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Abstract

This paper solves the problem of increasing the edge-connectivity of a bipartite digraph,
by adding the smallest number of new edges that preserve bipartiteness. A natural application
arises when we wish to reinforce a 2-dimensional square grid framework with cables. We actually
solve the more general problem of covering a crossing family of sets with the smallest number
of directed edges, each edge joining the blocks of a given bipartition of the elements. The
smallest number of new edges is given by a min-max formula that has six infinite families of
exceptional cases. We present a problem on network flows that has a similar formula with
three infinite families, and a problem on arborescences with five infinite families. We give an
algorithm that increases the edge-connectivity of a bipartite digraph in the same time as the
best-known algorithm without the bipartite restriction, O(kmlogn) for unweighted digraphs
and O(nmlog (n?/m)) for weighted digraphs, for k the target connectivity.

1 Introduction

In the bipartite digraph edge-connectivity incrementation problem we are given a digraph whose
undirected version is bipartite. We wish to increase the edge-connectivity, by adding the fewest
number of new edges, keeping the graph bipartite. Fig. 1 shows an example. Let k£ be any nonneg-
ative integer. The graph of Fig. 1(a) is k-edge-connected. Adding three edges gives the (k + 1)-
edge-connected graph of Fig. 1(b). It is easy to see that adding only two edges does not achieve
(k + 1)-edge-connectivity unless the graph is made nonbipartite.

A motivation for this problem comes from “square-grid frameworks” in statics. (We will not
attempt a complete discussion of these ideas here, see [12].) These frameworks can be braced by
diagonal “rods” or cheaper “cables.” Baglivo and Graver [2] show that a framework with cables
(and perhaps rods) has a natural representation as a bipartite digraph, such that the framework
is “rigid” if and only if its bipartite digraph is strongly connected. Thus a framework that is rigid
and remains so even when any k or fewer cables fail is precisely a framework whose digraph is
(k + 1)-edge-connected. The cable-framework reinforcement problem is to add the smallest number
of new cables to a given framework so it tolerates an extra cable failure. Clearly this problem is
equivalent to bipartite digraph edge-connectivity incrementation.

We solve a generalization of this problem. Consider a crossing family Z on a set of elements V,
along with a partition P of V into two blocks. A directed edge zy covers any set X that contains
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Figure 1: Bipartite digraph (a) and solution to its edge-connectivity incrementation problem (b).
A directed line represents an edge of multiplicity & or 1 if it is drawn solid or dotted respectively.

y but not z. In the bipartitioned crossing-family covering problem we wish to cover every set of 7
using the fewest number of directed edges, each of which joins the two blocks of P.

If a digraph has edge connectivity k, the vertex sets of in-degree k form a crossing family.
Hence the crossing-family problem generalizes the edge-connectivity incrementation problem. In
particular we can start with a general (not necessarily bipartite) digraph, and a given partition of
the vertices into two sets. The goal is to add the fewest number of new directed edges that respect
the bipartition and increase the edge-connectivity by one.

Our main result shows the optimum number of edges OPT has a characterization similar to
ones given in [3] and [8] for related connectivity problems. The characterization say that OPT = ®
unless the graph is a blocker, in which case OPT = ® + 1. Here ® is a natural lower bound coming
from a subpartition of the vertex set. A blocker is a graph belonging to one of a number of infinite
families. [3] solves the problem of undirected bipartite graph edge-connectivity augmentation.
Here there is one family of blockers. [8] solves the problem of making a bipartite digraph strongly
connected. Here there are four families of blockers. Our connectivity result generalizes [8], which
corresponds to increasing the edge-connectivity of a 0-edge-connected bipartite graph. Our theorem
has six families of blockers, the first four being direct analogs of those of [8]. In fact we show the
two new families of blockers never exist when the crossing family is a ring family; for connectivity
incrementation we have a ring family when the initial graph is 0-edge connected but not for any
higher connectivity. :

We present two other problems that exhibit similar behavior. Specifically a problem on network
flow has the same characterization, with three infinite families of blockers. A problem on spanning
arborescences has five families of blockers. Both these problems are instances of bipartitioned
crossing-family covering. We suspect there are similar blocker-type characterizations for other
problems in related areas.

Note that [3] solves the problem of connectivity augmentation ~ any target connectivity can be
given — while our results only increase the connectivity by 1. [9] investigates the edge-connectivity
augmentation problem for bipartite digraphs. An algorithm is given that finds a solution using
at most k edges more than optimum. The directed augmentation problem appears to be more
difficult than the undirected version solved in [3]. As evidence we can contrast our solution to
the incrementation problem with [3]. As mentioned there are more blockers. Also a blocker for
undirected incrementation exists only when ® = 2, whereas in the directed case blockers exist for
any ® > 2. Section 6 gives the comparison in detail.

We also give an algorithm for bipartite digraph edge-connectivity incrementation (allowing



nonbipartite starting graphs). The algorithm has the same time bound as the best-known algo-
rithm for incrementation without the bipartite restriction, O(kmlogn) for unweighted digraphs
and O(nmlog (n?/m)) for weighted digraphs, for k the target connectivity. Here n,m and k are
the number of vertices, number of edges, and the target connectivity respectively. In an unweighted
digraph parallel edges are allowed but each copy is stored separately. In a weighted digraph each
distinct edge has an integral weight that gives the number of parallel copies.

Section 2 discusses basic facts about crossing families and gives the main tools for our problem.
Section 3 proves our incrementation theorem for certain crossing families. Section 4 defines blockers
and establishes their properties. Section 5 proves our incrementation theorem in general by reducing
to the families of Section 3. Section 6 compares our theorem with [3] and [8], and gives our flow and
arborescence problems. Section 7 gives the algorithm. We close this section with some definitions.

Consider a finite universe V. We use C for set containment and C for proper set containment.
We usually abbreviate a singleton set {v} to v. For example SUe denotes SU{e} and for a function
f defined on sets, f(v) denotes f({v}).

Let X, Y C V. X denotes the complement V — X. X and Y are co-disjoint if X and Y are
disjoint, i.e., X UY =V. X and Y are intersecting if XNY, X —Y and Y — X are all nonempty.
X and Y are crossing if they are intersecting and furthermore V — (X UY') is nonempty, i.e., they
are not co-disjoint. Let F be a family of subsets of V. F is a ring family if it is closed under
intersection and union. F is an intersecting (crossing) family if X NY, X UY € F whenever X,
Y € F and X and Y are intersecting (crossing) sets.

In digraph G for S C V, an edge zy with z € S and y ¢ S leaves S and enters V — S. p(S)
(6(8)) denotes the number of edges entering (leaving) S.

In the bipartitioned crossing-family covering problem we make the following assumptions to
rule out trivial cases:

(a) Z #0;
(b) 8,V ¢ T and both blocks of P are nonempty.

If (a) fails then no new edges are needed. If (b) fails then no covering exists. We use OPT to denote
the fewest number of edges in a cover. Unless stated otherwise when discussing this problem we
always assume an edge respects the bipartition constraint.

2 Basic notions

For any family of sets F, an F-set is a set of F. ||F|| denotes the maximum cardinality of a
family of pairwise disjoint F-sets. u(F) denotes the set of all inclusionwise minimal F-sets. (So
lu(F)|| = | F|l.) When u(F) consists of exactly one set p*(F) denotes that set, i.e., u(F) = {X}
exactly when p*(F) = X.

Let O denote the family of complements of Z-sets. O is a crossing family. An edge covers
an O-set O if it leaves O. So the given covering problem on Z amounts to finding a minimum
cardinality set of edges that cover O, each edge joining two differently colored elements. This
problem is equivalent to our covering problem if we start with the crossing family O as the given
family. (A solution to one covering problem gives a solution to the other by reversing the edges.)

We treat 7 and O symmetrically. For instance the definitions given below are stated in terms of
the family Z. All the analogous definitions for O should be considered to hold. All of our lemmas
and theorems have a complement-symmetric version obtained by interchanging every occurrence of
Z and O. We do not explicitly state the complement-symmetric versions, and a citation of a lemma
or theorem may actually refer to the complement-symmetric version. Henceforth F will refer to
both families together, i.e., F = (Z, O).



2.1 Cores and zones

An Z-core is a set of u(Z).

Lemma 2.1 For any crossing family I, either the I-cores are pairwise disjoint or any two I-cores
are intersecting and co-disjoint.

Proof: Observe that any two Z-cores that are not disjoint are intersecting and co-disjoint (by mini-
mality). Let I1,..., I, be a maximal collection of pairwise disjoint Z-cores. If the first alternative of
the lemma fails there is another Z-core J that is not disjoint from some I jy say Iy. So I) and J are
co-disjoint. Since J—I; contains no Z-core, r = 1 and the second alternative of the lemma holds. O

The lemma shows ||Z|| either equals 1 or |C(Z)|. Our initial assumption Z # @ implies ||Z] > 1
for the given 7.

Corollary 2.2 If I has two intersecting cores then ||Z|| =1 and ||O]| > 1.

Proof: Let I and J be intersecting Z-cores. The lemma implies ||Z]] = 1 and I and J are co-
disjoint. Thus I and J are disjoint O-sets, so [|O]| > 1. o

Lemma 2.3 An I-set I intersecting with an O-set O has I — O an I-set. Hence no I-core is
intersecting with an O-set.

Proof: Suppose an Z-set I is intersecting with an O-set O. If I and O are co-disjoint then I—0 = O
is an Z-set. The other possibility is that I and O are crossing. Hence I and O are crossing Z-sets.
Thus I — O =INO is an Z-set.

The second part of the lemma follows from the first. O

Lemma 2.4 Two O-sets with nonempty intersection are intersecting and co-disjoint if their union
contains every L-core, or if their intersection contains no O-core.

Proof: Let the O-sets be N and O. First suppose N U O contains every Z-core. Then N U O is
not an O-set since its complement contains no Z-core. Thus N € O and O € N. Hence N and O
are intersecting. N and O are not crossing since again N U O is not an O-set. Hence N and O are
co-disjoint. The argument when NN O contains no O-core is similar, since NN O is not an O-set. O

We assume the partition P is specified by assigning one of two colors to each element of V.
These two colors will be unnamed. However we use black as a variable name that ranges over the
two given colors. Correspondingly B denotes the set of all black elements. A set is called black if
it is contained in B. When we need to refer to both colors of P we shall call them black and white,
with W and white sets defined analogously. A set of elements is mized if it contains at least one
element of both colors.

We use several subfamilies of Z and O. For any color B, Zp is the family of black Z-sets. Hence
the Zp-cores are the black Z-cores. Zx is the family of Z-sets that do not contain a black or white
Z-core. The Zx-cores are the mixed Z-cores. Any Zx-set is mixed, but a mixed Z-set need not be
in Zx. For any color B the family Zg: is Zy U Zx. Hence the Zg/-cores are the nonblack Z-cores.

Fix F = (Z,0) and let A and B be families of subsets of V. We now define the families

Z[A, B] and O[A, B].
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We state the definition for Z[A, B], O[A, B] is similar.

Usually we choose A and B from our families Zg, Ty, Zp and the similar families with Z
replaced by O or B replaced by W. In all such cases Z[A, B] consists of all Z-sets that contain
every member of 4(A) and are disjoint from every member of u(58). For example T [Zp, Op] is the
family of all Z-sets that contain every black Z-core and are disjoint from every nonblack O-core.

We also allow more general A and B. For families Z; C Z, O; C O, i = 1,2, define Z[Z; U
01, Io U Os] as the family of all Z-sets that contain every Z-core in Z; and every O-core in O; and
are disjoint from every Z-core in 7, and every O-core in @,. This definition is consistent with the
special case given above. In using this notation we will not explicitly specify the families Z;, O;
since they will be clear from context. As an example if J is an Z-core then Z[{J}, Z — J], is the
family of Z-sets that contain J and are disjoint from every other Z-core. It will be useful to note
that in general the family of complements of sets in Z[4, B] is O[B, A].

Lemma 2.5 For any color B with Op # 0 and any set O € OB, Opl, any O-core is either
contained in O or is disjoint from O.

Proof: Let N be an O-core. The O-set O is not properly contained in the core N. If N and O are
intersecting then they are crossing (since there are black O-cores disjoint from O), a contradiction
for core N. The remaining possibilities are as in the lemma. O

Suppose ||Z|| > 2. The zone J of an Z-core J, also called an Z-zome, is the maximal set in
I[{J}, T~ J)}, i.e., the maximal Z-set that contains J and is disjoint from every other Z-core. It is
easy to see that a unique zone J exists since T is a crossing family.

When ||Z|| > 2 the Z-zones are pairwise disjoint. (If two zones I and J are not disjoint then
they are intersecting. They are crossing because of the third Z-core. This makes I N J an Z-set
containing no Z-core, a contradiction.)

An T-core I dominates an O-core O if O - I Itis possible for T and O to dominate each other.
However there is no “dominance chain,” i.e., I cannot dominate O and be dominated by a different
O-core N. This follows since such a chain implies O C T C N.

Lemma 2.6 For an I-core I and an O-core O the following three conditions are equivalent:
(i)OZfandI,@@;
(ii) O is disjoint from I and I is disjoint from O;
(iii) neither of the two cores I,O dominates the other.

Proof: (i) = (ii): If O is not disjoint from I then Lemma 2.3 and O € I show I C O
contradicting I ¢ O.

(id) = (44i): Trivial.

(i17) = (i): If O C T then (iii) shows I and O are intersecting. Lemma 2.3 shows O — I is an
O-set. But it contains no O-core, a contradiction. O

M

2.2 Lower bound ¢
We will characterize OPT in terms of the quantity

@ = max{||Z], |Ol, |Zsll + |05 : B € P}

We write ®(F) if the family F = (Z, O) is unclear.



It is easy to see that OPT > ®: A solution must contain an edge entering every Z-core and an
edge leaving every O-core. Thus OPT > ||Z||, ||O]||. A single edge cannot both leave an O p-core
and enter an Zp-core. Thus OPT > ||Zg|| + ||Op|| for any color B. Fig. 1(a) shows this lower
bound need not be tight since it has ® = 2 and OPT = 3.

Fix a set of edges. Z, denotes the family of “uncovered” Z-sets, i.e., the Z-sets not covered by
any edge of the set. Similarly we have O, and F, = (T, 0,).

1y is a crossing family with [|Z,| < ||Z]|. To prove this it suffices to assume there is only one
edge e (by induction). If a set I UJ or I'NJ is covered by e then at least one of I and J is covered
by e. Hence Z,, is crossing. ||Z,|| < ||Z| since Z,, C Z. _

These observations justify the basic approach: We solve our covering problem by repeatedly
adding a set of edges F' to the desired cover. This leaves us with another covering problem on the
family F,. We show each such addition decreases ® by |F|. The following facts help establish this
decrease.

Lemma 2.7 For any set of edges, any set of u(Z,) — p(Z) is mized.

Proof: Let J € u(Zy) — pu(Z). J contains an Z-core that is covered by some edge e. Since J is not
covered it contains both ends of e, making J mixed. O

T, denotes the family of black sets in Z,,.

Lemma 2.8 Suppose | Z|| > 2. For any I-core I, an edge from V —1T to I has | .|| = ||Z|| — 1.
Furthermore if I is black then ||Z, |l = ||Zs] — 1.

Proof: Let e be the edge. Consider the first assertion. Since ||Z|| > 2 the Z-cores are pairwise
disjoint. Hence every core of u(Z) — I is an Z,-core. Lemma 2.1 implies it suffices to show there is
no Z,-core disjoint from each core of yu(Z) — I. Such a core contains I and is contained in T. Hence
it is covered by e.

The second assertion follows from Lemma 2.7. a

The proof of the incrementation theorem eventually reduces any given family to one where ||Z||
or ||O|| equals 1.

Lemma 2.9 If |Z|| =1 then OPT = .

Proof: We begin with an observation on the case ||Z|| = 1. Let I be a black Z-core, and take any
set of edges (even (). Then any Z,-core distinct from I is mixed. This follows from Lemma 2.1
when there are no edges, and otherwise from Lemma 2.7.

We now prove the lemma by induction on ®. First suppose the given family F has & = ||O|| +1,
i.e., there is a black Z-core I and ||O|| black O-cores. Take an edge from a white element to I and
let Fy = (Zy, Oy). Every Z,-core is mixed by the preliminary observation. Hence ®(F,) = ®(F)—1
as desired.

Now we can assume ® = ||O||. Let I be an Z-core; take I to be a black set if such an Z-core
exists. Let O be an O-core, chosen so I U O is mixed. (O exists since ® = ||0]|.)

Suppose ||O|| = 1. Take an edge from O to I. Suppose N is an Oy-set. N ¢ I since that would
make N and T disjoint O-sets. Similarly I ¢ N. Hence Lemma 2.3 shows N is disjoint from I.
Corollary 2.2 shows O is the unique O-core, so O C N. Thus N is covered and O, = 0.

Suppose [|O]| > 1. Let N be an O-core distinct from O. Observe that N U (V — N) is mixed.
If not, say it is black, then there is a black Z-core contained in the Z-set V — N , and all O-cores
other than N are in this set as well, contradicting ® = ||O||.
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Hence we can choose an element z ¢ N so N Uz is mixed. Take an edge from N to z. Lemma

2.8 shows [|Oy]| = ||O]| — 1. Our choice of I and O, plus the preliminary observation and Lemma
2.7, shows ®(F,) = ||Oy]|. O

2.3 Compatible Pairs

This section discusses the main tool of our reduction, compatible pairs. From now on assume
IIZ1], [|O]| > 1 since otherwise we are done by Lemma 2.9. ‘

An Z-core I and an O-core O form a compatible pair if TUQO is mixed and neither core dominates
the other. To augment such a compatible pair O, I means to place in the cover an edge directed from
an element of O to a differently colored element of I. The augmentation of O, I is the corresponding
family 7,. Lemma 2.8 implies the augmentation has a lower value of ||Z|| and ||O], and a lower
value of || Zg|| + ||Op|| if O € Op or I € Ig. Thus an augmentation has a lower value of ® if O and
I are of opposite colors, i.e., neither O nor I is mixed. (This is not a necessary condition.)

Lemma 2.10 Suppose ||Z|| + |O|| > 2@ — 1. If I;, i = 1,2 are distinct Z-cores and Oj, j = 1,2
are distinct O-cores with each I; U O; mized, then some I;, O; is compatible.

Proof: Suppose there is no compatible pair I;, O;. Since I; is incompatible with O; we can assume
without loss of generality that I; dominates O;. This 1mphes that Iy and I, both dominate Oy
and Og (since there is no dominance chain). We conclude I, and Ig are intersecting zones. Thus
|Z|| = 2. Furthermore I; and I2 are co-disjoint. Each O-set V — T; contains an O-core N;. Since
N; is distinct from Oy, 0y C I; N I we get the contradiction & > O] > 17| + 2. o

Corollary 2.11 Suppose |Z||+ ||O|| > 2® — 1. If each I-core and each O-core have a mized union
then OPT = 9.

Proof: Assume [|Z|| > ||O|| > 1 by Lemma 2.9. Clearly ® = ||Z||. Lemma 2.10 shows there is a
compatible pair of cores. Let F, be the augmentation. If ||Oy|| > 1 then clearly ®(F,) = ®(F) -1,
F. satisfies the lemma’s hypothesis and we are done by induction. If |O,|| = 1 Lemma 2.7 shows
Fu is not unicolored. Hence ®(F,) = ®(F) — 1 and we are done by Lemma, 2.9. a

2.4 Crossing family operations

We perform several operations that modify a crossing family into another crossing family. Let F
be a crossing family over a set of elements V. In what follows assume z is an arbitrary element of
V.

Let S = {z} or V —{z}. Making S an F-set means to enlarge the family with the set S (if it is
not already present). This gives another crossing family for our choices of S, since {z} and V — z
are not crossing with any set. Note that making {z} an O-set automatically makes V — z an Z-set.

Deleting x means to delete z from V and any F-set in which it occurs. This gives a new crossing
family since sets that are crossing in the new family are crossing in the original family.

Duplicating v means adding a new element z’ to V with 2’ belonging to exactly the same sets
as r, i.e., a set S in the original family corresponds to a set S’ in the new family with S’ = S if
z¢ Sand §'=SUz’ ifz € S. The new family is crossing since again sets that are crossing in the
new family are crossing in the original family.



3 Singleton families

We reduce our covering problem to the case where every Z- and O-core is a singleton set. We call
such an F a singleton family. Throughout this section assume the given family F is a singleton
family. We will typically denote an Z-core by z, where z € V and we have identified z and {z} as
usual. Similarly an O-core is typically denoted by y.

Note that augmenting a compatible pair in a singleton family decreases ®. This follows from
Lemma 2.8. The augmentation is a singleton family by Lemma 2.1.

A I-blocker (for B) is a singleton family with ® = ||Zg|| + ||Op| and O[Zg, O] # 0. Fig. 1(a)
is a 1-blocker. Note that O[Zp, Op] # 0 if and only if Z[Op, Zp] # 0. Hence F is a 1-blocker if
and only if its complement symmetric family is.

A 1-blocker has an Z-core and an O-core of both colors. In proof, a set of O[Zp, Op] contains a
white O-core and its complement contains a white Z-core. If |Zp|| = 0 then we get the contradiction
® = |0l < O]

Let F be a singleton family with ® = ||Zg|| + ||Op|| that is not a 1-blocker for B. An Zg-core
x is dangerous if Ip — z, Op, O[Ip — x, Op] # 0. This definition implies p*(O[Zp — x, Op))
is well-defined. We also have the complement-symmetric definition, an Op-core y is dangerous if
OB - Y, IB, I[OB -y, IB] 75 @

If z is dangerous then it does not belong to any set of O[Zp — z, Op]. If it did then F would
be a 1-blocker.

Lemma 3.1 Let F be a singleton family. Let F, be the augmentation of a compatible pair T,y
where z is an Ip-core. Suppose F is not a 1-blocker for B but F, is. Then z is dangerous.
Furthermore O[Ip —z, Og Uz Uy # 0.

Proof: Let F, = (Zy,0,). The black cores are the same in F and F, except that z is not an
Zy-core. Hence Fy, a 1-blocker for B implies that in F, O[Zp — z, Op] # 0. It also implies F has
® = ||Z|| + [|OB||.- There is a black Z,-core and a black O,-core. Thus z is dangerous.

Take any uncovered set N € O[Zp — z, Op]. As shown above N does not include z. N does
not include y since N is uncovered. This gives the second part of the lemma. ]

Lemma 3.2 If || Zg|| > 2 then at most one Ig-core is dangerous.

Proof: Suppose z;, i = 1,2 are two dangerous black Z-cores, with corresponding sets O; €
O[Zp — zi, Op Uz;]. The hypothesized third black Z-core shows O; and O5 are intersecting. They
are crossing since Op # (). This makes O; U O3 an O-set and F a 1-blocker, a contradiction. O

Lemma 3.3 Let z be a dangerous Ip-core. Lety be any O-core contained in p*(O[Ig — z, Op]).
Then x,y is a compatible pair whose augmentation is not a 1-blocker for B.

Proof: Let u*(O[Ip — x, Op Uz]) = O. Clearly O contains an O-core y and any such y is white.
Suppose z € §. F has a black O-core, which is disjoint from O U%. Thus either O C § or O and
i are crossing. In both cases O U¥ is an O-set. But this makes F a 1-blocker for B. We conclude
Suppose y € Z. Since O contains an Z-core distinct from z, O and 7 are intersecting. Lemma
2.3 makes O — 7 an O-set that contradicts the minimality of O. We conclude y ¢ .



Lemma 2.6 shows that z,y is a compatible pair. If its augmentation is a 1-blocker for B then
Lemma 3.1 shows O[Zp — z, Op Uz U y] # 0. This again contradicts the minimality of O. ]

Suppose a singleton family is not a 1-blocker (for either color). Let z,y be a compatible pair
with z black and y white. z,y is safe if z dangerous implies y € u*(O[Zp — z, Op]), and similarly
y dangerous implies z € u*(Z[Ow —y, Zw]). The augmentation of a safe pair is not a 1-blocker by
Lemmas 3.1 and 3.3 (applied to both z and y).

Lemma 3.4 Let F be a singleton family. For i = 1,2, let z;,y; be compatible pairs for distinct
I-cores z;, © = 1,2 and distinct O-cores y;, © = 1,2. Augmenting both pairs decreases ||I| by 2 if
and only ifI[{mlax%yl,y?}a T-m— .CL'2] = 0.

Proof: Let 7, be the augmentation. For the only if direction if Z[{z1,z2,y1,y2}, T — 21 — 5] # 0
then we get an Z-core that shows ||Z|| does not decrease by 2. Hence Z[{z1,z9,y1,v2}, I—21—29] =
0.

For the if direction it suffices to show there is no Z,-set K that contains no Z-core other
than z1 or zo. Without loss of generality z; € K. We must also have zo € K since oth-
erwise K C 71 and K is covered. We must have y;,y2, € K, else again K is covered. So
K € Tl{z1,2z2,y1,Y2}, T — 21 — 33] = 0, a contradiction. O

For completeness we note that this lemma is not true for a general family F unless ||Z|| > 4.

We use the following operation on a singleton family F: To create an Zg-core, start by choosing
a black element z, where z is an Op-core if one exists. If z is not an Z-core then simply make {z}
an Z-set. In the opposite case duplicate z. Recall from Section 2.4 that this gives a new element
z'; {z,2'} is an Z-core, and also an O-core if  is an O-core of F. Add ' to B. Make {z} and {z'}
I-sets. If z is an O-core of F then make {z} (but not {z'}) an O-set.

Suppose F is the given family and F’ the new family. Assume z is not the unique O-core of
JF. This operation increases ||Z|| and ||Zp|| by 1. The assumption implies it does not change the
O-cores, and also that F' is a singleton family. Clearly a cover of F' gives a cover of F with the
same number of edges. F' is not a 1-blocker for B (since it has either Op = § or O[Zg, Op] = 0.)
Furthermore F’ is a 1-blocker (for W) only if F is. To see this, 7' a 1-blocker for W obviously
implies ® does not increase. The complement of a set in O[Zy, Ow] is an Z-set containing white
elements, so it is not a newly created Z-set.

Lemma 3.5 A singleton family that is not a 1-blocker has OPT = ®.

Proof: Assume F is not a 1-blocker. Assume ||Z||, ||O]| > 1 by Lemma 2.9.
We first modify F to make

(1) @ = ||Zsll + 105l = IZw |l + [|IOwl.

If & = ||Zg|| + ||OB]|, create (® — ||Z||) Zyw-cores and (® — ||O||) Ow-cores. In the opposite case
without loss of generality assume ® = [|O||. Create ® — (||Zp|| + ||Og||) Zp-cores and & — (||| +
|Ow||) Zw-cores. In both cases the new family satisfies (1), has the same value of ® and is not
a 1-blocker. It suffices to show the new family has OPT = ®. From now on we refer to the new
family as F.

(1) implies ||Zp|| = [|Ow|| and ||Zw|| = [|Op]|. In proof | Zs|| + |Opll = @ > |Z|| implies
OBl > | Zw||. Similarly || Zg|| > ||Ow||. Now(1) implies both these inequalities hold with equality.



We prove OPT = @ by induction on . It suffices to find a safe pair (since the augmentation
Fu is not a 1-blocker and ®(F,) = &(F) — 1). »

If there are two Zg-cores and two Oyy-cores, none of which are dangerous, Lemma 2.10 gives a
compatible pair which is clearly safe. This remark applies if | Zg|| > 2, since Lemma 3.2 shows at
most one Zp-core and at most one Oyw-core are dangerous. The remark also applies if | Zg]| = 0
since then no core is dangerous. Suppose ||Z|| = 1. The unique Oyy-core y and the unique Zg-core
z form a compatible pair y, z. This follows since z € § makes F a 1-blocker for B and y € T makes
F a 1-blocker for W. Neither z nor y is dangerous by definition.

The remaining possibility is ||Zp|| = 2. Hence assume

Ip = {z1,22}, Ow = {y1,92}.

The remark shows we can assume at least one of these four cores is dangerous. If no Oy -core is
dangerous then Lemma 3.3 gives a safe pair. Hence without loss of generality we can assume both
y1 and x; are dangerous. (We remark that either or both of y, and z2 can be dangerous.)

We can assume y1, 71 is not safe. So without loss of generality, writing u*(O[Zp—=z1, Op Uz]) =
O, we have y; ¢ O.

Claim 1: Both y;,z2 and y,, 71 are compatible.
Proof: y, € O since O contains an O-core. Thus

O € Ol{z2,y2}, Op Uz Uy

In particular Lemma 3.3 shows ys, z; is compatible.
Claim 1 follows if y1, 29 is compatible so assume not. In particular writing z* (Z[Ow —y1, Iw U
y1]) = I, Lemma 3.3 implies z9 ¢ I. x1 € I since I contains an Z-core. Thus

I € I[{z1,y2}, Iw U za Uyl

We have shown O and I are intersecting: y, € ONI, 2o € O—1I, 1 € I —O. Lemma 2.3 shows
O — I is an O-set. This is a contradiction since O — I does not contain an @-core (y2 is the only

O-core in O). 'Y

Now augment both compatible pairs of Claim 1. Note that Z[{z, z2, 1,92}, Z — 11 — o] = 0,
since otherwise F is a 1-blocker for W. So Lemma 3.4 shows ||I|| decreases by 2. Similarly ||O||
decreases by 2. Thus ® decreases by 2. The family F, is not a 1-blocker since it has no Zz-core.
Hence we are done by induction. a

4 Blockers

There are six types of blockers, illustrated in Fig. 2 for our edge-connectivity incrementation prob-
lem. Each graph in this figure is k-edge-connected and we wish to increase the edge-connectivity by
1. Here k is an arbitrary positive integer. A black or white vertex represents a vertex of that color.
A shaded vertex represents a mixed core — it can be replaced by a black vertex and a white vertex
joined to each other by two antiparallel edges of multiplicity £+ 1. In each graph the Z-cores are on
top and the O-cores are on bottom. (It may be helpful to note that in each graph the solid edges
alone give a k-edge-connected subgraph, so no dotted edge leaves an O-set or enters an Z-set.) We
return to this figure after defining blockers.
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A family F is a blocker if it satisfies any of the following six sets of conditions. A I-blocker has
(i) @ = |Zs|l + |O5l;
(11) O[Zg, O] # 0.
The next three blockers all have the same first condition,
(i) @ = ||IZ]| = O]
A 2-blocker has
(it) O[Zp, Opr] # 0.
A 3-blocker is either a 3 O-blocker or a 3Z-blocker. A 3 @-blocker has
(“) O[IB’ OW’], O[IWJ OB'] # @;
(128) | Zx|| = 1.
A 3Z-blocker satisfies the complement-symmetric conditions,
(i) Z[Og, Iw1], I[Ow, Zp/] # 0;
(iii) Ox] = 1.
A 4-blocker has
(¢¢) O[Zp, Ow], I[Op, Ty] # 0;
(i41) |Zs]l + [O5] = @ 1.
The last two blockers have the same first condition,
(@) 121l + lO] = 2® — 1. :
Thus either |Z|| = @, [[O] =® —1or |O]| =&, ||Z|| = ® — 1. A 5-blocker is either a 5 O-blocker
or a 5Z-blocker. A 5O-blocker has
(1) O[Zp, Ow'], O[Zw, Op/] # 0;
(iid) | Zx | = 0.
A 5Z-blocker satisfies the complement-symmetric conditions,
(’L’L) I[OB, IWI], I[OW, IBI] 75 @,
(i) [|Ox|| = 0.
A 6-blocker has
(i) O[T, Owrl, T[Op, Tu+l, OLw, Op] # 0;
(ii) | Zl + |OB|| = @ — 1.

The six types of blockers are distinct. For instance each blocker in Fig. 2 satisfies only one set of
blocker conditions. If we ignore symmetries there are actually 10 varieties of blockers: A 3 Z-blocker
is illustrated by reversing the edges in Fig. 2(c). A 5O-blocker with ||Z|| > ||O]| is illustrated by
adding two Z-cores to Fig. 2(e), copying a black vertex in the left ring and a white vertex in the
right ring. 5Z-blockers are illustrated by reversing the edges of these two 5 O-blockers. Again each
of these 10 graphs satisfies just one set of blocker conditions.

A slight modification of the figure shows that all 10 varieties of blockers occur even for bipartite
digraph edge-connectivity incrementation (i.e., the framework reinforcement problem). The graphs
in Fig. 2(a)-(d) are bipartite, assuming edges incident to mixed vertices are handled appropriately.
Fig. 2(e)-(f) have 3 (solid) edges that violate bipartiteness. In each case the edge zy joins two
vertices (z and y) that are tails of dotted edges directed to the same vertex z. Replace edge zy by
a new mixed vertex w, solid edges zw,wy and dotted edges zw,wz. The new graph is bipartite,
has the same cores and is a blocker of the same type.

There are simpler blockers than those in Fig. 2. For example Fig. 1(a) shows a 1- and 2-blocker
for both B and W. The graph formed from Fig. 2(e) by getting rid of one black Z-core and two
mixed O-cores from the left ring and one white Z-core from the right ring is a 5 O-blocker, and a.
6-blocker for both B and W. The slightly larger graphs of Fig. 2 were chosen so each graph satisfies
only one set of blocker conditions.

11



O

(b) 2-blocker (c) 3O-blocker (d) 4-blocker

(e) 5 O-blocker (f) 6-blocker

Figure 2: Blockers for edge-connectivity incrementation. A directed line represents an edge of
multiplicity & or 1 if it is drawn solid or dotted respectively.
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If k = 0 the graphs of Fig. 2(a)-(d) are 1-,2-,3- and 4-blockers respectively. (These graphs are
essentially the same as the examples in [8].) The graph of Fig. 2(e) is not a 5-blocker but rather a
3 O-blocker. The graph of Fig. 2(f) is not a blocker at all. See Lemma 6.1 below.

Lemma 4.1 Any blocker has OPT > ®.

Proof: We consider each type of blocker separately. For each blocker we assume that OPT = &
and derive a contradiction.

I-blocker. At least ||Zp|| edges enter a black Z-core and at least ||Op|| other edges leave a black
O-core. Hence condition (i) implies every edge is incident to a black core. But a set O € O[Zp, Op]
cannot be covered by such an edge, since O does not contain an element of a black @-core and O
does not contain an element of a black Z-core.

2-blocker. Condition (z) shows every edge leaves an O-core and enters an Z-core. But a set
O € O[Zp/, Op] cannot be covered by such an edge, since the only O-cores with an element in O
are black and the only Z-cores with an element in O are black.

3-blocker. Consider a 3 O-blocker. Condition (i) shows every edge leaves an (J-core and enters an
T-core. An edge covering a set of O[Zp, O] leaves a white O-core and enters a mixed Z-core.
An edge covering a set of O[Ty, Op'] leaves a black O-core and enters a mixed Z-core. These two
edges are distinct but there is only one mixed Z-core (condition (#i%)), a contradiction.

3 Z-blockers are handled by complement-symmetry.

4-blocker. Condition (i) shows every edge leaves an O-core and enters an Z-core. An edge covering
a set of O[Zp, O] leaves a white O-core and enters a mixed Z-core. An edge covering a set of
I[Op, Iy] enters a white Z-core and leaves a mixed O-core. These two edges are distinct and
neither covers a black core, contradicting condition (4i7).

5-blocker. Consider a 5 O-blocker. There are 2® — 1 cores in the families of cores corresponding to
I Z]| and [|O|. Hence ® — 1 edges cover two cores and one “exceptional” edge covers (at least) one
core. An edge e covering a set in O[Zp, O] can leave a white O-core or enter a white Z-core (recall
there are no mixed Z-cores). Since e cannot do both, e must be the exceptional edge. Similarly an
edge f covering a set in O[Zy, Op/] can leave a black O-core or enter a black Z-core, so f must be
the exceptional edge. Clearly e # f, a contradiction.

5Z-blockers are handled by complement-symmetry.

6-blocker. A 6-blocker is complement-symmetric, since Z[Ops, Zp] is the set of all complements of
sets of O[Zg:, Op']. Hence without loss of generality we can assume ||O| = @.

The assumption implies every edge leaves an O-core. To cover a set in O[Zp/, Op/] some edge
leaves a black O-core and does not enter an Z-core. This implies every other edge enters an Z-core.
To cover a set in O[Zp, Oy] some edge leaves a white O-core and does not enter a black Z-core.
To cover a set in Z[Op, Zy] some edge enters a white Z-core and does not leave a black O-core.
This gives two edges that are not incident to black cores, contradicting (i%4). O

For a blocker type i (i.e., ¢ € {1,2,3Z,30,4,5Z,50,6}) a nondegenerate i-blocker has every
family of cores implicitly referred to in condition (i¢) nonempty. For instance a nondegenerate
2-blocker has a nonblack Z-core and a nonblack O-core; a nondegenerate 3 O-blocker has a black
and a white Z-core and a nonblack and a nonwhite O-core. A blocker is nondegenerate if it is a
nondegenerate ¢-blocker for some 1.
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Lemma 4.2 Any blocker is nondegenerate.
Proof: Assume ||Z|, /O] > 1 by Lemmas 4.1 and 2.9.

I-blocker. By complement symmetry we need only prove there is a black Z-core. Condition (i)
implies there is a nonblack O-core. Thus ® > [|O|| > ||Op||. Now condition (i) implies |Zg| > 0
as desired. :

2-blocker. By complement symmetry we need only prove there is a nonblack Z-core. Condition
(¢4) implies there is a black O-core. Thus ® > | Zg|| + |Op| > ||Zs||. Now condition (i) implies
IZp || > 0 as desired.

3-blocker. By complement symmetry it suffices to consider a 3 O-blocker. Condition (ii) implies
there is a white and a black O-core. Since B and W are symmetric it now suffices to show there
is a black Z-core. We can assume the family is not a 1-blocker for W, by the previous case.
Hence condition (i) implies ® > ||Zy/|| + ||Ow|| > || Zw|| + 1. Now conditions (ééi) and (i) imply
IZ|| > ||IZp'||. Thus ||Zg|| > 0 as desired.

4-blocker. We will show there is a black Z-core. Then complement symmetry implies there is a
black O-core, and these two facts imply the blocker is nondegenerate.

Condition (ii) shows there is a white O-core. We can assume the family is not a 2-blocker for
W. Since condition (i7) implies O[Zy, Op] # 0 there must be a mixed O-core. Thus & > ||O|| >
|OBll + 2. Now condition (i72) implies || Zg|| > 0 as desired.

5-blocker. By complement symmetry it suffices to consider a 5 O-blocker. Condition (i1) shows
there is a white and a black O-core. Since B and W are symmetric we need only show there is a
black Z-core. Condition (ii) implies Z[Op:, Ty] # 0. With condition (4ii) this implies the desired
black Z-core exists.

6-blocker. The third part of condition (i7) implies condition (47) of a 5 O-blocker. So we can as-
sume condition (4ii) of a 5 O-blocker is not satisfied, i.e., there is a mixed Z-core. There is a black
Z-core, since the third part of condition (i) is equivalent to Z[Op, Zp:] # 0, Complement sym-
metry shows there is a black and a mixed O-core. These four cores imply all the desired relations. O

We also use this property of blockers:

Lemma 4.3 Suppose ® = ||Z|| = ||O|| and an O-set contains every Ig -core and no Op -core.
Then F is a 1- or 2-blocker.

Proof: Let O be the O-set of the lemma. We can assume an O-core N of Op is not disjoint from
O, else F is a 2-blocker. N does not properly contain the O-set O. The hypothesis of the lemma
shows we must have N and O intersecting and co-disjoint. Hence every O-core other than N is
contained in O and so is black. Thus ||Op| = ® — 1. The Z-set N — O contains an Z-core, which
must be black. Thus ||Zg|| = 1. Now the O-set N makes F a 1-blocker. O
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5 Incrementation theorem

This section proves our incrementation theorem. Throughout the section we assume ||Z|, |O]| > 1,
since if not Lemma 2.9 implies the incrementation theorem (Theorem 5.9).

We will convert an arbitrary given family into an equivalent singleton family. We call this
process coloring the given family. Let I be an Z-core. To make I a singleton means to choose an
element z € I and make {z} an Z-set. This does not change the cores other than replace I by z.
(V —z is not a new O-core since the original family has an O-core disjoint from I .) Clearly a cover
of the new family is a cover of the original family. To make I a black singleton means to choose a
black element z € I (assuming this is possible) and make I a singleton as above.

The following relations are useful for coloring a family. Let B be an arbitrary color.

(2) 2@ > ||Z] + |01l = IZs]l + 108l + 1251l + [ Op

Here we use the relation ||Z|| = ||Zg| + ||Zp/||. This holds since ||Z]| > 1 implies the Z-cores are
disjoint (Lemma 2.1). Note that the inequality in (2) implies we can say there are at most 2® cores
(again using the assumption ||Z||, |O| > 1).

It is easy to color a given family without increasing ®: Make each core into a singleton, choosing
at most ® black (white) elements to be the new cores. This can be done since there are at most 2®
cores. We get a singleton family with the same value of ®. The difficulty is that when the given
family is not a blocker, the singleton family must also not be a 1-blocker.

Lemma 5.1 Any family has OPT < ® + 1.

Proof: Make cores into singletons in any way that does not increase ®. Then create an Zg-core
and an Oyy-core (recall this operation from Section 3). This increases ® by 1 and gives a singleton
family that is not a 1-blocker. So Lemma 3.5 shows the original family has OPT < @ + 1. O

Lemma 5.2 If ® > ||Zp|| + ||Og]|| for both colors B and |O|| + ||Z]| < 2® — 1 then OPT = &.

Proof: The hypotheses imply we can make cores into singletons to get a singleton family ' where
both colors B have ||Zg||+||Op|| < ®—1. So F' is not a 1-blocker and Lemma, 3.5 shows OPT = ®.
D .

The next lemma shows that in general we can make every black (white) core into a singleton
without creating a blocker. We first make a simple observation about condition (iz) in blockers.
Replace any condition Z[A, B] # 0 in (i) by the equivalent condition O[B, A} # 0. Then every
family in condition (44) of every blocker has one of the forms O[Zg, Og], O[Zg, Ow], O[Ty, O]
or Oy, Oy}, for some colors B, W. Hence every family in condition (i) can be written as

O[IB UA, OpU B],

where A (B) is either § or Zx (Ox). Here B ranges over both colors. As an example condition (i)
for a 2-blocker is O[Zp:, Op/] # 0. By definition Zp = Zyy UZx and Op = O U Oy, as desired.

Lemma 5.3 Making a black core into a singleton does not give a blocker unless the original family
18 a blocker.
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Proof: Let F be the original family, with I an Zg-core containing an element z. Let F’ be the
family with I replaced by z as an Zg-core. For the purpose of contradiction assume F' is a blocker
but F is not. Furthermore by Lemma 4.2 assume F' is nondegenerate.

F and F' have exactly the same cores except for z and I. Hence condition (i) of a blocker for
F' implies (i) for F. The same holds true if the blocker has a condition (iii). We conclude some
family in (74) is nonempty for 7’ but empty for F.

Suppose the family has the form O[Zy U A, Oy U B] (recall the observation before the lemma).
Let O be an O-set for 7’ that satisfies this condition. Clearly O is not an O-set for F, s0 O = V —z.
This implies Ow U B = @. This makes the blocker degenerate, a contradiction.

Suppose the family has the form O[Zg U A, Og U B]. Let O be the corresponding O-set of F'.
Since z € O, O is an O-set of F. Since I ¢ O, Lemma 2.3 implies O C I. Hence the O-set O
contains a black O-core. But O is disjoint from every black O-core, a contradiction. g

A family where every nonsingleton core is mixed is semi-colored. To convert any given family
into an equivalent semi-colored family, simply make each black (white) core into a singleton. The
new family F’ is semi-colored and has the same value of ®. The lemma shows F' is not a blocker
unless the original family is.

Lemma 5.4 A family with ® = || Zg||+||Os|| for some color B has OPT = ® unless it is a blocker.
Remark: It is not hard to see that we need only assume the family is not a 1- or 2-blocker.

Proof: Assume ® = ||Zg|| + ||Op|| and the given family is not a blocker. Assume the family F
is semi-colored, by the discussion after Lemma 5.3. Make every mixed core into a white singleton.
This gives a singleton family F'.

O(F') = ®(F) since (2) implies & > || Zp/|| + ||Op||. F' is obviously not a 1-blocker for B. We
will show F' is not a 1-blocker for W. This completes the argument since then Lemma 3.5 shows
OPT = ®.

Suppose F' is a 1-blocker for W. Hence ® = ||Zp/|| + ||Op/||. Now the right-hand side of (2)
equals 2@, which implies ® = ||Z|| = ||O||. Also F' has O[Zw, Ow]| # 0, so take a corresponding
O-set O. Since F is not a 2-blocker, F has a mixed Z-core I, I € O, or a mixed O-core N, N Z O.
By complement-symmetry assume the former. O contains the singleton core that belongs to I.
Now Lemma 2.3 implies O C I. Hence O contains no Z-cores. This implies F has exactly one
mixed Z-core (I) and ® — 1 black Z-cores. Furthermore O contains a black O-core, which must be
the only black O-core. Now I makes F a 1-blocker for B, a contradiction. ' a

To prove our incrementation theorem we can now assume ® > ||Zg|| + ||Op|| for both colors
B and |Of| + ||Z]] > 2® — 1. Lemmas 5.7 and 5.8 treat the two remaining cases. Although the
proofs are long the overall approach is simple: We will attempt to color the given family F to get
a singleton family F' that is not a 1-blocker. To do this we define a number of sets. Under certain
circumstances each set allows us to construct the desired F'. If none of the sets leads to the desired
F' then we can show that F is a blocker.

Here are the definitions of the main sets that are used. In general each of these sets need not
exist or be unique. B denotes any color and I denotes any mixed Z-core.

Xp = /J’*(O[IB7 OB]);

Ip p*(O[Zp VI, Op));
Y = M*(O[IW’, OB])

fl
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The fact that O is crossing gives the following sufficient conditions for these sets to exist: A unique
set Xp exists if Zp, Op, O[Zp, Op] # 0. Suppose this is the case. For any mixed Z-core I a unique
set Ip exists if O[Zp U I, Op] # 0. A unique set Yp exists if Ip exists for every mixed Z-core I. In
fact Yp = Xp UU{Ip : I a mixed Z-core}.

We define a tuple to be good if any of the following conditions holds. In these conditions I (O)
ranges over every mixed Z-core (O-core) and B ranges over both colors. Assume a unique set Xp
(I) exists in the condition involving Xp (Ip).

(B) it O[Ts, O] = b;

(O, B) if “IB“‘*‘”OB” <®-1 and OC Xp;

(I,B)  if |Zg| +||0sl| <®—1,Tp #0 and O[ZzUI, Op] = 0;
(IaOaB) lfHIB”-'-“OBHSq)"z, IB#@&HdOg_IB.

Two good tuples are disjoint if they contain no common entry. In particular one tuple contains B
and the other W.

Lemma 5.5 Suppose a semi-colored family F has ® > ||Zp|| + ||Og|| for both colors B and ||O|| +
1) > 20 — 1.

(i) If F has a good tuple containing B then F has a coloring with |||+ ||Op|| = ® that is not
a I1-blocker for B.

(13) If F has two disjoint good tuples then OPT = ®.

Proof: (i) For each of the four types of tuples we construct a singleton family F' as follows. If
the tuple contains I make it a black singleton. Similarly if the tuple contains O. Then make each
remaining mixed core into a singleton, choosing colors so that F’ has exactly ® black cores. This
can be done by the definition of good tuple, e.g., if (1,0, B) is good then F has at most & — 2
black cores. ®(F') = ®(F) by the hypothesis and (2).

We write O[Zp, Op] assuming the family is 7, and O'[Zp, O] assuming the family is F'.
We now show F' is not a 1-blocker for B. We consider each of the four types of good tuples in
turn. For each type, we assume there is a set N € O'[Zp, O] and derive a contradiction. Clearly
N € O'[Zp, Op] C O[Zg, Opl.

Suppose (B) is good. The assumption O[Zg, Op] = 0 contradicts the existence of N.

Suppose (O, B) is good. We have Xp C N. Since O C Xp, N contains O along with the black
O-core contained in O. This contradicts the definition of N.

Suppose (I, B) is good. N contains an element of I (specifically, the new core). If N C I then
N contains no Z-cores, contradicting the assumption Zp # 0. Hence N ¢ I and Lemma 2.3 implies
I C N. But this contradicts the assumption O[Zp U I, Og] = 0.

Suppose (1,0, B) is good. As in the previous case we get I C N. Hence Ig C N. Since O C Ip,
N contains O along with the black O-core contained in O. This contradicts the definition of N.

(i) Construct a singleton family F' by first making the cores in the two good tuples into single-
tons, as in part (¢). Then make each remaining mixed core into a singleton, choosing colors so that
F' has exactly ® black cores. Part (i) shows F' is not a 1-blocker for B or W. Hence OPT = ®
by Lemma 3.5. |

Lemma 5.6 Suppose a color B has Ip,Op # 0 and ® > | Ip| + |Op|. FEither some good tuple
contains B or these properties hold:

(i) A unique set Xp exists and equals p*(O[|Zg, Ow]).

(it) Any mized Z-core I has a unique set Ip.

Gii) If | Zg| + |OBll < ® — 2 then Y € O[Zw:, Ow].
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Proof: If O[Zp, Op] = 0 then (B) is good. So assume O[Zg, Op] # 0. Now a unique set Xp
exists. If Xp contains a mixed O-core O then (O, B) is good. In the remaining case no mixed
O-core O is contained in Xp. Lemma 2.5 shows O and Xp are disjoint. Hence Xp € O[Zg, Oy],
giving (7).

If O[ZpUI, Op] = 0 then (I, B) is good. If not then O[Zg U, O] # 0 for every mixed Z-core
I and part (i7) follows.

Suppose || Zg|| + |Og|| < ® — 2. If some mixed O-core is contained in some set Iz then
(I,0,B) is good. If not, each set Ip is disjoint from every mixed O-core, by Lemma 2.5. Thus
Yp € O[Zw:, Ow], giving part (731). O

Lemma 5.7 A family with & = ||O| > ||Z||, | Zg|| + ||OB|| for both colors B has OPT = ® unless
it is a - or 6-blocker.

Proof: The hypotheses show we can assume the given family is not a blocker. Assume the family
JF is semi-colored, by the discussion after Lemma 5.3. By Lemma 5.2 assume there are exactly
29 — 1 cores. Hence any coloring has exactly ® cores of one color and ® — 1 cores of the other. So
it suffices to find a good tuple, since then Lemmas 5.5 and 3.5 show OPT = &.
Assume some color B has Zg, Op # () by Corollary 2.11. Lemma 5.6(3)—(ii) show we can assume
there are unique sets
Xpe (’)[IB, (')W/], Yp € O[IW/, OB].

Xp contains an O-core so Oy # 0. V — Yp contains an Z-core so Zyy # (. Now as in the
previous paragraph we get

Xw € O[Iw, OB’], Yw € O[IBI, Ow];

If | Zx|| = 0 then Xp and Xw show F is a 5 O-blocker. If || Ox|| = 0 then V — Y5 € Z[Op, Zy]
and V - Yw € Z[Ow, Zp/] show F is a 5Z-blocker. Hence assume ||Zx||, ||Ox] > 1.

This implies Yp and Yy have nonempty intersection. Hence Lemma 2.4 shows they are co-
disjoint. Lemma 2.5 shows one of them, say Yp, contains a mixed J-core 0. Thus some set Ip
contains O. Also Lemma 5.6(7ii) shows ||IB|| + |0l =@ — 1.

The latter implies ||Zw || + ||Ow| < ® — 2. So Lemma 5.6(i1¢) shows Yy € (’)[IBr Op]. Now
Xp € OZIp, Ow],V—-Yg € Z|Op, Zw]) and Yy € O[IBl Op'] make F a 6-blocker for B. O

Lemma 5.8 A family with ® = ||Z|| = ||O|| > ||IZs|| + ||OB|| for both colors B has OPT = ® unless
it 18 a 2-, 3- or 4-blocker.

Proof: The hypotheses show we can assume the given family is not a blocker. Assume the family
F is semi-colored, by the discussion after Lemma 5.3. There are exactly 2® cores. Hence any
coloring has @ cores of each color. If we construct such a coloring that is not a 1-blocker for B or
W then Lemma 3.5 shows OPT = &,

Assume B has at least one Z-core and at least one O-core, by Corollary 2.11. Not every Z-core
is black, nor every O-core, by hypothesis.

Case 1. Ow = 0.

We will define a coloring F' that shows OPT = ® or else discover a 1- or 2-blocker. Throughout
the discussion “core” refers to F and “singleton” refers to F’'. We first specify 7' and then show
it has the desired properties. F’ is constructed in three steps.
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Step 1. Make every mixed Z-core a white singleton.

Note that after Step 1 an O-set contains every Zpi-core if and only if it contains every white
singleton. In proof first observe |Zp/|| > 1. (Otherwise there are at least ® — 1 black Z-cores and
a black O-core, contradicting the hypothesis.) If an O-set contains every white singleton but not
every Ip-core then Lemma 2.3 implies some mixed Z-core contains an element of another Z-core,
a contradiction.

We can now make up to ||Zp| mixed O-cores into white singletons, since ® = ||Z| = || Zg| +
IZp]|. We do this by making at most one mixed O-core white for each black Z-core, as follows.

Step 2. For each black Z-core I do the following. Define
Zr = p*(O[Zp, I)).

Zy is uniquely defined since O is crossing, u(Zp/) # 0 and V — I € O[Zp:, I]. Z; contains a
mixed O-core, since otherwise it contains no Opg/-core and Lemma 4.3 shows F is a 1- or 2-blocker.
Choose a mixed O-core N C Zj, where if possible N € Xp when the set Xp exists. Make N a
white singleton.

Step 3. Make the remaining cores into singletons so both B and W get exactly ® singletons, and
if possible some O-core contained in Xp becomes a black singleton.

It suffices to show F' is not a 1-blocker. Suppose F’ is a 1-blocker for W. Hence some O-set
O contains every white Z-singleton but no white O-singleton. Let I be a black Z-core contained in
V —0. O € O[Zp, I] implies Z; C O. But Z; contains a white O-singleton, a contradiction.

Next suppose F' is a 1-blocker for B, so there is an O-set O containing every black Z-singleton
but no black O-singleton. This implies set Xp exists and Xg C O. Now we need only show that
X p contains a black O-singleton.

Every O-core N C Xp is mixed. Take such an N and suppose that Step 2, when executed for
the black T-core I, made N a white singleton. Thus N C XN Z;. X5 U Z; contains every Z-core,
so Lemma 2.4 shows Xp and Z; are co-disjoint. ‘

Every mixed O-core contained in Zj is contained in Xp by Step 2. Now Lemma 2.5 implies
Xp contains every mixed O-core. The hypothesis & = ||O|| > ||IZg|| + ||Og|| and Case 1 imply
|Ox|| > |IZB||- Hence Step 2 does not make every mixed O-core contained in Xp a white singleton.
Thus Step 3 makes some O-core contained in Xpg a black singleton.

This completes the analysis of Case 1. The case Zyy = (§ follows by symmetry. Hence from now
on assume '

75,08, Iw, Ow # 0.
If O[Zg, Op] = O[Zw, Ow] = 0 then (B) and (W) are good so Lemma, 5.5 shows OPT = &.

Case 2. O[Ig, O] # 0, O[Zw, Ow] = 0.

Since (W) is good we need only find a good tuple containing B, by Lemma 5.5(ii). Suppose
there is no such tuple. Lemma 5.6 gives the sets Xp = u*(O[Zp, Ow]), Ip and Y € O[Zy, Op].

Suppose || Zg|| + [|OBl| = @ — 1. The sets Xp € O[Zp, Ow'] and V — Yp € Z[Op, Iy-] make F
a 4-blocker. So [|Zg| + ||Op|| < ® — 2. Lemma 5.6 shows Yp € O[Zy, Oyr]. But this makes F a
2-blocker.

This completes Case 2. Hence we can assume the remaining possibility,

O[Zp, O], O[Iw, Ow] # 0.

Observe that sets Xg and Xy exist.
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Case 3. ||Ox| = 0.

If Yp exists then Yp € O[Iyr, O] = O[Ty, Oyr]. This makes F a 2-blocker. We conclude
that there are Z-cores I, J such that neither of Ig, Jy exists, i.e., (I, B) and (J,W) are good. If I
and J can be chosen to be distinct Lemma 5.5 shows OPT = ®.

We will show such I and J always exist. Suppose the contrary. Case 3 implies ||Z x| > 2. Hence
we can assume I and J are Z-cores where Ig and Iy exist but neither Jg nor Jy exists. I NIy
contains / but no O-core, since Ip (Iy) contains only white (black) O-cores. Lemma 2.4 shows
Ip and Iy are intersecting and co-disjoint. Lemma 2.3 shows J is not intersecting with Ip or Iyy.
Hence J is contained in one of these sets, say Ip. But this implies Jp exists, a contradiction.

This completes Case 3. By symmetry we can now assume

lOx ]I, IZx]| > o.

Claim 1: If ¥ is not a 2-blocker then a color B with at most ® — 2 cores has a good tuple (I, B)
or (1,0, B) (for I (O) a mixed Z-core (O-core)).
Proof: Suppose the claim fails. So for every mixed Z-core I, Iy exists and is disjoint from every

mixed O-core (Lemma 2.5). Thus Y3 exists and belongs to O[Zy, Oy]. This makes F a 2-blocker.
[ )

Claim 2: If (O, B) is good for a mixed O-core O, ||[Zw|| + [Ow| < ® — 2 and ||Ox]|| > 2 then
OPT = ®.

Proof: Lemma 5.5 shows we can assume Iy exists for every mixed Z-core. So Claim 1 shows Iy
contains a mixed O-core for some mixed Z-core I. If we can choose the mixed @-cores O C Xp
and N C [y to be distinct then Lemma 5.5 shows OPT = ®. ‘

Now we show such distinct sets NV and O always exist. Suppose not. Note that I ranges over
every mixed Z-core. So the supposition implies there is a unique mixed O-core O contained in
Xp NYw, and no other mixed O-core is contained in Xp U Y. (Use Lemma 2.5.) We have
O C XpNYw and Xp U Yy contains every Z-core. Lemma 2.4 shows Xp and Yy are co-disjoint.
This makes O the only mixed O-core, contradicting ||Ox]|| > 2. [ )

Claim 3: If (I, B) is good for a mixed Z-core I, |Zw|| + [|Ow| < ® — 2 and ||Zx|. > 2 then
OPT = 9. ‘

Proof: This is the complement-symmetric version of Claim 2: Let Zp be the maximal set of
O[Zp, Op]. (I, B) good implies I Z Zg. Now it is easy to see I is disjoint from Zp. Equivalently
I C p*(Z[Op, Ip]) and (I, B) is good in the complementary family. Now Claim 2 applied to that
family shows OPT = ®. é

Case 4. | Zx|| = 1.
Let I be the unique mixed Z-core. Suppose
Xw contains a mixed O-core O.
Thus (O, W) is good. If Ip does not exist then (I, B) is good so Lemma 5.5(ii) shows OPT = &.
Hence we can assume
Ip exists.
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If |[Zg]| + |Op[| < ® — 2 then Case 4 implies ||Ox| > 2. Now Claim 2 shows OPT = &. Hence we
can assume

IZll + |08l = @ - 1.

If Xp contains no mixed O-core then Xp € O[Zp, Oyr] by Lemma 2.5. Also V —Ig € I[O0p, Iw:].
This makes F a 4-blocker. Hence we can assume Xp contains a mixed O-core.

Now we can interchange B and W in the previous paragraph. Thus we can assume that Iy
exists and ||Zw|| 4+ ||Ow|| = ® — 1. This makes F a 3Z-blocker since V — IB € I[0g, Iw,
V — Iy € I|Ow, Zp/], and Case 4 implies ||Ox|| = 1.

The remaining possibility is that neither Xp nor Xy contains a mixed O-core. Xp is disjoint
from every mixed O-core by Lemma 2.5. Hence Xp € O[Zg, Oyr]. Similarly Xy € OZw, Op].
This with Case 4 makes F a 3 O-blocker.

This completes Case 4. Using symmetry we can assume
10x I, IZx]l > 2.

Case 5. | Zg|| + ||Op|| = ® — 1.

Since there are at least 4 mixed cores we get ||Zw || + ||Ow]|| < @ — 2. If Xp contains a mixed
O-core then Claim 2 shows OPT = ®. If Ig does not exist for some mixed Z-core I then Claim 3
shows OPT = ®. Now we can assume Xp contains no mixed O-core and Y exists. Lemma 2.5
shows Xp € O[Zp, O], and V — Yg € Z|Op, Zy]. This makes F a 4-blocker.

This completes Case 5. By symmetry the one remaining case is this:

Case 6. Both colors B satisfy ||Zg]| + [|Og|| < ® — 2.

If Ip does not exist for some Z-core I then Claim 3 applies. Hence Ip and Iy exist for every
Z-core 1. »

We will show any mixed Z-core I is in at least two good triplets. First observe that for any
mixed Z-core I either

(a) Ip N Iy contains a mixed O-core, or
(b) Ip and Iy are intersecting and co-disjoint.

In proof suppose (a) fails. Then Ip N Iy contains no O-core (since every black (white) O-core is
disjoint from Ip (Iw)). Lemma 2.4 gives (b).

In case (a) if O is a common mixed O-core then (I,0, B) and (I,0, W) are good. In case (b)
any mixed O-core is contained in Ip or Iy (Lemma 2.5). I is in at least two good triplets since we
have assumed ||Ox]|| > 2.

We will show there are two disjoint good triplets, i.e., (1,0, B) and (J, N,W) with I # J and
O # N. This will complete the proof by Lemma 5.5. We consider three cases.

Case 6.1. For some mixed Z-core I, Ig — Iy contains every mixed O-core O.
Claim 1 shows some good triplet contains W, say (J, N,W). Case 6.1 implies J # I. Now we
can choose a triplet (I, 0, B) with O # N.

Case 6.2. For some mixed Z-core I satisfying (b) both Iy — Iy and Iy — I'g contain a mixed O-core.

Take any mixed Z-core J # I. J is contained in at least one of Ip, Iy (Lemma 2.3), say
J C Ip. This implies Jg C Ip. Suppose (J, N, B) is good for some O-core N. Let O be an O-core
in Iy — Ip. Clearly O # N and (I,0,W) is good.
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In the remaining case any good triplet containing J contains W. Let O be an O-core in I — Iy .
So (1,0, B) is good. We can choose a good triplet (J, N, W) with N s O since J is in two good
triplets. :

If no mixed Z-core satisfies 6.1 or 6.2 then every mixed O-core satisfying (b) also satisfies (a)
(Lemma 2.5). Hence there is one remaining case:

Case 6.3. Every mixed Z-core satisfies (a).

Every mixed Z-core I has a mixed O-core O such that both (I,0, B) and (I,0, W) are good. If
there are two distinct such O-cores we are done (since || Zx|| > 2). Hence assume there is a unique
mixed O-core O in all these triplets. The sets Yp and Yjy exist and are co-disjoint (Lemma 2.4).
Hence every mixed O-core is in Y or Yy (Lemma 2.5). Without loss of generality a mixed O-core

N # O is in some good triplet (J, N,W). Choose I # J to get the desired good triplet (I, 0, B).
O

Theorem 5.9 Any family has OPT = ® unless it is a blocker, in which case OPT = ® + 1.

Proof: A blocker has OPT = ® + 1 by Lemmas 4.1 and 5.1. If & = ||Zg|| + ||Op|| for some color
B the theorem follows from Lemma 5.4. So assume @ > ||Zp|| + ||Opg|| for both colors B. If there
are fewer than 2® — 1 cores then OPT = & by Lemma 5.2. So assume there are 2& — 1 or 2® cores.
These two cases are handled by Lemmas 5.7 and 5.8 respectively. O

6 Related results

6.1 Bipartite strong connectivity incrementation

Reference [8] solves the special case of our problem where we wish to make a digraph strongly
connected by adding edges that respect a given bipartition. The min-max theorem of [8] is analogous
to ours except that there are no 5- or 6-blockers.  We show this is true in a more general sense.
Suppose Z is a ring family. O is also a ring family, and we will call F a ring family. Both () and V
belong to both 7 and O. To consider our covering problem on F we remove ¢ and V from Z and
O. We show such families do not need 5- or 6-blockers:

Lemma 6.1 If F is a ring family then a 5- or 6-blocker is also a I1-blocker.

Proof:

5-blocker. Consider a 5 O-blocker. Take sets O € O[Zp, Oy}, N € O[Zw, Op]. f ONN is
nonempty then it is an Z-set, since Z is a ring family. But it contains no Z-core since || Zx| = 0.
Hence O UN = V. Thus every O-core is black or white, and no mixed core exists. Hence one of
the colors, say B, has ® = ||Zg|| + ||Op||. Since O € O[Zp, Op] this makes F a 1-blocker.

The case of a 5Z-blocker follows by complement symmetry, since a family is a 1-blocker if and
only if its complement is.

6-blocker. Take sets O € O[Lg, Ow], I € Z|Op, Iw], N € O[Zp/, Op/]. We first show no mixed
core exists. If O NN is nonempty then it is an Z-set, since Z is a ring family. But it contains no
I-core. Hence OU N = V. Thus no mixed O-core exists. Similarly if N N7 is nonempty then it is
an O-set. But it contains no O-core. Hence N C I and no mixed Z-core exists.

This implies that ® = ||Zw || + ||Ow||. Since N € O[Zw, Ow] F is a 1-blocker. O
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6.2 Undirected bipartite incrementation

As already mentioned [3] solves the undirected version of our problem, i.e., the problem of incre-
menting the edge-connectivity of an undirected graph using undirected bipartite edges. To compare
the results suppose we wish to increase the connectivity from & to k + 1. Let Z be the family of
vertex sets of degree k. Define

@, = max{[|Z]|/2], |Zsl : B € P}.

[3] shows that for & > 1, OPT = &, unless the graph is a so-called Cy-configuration, in which case
OPT = ®,+1. A Cy-configuration has a number of defining properties. We give only three of the
properties, for the current context of connectivity incrementation:

(i) k is even (i.e., the target connectivity k + 1 is odd).
(¢7) There are 4 Z-zones that form a partition of V.
(113) @y = ||Z||/2 = ||ZB|| = 2 for some B.

These properties illustrate the different flavor of our result from [3]: Our blockers exist for every
value of k, and @ (as well as the number of zones) can be arbitrarily large in a blocker.

Suppose we view an undirected edge as two oppositely directed edges. The result of [3] gives a
cover of 29, or 2®,, + 2 directed edges. The family Z in the definition of ®, does not change if we
interpret it as the family of sets of in-degree k.

Consider a crossing family that is self-complementary, i.e., T = @. Such a family arises in the
connectivity incrementation problem for an Eulerian digraph (i.e., a digraph where every vertex has
its in-degree equal to its out-degree). A special case is an undirected graph viewed as a digraph, as
above. A self-complementary family has ® = max{||Z||, 2||Zp|| : B € P}. It is easy to check that
such a family has no blocker (use the fact that a blocker is nondegenerate). Hence OPT = ®. Now
comparing ¢ with 2®,, we see that the undirected solution of [3], considered as a directed solution,
uses at most 1 more edge than the optimum directed solution unless the graph is a Cy-configuration,
which uses 2 more edges.

6.3 Generalized theorem

We generalize our covering problem by allowing “mixed” elements, that can be joined to other
mixed or colored elements, and “uncolored” elements, that cannot be joined to any other elements.
More formally consider a crossing family 7 on a set of elements V, along with a partition P of V.
into four blocks, B, W, M, U. The generalized bipartitioned crossing-family covering problem is to
cover every set of 7 using the fewest number of directed edges, subject to the restriction that an
edge is not incident to an element of U and does not join two elements of B or of W. (Hence an
edge joins two blocks of B, W, M or joins two elements in M.)

We model this problem as an ordinary instance of our covering problem as follows. Duplicate
each element of M, making one copy black and the other white. Delete every element of U. We
get the following result. Define Zp as the family of all Z-sets contained in B U U. Call a set of
elements mized if it contains an element of M or elements of both B and W. All other definitions
(e.g., blockers) are unchanged.

Corollary 6.2 The generalized bipartitioned crossing-family covering problem has a solution as

long as M # 0 or B,W # 0, and no core is contained in U. In this case OPT = & unless the
family is a blocker, in which case OPT = ® + 1. 0
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Frank [5] solved the (unrestricted) edge-connectivity augmentation problem for digraphs. Spe-
cialized to connectivity incrementation his result is that OPT = max{||Z]|,||@||}. The corollary
contains this result as a special case. (If all elements are mixed it is easy to see there is no blocker.)

6.4 Other crossing families

We illustrate our results on two other crossing families. The following fact is useful to verify the
examples.

Lemma 6.3 (i) A singleton I-set or O-set does not belong to any family in condition (ii) of a
nondegenerate blocker (even if the singleton is mized).

(ii) If some O-core O is contained in every nonsingleton O-set then there is no nondegenerate
30-, 50- or 6-blocker.

Proof: (i) The family assigns contradictory colors to the singleton. To illustrate consider a 1-
blocker. A singleton in O[Zg, Op] must be black since it is a core of Zg. But that makes it a black
O-core, a contradiction. A

(44) Condition (i) of the blockers listed assigns contradictory colors to O. O

We first look at a flow problem. Consider a flow network with source s and sink £. The vertex
set V has a bipartition, along with two sets H,T C V. We wish to add the fewest number of new
edges, each respecting the bipartition, so the value of the maximum flow from s to ¢ increases and
each vertex in H (T') is the head (tail) of a new edge.

+

(a) 1-blocker ‘ (b) 2-blocker (c) 4-blocker

Figure 3: Blockers for the flow problem. Each edge has capacity 1 and the maximum flow value
is 2. Vertices of H (T') are indicated by + (—). The graphs of (b) and (c) satisfy only one set of
blocker conditions.

Let O be the family of all s, #-mincuts, i.e., those sets containing s but not ¢ whose out-degree
equals the maximum flow value. O is a crossing family. Let F be the corresponding family (Z, O0).
Make each element of H (T') a singleton Z-set (O-set). We get a bipartitioned crossing-family
covering problem that is equivalent to the flow problem.

Let o be the minimal s,¢-mincut. Define the family 7% = T U {o}. Similarly let 7 be the
complement of the maximal s,#-mincut and H* = H U {r}. Our lower bound becomes & =
max{||H*||, |T*||, |[H|| + |Tg|l : B € P}. Our theorem says that OPT = & unless the network
is a blocker, in which case OPT = ® + 1. Lemma 6.3 implies there is no nondegenerate 3-, 5- or
6-blocker. Assuming there are no mixed nodes it is easy to eliminate 2- and 4-blockers, so the only
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nondegenerate blocker that can exist is a 1-blocker. Fig. 3(a) shows such a blocker. Note that a
1-blocker is an s, t-mincut containing every black vertex of H but no black vertex of T. If we allow
mixed vertices then there can be 2- and 4-blockers, as illustrated in Fig. 3(b)-(c).

We turn to a problem on arborescences. Consider a digraph with a distinguished vertex s. An
s-arborescence is a spanning tree directed outwards from its root s. As before the vertex set V
has a bipartition and two sets H,T C V. We wish to add the fewest number of new edges, each

respecting the bipartition, so the number of edge-disjoint s-arborescences increases and each vertex
in H (T) is the head (tail) of a new edge.

S +

(a) 1-blocker (b) 2-blocker (c) 3Z-blocker

(d) 4-blocker (e) 5 Z-blocker

Figure 4: Blockers for the arborescence problem. Edges with multiplicity > 1 are labelled. Each
graph has 2 disjoint s-arborescences. Vertices of H (T) are indicated by + (—). The graphs of
(b)—(e) satisfy only one set of blocker conditions.

Let k£ be the greatest number of edge-disjoint s-arborescences. Let Z be the family of all sets
disjoint from s with in-degree k. Z is a crossing family. Let F be the corresponding family (Z, O).
Make each element of H (T') a singleton Z-set (O-set). This gives a bipartitioned crossing-family
covering problem equivalent to the arborescence problem by Edmonds’ Theorem [4]. Our theorem
says that OPT = @ unless the graph is a blocker, in which case OPT = ® + 1. Using Lemma 6.3
it can be shown that no nondegenerate 3 O-, 5 O- or 6-blocker exists. Blockers of the other types
are illustrated in Fig. 4.
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7 Efficient algorithm

We show the bipartite digraph edge-connectivity incrementation problem can be solved in the
same time as the best-known algorithm for unrestricted digraph edge-connectivity incrementation:
O(km logn) for unweighted digraphs and O(nm log (n%/m)) for weighted digraphs, for k the target
connectivity [7]. These bounds hold even when the starting graph does not respect the given
bipartition.

The algorithm follows our proof of the incrementation theorem. It begins by coloring the graph,
following Section 5. It solves the covering problem on the resulting singleton family following Section
3. This in turn uses routines based on Section 2.

Each part of the algorithm follows the proof of the corresponding lemma. We will describe the
basic tools used to make the algorithm efficient. We will also give implementations of all the proofs
where achieving the desired time bound is not immediate. The proofs that are implemented in a
straightforward way are not discussed. Note that our algorithm can compute O(1) maximum flows,
since this uses O(min{k,nlog (n?/m)}m) time and so is within our desired time bounds.

7.1 Poset representation

We implement the basic operations on the family Z using the technique of [7], which we briefly
summarize. Let F be an intersecting family over V, with every element in some F-set. For any
z € V let M(z) denote the inclusionwise minimal F-set containing z. Let [z] = {y : M (y) = M(z)}.
Define a poset P whose elements are the distinct sets [z], with [y] < [z] when M(y) C M(z)
(equivalently y € M(z)). Note that M(z) = U{y : [y] =< [z]}.

An example is the representation of Picard and Queyranne of the s, ¢-mincuts [11]. Suppose a
maximum s, {-flow has value k. For z € V, M(z) is the smallest set of in-degree k containing z
and t but not s (M(z) = V if no such mincut exists). A dag representation of the poset P can be
explicitly constructed in O(m) time given a maximum flow or preflow.

Consider a k-edge-connected digraph G = (V, E). For any nonempty set S C V let 5 (O%)
be the family of sets with in-degree (out-degree) k disjoint from S. (Take the ground set of both
families to be V and add V to the family, so every vertex is in some set of the family.) Z° and
OS5 have corresponding posets P, which we denote as P(Z5) and P(O%) respectively. [7] presents
algorithms for the following operations on these two posets P:

(a) Find the partition of V into sets [z].
(b) Label every poset element [z] with a minimal element [y] of P satisfying [y] < [x].
(c) Mark every [z] that has only one possible label [y] in (b).

Note that operation (b) identifies the minimal elements of P. Also note that in 7%, [S] consists of
all vertices of V' that do not belong to a set with in-degree k disjoint from S.

For the time bound recall that [6] finds the edge connectivity k of a given unweighted digraph
in time O(kmlogn). Given the output of that algorithm, operations (a)—(c) use time O(m).

For weighted digraphs [10] finds the edge connectivity in time O(nm log (n?/m)). It is straight-
forward to modify this algorithm to perform operations (a)-(c) within the same time bound. We
give a brief sketch for readers familiar with [10]. The sketch uses O(nm) extra time and O(n?)
space; slightly more care reduces the space to O(m). ‘

Let S be a nonempty set of vertices and k the edge connectivity. To implement the poset
operations on P = P(Z%) begin by executing the Hao-Orlin algorithm with S as the initial set
of source vertices. Number the preflows of value k& that are found by the algorithm from 1 to r
(r < n) in the order these preflows are found. Construct the corresponding Picard-Queyranne
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representations, say Q;,¢ = 1,...,r. For any « € V the set M(z) is defined in our desired poset
P and in the posets Q;; denote these sets as M (z,P) and M(z, Q;) respectively. Then M (z,P)
equals M(z, Q;), where i is chosen as the largest index with M (z, Q;) # V (if no such index exists
then M(z,P) = V). Using this observation construct each set M (z, P) explicitly, by searching the
appropriate Q;. Given these sets it is a simple matter to do operations (a)—(c) in time proportional
to the total size of these sets, O(n?).

7.2 Derived families

Our algorithm modifies the given family F = (Z,0) using two operations, creating an Zg-core
(defined before Lemma 3.5) and making a core into a singleton (defined at the start of Section
5). The effect of these operations on the family Z is summarized as follows: Some elements z; are
duplicated d; times, 1 = 1,...,a. Some elements y;, i = 1,...,b are made into singleton Z-sets.
(Some of these y; may be duplicates.) Some sets V — z;, i = 1,...,c are made into Z-sets. As
remarked in the discussion of the two operations, none of the sets V — z; is a core.

Consider a family Z5. The sets M (z) get modified by these operations as follows. A set M (y;)
changes to {y;}. If § = {2} then M(z) changes to V — 2; for any element z ¢ S that originally
had M(z) = V.

We modify the poset operations (a)-(c) so they work for the new family, as follows. Simple
bookkeeping keeps track of duplicate elements.

(a) For ¢ =1,...,b, remove y; from its original element [z] and create an element [y;] = {y;}. If
S = {2} then split [S] into two elements, one equal to S and the other consisting of the remaining
vertices.

(b) Each [y;] is its own label. An original label [y] is still valid if it corresponds to a set that
does not contain any y;. In the opposite case choose some ¥; in the set and use [ys] as the new
label.

(c) Mark each [y;]. Now we show when to mark the remaining elements [z]. All notation
(e.g., Z-core, M(z)) refers to the orginal family before it gets changed. Let F = {y; : i =
1,...,b, yi does not belong to any Z-core}. [z] should be marked if (i) [z] was marked in the
original family; in that case let [y] < [2] be the corresponding label; (i7) at most one y;, i =1,...,b
belongs to [y]; (iii) M(z) N F = (. Note that condition (%) holds if and only if [z] # V in the
poset P(Z5YF). So we detect condition (44) using operation (a).

7.3 Cores and zones

We give an algorithm that finds ||Z]| Z-cores. This amounts to all the Z-cores when ||Z|| > 1.

Let S be an Z-core. (We show how to find S below.) Find the minimal elements of P(Z%). If V
is not minimal then these sets are the Z-cores disjoint from S. So these sets plus S are the desired
Z-cores. If V' is the unique minimal element then S alone is the desired Z-core.

The Z-core S can be found in several ways. The Hao-Orlin algorithm gives S directly. In general
start with an arbitrary vertex z. If Z% is nontrivial (i.e., Z® # {V}) then a core in P(Z%) can be
chosen as S. If 7% is trivial, the poset operations on O% allow us to find a y with Z¥ nontrivial and
we can proceed as above.

This algorithm allows us to calculate ® when ||Z]|,||O| > 1, since in that case all cores are
known. If ||Z|| = 1 we still need to determine ||Zg|. Check if there is a black Z-core by choosing a
white element w and checking P(Z") for a core.

We turn to finding the zones when ||Z|| > 1. Perform operations (b) and (c) on P(Z%) (for S
chosen as above). For an Z-core I # S, I is the union of all sets M (z) that contain I and no other
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Z-core. (This characterization would fail if instead of Z% we used Z° for some s € S. ) Hence, if T
corresponds to the element [y] in P(Z%), T consists of all elements = where [x] # [S] has [y] as its
unique label. We can find S the same way.

Our desired time bound precludes using this algorithm to recompute zones each time an edge
is added to the cover. Instead we use a technique of [7]. Fix an intersecting family of sets F , as
above. An element x elicits an F-core Y if Y C M(z), i.e., any F-set containing x contains Y. It
is easy to verify the following properties in the intersecting family Z*° [7]: If operation (b) labels
[z] with [y] then z elicits the core corresponding to [y]. If z elicits Y then ¥ and § are the only
zones that can contain z. (S accounts for the possibility that = € [S].) Suppose we add an edge
that keeps S an Z,-core. Using the family Z° in the new family F,, if Y is still an Z5-core then z
still elicits Y.

7.4 Families with ||Z|| =1 (Lemma 2.9)

If |O|| < 2 we follow the proof of Lemma 2.9, recomputing the zones each time an edge is added.
Suppose [|O|| > 2. Let O be the O-core chosen in the proof. The proof adds an edge from N to a
vertex not in N , for every O-core N # O. We show how to choose these edges efficiently.

Since O is disjoint from N , we can choose an edge from N to O if N U O is mixed. Take all
such edges. Redefine F to reference the family of uncovered set (Fu). Now every O-core is a set of
the same color, say black.

Choose a white vertex w. In the family O° suppose w elicits Y. (Find Y using operation (b)
in P(0°).) It is easy to see that we can add an edge from N to w for every N # O,Y.

7.5 Augmenting procedure

Fix an Z-core S and an O-core T. Take two subfamilies J C u(Z%), N C u(OT), such that any
I'€ J and O € N have I U O mixed. We show how to execute a sequence of augments that makes
min{|Jy|, Wul} < 2, ie., all but at most 2 cores of either J or A get covered. After initializing
the data structure using our poset operations, the time to execute all the augments is O(n). We
use the following technique of [7].

Choose one “representative” vertex from each core of /. We maintain a partition of these
representatives into sets E(I), I € J, such that any vertex in E(I) elicits I (in Z°). Similarly we
maintain a partition of representatives of the cores of 7 into sets E(O), O € N. Each set E(I),
E(O) is represented as a list of its vertices. These lists are initialized using operation (b) on posets
P(Z°) and P(OT).

To perform an augment choose three vertices from any nonempty lists E(O). This gives three
relations, namely that the representative of I; elicits O;, 1 = 1,2,3. Similarly we get three other
relations, that the representative of O; elicits If, ¢ = 1,2,3. Using these six relations, it is easy
to see that we can choose four distinct sets I,I' € J, O,0" € O such that the representative of
I elicits O' and the representative of O elicits I’. Lemma 2.6 shows O, I is compatible. Augment
0,1, say by adding edge zy, x € O, y € I. We need only update the E-lists for the new family.
Delete the representatives of I and O from E(O') and E(I'). Now the only E-lists that are not
valid are E(I) and E(O). Add E(I) to E(I') and E(O) to E(O').

We show this is correct by proving that for any vertex v € E(I), any uncovered ZS-set J
containing v contains I'. v € E(I) implies I C J. Thus y € J, and J uncovered implies z € J.
Since z € O Lemma 2.3 shows O C J (compatibility implies J € O). Thus the representative of O
belongs to J. Hence I' C J.
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We use the above augmenting procedure to implement Corollary 2.11: Start by augmenting to
make the number of Z-cores or the number of O-cores 2 or less. If it is 2 perform one more augment
by recomputing the zones. After that apply the procedure for Lemma 2.9.

7.6 Dangerous core procedure

We give a subroutine that is used in the next section to process singleton families. In a singleton
family consider a sequence of augments y;, z;, i = 1,...,r, where each y; (z;) is an Oy - (Zp)-core.
We give a procedure that finds the first of these augments to create a 1-blocker, or else verify that
no 1-blocker is ever created. The procedure runs in time O(m) after finding a maximum flow. We
describe how to find the first 1-blocker for W. The complement-symmetric procedure works for B.

We want to find the first augment that makes O[Zy, Ow] # 0. Let Oy be the set of all Oy -
cores that remain after the r augments are executed. We will maintain the set u*(O[Zw, Oq)) as
edges y;z; are added to the graph.

To initialize this set, form a new graph G’ by starting with the graph without any of the edges
Y;Z;, contracting every Zw-core to a vertex S and contracting Oy to a vertex T. Find a maximum
flow from S to T in G'. Assume the flow value is &, else there is no 1-blocker. The smallest mincut
M (ie., the inclusionwise minimal set of out-degree k containing S and disjoint from T') is the
desired set p*(O[Zw, Op]). Initialize a count ¢ to be the number of Oy -cores in M. ¢ = 0 if and
only if we have a 1-blocker for W.

Now add each edge y;z; in turn to G’, using the following procedure: If y;z; leaves M then use
the Ford-Fulkerson labelling procedure [1] to enlarge M to the smallest mincut in the new graph.
Then update c, decreasing it by 1 since y; is no longer an Oy -core and increasing it by 1 for every
Oyy-core that the labelling procedure adds to M. If ¢ = 0 we have discovered the first 1-blocker
for W; both y; and z; are dangerous. If not continue by adding the next edge.

7.7 Singleton families (Lemma 3.5)

Suppose || Zg|| = ||Ow|| = 2. We know there are two edges, each joining an Oy -core to an Zg-core,
that give a family containing no Ow- or Ip-core. There are only 2 possibilities for the edges, so
we can guess the edges and check our guess. Now we can assume ||Zp|| = ||Ow| = 0. Use the
augmenting procedure of Section 7.5 to augment all but at most two Zy - and Op-cores. Then
guess the last two edges, as above.

Now suppose ||Zg|| = ||Ow|| > 2. Use the augmenting procedure to augment all but 2 Zg-cores.
Then execute the dangerous core procedure (for both B and W). If the final graph is not a 1-blocker
then proceed as in the previous paragraph.

In the opposite case the dangerous core procedure finds the dangerous cores y;, z;. Redo the
augments as follows: First execute all augments preceding y;, z;. Then reexecute the augmenting
procedure, with y; and z; now unavailable for augmenting. The procedure augments all but 3
Ip-cores (one of which is ;) without creating a 1-blocker (as in the proof of Lemma 3.5). Hence
we can proceed as above.

7.8 Finding blockers

Lemma 4.2 shows we need only detect a nondegenerate blocker. For families A, B # () we test
if O[A, B] # 0 by computing a maximum flow in the graph with every vertex in a set of A (B)
contracted to a source (sink) vertex.
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We turn to the procedures for Section 5. Implementing Lemmas 5.1-5.4 is straighforward. The
sets Xp,Ip and Yp are easily found by computing a maximum flow, assuming Zg, Op # 0.

7.9 Finding a good tuple

We begin with a useful fact. Assume Zp,Op,O[Zp, Op] # 0. Let P be the poset representation
of all sets of O[T, Op]. More specifically to construct P, form a new graph by contracting every
Tp-core to a vertex S and contracting every Opg-core to a vertex T. Find a maximum flow from S
to T'. Then P is the Picard-Queyranne representation of the mincuts (i.e., the sets of out-degree k
containing S and disjoint from T').

Lemma 7.1 Any O-core is contained in an element [z] of the above poset P. The same holds for
any L-core not containing Xp.

Proof: A set S that is not contained in a poset element [z] contains vertices y, z with y ¢ M(z).
Thus a set of O[Zp, Op] contains z but not y. S is not an O-core by Lemma2.5. If S is an Z-core
then Lemma 2.3 implies Xp C M(2) C S. O

To find a good tuple, label the poset elements that contain an O-core, and also those that
contain an Z-core. (O, B) is good if O is in [S] (i.e., Xg). (I, B) is good if an element of I belongs
to [T]. Clearly we can find all such good tuples within our time bound.

Suppose there are no such good tuples. (I,0,B) is good if [y] < [z] for poset elements [y]
containing O and [r] containing an element of I. Check for this condition by doing a depth-first
search from the elements [z] labelled by Z-cores.

In what follows we refer to this procedure to find a tuple (I, 0, B) as the good triple procedure.
We use various modifications of this procedure. For instance we can restrict the tuples not to
contain the O-core O (by not assigning a label for O) or the Z-core I (by not starting a search
from 7). We can find all tuples involving O (by not using labels for any other O-core) or I (by only
searching from I).

7.10 Families with ® = ||Z|| = 0| (Lemma 5.8)

Assume the given family is not a blocker.

Case 1. Ow = 0.

We modify the procedure of the proof: Execute Step 1, and then execute Step 2 for just one
set Zr. The resulting family 7' has OPT = ® as proved in the lemma. Hence F’ is not a blocker.
Since F' has white Z- and O-cores it can be treated by a subsequent case. This procedure runs
within our time bound since we find Z; by computing one maximum flow.

Case 3. |Ox| = 0.
This case is simple since as noted above, we can find all good tuples (I, B), (J, W) within our
time bound.

Claim 2.

We must find distinct mixed O-cores O C Xg and N C Iy, for some mixed Z-core I. If Xp
contains two mixed O-cores, use the good triple procedure to find a good tuple involving W. In
the opposite case Xp contains a unique mixed O-core O. Find a good tuple containing W but not
O by executing the good triple procedure.
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Case 6. Both colors B satisfy ||Zg| + ||Og|| < ® — 2.

We must find two disjoint good tuples (I, 0, B), (J, N,W). Find a good tuple (1,0, B). Check
if there is a good tuple disjoint from it by executing the good triple procedure. Assume no such
tuple exists, else we are done.

Now we can find all good tuples involving W by executing the good triple procedure twice, to
find all good tuples involving W and I and all good tuples involving W and O. Choose two distinct
good tuples (I,0;, W), i = 1,2. (If two such do not exist, choose as many good tuples as possible.)
Similarly choose distinct good tuples (I;, O, W), 1 = 1,2. One of these four tuples can be chosen as
part of the desired pair of disjoint tuples. For each of the four tuples, use the good triple procedure
to check if B has a good tuple disjoint from it.

Theorem 7.2 The bipartite digraph edge-connectivity incrementation problem can be solved in time

O(km]logn) for an unweighted digraph and O(nmlog(n?/m)) for a weighted digraph. Here k is
the target connectivity. ]
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