, such as “add
an element”, represented with a single high-level trace event or with a sequence of low-level events
reflecting a particular implementation of the collection? In our current format, we take the latter
approach, which means that the implementation of collections is implicit in our trace. As a result,
our format is not appropriate for studying different collection implementations directly.

Similarly, for indexed collections, the data structure representing the index and the manipula-
tions involved in doing a lookup are not captured in our format. Thus another issue that might be
addressed is the support in both PTF and AMPS to capture the structure and manipulations of
indexes. A basic question that remains is whether the behavior of indexes can be captured at the
application level. The answer to this question depends on the level of transparency provided by
the persistent object system. For instance, in the O2 system [34], the implementation of the index
is transparent at the application level. However, with the Exodus system indexes for collections
of an application are implemented at the application level. In systems that require indexes to be
created at the application level, it is possible to model the class specification of the index object
and then produce trace events. The question then becomes at what level of abstraction should the
manipulations to the index be captured within trace events.

Other, even more difficult issues arise when one attempts to capture the behavior of multi-user
workloads. One of the simplifying assumptions that was made in order to generate a multi-user
workload by merging single-user workloads was that program control was not dependent on data
values. An open issue that remains is whether this assumption can be relaxed and does it affect
the type of applications that can be modeled by the infrastructure. Futhermore, we have proposed
a model of sharing of data of the persistent store that restricts restructuring updates. Although we
allow some form of sharing that allows us to perform experimentation with interfering clients, we
do not know if our sharing model is sufficient for capturing multi-user workloads generated from
non-CAD-like applications.

In addition to enriching the sharing model, other transaction models and concurrency control
policies can be explored as part of future work. The optimistic concurrency control policy is used by
some researchers in analysis of distributed persistent stores and is a good candidate for an alternate
concurrency control policy for the trace merger.

- Lastly, a major issue is the question of how to get other analysts to adopt PTF and AMPS. The
issue of path-to-adoption is very important in many designs (e.g., consider how Java went from a
design to a widely used language), but is often not considered at all. The two main ways to get
users to adopt a new technology are to make it so valuable that they are willing to take the time
to learn the technology, at some cost, or to make the new technology easier to use than what they
are currently using (thus giving a benefit at no cost). In the context of PTF, the first approach
would involve convincing analysts to modify their current performance evaluation frameworks to
generate PTF traces. In our research, we have chosen the second path, which is to make PTF very
easy to generate. We do this by providing the AMPS toolkit to simplify the creation of workloads
and to make the generation of PTF traces almost automatic.

89

Bibliography

[1]

[2]

(10]

[11]
[12]

[13]

(14]

L. Amsaleg, M. Franklin, P. Ferreira, and M. Shapiro. Evaluating Garbage Collectors for Large Per-
sistent Stores. In OOPSLA Workshop on Object Database Behavior, Benchmarks, and Performance,
Austin, TX, October 1995.

L. Amsaleg, M. Franklin, and O. Gruber. Efficient Incremental Garbage Collection for Client-Server
Database Systems. Technical Report CS-TR-3370, Department of Computer Science, University of
Maryland, College Park, MD, October 1994.

M.P. Atkinson, K.J. Chisholm, and W.P. Cockshott. PS-Algol: An Algol with a Persistent Heap. ACM
SIGPLAN Notices, 17(7):24-31, July 1982.

M.P. Atkinson, L. Daynes, M.J. Jordan, T. Printezis, and S. Spence. An Orthogonally Persistent Java.
ACM SIGMOD Record, December 1996.

S. Banerjee and C. Gardner. Towards An Improved Evaluation Metric For Object Database Management
Systems. In OOPSLA Workshop on Object Database Behavior, Benchmarks, and Performance, Austin,
TX, October 1995. ‘

A.J. Berre, T.L. Anderson, and M. Mallison. The HyperModel Benchmark. Technical Report CS/E
88-031, Oregon Graduate Center, Beaverton, Oregon, 1988.

M. Butler. Storage Reclamation in Object-oriented Database Systems. In Proceedings of the ACM
SIGMOD International Conference on the Management of Data, pages 410423, San Fancisco, CA,
1987.

M.J. Carey, D.J. Dewitt, M.J. Franklin, N.E. Hall, M.L. McAuliffe, J.F. Naughton, D.T. Schuh, M.H.
Solomon, C.K. Tan, O.G. Tsatalos, S.J. White, and M.J. Zwilling. Shoring Up Persistent Applications.
In Proceedings of the ACM SIGMOD International Confernece on the Management of Data, pages
383-394, Minneapolis, MN, May 1994.

M.J. Carey, D.J. Dewitt, C. Kant, and J.F. Naughton. A Status Report on the 007 OODBMS
Benchmarking Effort. ACM SIGPLAN Notices, 29(10):414-426, October 1994,

M.J. Carey, D.J. DeWitt, and J.F. Naughton. The OO7 Benchmark. In Proceedings of the ACM
SIGMOD International Conference on the Management of Data, pages 12-21, Washington, DC, June
1993.

R.G.G. Cattell and D.K. Barry. The Object Database Standard: ODMG 2.0. Morgan Kaufmann
Publishers, Inc., San Francisco, CA, 1997.

W.P. Cockshot, M.P Atkinson, and K.J Chisholm. Persistent Object Management System. Software-
Practice and Ezperience, pages 49-71, 1984.

J.E. Cook, A.W. Klauser, A.L. Wolf, and B.G. Zorn. Semi-automatic, Self-adaptive Control of Garbage
Collection Rates in Object Databases. In Proceedings of the ACM SIGMOD International Conference
on the Management of Data, pages 377-388. SIGMOD, June 1996.

J.E. Cook, A.L. Wolf, and B.G. Zorn. The Design of a Simulation System for Persistent Object Storage
Management. Technical Report CU-CS-647-93, CUCS, Boulder, CO, March 1993.

90

[15]

[16]

(17]

(18]
[19]
[20]

21]

[25]
[26]
[27]

[28]

J.E. Cook, A.L. Wolf, and B.G. Zorn. Partition Selection Policies in Object Database Garbage Col-
lection. In Proceedings of the ACM SIGMOD International Conference on the Management of Data,
pages 371-382, Minneapolis, MN, May 1994.

J.E. Cook, A.L. Wolf, and B.G. Zorn. A Highly Effective Partition Selection Policy for Object Database
Garbage Collection. IEEE Transactions on Knowledge and Data Engineering, 10(1):153-172, January
1998.

J. Darmont, B. Petit, and M. Schneider. OCB: A Generic Benchmark to Evaluate the Performances of
Object-Oriented Database Systems. In Proceedings of the Sizth International Conference on Extend-
ing Database Technology (EDBT’98), pages 326-340, Valencia, Spain, March 1998. LNCS Vol. 1377
(Springer).

J. Darmont and M. Schneider. Model to Evaluate the Performance of OODBs. In Proceedings of the
25th Very Large Data Base Conference, pages 254-265, Edinburgh, Scotland, 1999.

C.J. Date. An Introduction to Database Systems, chapter 4, pages 391-414. Addison-Wesley System
Programming Series, 1995.

L. Daynes. Extensible Transaction Management in PJava. In The First International Workshop on
Persistence and Java (PJWI), Drymen, Scotland, September 1996.

Exodus Project Document, Computer Sciences Department, University of Wisconsin, Madison, WI. An
Introduction to GNU FE, 1993.

Exodus Project Document, Computer Sciences Department, University of Wisconsin, Madison, WI.
Using the EXODUS Storage Manager V3.1, 1993.

J. Gray. The Benchmark Handbook, chapter 2, pages 21-127. Morgan Kaufmann Publishers, San Mateo,
CA, 1993.

J. Gray. The Benchmark Handbook, chapter 7, pages 397-432. Morgan Kaufmann Publishers, San
Mateo, CA, 1993.

J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques, chapter 8, pages 449—488.
Morgan Kaufmann Publishers, San Franciso, CA, 1993.

M.D. Hill. Man Pages for Dinero. Computer Science Department, University of Wisconsin, Madison,
WI.

M. Holliday. Techniques for Cache and Memory Simulation Using Address Reference Traces. Interna-
tional Journal of Computer Simulation, 1:129-151, 1991.

E.E. Johnson and J. Ha. PDATS Lossless Address Trace Compression for Reducing File Size and
Access Time. In Proceedings of IEEE International Conference on Computers and Communications,
pages 213-219, Phoenix, AZ, May 1994.

T. Lindholm and F. Yellin. The Java Virtual Machine Specification. The Java Series. Addison-Wesley,
Reading, MA, USA, January 1997.

U. Maheshwari and B. Liskov. Partitioned Garbage Collection of a Large Object Store. In Proceedings of
the ACM SIGMOD International Conference on the Management of Data, pages 313-323, Minneapolis,
MN, May 1994.

W.J. Mclver and R. King. Self-Adaptive, On-Line Reclustering of Complex Object Data. In Pro-
ceedings of the ACM SIGMOD International Conference on the Management of Data, pages 407-418,
Minneapolis, MN, May 1994.

M. Missikoff and M. Toiati. MOSAICO—A System for Conceptual Modeling and Rapid Prototyping
of Object-Oriented Database Application. SIGMOD Record, 23(2):508, June 1994,

J.E.B. Moss. Design of the Mneme Persistent Object Store. ACM Transactions on Information Systems,
8(2):103-139, April 1990.

91

[34]
[35]

(36]

[37]
[38]

[39]

(40]

02 Technology, Inc, Palo Alto, CA. 02 System Administration Guide, 1995.

A. Ralston. Encyclopedia of Computer Science and Engineering, page 167. Van Nostrand Reinhold,
New York, NY, 1983.

P. Ranganathan, K. Charachorloo, S.V. Adve, and L.A. Barroso. Performance of Database Workloads
on Shared-Memory Systems with Out-of-Order Processors. In Proceedings of the 8th International
Conference on Architectural Support of Programming Languages and Operating Systems, pages 307—
318, October 1998.

K. Rotzell and M.E.S. Loomis. Benchmarking an ODBMS. Journal of Object-Oriented Programming,
1(4):66-72, April 1991,

D. Samples. Mache: No-loss Trace Compaction. In Proceedings of the 1989 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems, pages 89-97, May 1989.

S.J.G. Scheuerl, R.C.H. Connor, R. Morrison, J.E.B. Moss, and D.S. Munro. The MaStA I/O Trace
Format. Technical Report CS/95/4, School of Mathematical and Computational Sciences, University
of St. Andrews, North Haugh, St Andrews, Fife, Scotland, 1995.

S.J.G. Scheuerl, R.C.H. Connor, R. Morrison, and D.S. Munro. The MaStA 1/O Cost Model and its
Validation Strategy. In Proceedings of the Second International Workshop Advances in Databases and
Information Systems (ADBIS’95), pages 165-175, Moscow, June 1995.

H. Schreiber. Evaluating Garbage Collectors for Large Persistent Stores. In OOPSLA Workshop on
Object Database Behavior, Benchmarks, and Performance, Austin, TX, October 1995.

V. Singhal, S.V. Kakkad, and P.R. Wilson. Texas: An Efficient, Portable Persistent Store. In 5th
International Workshop on Persistent Object Systems, 1992.

A. Tiwary, V.R. Narasayya, and H.M. Levy. Evaluation of Q07 as a System and an Application
Benchmark. In OOPSLA Workshop on Object Database Behavior, Benchmarks, and Performance,
Austin, TX, October 1995.

R.A. Uhlig and T.N. Mudge. Trace-Driven Memory Simulation: A Survey. ACM Computing Surveys,
29(2):128-170, June 1997.

P.R. Wilson, M.S. Lam, and T.G. Moher. Caching Considerations for Generation Garbage Collection.
In Proceedings of the 1992 ACM Conference on LISP and Functional Programming, pages 32-42, San
Franciso, CA, June 1992.

V.-F. Yong, J. Naughton, and J.-B. Yu. Storage Reclamation and Reorganization in Client-Server
Persistent Object Stores. In Proc. of the 10th International Conference on Data Engineering, pages
120-131, February 1994.

B.G. Zorn. The Effect of Garbage Collection on Cache Performance. Technical Report CU-CS-528-91,
Department of Computer Science, University of Colorado, Boulder, CO, 1991.

92

Appendix A

Parameters of PTF Trace events

In this appendix, the input parameters for each trace event of PTF is provided. These input
parameters are shown in the context of the C++ definition for each of the trace events of the file
Trace.h.

A.1 Trace.h File

The file Trace.h contains the definitions for the trace events of PTF. It was originally implemented
by Artur Klauser as part of the Trace Converter package. Below is the modified version of Trace.h
which includes the revisions that were made to the trace specification as a result of the work of
this dissertation.

//***
//

// Trace Converter

// converts trace files between Ascii and binary representation
//

//

//***

#ifndef TraceConverterH
#define TraceConverterH

[/ Kk ke ke ok ks ks s ok ok ok o sk ok ok ok ok ok ok ok ok sk ok s ok sk ok sk ks ok ok ok ok o sk ok ko o ko s ok ok ok
// definition of trace events
// new events *must* be added at the end of the appropriate
// section to keep compatible with old traces
7 143k ook ok s ks ko ko sk o Kok oK o o oK ok koK oK K ok KR K sk Kok ok o ok K ok o ok ok o ko ok ok ok
enum EventTypes {

//---high level events ---

EventTypeMake = 0,

EventTypeRemove,

EventTypeVisit,

EventTypeRandom,

EventTypeCollect,

93

EventTypeCheckpoint,
EventTypeRestart,
EventTypePrintConnectivity,
EventTypeSimulationDone,

//--- low level events (from DB traces) ---
EventTypeTraceBegin = 64,
EventTypeTraceEnd,

// only following events can have comments
EventTypeCreateObject,
EventTypeDeleteObject,

EventTypeEdgeWrite,

EventTypeEdgeRead,

EventTypeDataWrite,

EventTypeDataRead,

EventTypeSetRoot,

EventTypeGetRoot,

EventTypeNoGCStart,

EventTypeNoGCEnd,
EventTypeTransactionStart,
EventTypeTransactionEnd,
EventTypeTransactionAbort,
EventTypeTransactionCheckPt,
EventTypeCreateArrayObject,
EventTypeArrayDataWrite,
EventTypeArrayDataRead,
EventTypeFormatObject,
EventType_FinalSentinel // must be last entry in this enum

};

//***
// declaration of binary trace file structs and lengths;

// length are not defined by sizeof() due to terminal struct

// padding
//***

typedef unsigned char EventTypeDef;
typedef unsigned int int32;
typedef unsigned short inti6;
typedef unsigned char int8;

struct EventDefCreateObject {
int32 TransId;
int32 ClientId;
int32 Formatld;
int32 0Id;
};

const int EventLenCreateObject = 16;

94

struct EventDefDeleteObject {
int32 TransId;
int32 ClientId;
int32 Formatld;
int32 0Id;
s
const int EventLenDeleteObject = 16;

struct EventDefEdgeWrite {
int32 Transld;
int32 ClientId;
int32 Formatld;
int32 From0Id;
int32 To0Id;
int8 Edge;
+
const int EventLenEdgeWrite = 21;

struct EventDefEdgeRead {
int32 TransId;
int32 ClientId;
int32 FormatId;
int32 From0Id;
int8 Edge;
s
const int EventLenEdgeRead = 17;

struct EventDefDataWrite {
int32 Transld;
int32 ClientId;
int32 FormatId;
int32 0Id;
int32 Offset;
+;

const int EventLenDataWrite = 20;

struct EventDefDataRead {
int32 TransId;
int32 ClientId;
int32 Formatld;
int32 0Id;
int32 Offset;
};

const int EventLenDataRead = 20;

struct EventDefCreateArrayObject {
int32 TransId;

95

int32 ClientId;

int32 Formatld;

int32 0Id;

int32 Container0Id;

int32 NoOfElements;
+;

const int EventLenCreateArrayObject = 24;

struct EventDefArrayDataRead {
int32 Transld;
int32 ClientId;
int32 FormatId;
int32 0Id;
int32 Offset;
int32 Index;
int32 Length;
};

const int EventLenArrayDataRead = 28;

struct EventDefArrayDataWrite {
int32 TransId;
int32 ClientId;
int32 Formatld;
int32 0Id;
int32 Offset;
int32 Index;
int32 Length;
+;

const int EventLenArrayDataWrite = 28;

struct EventDefSetRoot {
int32 TransId;
int32 ClientId;
int32 FormatlId;
int32 0Id;
};

const int EventLenSetRoot = 16;

struct EventDefFormatObject {
int32 Formatld;
int32 SuperFormatld;
int32 NumberOfPointers;
int32 Number(OfDataMembers;
int32 NumberOfArrayMembers;
int32 LengthOfClassName;

s

const int EventLenFormatObject = 24;

96

struct EventDefGetRoot {
int32 Transld;
int32 ClientlId;

};

const int EventLenGetRoot = 8;

struct EventDefNoGCStart {
int32 Trid; ‘
int32 Clientld;

};

const int EventLenNoGCStart = 8;

struct EventDefNoGCEnd {
int32 Trid;
int32 ClientId;

}; '

const int EventLenNoGCEnd = 8;

struct EventDefTransactionStart {
int32 Transld;
int32 ClientId;

};

const int EventLenTransactionStart

I
0

struct EventDefTransactionEnd {
int32 TransId;
int32 ClientId;

};

const int EventLenTransactionEnd = 8;

struct EventDefTransactionAbort {
int32 TransId;
int32 ClientId;

};

const int EventLenTransactionAbort

]
o]

struct EventDefTransactionCheckPt {
int32 TransId;
int32 Clientld;

+;

const int EventLenTransactionCheckPt = 8;

/R ok ok sk ok s s ok ok s s o ok sk ok ok ok s s o ok ok o ok Kok ok Ko o K oK K K 3K oK 3K o o 3k o o K K ok ok ok K K ok o K ok o
/ Note: The actual length of the Format Object event is equal to

97

/ EventLenFormatObject + 4 * NumberOfDatatMembers +
/ 8 * NumberOfArrayMembers + LengthOfClassName
/***

union EventDef {

EventDefCreatelbject CreateObject;
EventDefDeleteObject DeleteObject;

- EventDefEdgeWrite EdgeWrite;
EventDefEdgeRead EdgeRead;
EventDefDataWrite DataWrite;
EventDefDataRead DataRead;
EventDefSetRoot SetRoot;
EventDefCreateArray0Object CreateArrayObject;
EventDefArrayDataRead ArrayDataRead;
EventDefArrayDataWrite ArrayDataWrite;
EventDefFormatObject FormatObject;
EventDefGetRoot GetRoot;
EventDefNoGCStart NoGCStart;
EventDefNoGCEnd NoGCEnd;
EventDefTransactionStart TransactionStart;
EventDefTransactionEnd TransactionEnd;
EventDefTransactionAbort TransactionAbort;

EventDefTransactionCheckPt TransactionCheckPt;
+;

#endif TraceConverterH

98

Appendix B

Interface Specifications for
Components of the Example Trace
Merger

This appendix contains the interface specification for components of the example trace merger
that was implemented as part of this dissertation. The trace merger takes traces generated for
each individual client and forms a trace that captures the combined behavior of the participating
clients.

B.1 Functions of the Trace Merger

In this section, the interface specification for the three functions of the trace merger are provided.
The functions are as follows: Main, Scheduler, and Swapper.

B.1.1 Main Function

Signature

void main(int argc,
char **argv)

Functionality

Takes as input the maximum number of events to process during one time interval, a file Workload.asc
that contains the number of clients, the names of each of the trace files, the names of each client, the
tick rate, and the sleep time, and a debug flag, to indicate whether debugging information should
be printed while it is executing. Main creates a ClientCoordinator for each of the clients provided in
Workload.asc. It allocates a LockManager. It opens a file to hold the interleaved trace events and
then invokes the Scheduler. :

99

B.1.2 Scheduler Function

Signature

void Scheduler(int numberofClients,
ClientCoordinator **clientList,
int eventNumber,
LockManager *lockMN,
int traceFileFd)

Functionality

Keeps track of the number of active simulated client sessions. It also implements a round-robin algo-
rithm when all of the ClientCoordinators are at normal priority. If a ClientCoordinator’s priority has
been changed to high, then it will be allowed to run before a ClientCoordinator with normal priority.
It invokes the Swapper providing it with a pointer to a ClientCoordinator and the number of events to
process during the current time interval for the client represented by the ClientCoordinator.

B.1.3 Swapper Function

Signature

Bool Swapper(ClientCoordinator *client,
LockManager *lockMN,
int numberOfEvents,
int traceFileFd)

Functionality

The Swapper implements the processing of flat transactions. It makes request to the lock manager
based on the type of event that it is processing. It also manipulates the events of a transaction
based on the whether it ends with a transaction end event or a transaction abort event. When a
transaction end event is encountered, the Swapper writes the update events to the interleaved trace
file. It also makes a request to the lock manager to release all the locks of the transaction. The Swapper
returns true when it has completely processed the workload file associated with the ClientCoordinator;
otherwise it returns false.

Return Values

1 : completed processing trace file
0 : trace file not completely processed

100

B.2 The C+4++4 Classes of the Trace Merger

The interface specifications for the C++ Classes of the trace merger are presented in this section.

B.2.1 The LockManager Class

The LockManager class manages all of the locks requested by the different clients. It determines
if the lock request is compatible with the current lock mode of a requested lock. If there is no
conflict, the requester of the resource is added to the set of lock requests and the lock is granted.
If there is a conflict and deadlock will not occur as a result of the requester waiting, the requester
is allowed to wait.

The methods of the LockManager class are as follows:

LockManager: :LockManager (int noOfLocks) ;

creates a lock table containing noOfLocks and
initializes the compatibility matrix.

LockStatus LockManager: :requestLock(ClientCoordinator *clientCoor,
LockMode mode, int resourceld);

determines whether clientCoor is granted the
lock request, allowed to wait, or must abort
its current transaction because the lock
request is denied. Upgrades the lock mode
when appropriate. Creates a new lock when
the lock request is for a resource which does
not have a lock associated with it.

LockStatus LockManager: :requestUnLock(ClientCoordinator *clientCoor,
Lock *heldLock);

removes the lock request corresponding to
clientCoor from heldLock and the pointer
to the lock tht is stored in the Client-
Coordinator’s lock set. If the request is
the only request for the lock, the lock is
removed from the lock table.

void LockManager: :requestUnLockAll(ClientCoordinator *clientCoor);

removes all the lock requests for locks associated
with the current tramsaction of clientCoor.

101

bool LockManager::deadlockDetected(Lock *lock,
ClientCoordinator *requestingClient);

determines whether requestingClient will cause a
deadlock if allowed to wait on lock. If not,
return false. If a deadlock will occur, determine
which one of the ClientCoordinator’s must abort. If
requestingClient is chosen to abort, true is
returned; otherwise false is returned.

LockManager: : “LockManager () ;

deallocates the lock table.

B.2.2 C(ClientCoordinator Class

The ClientCoordinator class represents a pseudo-process. It keeps trace of the status of the
current transaction, the reading point of the working buffer, and the management of any temporary
files and the trace file representing the workload of a given client. It also keeps track of the
locks acquired during the current transaction and state information associated with the current
transaction.

The methods of the ClientCoordinator class is as follows:

ClientCoordinator::ClientCoordinator(int clientNumber,
int processingRate,
int sleepTime,
char * traceFileName);

creates a ClientCoordinator to represent the client
indicated by the argument clientNumber and
initializes its data members.
void ClientCoordinator::setTransStatus(TransStatus status);
sets the transaction status for the current
transaction. The status of a transaction is as
follows: NonActive, Active, Prepared, Aborting,
Committing, Aborted, Committed.
TransStatus ClientCoordinator::getTransStatus();

returns the transaction status.

char* ClientCoordinator::createTempBuf (int tempBufDatalen) ;

102

creates a working buffer of length
tempBufDatalen for processing
trace .events of an aborted transaction.

char* ClientCoordinator::getTempBuf ();

returns the pointer to the working buffer.

void ClientCoordinator::deleteTempBuf ();
deletes the working buffer.
char* ClientCoordinator::getProcessingBuffer();

returns pointer to processing buffer for
trace events.

int ClientCoordinator::getClientTraceFile();

returns the file pointer of the workload
trace file.

FILE* ClientCoordinator::getTempFile() ;
creates a temporary file for processing
trace events and returns a pointer to
the file.
ProcessingLocation ClientCoordinator: :getTransLocation();
returns the location of the
transaction which is either
a buffer or a temporary file.
void ClientCoordinator::setTransLocation(Processinglocation transloc);
sets the data member transactionLocation to

indicate that the transaction is either in
the processing buffer or a temporary file.

int ClientCoordinator::getTickRate();

103

returns the tick rate associated with the client.

int ClientCoordinator::getSleepTime();
returns the number of events to use as
SleepTime.

boeol ClientCoordinator::getRefreshBufFlag();
returns a flag to indicate whether the
processing buffer needs to be refreshed
(e.g, fill the buffer with additional
trace events from the workload trace
file).

void ClientCoordinator: :setRefreshBufFlag(bool flagValue);

sets the value of the RefreshBuf flag.

int ClientCoordinator::getCurrentPosInBuf ();
returns the offset within the processing
buffer to start processing new trace
events.
void ClientCoordinator::setCurrentPosInBuf (int position);
sets the new starting position within
the processing buffer.

int ClientCoordinator::getBufDataLen();

returns the length of the processing buffer.

void ClientCoordinator::setBufDatalen(int dLength);

sets the length of the processing buffer.

int ClientCoordinator::getTransReplayCount();

104

returns the number of times that the current
transaction has re-started.
void ClientCoordinator::setTransReplayCount(int count);

updates the number of times that the current
transaction has re-started.

void ClientCoordinator::setTransIdentifier(int trid);
sets the value of the current transaction
identifier.
int ClientCoordinator::getTransIdentifier();
returns the identifier of the current
transaction.
void ClientCoordinator::addTransLock(Lock *transHeldLock);

adds a lock pointer to the transaction
lock set.

void ClientCoordinator::removeTransLockSet () ;
removes all the lock pointers of the
transaction lock set.

void ClientCoordinator: :removeTransLock(Lock *transLock);
removes the lock pointer transLock from
the transaction lock set.

int ClientCoordinator::getTransLocksNumber();

returns the number of locks in the transaction
lock set.

void ClientCoordinator::getTransLockSet(int numberOfLocks,
Lock **transLockSet);

105

void ClientCoordinator:

int ClientCoordinator::

int ClientCoordinator::

returns a list of the pointers of locks
contained in the transaction lock set
through the input argument transLockSet.

:setStartTransPosition(int startPosition);
sets the data member transBeginPosition

to the offset within the processing

buffer that represents the starting
position of the current transaction.
getStartTransPosition();

returns the offset in the processing buffer
that represents the starting position of
the current transaction.

getTempBufDataLen() ;

returns the length of the temporary buffer.

char* ClientCoordinator: :getUpdateBuffer();

returns a pointer to the buffer that
contains the update events of the
transaction.

char* ClientCoordinator::resizeUpdateBuffer();

int ClientCoordinator::

void ClientCoordinator:

creates a larger buffer to hold the
update events of a transaction and
returns a pointer to the new buffer.
getPositionInUpdateBuffer();
returns the offset to start writing new
update events.

:setPositionInUpdateBuffer(int position);

sets the data member updateCursorPos

106

to the offset within the update buffer
to start writing new update events.
int ClientCoordinator::getUpdateBufferSize()

returns the size of the update buffer.

returns a pointer to the lock that
the current transaction is waiting for;
otherwise returns NULL.
void ClientCoordinator::setWaitLock(Lock *lockValue) ;
sets the data member waitLock to the pointer
of the lock that the current transaction
is waiting to gain access.
bool ClientCoordinator::getReadHeaderFlag();
returns the value of the flag that indicates
whether to read the header of the trace
binary.
void ClientCoordinator::setReadHearderFlag(bool flagValue) ;
sets flag that indicates whether to read the
header of the binary trace file.
bool ClientCoordinator::getAbortingFlag();
returns the value of the flag that indicates
that the transaction has aborted and now
in the process of retrying the transaction.
void ClientCoordinator::setAbortingFlag(bool flagValue);
sets the flag that indicates that the current

transaction has just been aborted and that
the current transaction is to be retried.

107

bool ClientCoordinator::getLMAbortFlag();
returns the value of the flag that indicates

whether the lock manager requested an abort
of the current transaction.

void ClientCoordinato

o}

: :setLMAbortFlag(bool flagValue);
sets the value of the flag that indicates
whether the lock manager requested an abort
of the current transaction.
int ClientCoordinator: :getClientNumber() ;
returns the number of the client represented
by the ClientCoordinator.
ProcessState ClientCoordinator::getProcessingState();

returns the processing state.

void ClientCoordinator::setProcessingState(ProcessState pvalue);
sets the data member processingState
to either Waiting, Ready, Running, or
Stopped.
Priority ClientCoordinator::getProcessingPriority();
returns the priority at which the
ClientCoordinator is to be run.
void ClientCoordinator::setProcessingPriority(Priority pvalue);
sets the data member processingPriority

to either Normal or High.

ClientCoordinator::~“ClientCoordinator()

108

destructor for the ClientCoordinator.

B.2.3 Lock Class

The Lock class represents the lock that is used to protect an object during a transaction. The Lock

class consists of a mode, a resource identifier that is the object identifier of the object protected by

the lock, a pointer to the queue of request for the lock, a pointer to the queue of wait request, and

a count of the number of owners of the resource. The lock modes are Free, Read, and Write.
The methods the Lock class as follows:

Lock::Lock(int resource, LockMode mode);

creates a lock and initializes the data members.

void Lock::setMode (LockMode mode);

set the mode of the lock.

LockMode Lock: :getMode();

returns the mode of the lock.

LRQueue* Lock: :getLockRequestQueue();

returns a pointer to the lock request queue.

LRQueue* Lock: :getLockRequestWaitQueue () ;
returns a pointer to the lock wait request queue.
Lock::"Lock();

deallocates the request and wait request queues.

B.2.4 LRQueue Class

The LRQueue class implements a queue containing lock request objects. The methods of the LRQueue
are as follows:

LRQueue: :LRQueue () ;

creates a lock request queue.

109

LockRequest* LRQueue: :popLockRequest ()

removes the first lock request from the queue.

void LRQueue: :pushLockRequest(LockRequest *requestPtr)

adds a lock request to the queue.

LockRequest* LRQueue::front()
returns a pointer to the lock request at the
beginning of the queue.
LockRequest* LRQueue::removelLockRequest(ClientCoordinator *client)
removes the lock request owned by client
and returns a pointer to the lock request.
LockRequest* LRQueue::lookupLockRequest(ClientCoordinator *client)
looks for a lock request that is owned by
client. If a lock request exists, it

returns a pointer to the lock request;
otherwise it returns NULL.

B.2.5 LRQueueltr Class

The LRQueuelItr class is an iterator for the LRQueue class. The methods of this
class are as follows:

LRQueueItr: :LRQueueItr(LRQueue *lockReqOueue);

constructor for the iterator.

LockRequest* LRQueueltr::next();

returns the next lock request in queue.

LRQueueltr:: LRQueueltr();

110

destructor for the iterator.

B.2.6 LockRequest Class

The LockRequest class represents a lock request. The data members of the
LockRequest class are a lock status, a lock mode, and a pointer to the
ClientCoordinator requesting the lock.

The methods of the LockRequest class are as follows:

LockRequest: :LockRequest (LockStatus lstatus, LockMode lmode,
ClientCoordinator *clientRef)

creates a lock request and initializes its data members.

LockStatus LockRequest::getStatus();
returns the status of the lock request.
LockMode LockRequest::getMode();

returns the mode of the lock request.

void LockRequest::setConvertMode (LockMode lmode) ;
sets the new mode of the lock request. For example,
a lock request with a mode Read may be upgraded to
a Write mode.

LockMode LockRequest::getConvertMode();

returns the upgraded mode if it was upgraded.

ClientCoordinator* LockRequest::getClient();
returns a pointer to the

ClientCoordinator that owns
the request.

111

