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Abstract. The goal of input-output modeling is to apply a test input to
a system, analyze the results, and learn something useful from the cause-
effect pair. Any automated modeling tool that takes this approach must be
able to reason effectively about sensors and actuators and their interactions
with the target system. The granulation level of the information involved
in this process ranges from low-level data analysis techniques to abstract,
qualitative observations about the system. This chapter describes a knowl-
edge representation and reasoning framework that allows this process to be
automated.
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1 Input-Output Modeling

One of the most powerful analysis and design tools in existence—and often
one of the most difficult to create—is a good model. Modeling is an essen-
tial first step in a variety of engineering and scientific problems. Faced with
the task of designing a controller for a robot arm, for instance, a mechan-
ical engineer performs a few simple experiments on the system, observes
the resulting behavior, makes some informed guesses about what model
fragments could account for that behavior, and then combines those terms
into a model and checks it against the physical system. The information
involved in this process is heterogeneous both in type and in level. The
observations of the target system, for instance, can range from detailed
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sensor data to abstract, qualitative information like “the temperature os-
cillates.” In order to create a model that is both useful (i.e., that captures
the desired behavior) and minimal (i.e., that does not contain extraneous
modeling components), engineers must granulate that information in ap-
propriate ways. The topic of this chapter is a knowledge representation and
reasoning framework that allows this process to be automated.

Modeling is an extremely broad research area, with roots—and applica-
tions—in fields ranging from artificial intelligence and cognitive psychology
to control theory and engineering. We do not attempt a comprehensive sur-
vey of the uses of granulation across all of these fields; rather, we concen-
trate only upon the use of granular information in input-output modeling:
that is, in the phase of the model-building process that is concerned with
physical observations of the target system. We further restrict our atten-

-tion to deterministic dynamical systems—in particular, those that can be
-modeled with ordinary differential equations (ODEs).

The goal of input-output modeling of dynamical systems is to apply a
test input to the system, analyze the results, and learn something useful
from the cause/effect pair. Reasoning about this procedure at a low level of
granularity is tedious and difficult. Raw sensor data, for instance, is often
both excessive and lacking: one has megabytes of noisy measurements, but
of only one of the system’s many state variables. Actuator interactions are
even harder, since any reasoning about actuators must factor in the inter-
face between the actuator and the system-—a difficult modeling -problem
in its own right, and one that is all but impossible if one must solve it by
manipulating voltage values and waveform timing.

An engineer’s fundamental formalized knowledge lets him or her solve
these problems by reasoning about sensors and actuators at a variety of
levels, depending on the requirements of the problem at hand. Deter-
mining something as simple as “the voltage oscillates between 5 and 10
volts,” for example, can be difficult if one attempts to scan an ASCII
text file, but it is trivial to see when presented on an oscilloscope. This
type of granular knowledge is critical in the model-building process, be-
cause qualitative observations play a much more wide-ranging role than a
highly situation-specific sensor data set. Granulation is equally powerful
in actuator-related reasoning. Any non-trivial dynamical system has mul-
tiple behavioral regimes, and identifying and characterizing these regimes
is extremely useful (e.g., the bifurcation diagram that is commonly used
to describe a dynamical system). The goal of this chapter is to show how
automated tools can capture this kind of reasoning, generating and using
high-level, granular knowledge that is useful to the model building process.
The following two sections describe tools that use granular techniques to
solve the sensor data analysis problem and the actuator control problem,
respectively; we then close with a brief discussion of related work.
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2 Granulating Sensor Data

Efficient model building requires the distillation of succinct, meaningful
conclusions about a complicated system out of reams of sensor data. An ef-
fective way to do this is to apply geometric reasoning techniques to the data,
as described in the following section. Many geometric reasoning techniques,
however, require a full state-space trajectory, and fully observable systems
are rare in engineering practice. Often, some of the state variables are either
physically inaccessible or cannot be measured with available sensors. If the .
target system has 34 state variables, for example, and one can only mea-
sure one of those 34 signals, it would appear that the conclusions that one
can draw from the sensor data are fundamentally limited. This is control
theory’s observer problem: the task of inferring the internal state of a sys-
tem solely from observations of its outputs. Delay-coordinate embedding,
a good solution to this problem, creates an m-dimensional reconstruction-
space vector from m time-delayed samples of data from a single sensor;
see Section 2.2. The central idea is that the reconstruction-space dynamics
and the true (unobserved) state-space dynamics are topologically identical,
which implies that a state-space portrait reconstructed from a single sensor
time series is qualitatively identical to the true multidimensional dynamics
of the system. Together, delay-coordinate embedding and geometric rea-
soning techniques allow effective granulation of sensor data for automated
model building.

2.1 Distilling Qualitative Information from Quantitative Data

A variety of techniques have been developed for extracting qualitative prop-
erties from a numeric data set. The solution described here combines phase-
portrait analysis, asymptote recognition, and computer-vision techniques.
Dynamical systems practitioners typically reason about phase portraits,
rather than time series, because the phase-portrait representation—which
suppresses time and plots only the state variables—brings out the qualita-
tive properties of the system under examination in a very natural way.
For example, recognizing a damped oscillation in a time series from a
linear system requires detailed examination of the amplitude decay rate
of and the phase shift between two decaying sinusoidal time-domain sig-
nals. The same behavior manifests in a much more obvious form—a single
symmetric spiral—on a phase portrait. Automated phase-portrait analysis
techniques[3,24,25] are designed to capture this kind of information and
generate the corresponding qualitative descriptions. This kind of granular
information is perfectly suited for automated model building; its abstract,
broadly applicable nature allows the automatic verification or rejection of
large classes of candidate models. For example, if sensor measurements of a
state variable indicate that it is undergoing a damped oscillation, one can
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immediately rule out all linear ODE models that are unstable, critically
damped, or overdamped!.

One of the earliest and most powerful phase-portrait analysis techniques
is the cell dynamics formalism of Hsu[13,14], which discretizes a set of n-
dimensional state vectors onto an n-dimensional mesh of uniform boxes
or cells. In Figure 1(a), for example, the circular trajectory—a sequence
of two-vectors of floating-point numbers measured by a finite-precision
sensor—can be represented as the cell sequence

[-+-(0,0)(1,0)(2,0)(3,0)(4,0)(4,1)(4,2)(4,3)(4,4)(3,4)..]

Because multiple trajectory points are mapped into each cell, this dis-

o = N O
O = N W N

FIGURE 1. Identifying a limit cycle using simple cell mapping. After [4].

cretized representation of the dynamics is significantly more compact than
the original series of floating-point numbers and therefore much easier to
work with. This is particularly important when complex systems are in-
volved, as the number of cells in the grid grows exponentially with the num-
ber of dimensions?. Although the approximate nature of the cell dynamics
representation does abstract away much detailed information about the dy-
namics, it preserves many of its important invariant properties. This point
is crucial to the fidelity of this analysis method; it means that conclusions
drawn from the discretized trajectory are also true of the real trajectory—
e.g.,, arepeating sequence of cells implies that the true dynamics are also on
a limit cycle. In this manner, low-level, finite-precision numerical data can
be converted into a high-level qualitative classification. Its coarse-grained
nature confers some important limitations upon this scheme—both subtle
‘and obvious—many of which are described below; see [9] for more details.
Another key concept of the cell dynamics formalism is that it allows a

L Stability analysis of a linear ODE involves finding the roots of its characteristic poly-
nomial (e.g., as® + bs -+ ¢ = 0 for the ODE a# + bz + ¢ = 0). Only if those roots
are imaginary can the system oscillate; only if their real parts are negative is the

oscillation damped.
2 The example of Figure 1 is two-dimensional, but the cell dynamics formalism gener-

alizes smoothly to arbitrary dimension.
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set of geometrically different and yet qualitatively similar trajectories—an
“equivalence class” with respect to some important dynamical property—
to be classified as a single coherent group of phase portraits. Part (b) of
Figure 1 shows a different trajectory with identical topology; this, too,
would be classified in the limit cycle equivalence class by the cell dynamics
algorithm. See, e.g., Hao[11] or Lind & Marcus[17] for more details.

Given the cell dynamics formalism described in the previous paragraph,
the dynamics of a discretized trajectory can be quickly and qualitatively
classified using simple geometric heuristics. Some of these classification
heuristics are trivial (e.g. determining if the trajectory exits the mesh), but
detecting limit cycles or oscillations requires subtler pattern recognition
techniques. Below are several of our geometric reasoner’s dynamics classifi-
cations, the corresponding heuristics, and some associated implications for
the ODE model:

e fixed-cell: when a trajectory relaxes to a single cell and remains
within that cell for a fixed percentage of its total lifetime. This car,
for instance, be used to recognize when a system is damped. Appro-
priate mesh geometry choices can extend this method to asymptote
recognition. ‘

e limit-cycle: when the trajectory contains a finite, repeating sequence
of cells. These patterns are identified by discarding any transients and
searching for periodic mapping sequences; they indicate that the system
is either conservative or externally driven.

e damped-oscillation: when a trajectory enters a fixed cell via a de-
caying oscillation. This pattern is detected by recognition of an inward
spiral; such dynamics can indicate, for instance, that a linear system
is underdamped and thus that at least one pair of the model’s natural
frequencies must be complex.

e constant: when a state variable does not change over the duration
of the trajectory. This computation involves a simple serial scan on
each mesh axis; its results are particularly useful in the model-building
process because they have wide-ranging implications about the order
of the system.

e sink-cell: when a trajectory exits the mesh. This information is used
to identify unstable trajectories.

Many other classifications are possible (e.g., that the system is chaotic);
some are less useful than others—because their implications either are more
limited in range or require processing at a less-abstract reasoning level.
The cell size, mesh boundary, and trajectory length affect the validity
and efficiency of the cell dynamics classification. Among other things, a
small limit cycle—one that is contained within a single cell—may be classi-
fied as a fixed point, and behavior outside the mesh will not be classified at
all. All of these discretization and boundary effects are not, in fact, prob-
lems; rather, they actually allow one to explicitly represent and work with
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the abstraction levels implied by the finite range and resolution that are
such fundamental features of a modeling hierarchy—e.g., to avoid including
saturation and crossover distortion effects when asked to “model the small-
signal behavior of the op amp to within 10mV.” Specifically, the range and
resolution information may be used to set up the mesh boundary and cell
size, assuring that the behavior outside the range or below the resolution

is not modeled.

2.2 Delay-Coordinate Methods for Observer Theory

If all of a system’s state variables are identified and measured, the geomet-
ric reasoning techniques described in Section 2.1 can be applied directly to
the sensor data. A fully observable system like this, however, is rare in engi-
neering practice; as a rule, many—often, most—of the state variables either
are physically inaccessible or cannot be measured with available sensors.
Worse yet, the true state variables may not be known to the user; temper-
ature, for instance, can play an important, and often unanticipated role in
the modeling of an electronic circuit. This is, as mentioned briefly before,
part of control theory’s observer problem: how to (1) identify the internal
state variables of a system and (2) infer their values from the signals that
can be observed. The arsenal of time-series analysis methods developed by
the nonlinear dynamics community in the past decade[1] provides powerful
solutions to both parts of this problem. This section describes two meth-
ods, Pineda-Sommerer (P-S)[21] and false near neighbor (FNN)[16], that
may be used to infer the dimension of the internal system dynamics from
"a time series measured by a single output sensor3.

Both P-S and FNN are based on delay-coordinate embedding, wherein
one constructs m-dimensional reconstruction-space vectors from m time-
delayed samples of the sensor data. For example, if the time series in Fig-
ure 2 is embedded in three dimensions (m = 3) with a delay of 0.2, the
first two points in the reconstruction-space trajectory are (32.0 22.0 19.0)
and (28.0 16.0 23.0). Sampling a single system state variable is equivalent
to projecting a d-dimensional state-space dynamics down onto one axis;
embedding is akin to “unfolding” such a projection, albeit on different
axes. Consider the classic Lorenz attractor, the first recognized instance of
chaotic behavior[18], shown in Figure 3(a). Part (b) of the figure shows the
results of sampling only the z coordinate of that three-dimensional trajec-
tory and plotting it versus time—exactly the situation that would arise if
one only had access to a single sensor. The embedded version of this one-
dimensional time series, shown in part {c), is slightly distorted but qualita-

8 Techniques like divided differences can, in theory, be used to derive velocities from
position data; in practice, however, these methods often fail because the associated

arithmetic magnifies sensor error.



1. Information granulation in automated modeling 7

t X
0.1 32.0
0.2 28.0
0.3 22.0
0.4 16.0
0.5 19.0
0.6 23.0

%

:

o

| PSS

1(0.1) = (32.0 22.0 19.0)

¥(0.2) = (28.0 16.0 23.0)

FIGURE 2. An example delay-coordinate embedding with an embedding dimen-
sion of three and a delay of 0.2. x is the measured state variable; r is the vector
in reconstruction space.
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FIGURE 3. The Lorenz Attractor: (a) true versioh (z-y) (b) time series of z-axis
(t-z) (c) embedded version (z-z').

tively identical to part (a). The central theorem relating such embeddings
to the true, underlying dynamics was suggested in [23] and proved in [20];
informally, it states that given enough dimensions (m) and the right delay
(1), the reconstruction-space dynamics and the true (unobserved) state-
space dynamics are topologically identical®. This is an extremely powerful
correspondence: it allows one to analyze the underlying dynamics using
only the output of a single sensor. In particular, many properties of the
dynamics, such as dimension (i.e., whether the trajectory is a fixed point,
limit cycle, chaotic attractor, etc.), are preserved by diffeomorphisms; if
they are present in the embedding, they exist in the underlying dynamics
as well. There are, of course, some important caveats, and the difficulties
that they pose are the source of most of the effort and subtlety in these
types of methods. Specifically, in order to embed a data set, one needs m
and 7, and neither of these parameters can be measured or derived from

4 More formally, the reconstruction-space and state-space trajectories are diffeomorphic
iff m > 2d + 1, where d is the true dimension of the system.
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the data set, either directly or indirectly, so algorithms typically rely on
numeric and geometric heuristics to estimate them.

The Pineda-Sommerer algorithm creates such estimates; it takes a time
series and returns the delay 7 and a variety of different estimates of the
dimension m. The procedure has three major steps: it estimates 7 using
the mutual information function, uses that estimated value 15 to compute
a temporary embedding dimension E, and uses F and 7y to compute the
generalized dimensions Dy, also known as “fractal dimensions.” The stan-
dard algorithm for computing the fractal dimension of a trajectory, loosely
described, is to discretize state space into e-boxes, count the number of
boxes occupied by the trajectory, and let ¢ — 0. Generalized dimensions
are defined as .

lim sup ____log LiPi o (1)

D, =
T g—1" 2o loge

where p; is some measure of the trajectory on box i. Do, D1, and D, are
known, respectively, as the capacity, information, and correlation dimen-
sions; all three are useful as estimates of the number of state variables in
the system. The actual details of the P-S algorithm are quite involved; we
will only present a qualitative description:

e Construct 1- and 2-embeddings of the data for a range of 7s and compute
the saturation dimension D, of each; the first minimum in this function
is 79. The D, computation entails:

e Computing the information dimension D; for a range of embedding
dimensions E and identifying the saturation point of this curve,
which occurs at D,. The D; computation entails:
¢ Embedding the data in E-dimensional space, dividing that space

into E-cubes that are e on a side, and computing D; using
equation (1) with ¢ = 1.

Ideally, of course, one lets € — 0 in the third step, but floating-point arith-
metic and computational complexity place obvious limits on this; instead,
one repeats the calculation for a range of es and finds the power-law asymp-
tote in the middle of the log-log plot of dimension versus . P-S incorporates
an ingenious complexity-reduction technique: the es are chosen to be of the
form 2% for integers k and the data are integerized; this allows most of the
mathematical operations to proceed at the bit level and vastly accelerates
the algorithm. To increase the precision of this computation, we have im-
plemented an arbitrary-length virtual integer package that facilitates the
integerization.

The false near neighbor algorithm is far simpler than P-S. It takes a 7
and a time series® and returns m. FNN is based on the observation that

5 P-S may be used to generate 7 for use in FNN. Other methods, such as autocorrela-
tion[1] can also be used to estimate 7.
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neighboring points may in reality be projections of points that are very far
apart, as shown in Figure 4. The algorithm starts with m = 1, finds each

b3
/_\C
A

B

y

FIGURE 4. The geometric basis of the FNN algorithm: the points labeled A
and B are true near neighbors in the z-projection, while A and C are false near

neighbors. After [4].

point’s nearest neighbor, and then re-embeds the data with m = 2. If the
point separations change abruptly between the 1- and 2-embeddings, then
the points were false neighbors (like A and C in the x-projection of Fig-
ure 4). The FNN algorithm continues adding dimensions until an acceptably
small® number of false near neighbors remain, and returns the last m-value
as the estimated dimension. A K-D tree implementation[10] reduces the
complexity of the nearest-neighbor step from O(N?) to O(N log N), where
N is the length of the time series. '

As both FNN and P-8S are based on heuristics, their estimates of the em-
bedding dimension m are not necessarily the same. Since both algorithms
provide conservative estimates, choosing the minimum of the two results
gives a reasonable lower bound for the dimension of the model. This knowl-
edge facilitates granulation of the reasoning involved in the model-building
process, as it allows the modeler to rule out entire branches of the search
space of possible models (e.g., all models whose dimension is below that

lower bound).

3 Granulating Actuator Control

Analysis of sensor data is only a small part of understanding the entire
system, since dynamic systems—by their very nature—are not passive ob-
jects. Rather, they have inputs and outputs, and the relationship between
the two is a critical feature of the system’s behavior, and thus an important
part of its model. Moreover, any non-trivial dynamical system has multi-
ple behavioral regimes, and any successful model builder must be able to

6 An algorithm that removes all false near neighbors can be unduly sensitive to noise.
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reason about this property. This can be a daunting task, even for human
experts; selecting and exploring appropriate ranges of state variables, pa-
rameter values, etc., is a subtle and difficult problem that has received much
attention in the qualitative reasoning community[2,3,24,25]. Manipulation
of the available actuators and sensors so as to actually carry out a specific
experiment is another difficult problem. Fortunately, granular information
can help engineers and scientists manipulate a system’s inputs and observe
its outputs, exploring its different operating regimes without generating
overwhelming amounts of data.

This section describes a knowledge representation and reasoning frame-
work called qualitative bifurcation analysis or QBA which allows a com-
puter to mimic the kind of analysis an engineer would perform in the input-
output analysis of an unknown system. This framework, which is designed
to support reasoning about the effects of control parameters and the ex-
istence of multiple behavioral regimes, is based on ideas from hybrid sys-
tems, nonlinear dynamics, and computer vision. Its representation is a hy-
brid construct termed the qualitative state/parameter (QS/P) space, which
combines information about the behavior of a complex system and the ef-
fects of its control parameters (inputs) upon its behavior. QBA’s reasoning
procedures emulate a classic technique in the dynamical systems literature
known as bifurcation analysis, wherein a human expert changes a control
parameter, classifies the resulting behavior, determines the regime bound-
aries, and groups similar behaviors into equivalence classes. Putting QBA’s
ideas into physical practice requires yet another layer of granulation, which
translates abstract concepts about experiments, such as “measure the step
response,” into low-level commands that manipulate actuators and sensors
in appropriate ways.

Working together, QBA’s representation and reasoning processes allow
the automatic generation of the kind of observations that a human engineer
would make about the system, such as

“in the temperature range from 0 to 50°C, the system undergoes
a damped oscillation to a fixed point at (z,y) = (1.4, —8); when
T >'50°C, it follows a period-two limit cycle located at...”

As described before, this kind of granulated information is useful in that it
raises the abstraction level of the model-building process.

3.1 Qualitative Bifurcation Analysis: the Representation

As described in Section 2.1, a discretized version of the state-space repre-
sentation can effectively abstract away many of the low-level details about
the dynamics of a system while preserving its important qualitative and
invariant properties. Using the cell dynamics representation, in particular,
the dynamics of a trajectory can be quickly and qualitatively classified
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using simple geometric heuristics. This type of discretized geometric rea-
soning “distills” out the qualitative features of a given state-space portrait,
allowing the representation of and reasoning about these features to pro-
ceed at a much higher (and cheaper) abstraction level[4].

Raising the granularity level of the analysis of individual sensor data
sets, however, is only a very small part of the power of qualitative reasoning
about phase portraits. Dynamical systems can be extremely complicated.
Attempting to understand one by analyzing a single behavior instance—
e.g., system evolution from one initial condition at one parameter value,
like the limit cycle shown in Figure 1(a)—is generally inadequate. Rather,
one must vary a system’s inputs and control parameters and study the
change in the response. Even in one-parameter systems, however, this pro-
cedure can be difficult[2]; as the parameter is varied, the behavior may
vary smoothly in some ranges and then change abruptly (“bifurcate”) at
critical parameter values. A thorough representation of this behavior, then,
requires a “stack” of state-space portraits: at least one for each interesting
and distinct range of parameter values. Constructing such a stack requires
automatic recognition of the boundaries between behavioral regimes, and
the cell dynamics representation makes this very easy, as described in con-
junction with Figure 1. Specifically, it allows a set of geometrically different
and yet qualitatively similar trajectories—an “equivalence class” with re-
spect to some important dynamical property—to be classified as a single
coherent group of state-space portraits.

Similar kinds of problems arise in the hybrid systems literature[12]. Hy-
brid modeling techniques describe continuous nonlinear behavior using an
ontology of piecewise-continuous regimes and discrete inter-regime transi-
tions[19]. In this representation, if a control parameter is changed or a state
variable moves into a prescribed state-space region, a transition function
moves or “jumps” the hybrid model into that new operating regime and si-
multaneously invokes the appropriate governing equations. If one attempts
to use this representation to capture the behavior of a nonlinear dynamical
system, however, the requirement that different operating regimes occupy
physically distinct state-space regions poses some serious problems. The
same state-space region may exhibit radically different behaviors for differ-
ent control parameter values, and the simple hybrid system representation

cannot handle this.
Consider, for example, a driven pendulum model described by the ODE

6() + %é(t) + %sin o(t) = % sin ot
with mass (m), arm length (I), gravity constant (g), damping factor (8),
drive amplitude () and drive frequency (@). m, [, g and f are constants;
the state variables of this system are § and w = 6. In many experimental
setups, the drive amplitude and/or frequency are controllable: these are the
“control parameter” inputs of the system. The behavior of this apparently



12 Matthew Easley and Elizabeth Bradley

simple device is really quite complicated and interesting. For low drive fre-
quencies, it has a single stable fixed point; as the drive frequency is raised,
the attractor undergoes a series of bifurcations between chaotic and peri-
odic behavior[7]. These bifurcations do not, however, necessarily cause the
attractor to move. That is, the qualitative behavior of the system changes
and the operating regime (in state space) does not. Traditional bifurcation
analysis of this system would involve constructing phase portraits of the
system, like the ones shown in Figure 1, at closely spaced control parameter
values across some interesting range. Traditional hybrid representations do
not handle this smoothly, as the operating regimes involved are not dis-
tinct. If, however, one adds a parameter axis to the state space, most of

THETA 2’ o

FIGURE 5. A state/parameter (S/P) space portrait of the driven pendulum: a
parameterized collection of state-space portraits of the device at various Drive
Frequencies. Each (8, w) slice of this S/P-space portrait is a standard phase por-
trait at one parameter value. For example, when the drive frequency is zero, the
pendulum’s attractor is a fixed point; as the frequency is raised, the device goes
through various chaotic and periodic regimes and finally settles into a family of
limit cycles (the ellipses at drive frequency values of 6 and above). After [9].

these problems vanish. Figure 5 describes the behavior of the driven pen-
‘dulum in this new state/parameter space (S/P space). Each 6, w slice of
this plot is a state-space portrait, and the control parameter varies along
the Drive Frequency axis. This idea is similar to the hybrid systems commu-
nity’s idea of forming a cross product of the input space of a system with
its output space. '

The final step in our development of a good representation for the quali-
tative bifurcation analysis framework was to combine the state/parameter
space idea pictured in Figure 5 with the qualitative abstraction of Hsu’s cell
dynamics (Section 2.1), to produce the qualitative state/parameter space
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(QS/P-space) representation. A QS/P-space portrait of the driven pendu-
lum is shown in Figure 6. This representation is similar to the state/para-
meter-space portrait shown in Figure 5, but it groups similar behaviors into
equivalence classes, and then uses those groupings to define the boundaries
of qualitatively distinct regions—an effective, useful, application-specific
granulation of the behavioral description.

Frequency

1
+ small angle

omega
= fixed point

FIGURE 6. A qualitative state/parameter-space (QS/P-space) portrait of the
driven pendulum. This is a granularization of the state/parameter space portrait
in the previous figure; it groups qualitatively similar behaviors into equivalence
classes and uses those groupings to define the boundaries of qualitatively distinct
regions of state/parameter space. After [9]

This qualitative state/parameter-space representation is an extremely
powerful modeling tool. One can use it to identify the individual oper-
ating regimes, then create a separate model in each, and perhaps use a
finite-state machine to model transitions between them. More importantly,
however, the QS/P-space representation lets the model builder leverage the
knowledge that its regions—e.g., the five slabs in Figure 6—all describe the
behavior of the same system, at different parameter values. This is exactly
the type of high-level, granular knowledge needed to plan how to learn
more about a system by changing its inputs and observing the results.
The remainder of this section expands upon these ideas, describing how
the QS/P-space representation assists in the automation of input/output
modeling of dynamical systems.

3.2 @BA:Reasoning about Granular Knowledge

Reasoning about actuators is much more difficult than reasoning about
sensors. The problem lies in the inherent difference between passive and
active modeling. It is easy to recognize damped oscillations in sensor data
without knowing anything about the system or the sensor, but using an
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actuator requires a lot of knowledge about both. Different actuators have
different characteristics (range, resolution, response time, etc.); consider
the difference between the time constants involved in turning off a burner
on a gas versus an electric stove, and what happens if the cook is unaware
of this difference. The effect of an actuator on a system also depends inti-
mately on how the two are connected. For example, a DC motor may be
viewed as a voltage-to-RPM converter with a linear range and a saturation
limit. How that motor affects a driven pendulum depends not only on those
characteristics, but also on the linkage between the two devices, (e.g., a di-
rect rotary drive configuration versus a slot/cam-follower setup). Planning
and executing experiments successfully requires modeling these kinds of
properties and effects. One way to do so is to use another granular com-
puting abstraction such as bond graphs[15]. Exploiting the bond graph’s
two-port nature allows the effects of an actuator to be incorporated into
the model quite naturally, via additional modeling components. Since ac-
tuators themselves can be complex nonlinear systems, actuators should be
modeled initially off-line; that knowledge can then be used as an invariant
(that is, regime-independent) part of the actuator/system model.

Qualitative bifurcation analysis requires interleaved input and output
‘reasoning, in which sensors and actuators are used to probe the system at
a variety of control parameter values to find interesting behaviors and iden-
tify boundaries between different regimes. The QBA process simply scans
the range of an actuator at predefined intervals, classifying the results as
described above; it then zeroes in on the bifurcations using simple binary
search. These bifurcations are the dividing lines between regimes in the
QS/P-space portrait of the system, and the qualitative classifications are
the labels for the regimes. The results of the QBA process are twofold: a
. QS/P-space representation of the system dynamics—Ilike the one shown in
Figure 6—and a set of qualitative observations similar to those a human
engineer would make about the system, such as “When the control parame-
ter p is in the range [1.2, 5.6], the state variable z; oscillates.” The granular
information captured in the QS/P-space portrait is useful well beyond the
input-output phase of the model-building process; it can also streamline
the generate phase, for instance, since a model that is valid in one regime
is often also valid in other regimes that have the same qualitative behavior.
And even when the qualitative behavior is different, continuity suggests
that a neighboring regime’s model is a very good starting point.

4 Related Work

A number of researchers have combined numerical téchniques with ideas
from symbolic computation and artificial intelligence to create granular
computational tools for scientists and engineers. One such class of tools
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autonomously plans, executes, and interprets simulation experiments from
high-level specifications of physical models. Abelson’s Bifurcation Inter-
preter, for instance, autonomously explores the steady-state orbits of one-
parameter families of periodically driven oscillators; it automatically gen-
erates a bifurcation diagram and a text description of the findings[2]. A
related class of tools addresses the problem of automated phase-portrait
analysis, combining ideas from dynamical systems, discrete mathematics,
and artificial intelligence to generate qualitative descriptions of different
kinds of systems. Bradley’s Perfect Moment explores a system’s state space
with particular attention to chaotic features, then uses that information to
design nonlinear controllers[3,6]. Yip’s KAM extracts useful, high-level in-
formation about the phase portraits of Hamiltonian systems by combining
computer vision techniques with sophisticated mathematical invariants[24].
Zhao’s Phase Space Navigator analyzes phase portraits, producing a de-
tailed description of the system dynamics—equilibrium points, boundaries
of stability regions, etc.—using a granular analysis tool called the flow
pipe[25]. The work described in this chapter, which is part of the PRET
project[4,5,8,22] is similar to these tools in that it combines traditional
numerical computation techniques with symbolic artificial intelligence; it
even uses some similar analysis tools {e.g., phase-portrait analysis).

5 Summary

The goal of input-output modeling is to apply a test input to a system,
analyze the results, and learn something useful from the cause/effect pair.
Automating this analysis procedure is not only important from an engi-
neering standpoint, but also hard and interesting from an artificial intelli-
gence standpoint. In particular, planning, executing, and interpreting ex-
periments requires some fairly difficult reasoning about what experiments
are useful and possible, and information granulation plays an extremely
important role in this process. The approach described in this chapter uses
a hybrid representation termed the state/parameter (S/P) space, which
granulates information about the behavior of a complex system and the
effects of the control parameter upon the behavior. This information then
undergoes a second level of granulation—termed qualitative bifurcation
analysis—wherein the S/P space is decomposed into discrete regions, each
associated with an equivalence class of dynamical behaviors, derived qual-
itatively using geometric reasoning. In this representation, each trajectory
is effectively equivalent, in a well-known sense, to all the other trajectories
in the same region, which allows the model builder to describe the behavior
of a multiregime system in a significantly simpler way, which results in ease
of analysis—and great computational savings.
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