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ABSTRACT

The POSSE Trace Format (PTF) is our attempt to develop a standard trace format for
use in the study of persistent object systems (POS) through trace-driven simulations. A
magjor component of this approach involves analyzing traces that capture the structure
of a persistent store and the time-varying behavior of persistent object applications. In
this report, we present an overview of the PTF design. A detailed syntactic layout of
PTF is then described, together with an explanation of the semantics of each trace event
type defined. PTF is our effort to develop a standard trace format that captures a wide
range of information about a persistent object application. It also provides a means to
share information among the community of POS researchers.






1 Introduction

Trace-driven simulation has been a popular and cost-effective approach to evaluating the perfor-
mance of proposed cache and paging designs. It has been used for a variety of purposes, including
the evaluation of dynamic storage management implementations. For example, in the early 90s,
Zorn [11] and Wilson [10] used trace-driven simulations to study the performance impact of garbage
collection on caches. As a result of the effectiveness of this technique in the domain of primary
memory, it was applied to a related domain, that of storage management in persistent object sys-
tem implementations. Specifically, in prior work, trace-driven simulation was used to investigate
the performance of storage management algorithms in persistent object systems, concentrating on
garbage collection algorithms [3, 4, 5]. In the initial study [4], a synthetic application that made
direct procedure calls to a simulation system for persistent object storage management was used
to generate trace events. From this study, two important observations lead to the development
of the POSSE Trace Format (PTF). The first observation was that the application needed to be
separated from the simulator to gain better control over experiments. The second observation was
that there needed to be a mechanism to generate experimental input that could be made available
to other researchers. Thus the initial goals of PTF are as follows:

1. To develop a trace format that can be used to study and evaluate performance issues of
persistent object systems, such as storage management, as well as other analysis activities
including comparative experimentation of implementations of persistent object systems.

2. To develop a system-independent representation of a workload.

3. To promote the creation of a collection of representative application behaviors in a common
trace format. ‘

Although there are several ways in which to collect information from an application, including
modifying the underlying persistent object system engine, the approach we have adopted involves
instrumenting the persistent object system application and then executing the instrumented ap-
plication as shown in Figure 1. By instrumenting the application, we can capture the higher-level
application semantics independently of a specific platform. Within this approach, the instrumented
application can be executed under an actual persistent object system to produce a PTF trace file
that can then be fed into an analyzer as shown in Figure 1. This approach also lead us to the de-
velopment of a library and associated tool, AMPS (Application Modeling for Persistent Systems),
that consists of a set of C++ classes and a TCL interface to ease the creation of instrumented
applications. Using AMPS, an application is modeled using a combination of a schema specifica-
tion and the AMPS library. The application model then runs without an actual persistent object
system to generate a PTF trace file. A detailed discussion of the AMPS tool appears in a separate
publication [6]. ‘

The POSSE Trace Format (PTF) is our first effort toward the development of a common trace
format. It is novel in that the trace format characterizes the structure of an object store and the
time-varying behavior of an application as manipulations of persistent objects during the execution
of the application. By application we mean any number of threads of execution that access and
manipulate the object store over a period of time. By behavior we mean a thread of execution
operating on the object store with a specific high-level purpose (such as populating it, reorganizing
it, traversing it, etc.) We call the combination of the behaviors of the application together with the
structure of the store the workload captured by the trace. For simplicity, we always assume that
the object store is initially empty, and that the application begins by populating the store.
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Figure 1: The Role of PTF in POS Trace Generation and Analysis.




During the execution of an application, objects manipulated by the application fall within one
of the following categories:

e Transient objects.

e Objects that are transient because they are newly created and have not been attached to a
persistent root or have not been explicitly made persistent.

e Objects that are already persistent.

Of these objects, PTF captures the creation and manipulation of only the persistent objects that
are generated by the application layer.

With PTF, we are able to conduct a direct performance comparison, by which we mean that
the performance of two implementations can be compared based on a single trace. We refer to
information about the application that is not specific to a particular persistent object system
implementation as the logical workload, and the same information augmented with details of a
particular persistent object system implementation as the physical workload. For example, while
events in the logical workload carry information such as object format and symbolic offsets to
object fields, the physical workload augments this information with information about object size,
numeric offsets, and the physical location of the object on the disk. As much as we can, our intent
is to capture the logical workload in PTF events. This goal is similar in spirit to the design of the
Java Virtual Machine [7], which also abstracts away physical information in its representation.

PTF has been used to capture the structure of simple persistent stores. It was also used to
capture the stucture of the persistent store as described in the schema specification of the OO7
benchmark [2] as well as the behavior of the tasks that make up single-user workloads of the
0OO0O7 benchmark. Although we have only used the trace files in simulation studies of storage
management in persistent object systems, the PTF traces can be used for a variety of purposes,
such as application visualizations, debugging, and statistical summaries of application behavior.

This report describes PTF. We begin with an overview of the PTF design. The remainder of
the report describes the syntax and semantics of each trace event. We then describe the binary and
ASCII representations of the trace format. We conclude with a summary and a brief discussion of
future work.

2 Overview of PTF Design

. PTF captures the persistent objects of a persistent object application and their relationships to
other persistent objects within the application as a directed graph. The persistent objects form
the nodes of the graph and the relationships between objects are edges of the graph. The lifetime
of a persistent object is from the point that the object becomes persistent to the point at which
the object is either implicitly deleted by a garbage collector after disconnection from the graph or
explicitly deleted. Within PTF, each object is represented by a logical object identifier (OId). To
illustrate this view of a persistent store, we present a simple example of a persistent store organized
as a binary tree. Figure 2 depicts a state of the binary tree persistent store, in which each node
contains a data value and pointers to left (offset 0) and right (offset 1) subtrees. The logical Olds,
used in the PTF trace to identify each object, are also shown.

PTF uses the logical object identifier to maintain independence from physical address imple-
mentations. At the creation of an instance of a class, an event is generated to represent the creation
of an object and the assignment of an OId to the object. From that point on, any reference to the
object is made through the assigned OId. Within an application, an OId is never reused.

3



{ OId: 42
\  value: 8
© \ 0
Old: 43 Old: 44
value: 8 value:
O 1y

3

V]
Old: 45 Old: 46 Old: 47
value: 5 value: 1 value: 7 /

Figure 2: A Simple Persistent Store Organized as a Binary Tree.
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PTF contains events that reflect operations to create, delete, access, and modify persistent
objects. Table 1 outlines the events in PTF, placing them into six categories. We model the data
"in an object (but not the values of those data) and the pointer connections between objects. The
manipulation of the data of an object is represented using the events data read, data write,
array data read, and array data write, where each event indicates that a single value or a
range of values has been read or written. Although we do not describe nor illustrate this here,
actual data values optionally can be recorded in the trace as annotations on the events. We model
manipulations of the pointer connections between objects with the edge read and edge write
events. Each edge is referred to by its unique offset within the object, and edges are numbered
starting from zero.

The events create object, delete object, and set root determine the lifetime of objects
that can be accessed by an application. The event create object additionally records information
about the format of the object created, specifically the OId of a “format” object. The format
object describes the fields of an object in terms of their types and their relative positions in the
representation of the object. The event format object records this information.

Dynamic data are treated as a separate object and thus the allocation of dynamic data are
captured through the event create array object. From the perspective of the containing object,
the dynamic data is considered in the same manner as a pointer. The data contained in the dynamic
allocation is manipulated using the events array data read and array data write. The array
object cannot contain pointer values. More details on how to capture dynamic data structures
containing pointers are provided in the detailed discussion of the event create array object.

Our persistence model uses the mechanism of persistence by reachability [1]. The event
set root indicates that the object contains the root set to be used in the reachability analysis.
This object will be referred to as the super root and is maintained by the POS. At the application
level, any number of objects can be designated as roots. These roots are captured through manip-
ulations of the super root object. The event get root captures a reference by the application to
the super root object.

It is important to understand that PTF does not enforce any notion of access consistency.
Nor does it require any particular storage reclamation scheme, namely manual versus automatic



Category [ Event Name [ Abbreviation { Arguments
Format Object | format object fo super class format Old, num-
ber of pointers, number of
data attributes, number of ar-
ray data attributes, length of
object name, list of format
Olds, list of array format Olds
and number of elements for
each array, name of format
Object create object co format OId, OId
create array object cao format OId, OId, container
OId, number of elements
delete object do format OId, OId
set root sr format OId, OId
get root gr
Atomic Data data read dr format OId, OId, offset
| data write dw format OId, OId, offset
Array Data array data read adr format OId, OId, offset, num-
ber of indexes, index
array data write adw format OId, OId, offset, num-
ber of indexes, index
Connections edge read er format OId, OId, offset
edge write ew format OId, from OId, offset,
to OId
Directives begin no collection ts
‘ end no collection te

Table 1: PTF Trace Events.




storage reclamation. Clearly, the operation delete object leaves an application vulnerable to such
inconsistencies. But we assume that applications will be written to behave “properly”, respecting
access consistency and, therefore, also respecting persistence by reachability.

Explicit deletion of objects is only one approach to persistent storage reclamation. Automatic
garbage collection is an alternative that does not require the use of the event delete object.
On the other hand, automatic garbage collection requires careful control over when the garbage
collector can operate. The events begin no collection and end no collection are necessary to
identify atomic sequences of operations with respect to the creation of new objects. In particular,
the garbage collector must be prevented from running between the time a new object is created
(signified by the event create object) and the time that the new object becomes reachable from
the persistent root (signified by the event write edge or the event set root). We note that the
begin no collection and end no collection events provide a very weak form of transactions.

Before proceeding with a detailed description of each trace event, we now present an example
to illustrate the use of PTF in capturing a workload. Figure 3 contains the PTF trace for a simple
two-behavior application that first builds the binary tree of Figure 2 and then sums the values
contained in the nodes. (The text to the right of each event is not part of the trace, but only an
annotation added by hand to aid the reader’s understanding of the figure.)

The first behavior, bracketed by the protective events ts and te, creates the objects in the
store and then links them together using a combination of events co and ew. The writing of data
is represented by the event dw. After the persistent store is created, the second behavior of the
application traverses the tree in a breadth-first manner, accessing the data value at each node. To
reduce the complexity of the example, we assume that the application knows the depth of the tree
and, hence, does not need to read the edges at the leaves.

3 Trace Events

This section describes the overall format of the trace event stream, as well as each trace event in
detail. The semantics of every event is described. The description of an event is independent of the
representation format of the event (i.e., either a binary format or an ASCII format). Representation
formats are described separately in Section 4.

3.1 Trace Format

The structure of PTF traces is described by the following grammar:

trace_file := <begin> <events> <end>

begin := "Trace begin\n"

end := "Trace end\n"

events := <event> "\n" <events> | <null>
event := <event_id> <core_event>
event_id := <integer>

where <integer> and <null> have the usual meaning.
The general specification of an event is as follows:

core_event 1= <ev_type> <ev_parameters>
ev_type = <identifier>
identifier = <lower_case_char> | <lower_case_char> <identifier>
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Write data value to position 1 in object 43 of format
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Create object with 0Id 44 whose format 0Id is 41
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Create object with 0Id 46 whose format 0Id is 41

Write data value to position 1 in object 46 of format
Write edge 1 from object 43 of format 41 to object 14
Create object with 0Id 47 whose format 0Id is 41
Write data value to position 1 in object 47 of format
Write edge O from object 44 of format 41 to 47

Create object with 0Id 48 whose format 0Id is 41
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Write edge 1 from object 44 of format 41 to object 48
Allow garbage collection to occur

Read data value from position 1 in object 42 of format
Read value of edge O from object 42 of format 41

Read value of edge 1 from object 42 of format 41

Read data value from position 1 in object 43 of format
Read value of edge O from object 43 of format 41

Read value of edge 1 from object 43 of format 41
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Read value of edge 1 from object 44 of format 41
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Read data value from position 1 in object 46 of format
Read data value from position 1 in object 47 of format
Read data value from position 1 in object 48 of format

Figure 3: Annotated PTF Trace Generated from a Binary Tree Application.
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string := <non_digit> | <string> <non_digit> | <string> <digit>
ev_parameters := <integer> <ev_parameters> | <string> <ev_parameters> | <null>

non_digit = _ | <lower_case_char> | <upper_case_char>
lower_case_char :=a [ bl cldlelfilglhiiljlkilimlnlol
plaglrlslulviwlxlylz
upper_case_char :=A | B| C|DIE|FI|GIHI|II|JIKILIMINI]OI
' PIQIRISIUIVIWIXI|Y]Z
digit =0111213[416116]17I18129

An event always starts with an identifier that indicates its type, followed by an arbitrary number
of parameters, which are not specified by the above grammar. Each event type has a specific
number of parameters. In addition to the number of parameters, the order, size, and semantics of
each parameter are also described with the individual event. Below, the semantics of each event
are described in a uniform manner.

3.2 Events that Manipulate Objects of the Persistent Store
3.2.1 Format Object

Event: <format_object>

Parameters: (int) FormatId format object identifier
(int) SuperFormatId format identifier for super object
(int) NumberOfPointers number of pointer values
(int) NumberOfDataMembers number of data members
(int) NumberOfArrayMembers number of array data members
(int) LengthOfClassName length in bytes of name
(int) DataMemberFormatId format ID of data members
(int) ArrayDataMemberFormatld format ID of array data members
(int) NumberOfElements number of elements in arrays
(string) NameOfClass name associated with class

Associated with each object is a format object. The format object specifies a layout for each of
the class specifications in a schema. The layout does not capture the physical representation in the
same manner as a class specification nor does it capture the object format of a particular object
store. Its primary use is to capture the relevant information about an object such as the number
of pointer values and the format and the position of the data values of an object. This information
can then be used to adapt the PTF trace files to a specific object format of a particular POS.
There must be an object format for each persistent class in the persistent object application. An
object must be created for each of these object formats prior to the execution of behaviors of an
application.

The format object trace event has ten parameters. The parameter FormatId contains the
object identifier for the format object represented by the format object trace event. PTF sup-
ports single inheritance so the format contains a parameter to indicate the format of the super
object SuperFormatId. This field contains a zero value if the object does not inherit its format
from another object. The number of pointer values of an object is provided by the parameter
NumberOfPointers. The parameter NumberOfDataMembers indicates the number of all the data
attributes that are primitive object formats (e.g. integers, floating points) excluding fixed sized



| Primitive Format Object | Object Identifier |

char 10
int 11
short 12
long 13
unsigned 14
unsigned char 15
unsigned long 16
float 17
double 18
long double 19
array of char 30
array of int 31
array of short ‘ 32
array of long 33
array of unsigned 34
array of unsigned char 35
array of unsigned long 36
array of float 37
array of double 38
array of long double 39

Table 2: Object Identifiers of Primitive Format Objects

- array object formats. Parameter DataMemberFormatId is a list of format object identifiers for the
data attributes. There are zero or more format object identifiers in the category of the parameter
DataMemberFormatId depending on the value of the parameter NumberOfDataMembers.

In the case of fixed sized arrays, the parameter NumberOfArrayMembers indicates the num-
ber of data members that are arrays. Fixed sized arrays are specified using two parameters,
ArrayDataMemberFormatId and NumberOfElements. The format object identifier for a fixed sized
array is stored in the parameter ArrayDataMemberFormatId. The number of elements of the array
is stored in the parameter NumberOfElements. All arrays, fixed sized or dynamic, are treated as
one dimensional arrays and therefore, multi-dimensional arrays must be converted to their one’
dimensional equivalent.

The format object identifiers for the primitive format objects are shown in Table 2. Object
identifier values from 10 to 40 have been reserved for the primitive format objects.

The object format augments the other trace event types during the processing of the trace files.
The size of the data portion of objects can be calculated using the parameters NumberOfDataMem-
bers, DataMemberFormatld, ArrayDataMemberFormatId, and NumberOfElements.

To illustrate how to translate a class type specification to an object format event, let us look
at a portion of the CompositePart C++ class specification of the OO7 benchmark shown in Fig-
ure 4. Figure 4 shows the application view of the composite part object using C++, the PTF
layout format, and a possible object format of a persistent object system. We begin by trans-
lating the the super class DesignObject into a format object event. A logical object identifier is
assigned to the format object and recorded in the second field of the trace event format. Since
the DesignObject does not have a super class, the second parameter SuperFormatId takes on the
value of a 0 to indicate that it is NULL. The DesignObject class contains no pointers; thus, the
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parameter NumberOfPointers contains the value 0. The parameter NumberOfDataMembers con-
tains the value 2 and the parameter DataMemberFormatId will be repeated twice containing two
integer format object identifiers. The parameter NumberOfArrayMembers contains the value 1.
ArrayDataMemberFormatId contains the logical object identifier for an array of characters, which
follows the data member format object identifiers in the format object layout, and the parameter
NumberOfElements contains the value 10. The parameter Name0fClass will contain the string “De-
signObject” and the parameter LengthOfClassName will contain the length of this string. A logical
object identifier is then assigned to the format object representing the CompositePart class. The
parameter SuperFormatId contains the logical object identifier of the DesignObject format object.
Since the CompositePart class contains five pointers, the parameter NumberOfPointers, which is
the fourth field in the trace event format, contains a 5. The parameter NumberOfDataMembers
contains the value 0 and the parameter NameOfClass contains the value “CompositePart” with its
length recorded in the seventh field of the format.

3.2.2 Create Object

Event: <create_object>
Parameters: (int) FormatId format object ID
(int) OId logical object ID to be created

Creates a new object with logical object identifier 0Id. Using the FormatId, the format of the
created object can be used to calculate the size of the object and the number of pointers can be
ascertained. This information may be required by the POS back end.

The total object size depends on the storage requirements for the POS backend and consists
of the data size of the object and the size for the object’s out-edges or pointers. The number of
out-edges can be taken as a hint by the POS. A POS that is capable of dynamically adjusting the
number of out-edges of an object does not need to reserve enough space to hold all edges but can
add them dynamically as they are written.

0Id O is reserved to represent the NULL object. All out-edges without a specific initial value
point to the NULL object.

3.2.3 Create Array Object

" Event: <create_array_object>
Parameters: (int) FormatId format object ID
(int) OId logical object ID to be created
(int) ContainerOId logical object ID of containing object -
(int) NoOfElements  number of elements

Since some languages support the creation of arrays both statically and dynamically, PTF han-
dles both fixed size and dynamically allocated arrays. This event is used to capture the allocation
of dynamic data. The dynamic data structure is treated as a separate object and is given a logi-
cal object identifier. The number of elements of the array is specified through the NoOfElements
parameter. The parameter FormatID indicates the format object identifier of the elements of the
array object. The Container0Id links the array object to its containing object and maintains the
object’s identity as a data member of the containing object. There can be only one containing
object per array object.

10



class DesignObject {
public:
int id;
char type[TypeSize];
int buildDate;

=

C++ Class class CompositePart: public DesignObject {

public:

class Document *documentation;

class Assoc *parts;
class AtomicPart *rocotPart;

// list of assemblies in which part is used

// as a private component
Assoc *usedInPriv;

/! list of assemblies in which part is used

// as a shared component
Assoc *usedInShar;

fo Old (DO) 0 0 2

Old (int) | Old (int) Old (array of char) 10

DesignObject

PTF Object
Format

fo | Old(CP)|OId(DO) 5 0

CompositePart

5 ( number of pointers)

TotalSize

Old (documentation)

Old (parts)

Object Format of Old (rootPart)
the Persistent Store

Old (usedInPriv)

Old (usedInShar)

int (id)

10 chars (type)

int (buildDate) A

Figure 4: Three Levels of Object Layout Descriptions.
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The create array object event must be preceded by a create object event for the contain-
ing object. The forward link from the containing object to the array object is captured through an
edge write event.

Deletion of an array object either occurs when the array object is explicitly deleted through a
delete operation or implicitly deleted using garbage collection. If garbage collection is in effect, the
array object or its containing object may become unreachable from a persistent root, thus making
the array object eligible for garbage collection. In cases where a reference to either the containing
object or the array object is overwritten, an edge write event should appear in the trace event
stream to capture the overwriting of the reference.

With explicit deletion, a request to delete the containing object may have occurred and thus
the array object is deleted prior to deleting the containing object. If a request is made to delete
the array object only, an edge write event that captures the overwriting of the reference to the
array object must occur prior to the delete object event that captures the deletion of the array
object.

This event should not be used to capture the creation of a dynamic structure that contains
pointers. It is important to be able to capture the overwriting of pointer values and thus a dynamic
array of pointers should be captured by first using the event create object and then using the
events edge write and edge read to capture the writing and reading of pointer elements.

PTFE does not contain an event type to represent the resize operation. The effect of such an
operation can be obtained by using the create array object event and adjusting the value of the
NoOfElements parameter.

3.2.4 Delete Object

Event: <delete_object>
Parameters: (int) FormatId format object ID
(int) OId logical object ID to be deleted

Explicitly deletes the existing object associated with the logical object identifier specified by
parameter 0Id. Deleting a non existent object is an error. Depending on the semantics of the
delete operation of the persistent object system, the object might actually be deleted, marked as
invalid, or marked as garbage to be collected. After deleting an object no data or meta-data of the
object should be read or written.

3.2.5 Edge Write

Event: <edge_write>

Parameters: (int) FormatId format object ID
(int) FromOId logical object ID of from-object
(int) ToOId logical object ID of to-object
(int) Edge number of edge to be written

Chaﬁges edge Edge of object 0Id to reference object To0Id. Any previously existing reference
of this edge is automatically overwritten. To0Id must be an existing object or the null object.

12



3.2.6 Edge Read

Event: <edge_read>

Parameters: (int) FormatId format object ID
(int) FromOId logical object ID of from-object
(int) Edge number of edge to be read

Queries the reference of edge Edge of object 0Id. If this edge has not been written prior to the
read, then the resulting value is the null object; otherwise, it is the ToOId most recently written
into this edge.

3.2.7 Data Write

Event: <data_write>

Parameters: (int) FormatId ~ format object ID
(int) OId logical object ID to write to
(int) Offset position of the attribute within

format object

Writes a number of bytes of data starting from the physical offset of the given attribute, deter-
mined by the FormatId and Offset parameters of the event. The 0ffset parameter contains the
position of the data member with respect to all of the data members associated with the object.
The number of bytes to be written is determined using the format object identifier of the attribute
located at the position indicated by the Offset parameter. The format object identifier is associ-
ated to a format object which has been assigned a specific number of bytes corresponding to the
requirements of the hardware platform on which the persistent object system executes.

The calculated physical offset to start writing must be within a legal range. The actual data
written is not contained in the event since it is not part of the structural information needed to
reproduce the behavior of the persistent store. However, it is assumed that the persistent object
system writes to (or simulates a write operation on) the specified region of the object.

3.2.8 Data Read

Event: <data_read>

Parameters: (int) FormatId format object ID
(int) OId logical object ID to read from
(int) Offset position of the attribute within

format object

The parameters FormatId and Offset determine the starting offset of the object addressed by
0Id to begin reading and the number of bytes to read. The data block read must be contained
completely within the data block defined at object creation time. Similar to data writes, the actual
data that is read is not included.
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3.2.9 Array Data Write

Event: <array_data_write>

Parameters: (int) Formatld format object ID
(int) Old logical object ID to write to
(int) Offset position in containing Object
(int) Index the index into the array
(int) Length number of elements

The array data write event captures writing of data for both fixed arrays and dynamically
allocated arrays. The parameter Index indicates which index within the array to start writing
data. The parameter Length specifies the number of elements to be written. Using the Index and
the Length parameters, a range can be specified, beginning at the offset calculated using Index
and ending at the offset calculated using Index + Length.

For dynamic arrays, the parameter 0ffset contains a negative one and the parameter 0Id is
the logical object identifier of the array object. The offset to begin writing is calculated using the
parameter Index and the number of bytes per element, which can be obtained from the parameter
FormatId. Using the number of bytes per element along with the parameter Length, the total
number of bytes to be written can be calculated.

In the case of a fixed array, the parameter 0Id refers to the logical object identifier of the
containing object and the parameter FormatId contains the format object identifier for the fixed
array object format. The starting offset is calculated using the Offset parameter to obtain the
position within the containing object and the Index parameter. The number of bytes per element
to be written is obtained from the format object. As with the dynamic array, the number of bytes
per element and the parameter Length are used to calculate the total number of bytes to be written.
The actual data written is not included.

3.2.10 Array Data Read

Event: <array_data_read>

Parameters: (int) FormatId format object ID
(int) OId logical object ID to read from
(int) Offset position in containing Object
(int) Index the index into the array
(int) Length number of elements

As with the array data write event, the array data read event reads data of both fixed arrays
and dynamically allocated arrays. The parameter Index indicates the first index to begin reading
data. The parameter Length specifies the number of elements to be read. Using the Index and the
Length parameters, a range can be specified, beginning at the offset calculated using Index and
ending at the offset calculated using Index + Length. '

For dynamic arrays, the parameter 0ffset contains a negative one and the parameter 0Id is the
object identifier of the array object. The offset to begin reading is calculated using the parameter
Index and the number of bytes per element, which can be obtained from the parameter FormatId.
Using the number of bytes per element along with the parameter Length, the total number of bytes
to be read can be calculated.
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In the case of a fixed array, the parameter 0Id refers to the logical object identifier the containing
object and the parameter FormatId contains the format object identifier for the fixed array object
format. The starting offset is calculated using the 0ffset parameter to obtain the position within
the containing object and the Index parameter. The number of bytes per element to be read is
ascertained from the format object. As with the dynamic array, the number of bytes per element
and the parameter Length are used to calculate the total number of bytes to be read. Similar to
array data writes, the actual data that is read is not of interest, but it is assumed that the persistent
object system performs a read of the specified region or simulates such a read.

3.2.11 Set Root

Event: <set_root>
Parameters: (int) FormatId format object ID
Parameters: (int) Old logical object ID to move to root set

- This event has one parameter, the OId of the super root object, which contains the root set of
the persistent store. It can be thought of as the starting point of the store. The objects of the root
set indicate which objects are persistent through reachability.

3.2.12 Get Root

Event: <get_root>

This event captures a reference to the super root object.

3.3 Garbage Collection Directives
3.3.1 No Garbage Collection Start

Event: <noGC_start>
Parameters: none

The no garbage collection start event serves as an indicator to the POS to prevent the
garbage collector from executing until a no garbage collection end event has been reached.
These events bracket trace events that are representing the creating of objects or the updating of
references within objects.

3.3.2 No Garbage Collection End

Event: <noGC_end>
Parameters: none

The no garbage collection end event serves as an indicator to the POS to allow the garbage
collector to run as necessary.
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4 Representation Formats

The PTF implementation allows the creation of trace files in either binary format or ASCII format.
The binary format was developed to reduce the size of trace files and increase the efficiency of
processing the trace files. The ASCII format is provided to allow manual inspection of the trace
files by a developer. Below, we briefly describe each representation format.

4.1 Binary Format

The binary format of PTF requires that the trace begin with a header followed by the trace events.
The header is in ASCII format and consists of a version number on the first line of the header,
followed by several lines of user notes. The separator $$binary$$ is used to end the header and
must appear on a separate line. Each binary event consists of n + 1 bytes where n is determined
by the event type. The first byte of each event represents its type. The format and number of
bytes for each event type are provided in the Trace.h file.

4.2 ASCII Format

The ASCII format consists of one event per line with the line ending in a carriage return. Each
event begins with an event identifier followed by the parameters of the event. A sample trace in
ASCII format can be seen in Section 2.

5 Summary

A large variety of trace formats have been developed to capture information about the behavior of
applications in various areas of computer systems design and evaluation. Trace format designers
are primarily concerned with the following issues:

e Trace compactness. Often traces represent literally billions of operations, and as such, their
physical size can be of great concern if one needs to store and distribute them. Studies
have shown that data-specific compression techniques {e.g., for compressing program address
traces [8]) have significant advantages over standard text compression algorithms. We do
not anticipate generating traces as large as address traces get, and so expect traditional
compression to be sufficient for our purposes. '

o Trace usability. Usability is directly related to how much information the trace contains,
and how easy that information is to manipulate. Including extra information in a trace can
make it more usable, but at the same time also increases its size. Our initial goal for the
design of PTF has been to ensure that it supplies all the information necessary for our storage
management performance studies. Additionally, information has been added to enhance trace
processing performance. For example, we include the logical object identifier of the object
format in each of the trace events that capture the manipulation of an object. The resulting
redundancy only slightly increases the size of the trace files. In fact, we observed only a
10% increase in compressed file size over a trace without the format object information. The
advantage of including the object layout identifier with each event is that tools processing
the trace do not have to always look up the format of each object, thus increasing the speed
of trace processing. We feel that this is a reasonable trade off between space and time.
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e Trace accuracy. Accuracy reflects how effectively the information contained in the trace
captures the data necessary to evaluate system performance. For example, traces are often
truncated because a full trace requires too much computation to process. Likewise, approx-
imations may be made in the workload to simplify the generation of a trace. Our current
goal with respect to accuracy is to provide a completely accurate single-user trace; our cur-
rent work with multi-user traces requires that we make approximations that reduce the trace
accuracy.

Our PTF design is most closely related to the work of Scheuerl et al., who developed the MaStA
I/0O trace format [9] to study the cost of various recovery mechanisms with respect to I/0. While
our traces capture workloads at the logical level, the MaStA format captures device-level physical
behavior. We recognize the need for capturing behavior in traces at many different levels, but we
have focused on an implementation-independent representation to provide a trace that can be used
in a wider variety of contexts. :

PTF is implemented in C++ and includes converters to translate a binary trace file to an ASCII
trace file and vice-versa. In the case of the ASCII format, it also contains a verifier to check the
correctness of an event type with respect to the number and type of each of its parameters.

The current version of PTF does not support dynamic resizing, embedded classes, multiple
inheritance, and multiple versions of the object layouts. It also does not support transaction events.
We are now in the process of defining appropriate support for transactions for the next version of
PTF. Furthermore, some objects and data structures are part of the POS implementation (e.g.,
indices, extents) and not a part of the application. These objects and their behaviors need to be
represented in the PTF trace. Extents are captured by creating data structures to represent them
in the application and then instrumenting the operations applied to these structures. Currently,
although we realize the importance of indices, we do not support the manipulation of indices. We
envision adding some high-level trace events (such as create_index and update_index) to capture
operations on indices in a later version. '

In conclusion, our immediate future work consists of three major focuses. The first focus is
to extend PTF to support the generation of trace events that capture concurrency within multi-
user workloads. In the first version we were able to do meaningful experimentation in the area of
garbage collection without data values; however we realize that some experimentation may require
data values. Thus, a second focus is to standardize the format of data that may be included with
trace events. The third focus is to extend PTF to capture the manipulations on indices.
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