Geometry-Specific Languages and Their Interfaces
Michael Eisenberg
Tom Wrensch
Glenn Blauvelt

CU-CS-886-99

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Geometry-Specific Languages and Their Interfaces

Michael Eisenberg, Tom Wrensch, and Glenn Blauvelt
Department of Computer Science and Institute of Cognitive Science
Campus Box 430
University of Colorado, Boulder CO USA 80309-0430
duck;wrensch;zathras @cs.colorado.edu; 303-492-1218
Technical Report CU-CS-886-99

ABSTRACT

Traditionally, programming languages have been designed
with an eye toward implementation on general-purpose
computers. The advent of computationally-enhanced craft
items—small programmable objects with simple
geometries and scaled-down computational
components—suggests the need for new language and
software environment models tailored for these objects. In
some respects, the task of the craft-item language designer
is less demanding than that of the traditional language
designer; but there are new challenges to be faced as well.
In this paper, we summarize both our experiences in
creating computationally-enhanced craft items and their
ramifications for the creation of geometry-specific
languages, programiming environments, and interfaces.

Keywords
Computationally-enhanced craft items, geometry-specific
languages, computation and crafts.

INTRODUCTION

Programming languages have traditionally been a central
study in computer science—indeed, the design of notations
in which to express algorithmic ideas is a concern that
dates back to the classic 1842 paper by Countess Lovelace
describing the (proposed) architecture of Charles Babbage's
Analytical Engine [12]. Courses in comparative
programming languages often begin here (or with the
work of Zuse in the 1940s) and proceed through an
examination of early high-level languages (FORTRAN,
Lisp, Algol 60), followed by modern representatives of
the major language “families”: imperative languages
(Pascal), object-oriented languages (C++, Java),
functional languages (Scheme, ML), logic languages
(Prolog), visual languages, and so forth (cf. [10]).

While such comparative courses often emphasize the
astonishing variety of the language landscape, there are a
number of central assumptions behind virtually all the
examples; some of these assumptions are so deep-rooted
that they are rarely made explicit. Among these
assumptions are:

* High-level programming languages arc designed for
use on general-purpose computers; indeed, this is the
historical reason for their development. A language
such as Pascal or Lisp may be implemented in virtually
any hardware device capable of the operations of an
abstract Turing machine.

 In those cases (e.g., visual languages) in which a
language design assumes more than the most abstract
computer architecture, it is still unlikely to assume
anything other than the capabilities of standard desktop
devices.

* Programming languages are designed to address
recurring problems in the practice of professional
software engineeering: how to write large and complex
programs; how to reuse reliable chunks of existing
code; how to avoid, discover, trace, and repair program
bugs; and how to facilitate communication among
programming teams. In response to problems of this
kind, programming language designers have introduced
notions such as static typing and type inference; block
structure; classes, methods, and inheritance; modules
and packages; and exception handling. Concerns of this
sort surface even in the design of educational or end-user
languages such as Logo, spreadsheet languages, and
Visual Basic.

* The interfaces associated with software development
environments are likewise tailored toward the concerns
of the professional software developer: version
management systems, steppers, debuggers, and design-
specificiation systems are all created with an eye toward
fragile, large-scale, complex programs on general-
purpose devices.

Over the past two years, we have been compelled to
reexamine these assumptions as a consequence of our

efforts to design computationally-enhanced craft items
(CECIs). The idea behind these objects is that they are
programmable versions of the sorts of small, inexpensive
items typical of craft work and homespun design—tacks,
hinges, tiles, and so forth. In the course of creating and
writing sample programs for our prototype CECIs, we
have observed that the classical tenets of both
programming language and programming interface design
are only imperfectly applicable to the task of devising
notations for these objects.

Our view is that CECIs, in one form or another, arc
likely to become an increasingly prevalent presence in the
worlds of home crafting and end-user programming. As
such, it is perhaps not too early to explore, proactively,
the problems involved in designing languages,
environments, and interfaces for these devices. This paper
is a discussion of what appear to us to be the important or
recurring issues in this task; though we have to confess
that our own ideas are still tentative, and based on the
particular objects that we have designed.

The following (second) section of this paper describes in
more detail the notion of a computationally-enhanced craft
item and describes its relation to broader notions of
ubiquitous and embedded computation; we also summarize
our own efforts in CECI design. The third and fourth
sections discuss in turn the implications of CECIs for the
design of programming languages and programming
interfaces and environments, focusing particularly on
those aspects in which the conventional wisdom is likely
to need reevaiuation. Finally, in the fifth section, we
describe several (in our view) major short- and medium-
term challenges that underlie the creation of viable
“geometry-specific languages” suitable for use with
CECIs.

COMPUTATIONALLY-ENHANCED CRAFT
ITEMS

The intent behind CECIs is to exploit the increasingly
protean architecture and appearance of computers—the
ability to endow objects of many sizes, shapes, materials,
and uses with (at least small amounts of) computational
capabilities. The impulse toward integrating computers
into a variety of physical objects is likewise seen in the
research of those interested in ubiquitous computing [16],
microelectronicmechanical systems (MEMS) and “smart
materials” [1], and augmented reality [9], among others.
While the notion of CECIs shares some aspects of these
other areas, it diverges in some important respects as
well:

(1) CECIs are, in general, not intended to perform
complex computations; that is, they are not conceived as
powerful general-purpose computers shrunk to tiny size,
performing large-scale tasks in planning or search. Rather,
they are intended to perform simple, visible, and
understandable operations or movements associated with
common or everyday items such as hinges, strings, and
tacks. Thus, instead of embedding a high level of

intelligence in small objects (the notion behind many
computational toys and appliances, for example), the
CECI designer does not wish to make objects appear
complex or “magical”, but rather to present a deliberately
accessible and “mechanical” user model of the object.

(2) CECIs are intended to be end-user-programmable
devices, suited to the home scientist, craftsperson,
hobbyist, or student. In this respect they differ from many
of the devices seen in ubiquitous computing or augmented
reality research, whose constructions are often aimed at
either audiences uninterested in programming or
(alternatively) at small, highly-trained professional
communities.

(3) The computational capabilities of CECIs, while
simple, are neither molecular in scale nor highly
distributed (both of which are typical of work in MEMS).
Conceptually, a CECI is a single discrete object with a
simple, localized program.

Two examples may help to concretize this description.
The programmable hinge [18] is a prototype device (in the
shape of a hinge) that allows the user to program its
opening and closing behavior. Our current version of the
hinge employs a small computer-one of the “cricket”
Lego bricks developed by Resnick and his colleagues at
the MIT Media Lab[14]-and two strips of shape memory
alloy that (alternately) open and close the hinge when
heated by an electric current. (A schematic and photograph
are shown in Figures 1 and 2.) The rototack [17] is a tack-
shaped device that allows the user to program rotational
behavior around its central axis. Our current prototype
contains a PIC16LF84 chip (by Microchip, Inc.) that
holds the computer program and a stepper motor that
turns the head of the tack. (A schematic and photograph
are shown in Figures 3 and 4.)

pover yire

prreemmmmme SN1ADE. TIEROLY !

r——w‘ne mount

sp—=hinge flap

Figure I. A schematic diagram of the programmable
hinge (top), and (bottom) a sketch of the hinge as viewed
from above.

Figure 2. A photograph of the programmable hinge
prototype. The hinge's battery power source is visible
toward the left of the photo; the associated computer (a
Media Lab cricket) storing the hinge's program is at
bottom center; and the hinge itself, with shape memory
wire actuator, is seen toward the right.

A typical program for the tack—typical in length,
complexity, and behavior—might appear as follows:

Repeat 3
Clockwise
Turn 90 degrees
Wait 10 tenths
End Repeat

Repeat 2
Counterclockwise
Turn A degrees
A := A + 45
If A = 360

Then A := 0
End If
Wait 20 tenths
End Repeat
End Loop

In prose, this program loops indefinitely with the
following pattern: the tack turns clockwise three times by
90 degrees, pausing briefly after each turn; then the tack
turns counterclockwise twice by a variable amount (the
amount increases by 45 degrees at each turn until reaching
360, at which point it returns to 0), pausing a bit longer
after each of these two turns. A program for the hinge
might be similar in structure (our current prototype is in
fact programmed in Logo), but employing actions of
“Open” and “Close” instead of turning.

Figure 3. A schematic cross-section diagram of the
rototack, showing the PC Board containing the PIC
microcontroller, battery, and stepper motor.

Figure 4. A photograph of the rototack (shown with a
variety of other tacks for comparison).

While these two examples do not begin to exhaust the
design space of CECI items (we have also, for example,
built a simple prototype programmable ceramic tile that
flashes an LED light under computer control), they should
serve to motivate the discussion of programming
languages in the following sections.

PROGRAMMING LANGUAGES FOR CECI'S:
CONSTRAINTS AND PRINCIPLES FOR
DESIGN

The previous section outlined the central ideas behind the
construction of CECI's. Our current programming
notations for the existing prototype objects are ad hoc
artifacts, still in development: the hinge is programmed in
a dialect of Logo, the tack in an imperative (somewhat
Basic-like) language compiled into a byte code for which
we have written an interpreter for the PIC microcontroller.
Nonetheless, it is possible to step back from our
experience thus far and describe at least some guiding
principles for designers of CECI-appropriate programming
languages.

(1) CECI languages do not fall neatly into either of the
traditional categories of “high-” or “low-level”. In some
respects, these languages are high-level: not only should
they employ many of the staple control constructs of
traditional languages (Repeat, While, Loop, If/Then), but
they also should include primitive procedure names for
what might well refer in practice to rather complex real-
world physical motions (“Open” for a hinge, “Turn” for a
tack, and so forth). On the other hand, CECI languages
have some of the flavor of low-level assembly code
notation: depending on circumstances, the user might well
be limited to integer-valued numbers (e.g., one could not
program the tack to rotate 22.5 degrees) or she might be
expected to limit the number of variables (such as A in
the earlier example) to a very small set. More generally,
CECI languages are “low-level” in the sense that they are
intimately associated with a particular piece of hardware: a
‘particular geometry, range of behavior, and (perhaps)
computational architecture, as we discuss in the next
point below.

(2) Because CECI languages are developed to describe the
(highly limited) behaviors of a simple craft object, they
are crucially constrained by the geometry of that object.
For this reason we have used the term geometry-specific
language to indicate the close relationship that will
necessarily exist between these notations and the objects
for which they are built. We expect that the number of
interestingly distinct geometry-specific languages will be
relatively small (perhaps 20 or 30). A language for
spherical objects such as ball-bearings, for instance,
might be based upon rolling behavior; a language for
string might be based upon discrete “tugs”; a language for
rods or pistons upon “push/retract” motions in one
dimension; and so forth. Quite possibly, a taxonomic
structure of the kind used by Card, Mackinlay, and
Robertson for I/O devices [5] could be profitably devised
for mapping out the space of craft-item geometries and
behaviors.

(3) CECI programs are generally realized in visible, overt
behavior of physical objects. The sample program of the
previous section is illustrative: statements such as “Turn

90 degrees” and even “Wait 10 tenths” correspond to
observable physical behaviors. Such programs thus spend
little or no time ‘“just thinking” in processes such as
search or in lengthy numerical computations. This in turn
has ramifications for the design of CECI language
interfaces, as we will discuss shortly.

(4) The computational resources of CECI languages are
assumed to be minimal; indeed, the language designer
might, for a variety of reasons, enforce a user model that
is less powerful than the actal hardware can
accommodate. For instance, programs might be limited to
a page in length; to simple data structures (such as one-
byte integers); to a small number of user-defined procedure
names; to a Jow degree of nesting of control structures;
and so on. The upshot of these limitations is that many
of the features of traditional languages whose purpose is
to manage program size and complexity are no longer
required. A language that only employs small integers as
variables needn't include type declarations or polymorphic
functions; a language whose programs are all at most a
page in length needn't include packages or modules; a
language in which user-defined names are few in number
needn't worry about variable scoping, since it is feasible
to require that every variable have a distinct name. These
observations might of course be uncharitably construed as
making a virtue out of grim necessity: if the language is
expressively impoverished, so the argument goes, then of
course it needn't include the encumbrances of more
powerful languages—this is rather like saying that the
Roman numeral system is “unencumbered” by the need to
express the number zero! There is some truth to this
response, but we would argue that the simplicity of CECI
languages realistically reflects the wuses to which
programmable craft items are likely to be put. Moreover,
the structural limitations of these languages affords
interesting possibilities for growth in complexity and
sophistication of their associated environments and
interfaces, as we will argue in the succeeding sections.

IMPLICATIONS OF GEOMETRY-SPECIFIC
LANGUAGES FOR ENVIRONMENT AND
INTERFACE DESIGN

The thrust of the previous section's discussion was on the
simplicity and expressive limitations of geometry-specific
languages for craft items. In this section, we turn our
attention from the features of the languages per se to
those =~ of the larger systems-the language
environments-which the user of CECIs should interact
with.

It is worth pausing at this juncture to highlight two
central prefatory themes. First, while a CECI program is
written for, and is run on, a simple craft item like a hinge
or tack, the text of the program itself is written by the
user on a desktop workstation, and subsequently
transferred to the craft item. Thus, while the size and cost
of a CECI may pose severe constraints for the content of
a program, they pose no obvious constraint to the
software environment in which the program is created by

the user. This situation is of course familiar to software
professionals such as game programmers who write code
on one machine to be run on another (usually simpler or
more specialized) device. Still, it is a relatively new
situation for end-user programmers (although the advent
of objects such as the programmable Lego brick [14] does
change the landscape somewhat).

Second, the formal distinction between “language” and
“language environment”, while undoubtedly useful for
some purposes (e.g., presenting a compact language
specification), is not always clear-cut. Much of the work
in visual language design, for instance, is hard to
pigeonhole as focusing either on “language” or
“environment” in isolation. Moreover, as far as the user is
concerned-particularly an end-user of something like a
spreadsheet ~ or application-specific ~ language~the
distinction may be close to academic: to such a user, the
“language” is simply the entire programming system
represented on the screen and in the manual. And since
CECI languages arc indeed conceived as end-user
languages, it seems only reasonable to consider the design
of the environment and interface in concert with the
design of the language itself.

These two themes—the availability of computational
resources for CECI language environments, and the tight
interweaving of CECI languages and interfaces—underlie
many of the points to follow.

(1) Traditional programming environments are designed to
enforce an abstraction barrier between the user's view of
the language and her view of the machine on which the
program will be run. Thus a Java or Scheme programmer
(and to a slightly lesser extent a C programmer) typically
has no idea, and no need to know, anything about the
machine architecture on which she is working: the clock
speed, word size, number of stack registers, and so forth.
While this might occasionally deprive the high-level
language programmer of some ingenious machine-specific
hack, it would be the rare (and dubious) program whose
meaning or correctness depends on such knowledge.

Geometry-specific CECI programming environments, in

contrast, present a somewhat different problem to the
programmer. A rototack programmer, for instance, might
wish to take into account the specifics of the hardware on
which her program will be run: some stepper motors (to
pursue the example) might turn a tack by 5-degree
increments, others by 10-degree increments. In the latter
case, a program that specifies a 15-degree turn would
behave differently than the programmer desired. A hinge
programmer might wish to have some idea of the
response time of the device: how long will an “Open-
Hinge” command take to complete?

Again, such situations are hardly new to (e.g.) chip
designers, for whom there is a close relationship between
the constraints on programming and the specific
architecture of the machine on which the program will be
run. But these are relatively new concerns for end-user

programmers. The situation is complicated a bit more by
the likelihood that a CECI programmer might wish to
send a program to several variations of a particular craft
item: for example, one might have a few sizes or
generations of rototacks on hand, and might wish to
endow them all with the same general-purpose program.
In such a case, the programming environment should have
means of communicating to the user what hardware
requirements are stipulated by a given program: e.g., in
our earlier rototack program example (which involved
turns of multiples of 45 degrees), the environment should
indicate to the user that any variation of programmable
tack on which this program is run needs to accommodate
turns in multiples of (say) 1, 5, 15, or 45 degrees. In
other situations, the CECI environment might usefully
take into account other physical features of the craft
item—its size, or weight, or material composition.

(2) Because CECI programs maintain a close
correspondence with physical effects, it is useful for a
CECI programming environment to juxtapose or integrate
program code with a graphical representation of the
running program. Figure 5 depicts how the screen
interface of such an environment might look for a tack-
programming system. Here, the program code is shown in
one frame, while an abstract line-drawn representation of
the tack is shown in another. For such a system, the user
could elect to run his program in “animation” mode on
the line-drawn figure before sending it to the physical craft
item.

Loop
Wait RestartPause Seconds
R = StartClicks
While A <= EndClicks

Clockwise

Turn R

Hait EndPause Tenths

CCHise

Turn A

Hait EndPause Tenths

Figure 5. A mockup screen view of the tack programming
environment described in the text. The frame at left shows
the text of the program in construction (views of the
program's parameters, and a textual description of the
program are also available in this frame). At right, an
abstract representation of the tack (as seen from the top).
The Animate button toward the bottom right links the
running program to the graphical tack.

In programming environments for traditional general-
purpose languages, there have been similar efforts to
juxtapose running programs and visual representations,
sometimes for educational purposes. (See, for example,
[3,4].) A recurring difficulty in such systems-and for the
task of algorithm animation more generally—is that the

environment designer must create visual representations
for a variety of computational structures and concepts
(lists, trees, arrays, memory locations, and flow of
control, to name a few). In CECI environments, by
contrast, the mapping between code and animation is—if
not immediate—at least somewhat more straightforward. A
program like the earlier rototack example need only
correspond to animation of an abstract tack in the act of
turning and pausing; more detail than this (e.g., the value
of a variable such as A in the earlier program, or whether
the tack is set to turn clockwise or counterclockwise)
might be worthwhile to depict, but even an extremely
simple interface without these details would likely be
useful. This suggests that many of the techniques and
insights developed in the algorithm animation research
community (e.g., for linking multiple representations)
might profitably be transferred to the less complex tasks
of CECI-program animation.

(3) Pursuing the ideas of the previous paragraphs, we
could exploit the simplicity and “animatability” of
geometry-specific languages in still other ways. For
instance, since CECI programs are largely distinguished
by their physical effects—by how they make a simple
object behave—it might be of interest to use animations as
indices into a library or repository of CECI programs. A
program browser for software reuse, then, would consist
of a palette or scrollable list of animations (e.g., of a
rotating tack). By choosing the animated motion closest
to the type of effect that she is seeking, the user could
then bring up and (if necessary) edit the program that gave
rise to the chosen animation. Here, the task of software
reuse is made simpler because CECI programs are short
and concrete; hence, entire programs (rather than routines,
algorithms, or objects) constitute the grain at which code
is stored and retrieved. Along the same lines, the fact that
there are likely to be only a moderate number of distinct
program types suggests that one could experiment with
qualitative summaries of CECI behaviors as indices to
software reuse: for instance, the user might specify that
she wishes to look at those programs in which a “tack
rotates slowly back and forth” or in which a “hinge opens
and closes at random time intervals”.

(4) Yet another body of research that could be explored (or
revisited) in the context of CECI languages involves the
long-held desire to construct programs by example or
demonstration (cf. the especially provocative set of papers
edited by Cypher [6]). Nardi's [13] discussion of this area,
and of the difficulties that designers of such systems face,
is especially thoughtful: in particular, she cites the
problems involved in having a system infer constructs
such as conditionals from examples, and of resolving
ambiguity and ignoring errors and slips in user input,
While these problems are unlikely to disappear entirely in
the context of CECI programming, they are arguably less
daunting in that context. First, many CECI programs
might well be simple enough so that they would not even
require constructs beyond simple iteration: inferring a
program merely to rotate a tack 270 degrees in three 90-

degree steps requires far less sophistication than inferring
a program like the sample shown earlier. Second (and in
accord with Nardi's overall position), integrating textual
and demonstrational programming might be achievable in
a CECI language environment: moving an icon (like that
of the tack) by direct manipulation could create code
which could then be studied and edited, much as in the
commercial AutoCAD program (as well as Licberman's
MONDRIAN ' graphical programming system [11] ‘and
DiGiano's Chart 'n’ Art system for generating charts and
information displays [7]).

(5) The previous paragraphs argue that geometry-specific
languages offer especially appropriate venues for
experimenting with (or revisiting) ideas in software
library construction, algorithm animation, and
programming by demonstration. On the other hand, there
are several staples of sophisticated programming language
environments that would, quite probably, be far less
important in the context of CECIs, and whose excision
would simplify the construction of a CECI language
system. In particular, since the programs being created are
so brief, since their associated data structures are so few
and simple, and since their effects are so directly
observable, the need for sophisticated steppers, debuggers,
and editors would be much reduced. There would be far
less need for ancillary tools such as those used for
maintaining and checking specifications; and the interface
to a CECI language compiler or interpreter would be
streamlined as well (it is hard to see a need for special
tools such as incremental compilation when programs are
no more than a page in length). In brief, then, the
designer of a full-featured CECI language environment is
likely to face challenges that have generally been regarded
as experimental, while dispensing with at least some
other features regarded as mainstream (if state-of- the art)
additions to modern environments.

FUTURE CHALLENGES FOR THE
GEOMETRY-SPECIFIC LANGUAGE
DESIGNER

So far in this paper, we have focused our discussion on
the shorter-term issues involved in creating geometry-
specific languages and programming environments. In
this final section, we outline several broader research areas
suggested by the discussion thus far.

e CAD Systems for Programmable Objects. For each of
the prototype CECIs that we have constructed—tack,
hinge, and tile-we have had to devise a set of appropriate
commands with which to program the object. Throughout
this paper, the process of linking a programming
language with a new craft item has been likewise
presented as an ad hoc, one-device-at-a-time process: thus,
if a designer were now to create (e.g.) an architecture for a
programmable bolt, she would have to create a new
language for that object as well. Clearly, as the number
and variety of CECIs expands (and we hope that it will),
there will be a growing redundancy of effort represented by

the construction of so many “little languages” with which
to program them.

Concetvably, then, it would be useful to explore methods
by which the process of creating a brand-new
programmable object-with an associated geometry and set
of programming commands—could be streamlined. One
way of doing this might be to create a “programmable
object CAD system” in which not only are new geometric
objects created (as in standard CAD systems), but simple
dynamics of those objects are associated with textual
commands that are embedded in a larger language (such as
a dialect of Logo, Basic, or Java). Figure 6 may help to
elaborate on this idea: this is a screen shot of what such a
“CECI-CAD” system might look like. In this scenario,
the user has created a geometric representation of a bolt
(via the types of constructions typical of CAD systems),
but in addition specific dynamic behaviors (extending and
refracting the bolt, locking and unlocking its current
position) have been created and given names that could be
inserted in a language much like our current rototack
dialect.

Poiver (Summary).

Figure 6. A mockup screen view of the CECI-CAD
program described in the text. The user creates a geometric
shape (such as the bolt at upper left) and endows
geometric changes to that shape with procedural names in
the window at bottom right. The intent would be to
produce programmable objects with novel geometries
along with their associated language environments.

A system of this sort could serve as the basis of a process
by which new programmable objects could be designed:
the result of a session at CECI-CAD would be a
specification of a solid shape, its associated movements,
and its associated language or dialect. While the specific
hardware of the physical object itself-the actual stuff that
is seen (e.g.) in Figures 2 and 4 earlier—would still have

to be designed individually, the language environment
with which to program the new object would not have to
be created from a blank slate.

* Craft Objects and Languages for Children. Our
discussion in this paper has portrayed CECIs primarily by
contrast with the sorts of objects that one might find at a
crafts or hardware store—objects aimed at an adult audience.
Our initial entry into the subject began, however, through
an interest in the design of applications that integrate
software and educational crafting activities. There is a
venerable tradition of marvelous crafts for
children—mathematical ~papercrafts, string sculptures,
science toys and kits, and many more. It is our belief (and
hope) that this landscape of children's crafts can be
enriched by modest amounts of computation. A
fascinating example in this direction-beads that light up
and communicate according to simple procedural rules,
and that can be strung together to realize entertaining
patterns of light—is described by Resnick er al. [15] in
their work on “digital manipulatives” for children. The
implication of the discussion in this paper is that such
digital manipulatives can serve as the means for exploring
novel designs for educational programming languages.
Again, the scaled-down nature of these languages and the
small sizes of digital-manipulative programs, affords the
language designer a setting in which a variety of different
language models and interfaces can be explored and
assessed.

* Creating Complex Programs. To date, the sample
projects that we have created employ no more than one or
two CECIs. This is a natural consequence of the scarcity
and unreliability of our prototypes; but we are optimistic
enough to believe that eventually, larger constructions
with multiple varieties of CECIs working in concert will
be achievable. Over time, then, while the individual
object programs remain relatively simple, the overall
behavior of the larger system of objects could become
quite complex. Most likely, the end-user programmers of
CECIs will begin to encounfer problems such as
synchronization and distributed algorithm
design—problems that are if anything still thornier than
those of debugging and software reuse. Until we have
more experience and lore to work with, it will be difficult
to predict what sorts of tools might best help users
construct such systems; conceivably, applications that
simulate multiple real-world programmable objects could
help with at least some classes of projects. In any event,
our belief is that for many CECI users, the notion of a
“computer program” will over time evolve into
something less monolithically software-based than it is at
present; that is, a “program” will be viewed as a complex
mixture of behaviors, some of them taking place in tiny
CECl-level computers, some in larger and more powerful
computers, and some through the action of real-world
materials. The ambitious, longer-term task, then, is for us
to reexplore our archetypal notions of software
applications and physical objects, as the two realns
increasingly diffuse into each other.

ACKNOWLEDGMENTS

We are indebted to the ideas and conversation of Robbie
Berg, Ann Eisenberg, Gerhard Fischer, Mark Gross,
Mitchel Resnick, and Carol Strohecker, among many
others. The work described in this paper has been
supported in part by National Science Foundation grants
CDA-9616444 and REC-961396, and by a Young
Investigator award IRI-9258684 to the first author. The
third author is supported by a gift from the Mitsubishi
Electric Research Laboratories (MERL) in Cambridge,
Massachusetts. Finally, we would like to thank Apple
Computer, Inc. for donating the machines with which this
research was conducted.

REFERENCES

1. Berlin, A. and Gabriel, K. [1997] Distributed MEMS:
New Challenges for Computation.JEEE Computational
Science and Engineering, Jan-March 1997, pp. 12-16.

2. Blauvelt, G.; Wrensch, T.; and Eisenberg, M. [1999].
Integrating Craft Materials and Computation. To appear
in Proceedings of Creativity and Cognition 3.

3. Brown, M. [1988] Exploring Algorithms Using Balsa-
II, IEEE Computer, May, pp. 14-36.

4. Brown, M. and Sedgewick, R. [1985]. Techniques for
Algorithm Animation, IEEE Software, January, pp. 28-
39.

5. Card, S.; Mackinlay, I.; and Robertson, G. [1990].
“The Design Space of Input Devices” Proceedings of
CHI '90, pp. 117-124.

6. Cypher, A., ed. [1993].Watch What I Do. Cambridge,
MA: MIT Press.

7. DiGiano, C. [1996]. Self-disclosing design tools: an
incremental approach toward end-user programming.
Ph.D. thesis, University of Colorado, Boulder.

8. Eisenberg, M. and Eisenberg, Ann N. [1999] Middle
Tech: Blurring the Division Between High and Low
Tech in Education. In A. Druin, ed. The Design of
Children's Technology, San Francisco: Morgan
Kaufmann, pp. 244-273.

9. Feiner, S.; Maclntyre, B.; and Seligmann, D. [1993]
Knowledge-based Augmented Reality. Communications
of the ACM, 36:7, pp. 52-62.

10. Ghezzi, C. and Jazayeri, M. [1997]. Programming
Language Concepts, 3rd ed. New York: John Wiley &
Sons.

11. Lieberman, H. [1993]. Mondrian: A Teachable
Graphical Editor. In A. Cypher (ed.), Watch What I Do.
Cambridge, MA: MIT Press.

12. Ada Augusta, Countess of Lovelace. [1842]. Notes on
the Analytical Engine. Reprinted in P. and E. Morrison
(eds.), Charles Babbage and his Calculating Engines,
New York: Dover, 1961.

13. Nardi, B. [1993] A Small Matter of Programming.
Cambridge, MA: MIT Press.

14. Resnick, M.; Martin, F.; Sargent, R.; and Silverman,
B. [1996] Programmable Bricks: Toys to Think With.
IBM Systems Journal, 35:3, pp. 443-452.

15. Resnick, M. et al. Digital Manipulatives: New Toys
to Think With. Proceedings of CHI '98, pp. 281-287.

16. Weiser, M. (1993). Some Compuier Science Issues in
Ubiquitous Computing. Communications of the ACM,
36(7):75-84.

17. Wrensch, T.; Blauvelt, G.; and Eisenberg, M. [1999].
The Rototack. [In preparation.]

18. Wrensch, T. and Eisenberg, M. [1998] “The
Programmable Hinge: Toward Computationally
Enhanced Crafts” Proceedings of UIST 98, San
Francisco, November, pp. 89-96.

