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Abstract

The known linear-time depth-first search algorithms for strong and biconnected components
either compute auxiliary quantities based on the depth-first search tree (e.g., LOWPOINT val-
ues) or require two passes. We present one pass algorithms that only maintain a representation of
the depth-first search path. This gives a simplified view of depth-first search without sacrificing
efficiency.

1 Introduction

Depth-first search, as developed by Tarjan and co-authors, is a fundamental technique of efficient
algorithm design for graphs [23]. This note presents depth-first search algorithms for strong and
biconnected components that are not based on the depth-first search tree but rather the depth-
first search path. This simple view should make the algorithms easier to code and maintain. The
algorithms appear to be just as efficient as traditional depth-first search algorithms.

Most depth-first search algorithms (e.g., [23, 11, 12]) compute so-called LOWPOINT values
that are defined in terms of the depth-first search tree. Because of the success of this method
LOWPOINT values have become almost synonymous with depth-first search. LOWPOINT values
are regarded as crucial in the strong and biconnected components algorithms [15, pp. 94, 514].
Tarjan’s LOWPOINT method for strong components is presented in texts [1, 8, 15, 17, 18, 21]. The
strong component algorithm of Kosaraju and Sharir [22] is often regarded as easier to understand
but involves two passes over the graph; it is presented in texts [2, 5, 7, 25]. Tarjan’s LOWPOINT
biconnected component algorithm is presented in texts [1, 2, 5, 6, 8, 14, 15, 17, 18, 21, 25]. A
two-pass biconnected component algorithm of Micali that avoids LOWPOINT values is sketched
in [8, pp.67-68].

This paper presents versions of the strong and biconnected components algorithms that are
based on the depth-first search path. This natural approach was first proposed by Purdom [20] and
Munro [19] for strong connectivity. It is commonly regarded as requiring an extra data structure
for set merging in order to be asymptotically efficient, and hence unlikely to be efficient in practice
[23]. We present linear-time implementations of the method for strong and biconnected components,
using only stacks and arrays. A line-by-line pseudocode comparison with the tree-based algorithms
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of [23] shows the two approaches are similar in terms of lower level resource usage; performance
differences are likely to be small or platform-dependent. Our algorithm shows that the simpler
path-based view of depth-first search suffices for these properties. Our motivation in developing
these algorithms was the need to compute strong components in an implicitly defined graph where
maintaining exact LOWPOINT values would be inefficient [9].

It is possible to derive other path-based depth-first search algorithms. For instance the ear
decomposition [16] of a 2-edge-connected, biconnected or strongly connected digraph can be found
in linear time. This can be used to find an st-numbering [8] of a biconnected graph. The algorithm
of Section 2 gives a topological numbering of a dag. For more involved graph properties like
triconnectivity and planarity it is likely that a tree-based approach with LOWPOINT numbers is
necessary.

Section 2 presents our strong components algorithm and Section 3 presents the biconnected
components algorithm. Appendix A proves a simple property of biconnected components. We
conclude this section with some terminology.

Singleton sets are usually denoted by omitting set braces, e.g., for a set S and element z, § — z
denotes S — {z}.

We use the following operations to manipulate a stack S: PUSH(z, S) adds z to S at the (new)
top of S. POP(S) removes the value at the top of the stack and returns that value. TOP(S) is the
index of the value at the top of the stack. Hence S[TOP(S)] is the value at the top of the stack.

2 Strong Components

Consider a digraph G = (V, E). Two vertices are in the same strong component of G if and only
if they are mutually reachable, i.e., there is a path from each vertex to the other. The strong
component graph is formed by contracting the vertices of each strong component. Equivalently the
strong component graph is the finest acyclic contraction of G, i.e., it is the acyclic digraph formed
by contracting vertices of G that has as many vertices as possible.

The latter characterization suggests the following method to find the strong component graph
of G = (V, E). See Fig. 1(a)-(b). The method maintains a graph that is a contraction of G and a
path P in that graph.

If the graph has no vertices stop. Otherwise start a path P by choosing a vertex v and setting
P = (v). Continue by growing P as follows.

To grow the path P = (v1,...,v;) choose an edge (v, w) directed from the last vertex of P and
do the following:

If w¢ P, add w to P, making it the new last vertex. Continue growing P.

If w € P, say w = v;, contract the cycle v;,v;41,...,v¢. P is now a path in the contracted
graph. Continue growing P.

If no edge leaves vy, output vi as a vertex of the strong component graph. Delete v;, from
P and from the graph. If P is now nonempty continue growing P. Otherwise try to start a
new path P.



It is clear from our description of strong components that this algorithm stops having correctly
output all strong components of the original graph.
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Figure 1: (a) Digraph. (b) P (solid edges) and contracted graph (all edges) right before strong
component {3} is deleted. (c) Data structure corresponding to (b).

This high-level algorithm was originally proposed by Purdom [20] and Munro [19]. An efficient
implementation requires a data structure to keep track of the strong components as they are formed
by contraction operations. The data structures of [20] and [19] use time O(n?) and O(nlogn) for
this task respectively. Any data structure for disjoint set merging [7] can be used to keep track of
the strong components. Tarjan showed the set merging can be done in time O(ma(m,n)) [24]. In
fact the incremental tree algorithm of [10] can be used. This reduces the time to O(m+n), giving a
linear time algorithm to find strong components. However the overhead of using incremental tree set
merging may be significant in practice. Furthermore the incremental tree algorithm requires a RAM
machine and does not apply to a pointer machine. Now we give a simple list-based implementation
that achieves linear time. The data structure is illustrated in Fig. 1(c).

We assume the vertices are numbered by consecutive integers from 1 to m. The algorithm
numbers the strong components of G by consecutive integers starting at n + 1. It records the
strong component number for each vertex (see (2) below).

Two stacks are used to represent the path P. Stack S contains the sequence of vertices in P and
stack B contains the boundaries between contracted vertices. More specifically S and B correspond
to P = (vi,...,v;) where k = TOP(B) and for i = 1,...,k,

(1) vi = {S8[j] : Bli] <j < B[i +1]}.

When &k > 0 we have B[1] = 1. Also when ¢ = k in (1) we interpret B[k + 1] to be TOP(S) + 1.
An array I[1..n] is used to store stack indices. It also stores the strong component number of a
vertex when that number is known. More precisely for a given vertex v at any point in time,

0 if v has never been in P;
(2) Iv]=1<¢ j ifviscurrently in P and S[j] = v;
¢ if the strong component containing v has been deleted and numbered as c.



Since there are only n vertices, there can be no confusion between an index j and a component
number c¢ in (2). A variable c is used to keep track of the component numbers.
The algorithm consists of a main routine STRONG and a recursive procedure DFS:

procedure STRONG(G)

1. empty stacks S and B;
2. forveVdo Iv] =0

3. c=n;

4. for v € V do if I[v] = 0 then DFS(v);

procedure DFS(v)

1. PUSH(v, S); I[v] = TOP(S); PUSH(I[v], B); /+ add v to the end of P */

2. for edges (v,w) € E do

3 if I{w] = 0 then DFS(w)

4. else /# contract vertices x/ while B[TDP(B)] > I[w] do POP(B);

5. if B[TOP(B)] = I[v] then { /+ number vertices of the next strong component */
6 POP(B); increase ¢ by 1;
7 while TOP(S) > I[v] do { w =POP(S); I[w]=c } };

Theorem 2.1 When STRONG(G) halts each vertez v € V belongs to the strong component numbered
Ifv]. The time and space are both O(m + n).

Proof: We refer to lines of pseudocode by the initial of the procedure name followed by the line
number e.g., D7 is the last line of DFS. For the first assertion of the theorem we prove the following
properties hold throughout the execution of STRONG:

(¢) At all times the current graph, the path P and the deleted strong components are as specified
by (1)-(2).
(74) Whenever D2 or D5 is executed v belongs to the last vertex of P.

We prove (2)—(it) by induction on the number of statements executed. After that we show the first
assertion of the theorem follows easily. Now we give the inductive argument.

Suppose DFS(v) is called from S4. We show D1 makes P = (v) according to (1)—(2). Inspection
of D1 shows it suffices to have P = (§ immediately before DFS(v). This is obvious for the first call
that 54 makes. For a subsequent call let DFS(u) be the preceding call made from S4. (i) shows
that when D5 is executed in DFS(u), u belongs to the last vertex of P. Since I[u] = 1, D7 deletes
the strong component containing u and makes P = ().

Suppose DFS(v) is called from D3 in DFS(u). We show D1 adds v to the end of P and () holds.
The test of D3 shows v is not in P when DFS(v) is called (by (¢)). Since (4¢) shows u belongs to the
last vertex of P, (i) holds after D1.

Next consider an edge (v, w) chosen in D2. We have already checked the case I[w] = 0.

Suppose 0 < I[w] < n. Then w is in a vertex of P. D4 contracts the correct cycle, preserving
(4). (If (v, w) has already been contracted then D4 does nothing.) Furthermore (ii) holds for the
next execution of D2.



Suppose I[w] > n. Then the component containing w has been deleted. The test of D4 fails, so
STRONG does nothing for this edge.

Next consider the test of D5. It checks whether or not the last vertex of P consists of v and its
successors on S, by (i). Suppose the test is true. All edges incident to the last vertex of P have
been processed. Hence the last vertex of P is (the contraction of) a strong component. D7 correctly
numbers and deletes the strong component, preserving (4).

Finally suppose DFS(v) was called in line D3 of DFS(u). We must show (i) holds for u when
DFS(v) returns. By induction (ii) shows u was in the last vertex of P when DFS(v) was called. The
vertex containing v immediately precedes the vertex containing v in P, until either the latter is
deleted in DFS(v), or the two vertices are contracted. In both cases (i) holds for u when DFS(v)
returns.

This completes the induction. Now observe that DFS(v) is called for every vertex v (by the loop
of 54). Hence every v is added to P at some point. We have already seen that each call to DFS(v)
in 84 ends with P = (). Hence every vertex gets numbered with its correct strong component, by
(7).

For the time bound it is easy to see the algorithm spends O(1) time on each vertex or edge,
assuming the graph is stored as a collection of adjacency lists. Note that every vertex is pushed
onto and popped from each stack S, B exactly once. a

Comparing our code to the algorithm of [23], both methods use stack S; our size n array I
corresponds to a similar array that holds depth-first discovery numbers; and our stack B corresponds
to a size n array that holds LOWLINK values.

3 Biconnected Components

We present our algorithm for biconnected components using the language of hypergraphs. While
this is not logically necessary it brings out the similarity to the strong components algorithm.

We start by reviewing basic definitions about hypergraphs [4, 16]. A hypergraph H = (V, E)
consists of a finite set V' of vertices and a finite set E of edges, each edge a subset of V. A path
is a sequence v1,€1,...,V, €k, k > 1, of distinct vertices v; and distinct edges e;, 1 < i < k, with
vy € e; and v; € e;_1 Ne; for every 1 < ¢ < k. By convention a sequence of one vertex v is also
a path. The set of vertices in P is denoted V(P) = Ule ei. A cycle is a sequence satisfying the
above definition of a path with the additional properties that £ > 1 and v; € e;. A hypergraph is
acyclic if it contains no cycle. (This differs from the definition used in the study of databases [3].)

We use this operation on hypergraphs: To merge edges e;, 1 = 1,...,k, add a new edge U{?:l €;
and delete every edge properly contained in it (e.g., e;). A merging of hypergraph H is a hypergraph
formed by doing zero or more merges on H.

Now consider an undirected graph G = (V, E). Two edges are in the same biconnected compo-
nent of G if and only if some simple cycle contains both of them. It is easy to see the biconnected
components are well-defined since being on the same simple cycle is an equivalence relation over the
edges. The “block-cutpoint tree” of a graph represents the biconnected components and cutpoints
[13]. We define a hypergraph variant of this notion: The block hypergraph H of G is the hypergraph



formed by merging the edges of each biconnected component of G. H is an acyclic hypergraph.
In fact H can be characterized as the finest acyclic merging of G, i.e., it is the acyclic hypergraph
formed by mérging edges of G that has as many hyperedges as possible. For completeness this
characterization is proved in Appendix A.

The characterization suggests the following method to find the block hypergraph of G = (V, E).
See Fig. 2(a)—(b). The method maintains a hypergraph that is a merging of G and a path P in
that hypergraph.

If the hypergraph has no edges stop. Otherwise start a path P by choosing an edge {v,w} and
setting P = (v, {v,w}) (choose the end v arbitrarily). Continue by growing P as follows.

To grow the path P = (vy,e1,...,vx,e;) choose an edge {v,w} with v € e, — v and do the
following:
If w¢ V(P), add v, {v,w} to the end of P. Continue growing P.
Ifw € V(P), say w € e;—v;11, merge the edges of the cycle w, €;, vi41, €41, - - - , Uk, €k, {v, w}
to a new edge e = U?:i ej. P is a path ending with e in the new hypergraph (i.e.,
(vi, €4, ..., v, ) is replaced by (v;,e)). Continue growing P.

If no edge leaves ey — vg, output e, as an edge of the block hypergraph. Delete e; from
the hypergraph and delete (vg,ex) from P. If P is now nonempty continue growing P.
Otherwise try to start a new path P.

Correctness of this method is based on two simple observations: When v, {v,w} is added to P
the result is a path by the condition v € ey — v;. Edges that are merged are guaranteed to form a
cycle by the condition w € e; —v;11. Now a simple inductive argument proves the method correctly
outputs the edges of the block hypergraph.

i [1]72]3[4]5]6]7
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Figure 2: (a) Undirected graph. (b) P (solid edges) and hypergraph (all edges) right before edge
{5,6,8} is deleted. (c) Data structure corresponding to (b).

As in Section 2 we now give a simple list-based implementation that achieves linear time.
The data structure is illustrated in Fig. 2(c). As before assume the vertices are numbered by
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consecutive integers from 1 to n. The algorithm numbers the biconnected components of G by
consecutive integers starting at n + 1. We represent the biconnected components by assigning a
number I[v] to each vertex v, so that each edge {v,w} belongs to the biconnected component with
number min{I[v], I[w]} (see (5) below).

Two stacks are used to represent the path P. Stack S contains the sequence of vertices in P and
stack B represents the boundaries between edges, two vertices for each boundary. More specifically
S and B correspond to P = (v1,e1,..., vk, €k), k > 1, where TOP(B) = 2k and fori = 1,..., k,

(3) v = S[B[2i—1]};
(4) e; = wv; U{S[j]: BJ2i] < j < BJ2i + 1]}

When £ > 1 we have B[i] = i for ¢ = 1,2. Also when i = k in (4) we interpret B[2k + 1] to be
TOP(S) + 1. Finally at certain points P is a path (v), in which case S[1] = v, TOP(S) = 1 and
TOP(B) = 0.

As in the strong components algorithm an array I stores stack indices as well as biconnected
component numbers. More precisely for a given vertex v at any point in time,

0 if v has never been in P;
(5) 1] g if v is currently in P and S[j] = v;
c if the last biconnected component containing v has been output
and numbered as c.

As before there can be no confusion between an index j and a component number ¢ in (5). A
variable c is used to keep track of the component numbers.
The algorithm consists of a main routine BICONN and a recursive procedure DFS:

procedure BICONN(G)

1. empty stacks S and B;
2. for v €V do I[v] =0;

3. c=mn;

4. for v eV do if I[v] = 0 then { DFS(v); POP(S); I(v) =c };

procedure DFS(v)

1. PUSH(v, S); I[v] = TOP(S); if I[v] > 1 then PUSH(I[v], B); /v is the second boundary vertexs/
2. for edges {v,w} € E do

3 if Ilw] = 0 then { PUSH(I[v], B); DFS(w) /* v is the first boundary vertex / }

4. else /* merge */ while I[w] < B[TOP(B)] and I[w] # B[TOP(B)—1] do {POP(B); POP(B)}
5. if Ifv] > 1 and I[v] = B[TOP(B)] then {

6 POP(B); POP(B); increase ¢ by 1;

7 while TOP(S) > I[v] do { u =POP(S); I[u] =c } }

Theorem 3.1 When BICONN(G) halts any edge (v,w) € E belongs to the biconnected component
numbered min{I[v], Ilw]}. The time and space are both O(m + n).



Proof: We refer to lines of pseudocode as in Theorem 2.1. For the first assertion of the theorem
we prove the following properties hold throughout the execution of BICONN:

(7) At all times the current hypergraph, the path P and the deleted biconnected components are
as specified by (3)—(5).

(i) When D2 or D5 is executed, if I[v] > 1 then v belongs to the last edge e of P and v is not the
preceding vertex vy. If I[v] =1 then P = (v).

We prove (i)-(i4) by induction on the number of statements executed. After that we show the first
assertion of the theorem follows. Now we give the inductive argument.

Suppose DFS(v) is called from B4. We show D1 makes P = (v) according to (3)—(4). Inspection
of D1 shows it suffices to have TOP(S) = TOP(B) = 0 immediately before DFS(v). This is obvious
for the first call that B4 makes. For a subsequent call let DFS(u) be the preceding call made from
B4. (i1) shows that when D5 is executed in DFS(u), P = (u). Since B4 pops S the desired equations
hold.

Suppose DFS(v) is called from D3 in DFS(u). We show D3 and D1 add v, {v,w} to the end of P
and (i) holds. The test of D3 shows v ¢ V(P) when DFS(v) is called (by (i)). Now the inductive
assumption of (i) for u implies () holds after D1.

Next consider an edge {v, w} chosen in D2. We have already checked the case I[w] = 0.

Suppose 0 < Ilw] < n. Then w € V(P). D4 merges the edges of the correct cycle, preserving
(4). (If {v,w} has already been deleted by a merge then D4 does nothing.) Furthermore (i) holds
for the next execution of D2.

Suppose I[w] > n. Then the last biconnected component containing w has been deleted. The
test of D4 fails, so BICONN does nothing for this edge.

Next consider the test of D5. It checks whether or not the last edge e of P consists of v and its
successors on S, plus the vertex vy = S[B[TOP(B) — 1]], by (i). Suppose the test is true. All graph
edges incident to vertices of e, — vy have been processed. Hence the last edge of P corresponds to
a biconnected component. D7 correctly numbers and deletes the component, preserving (4).

Finally suppose DFS(v) was called in line D3 of DFS(u). We must show (44) holds for u when
DFS(v) returns. By induction (i7) shows u was in the last edge of P when DFS(v) was called. After
D1 of DFS(v), u belongs to two consecutive edges of P. This continues to hold until either the
second edge is deleted in DFS(v), or the two edges are merged together. In both cases (47) holds for
u when DFS(v) returns.

This completes the induction. Now observe that DFS(v) is called for every vertex v (by the
loop of B4). Hence every v is added to P at some point. We have already seen that each call to
DFS(v) in B4 ends by making P = (). Hence every vertex gets numbered with its correct biconnected
component, by ().

For the time bound it is easy to see that BICONN and DFS spend O(1) time per vertex or edge,
assuming the graph is stored as a collection of adjacency lists. Every vertex is pushed onto S
exactly once. It is also pushed onto an even entry of B at most once. O



Comparing our code to the algorithm of [23], our stack S corresponds to a stack of edges; our
size n array I corresponds to a similar array that holds depth-first discovery numbers; and our
stack B corresponds to a size n array that holds LOWPT values.

A Appendix
Lemma 1.1 The block hypergraph of a graph G is the finest acyclic merging of G.

Proof: We first show the block hypergraph H is acyclic. A biconnected component of G is a
connected subgraph of G. Hence a cycle in H gives a cycle in G that contains edges from at least
two distinct biconnected components. This is impossible, so H is acyclic.

To show H is the finest acyclic merging let K be an acyclic merging of G. Any cycle of G is con-
tained entirely in one edge of K. Thus any biconnected component is contained in one edge of K. O
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