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Abstract

Load instructions occasionally incur very long latencies that
can significantly affect system performance. Load value pre-
dictors alleviate this problem by enabling the CPU to specu-
latively continue processing without having to wait for the
slow memory access to complete.

In this paper we explore a technique to improve both the
accuracy and in particular the coverage of a basic last value
predictor by increasing its width to retain the last n values.
For example, a modest 16kB predictor running SPECint95
turns out to perform best when retaining the last four values.

Detailed pipeline-level, cycle-accurate simulations of a
superscalar microprocessor with various load value predictors
show that our last four value predictor outperforms other pre-
dictors from the literature, often significantly.

The 16kB predictor yields a harmonic mean speedup of
13.7% with a not yet realized re-execute misprediction recov-
ery mechanism and 12.5% with existing re-fetch recovery
hardware. The re-fetch speedup may be close enough to the
re-execute speedup to render the more complex re-execution
mechanism unnecessary.

1. Introduction

Due to their occasional long latency, load instructions can
have a significant impact on system performance. If the gap
between CPU and memory speed continues to- widen, this la-
tency will become even more detrimental. Since loads are
not only among the slowest but also among the most fre-
quently executed instructions of current high-performance
microprocessors [LCB+98], improving their execution speed
should significantly improve the overall performance of the
processor.

Fortunately, load values are quite predictable. For in-
stance, about half of the executed load instructions of the
SPECint95 benchmark suite retrieve the same value that they
did the previous time they were executed. This behavior,
which has been observed explicitly on a number of architec-
tures, is referred to as value locality [LWS96, Gab96].
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Empirically, papers have shown that the results of most
instructions are predictable [Gab96, LiSh96, SaSm97aj.
However, of all the frequently occurring, result-generating
instructions, load instructions are the most predictable
[LiSh96] and incur the longest latencies. Since about every
fifth executed instruction is a load, predicting only load val-
ues requires significantly fewer predictions and leaves more
time to update the predictor. As a consequence, smaller and
simpler predictors can be used. We therefore believe that
predicting only load values may well be more cost effective
than predicting the result of every instruction.

Load value predictors try to exploit the existing value lo-
cality. To reduce the number of mispredictions, the predic-
tors usually contain both a value predictor and a confidence
estimator (CE) to decide whether or not to make a prediction.
The CE only allows predictions to take place if the confi-
dence that the prediction will be correct is high. This is es-
sential because sometimes the value predictor does not con-
tain the necessary information to make a correct prediction.
In such a case, it is better not to make a prediction because
incorrect predictions incur a cycle penalty (for undoing the
speculation) whereas making no prediction does not.

CEs are similar to branch predictors in the sense that both
make binary decisions (predictable or not-predictable and
branch taken or not-taken, respectively). Therefore, we adopt
the nomenclature from the branch prediction literature to de-
scribe the CEs.

Most of the proposed load value predictors include bimo-
dal [McF93] confidence estimators, i.e., they use saturating
counters to “count” how frequently predictions turned out to
be correct in the recent past. If this count is above a given
threshold, meaning that there were at least a certain number
of potentially correct predictions in the past, the predictor is
allowed to make further predictions. Otherwise, predictions
are temporarily inhibited until the count becomes high
enough again.

In previous work [BuZo98, BuZo099] we adopted a differ-
ent idea from the branch prediction literature to build a more
accurate CE and hence a more accurate predictor. Our CE is
in essence an SAg predictor [YePa93] that keeps a small his-
tory recording the most recent prediction outcomes (success
or failure) [SCAP97]. The different history patterns are then



used to decide whether to make a value prediction or not. In
this-paper we use that same CE but we now explore possibili-
ties to improve the predictor’s coverage, that is, to increase
the number of prediction attempts without loss of accuracy.

If load values are predicted quickly and correctly, the
CPU can start processing the dependent instructions without
having to wait for the memory access to complete, which po-
tentially results in a significant performance increase. Of
course, it is only known whether a prediction was correct
once the true value has been retrieved from the memory,
which can take many cycles. Speculative execution allows
the CPU to continue execution with a predicted value before
the prediction outcome is known [SmS095]. Because branch
prediction requires a similar mechanism, most modern mi-
croprocessors already contain the required hardware to per-
form this kind of speculation [Gab96].

Unfortunately, branch misprediction recovery hardware
causes all the instructions that follow a misspeculated in-
struction to be purged and re-fetched. This operation is
costly and makes a high prediction accuracy paramount.
Unlike branches, which invalidate the entire execution path
when mispredicted, mispredicted loads only invalidate the
instructions that depend on the loaded value. In fact, even
the dependent instructions per se are correct, they just need to
be re-executed with the correct input value(s). Consequently,
a better recovery mechanism for load misspeculation would
only re-execute the instructions that depend on the mispre-
dicted load value. Such a recovery policy is less susceptible
to mispredictions and favors a higher coverage, but may be
prohibitively hard to implement.

Our load value predictor’s re-fetch performance is not
only high but also close to its re-execute performance, mak-
ing the added benefit of a re-execution core small in com-
parison. Perhaps this is an indication that complex re-exe-
cution hardware may not be needed.

Load value predictors normally consist of an array of slots
to store information about recently executed loads. It is this
information that is used for making a prediction the next
time a load is executed. Once a predictor contains enough
slots to hold information about all the frequently executed
loads, increasing the number of slots does not improve the
predictor’s performance significantly because the additional
slots will at best be used for predicting infrequently and
therefore unimportant load instructions. As an alternative,

we suggest using extra real-estate to increase the amount of -

information in each slot instead of the number of slots. This
choice should enable the predictor to make better and/or
more predictions and thus improve its performance.

Running SPECint95, quite small predictors already bene-
fit more from storing additional information in the slots than
from increasing the number of slots. For example, our 16kB
predictor with 512 slots each holding the last four loaded val-

ues performs better than the same predictor with 1024 slots
holding the last two values or with 256 slots holding the last
eight values. Section 5.2.2 provides more detail.

Our last four value predictor also outperforms other pre-
dictors from the literature and reaches an average speedup
over SPECint95 of 13.7% with a re-execute misprediction re-
covery policy and 12.5% with a re-fetch recovery policy.
Section 5.1.2 provides more detailed results.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the architecture of our last four value pre-
dictor. Section 3 presents related work. Section 4 explains
the methods used. Section 5 presents the results. Section 6
concludes the paper with a summary.

2. The SAg Last n Value Predictor

Figure 2.1 shows the architecture of our last four value pre-
dictor. The predictor is composed of four identical compo-
nents, each of which consists of an array of 512 slots for stor-
ing a 64-bit value and a ten-bit prediction outcome history.
Furthermore, each component has an array of 1024 four or
five-bit saturating up/down counters associated with it. The
prediction outcome histories together with the saturating
counters represent the SAg confidence estimator. Each of the
512 lines of the predictor contains an eight-bit partial tag,
which is shared between the four components. In this con-
figuration, our predictor requires 21kB of state.

Predictions are made in the following way: First, the nine
least significant bits from the load instruction’s program
counter (PC) value are used to index one of the predictor’s
lines (direct mapping). If the partial tag of that line does not
match, no prediction is made. Otherwise, the four compo-
nents each predict (in parallel) the value stored in the se-
lected slot. At the same time, the components use the se-
lected history to index a counter in their array of saturating
counters. The four resulting counter values are then com-
pared with each other and whichever component happens to
report the highest counter value is selected to make the actual
load value prediction if its counter value is also above a pre-
set threshold.

If multiple components report the same maximum confi-
dence (and that confidence is not below the preset threshold),
one of the components has to be chosen over the others. We
tried two prioritizing schemes: giving the component with
the youngest value priority and giving the component with
the oldest value priority. There is almost no difference be-
tween the two approaches, but the former always seems to
outperform the latter. We will therefore prioritize from
young to old.

Once the outcome of a prediction is known, the predictor
needs to be updated. This process is similar to making a pre-



diction except that each component compares its predicted
values with the true load value instead of making a predic-
tion. If the two values are identical, the selected counter is
incremented (unless it has already reached its maximum) and
a one (indicating a success) is shifted into the selected pre-
diction outcome history. If the two values differ, the corre-
sponding counter is decremented by a preset penalty (but not
below zero) and a zero (indicating a failure) is shifted into
the prediction outcome history. Finally, the four values in
the selected line are shifted over to the next component, i.e.,
the oldest value is lost, component four gets the value from
component three etc. and component one receives the just
loaded value. Thus, the first component always contains the
most recent load value, the second component the second
most recent value and so on.

PC|..
tag hist last value hist _2nd last value  hist  3rd last value hist  4th last value

predicted valus

mateh & Sthrshid : yes/no predict

Figure 2.1: The architecture of our tagged SAg last four value
predictor.

3. Related Work

In this section we present related work and we introduce all
the predictors that we later compare our predictor against.
To make the comparison as fair as possible, we scale all pre-
dictors to a size of 16kB for retaining load values plus what-
ever else they need to support this size, since we believe 16kB
to be a reasonable predictor size. We mention the total pre-
dictor sizes to give an idea of the relative complexity. Note
that the indicated size is not generally the size originally used
by the authors of the individual predictors. We therefore also
show simulation results for other predictor sizes (4kB -
64kB) in Section 5.1.2.

The predictor most closely related to our own is Wang
and Franklin’s last distinct four value predictor (LD4V)
[WaFr97]. Their predictor retains only distinct values (ours
does not) and uses a least recently used replacement policy.

Instead of prediction outcome histories, their predictor keeps
a history of which slots were most recently accessed. This
history is used to index four atrays of saturating counters that
correspond to the four components. The maximum counter
value determines which component is selected to make a pre-
diction. Predictions only take place if the counter value is
above a preset threshold. An LD4V storing 16kB of load val-
ues requires a total of about 26kB of state.

To improve the performance of the LD4V predictor,
Wang and Franklin propose hybridizing an LD4V and a
stride predictor [WaFr97]. We call the resulting predictor
LD4V Stride. A stride predictor predicts a value that is the
sum of the last value plus an offset (stride). This offset is
computed by taking the difference between the last value and
the second to last value. Since the stride component only
stores 8-bit partial strides and uses the values from the LD4V
component, the hybrid predictor is not significantly larger
than LD4V and requires 27kB of state. Wang and Franklin
did not perform cycle-level performance simulations of either
of their predictors.

In previous work we have developed a tagged SAg-based
last value predictor (Tag SAg LV) [BuZo98], which is identi-
cal to the last four value predictor presented in this paper ex-
cept it only contains one component instead of four. In spite
of this similarity, Tag SAg L4V significantly outperforms Tag
SAg LV.

The predictor most closely related to our Tag SAg LV is
Lipasti and Shen’s bimodal last value predictor (Bim LV)
[LiSh96]. It is untagged and uses two-bit saturating counters
as a confidence estimator, The counters are located where
our predictor keeps the histories. A value prediction only
takes place if the corresponding counter value is above a
given threshold. Bim LV is the smallest predictor with a size
of 17kB.

We expand on Bim LV by adding partial tags and per-
forming a detailed parameter space analysis to find the opti-
mal CE setting. As it turns out, three-bit counters with a
penalty above one perform the best. Because of the somewhat
larger counters and the extra tags, the size of this predictor
(Tag Bim LV) amounts to 19kB.

We performed another detailed analysis for the Tag Bim
St2d predictor, which is a tagged stride 2-delta [SaSm97a]
predictor with a bimodal CE. A 2-delta stride predictor re-
tains two strides. The stride used to compute the next predic-
tion is only updated if a new stride has been seen at least
twice in a row. This results in significantly better perform-
ance than a conventional stride predictor can deliver. The
size of the Tag Bim St2d is 23kB due to the two partial stride
fields. -

The last predictor we compare against is St2d FCM,
which is similar to the one presented by Rychlik et al.
[RFKS98] except it is not set-associative. The predictor is a



hybrid between a stride 2-delta and a finite context method-
based (FCM) predictor [SaSm97b]. FCM predictors store
entire sequences of load values. Upon prediction they try to
identify the current location in the sequence and use the next
value from the sequence to make a prediction. The configu-
ration that yields the best result requires about 26kB of state
with re-execute and 29kB.of state with re-fetch, which makes
it the largest predictor.

4. Methodology

All our measurements are performed on the DEC Alpha AXP
architecture using AINT [Pai96], a cycle-accurate pipeline-
level simulator, with a superscalar back-end. We configured
the simulator to emulate a processor similar to the DEC Al-
pha 21264 [KMW98]. In particular, the simulated 4-way su-
perscalar CPU has a 128-entry instruction window, a 32-en-
try load/store buffer, four integer and two floating point units,
a 64kB 2-way set associative L1 instruction-cache, a 64kB 2-
way set associative L1 data-cache, a 4MB unified direct-
mapped L2 cache, a 4096-entry BTB, and a 2048-line
gshare-bimodal hybrid branch predictor. The three caches
have a block size of 32 bytes. The modeled latencies are
shown in Table 4.1. The functional units are fully pipelined.
Operating system calls are executed but not simulated. Loads
can only execute when all prior store addresses are known.
This configuration represents our baseline architecture.
All the speedups reported in this paper are relative to this
baseline CPU, which does not contain a load value predictor.

Instruction Type Latency
integer multiply 8-14
conditional move 2
other int and logical 1
floating point multiply 4
floating point divide 16
other floating point 4
L1 load-to-use 1
L2 load-to-use 12
Memory load-to-use 80

Table 4.1: The functional unit and memory latencies (in cycles)
of our simulator. The load-to-use latencies do not include the
effective address calculation, which takes another cycle.

We performed a very detailed parameter space evaluation
comprising several hundred simulation runs to obtain effec-
tive configurations for the load value predictors presented in
this paper.

The best performing last # value predictor under 30kB of
state that we found is our SAg Last 4 Value Predictor with a

height of 512, a history length of ten bits, four bit saturating
counters for re-execute with a threshold of nine and a penalty
of three, and 5-bit counters for re-fetch with a threshold of
sixteen and a penalty of sixteen. The predictor uses 16kB of
state for storing values plus 5kB for the confidence estimator.
Unless otherwise noted, these are the parameters used with
our predictor.

Since we believe that next-generation CPUs will only
contain moderately sized load value predictors, our study fo-
cuses on 16kB predictors. Nevertheless, we also present re-
sults of larger and smaller predictors. \

Note that the predictors presented in this paper are opti-
mized for speedup, which implies optimizing the predictor
performance at instruction commit. The interaction between
the CPU and the predictor, however, takes place in the pre-
dict and then again in the update stage, possibly long before
the time of commit. This discrepancy may be an issue be-
cause, for example, the accuracy with which wrong path in-
structions are predicted is most likely less important than the
accuracy of correct path instructions. Consequently, a high

- overall accuracy measured at predict or update may not be

representative since it makes no statement about the predic-
tion accuracy of the instructions that are actually retired. We
found the ratio of total predicted loads over committed value
predicted loads to be just under 1.5, indicating that there is a
significant number of predictions that most likely have little
impact on the overall performance. To account for any ef-
fects this might have, we model out-of-order and wrong-path
updates of the predictor accurately in our detailed pipeline-
level simulator. Also, unless otherwise noted, the results pre-
sented in this paper refer to the time of instruction commit,

4.1 Benchmarks

We use the eight integer programs of the SPEC95 benchmark
suite [SPEC95] for our measurements. These programs are
well understood, non-synthetic, and compute-intensive,
which is ideal for processor performance measurements. De-
spite the lack of desktop application code in the suite, it is
nevertheless quite representative thereof, as Lee et al. found
[LCB+98].

We use the reference input set and the more optimized
peak-versions of the programs (compiled on an Alpha 21164
using DEC GEM-CC with full optimization -O5 -ifo). The
binaries are statically linked, which enables the linker to per-
form additional optimizations to further reduce the number of
run-time constants that are loaded during execution. These
optimizations include most of the optimizations that OM
[SrWa93] performs. In spite of this high optimization level
and good register allocation, 22.9% of the instructions exe-

" cuted by the programs are loads.



Note that the few floating point load instructions con-
tained in the binaries are also predicted and loads to the zero-
registers as well as load immediate instructions are ignored.

We execute each of the benchmark programs for 300 mil-
lion instructions on our simulator after having skipped over
the initialization code in “fast execution” mode. This fast-
forwarding is very important because the initialization part of
programs is not representative of the general program behav-
ior [ReCa98]. Table 4.2 shows the number of instructions
that were skipped (in billions) and gives other relevant in-
formation about the simulated segment of each of the eight
SPECint95 programs. GCC is executed for 334 million in-

structions and no instructions are skipped since this amounts -

to one complete compilation.

Information about the Simulated Segments of the SPECint95 Benchmark Suite

exec | percent|skipped L1 load| L2 load load sites that account for
program instrs | loads | instrs | IPC | misrate| misrate| Q100 QQ_g Q90 Q50
compress| 300M| 17.9% | 6.0G| 1.35| 244% 2.6% 62 56.5% 452% 145%

gce 334M| 23.9%| 00G| 151| 24%| 6.4%|34345 41.2% 157% 25%
go 300M| 24.1% [ 120G | 1.44| 14% | 15.3%| 9619 40.2% 17.9% 2.7%
iipeg 300M] 16.8% | 1.0G| 144 14%| 51.3% | 2757 13.7% 67% 15%

i 300M| 255% | 4.0G|{ 199 54%| 0.6% 419 56.6% 28.6% 10.3%
m88ksim | 300M| 20.7% | 1.0G| 125| 01%| 11.2% 747 71.9% 26.6% 3.3%

perl 300M| 31.2% | 1.0G| 157 00%| 46.9% | 1437 157% 11.6% 3.4%
vortex 300M| 236% | 50G|289| 22%]| 10.2% | 1973 48.6% 18.0% 2.8%
average 22.9% 168] 47%| 18.1% | 6420 43.0% 21.3% 5.1%

Table 4.2: This table shows, from left to right, the number of
simulated instructions (in millions ‘M’), the percentage of in-
structions that arc loads, the number of skipped instructions (in
billions ‘G’), the instructions per cycle of the baseline architec-
ture, the L1 data-cache load miss-rate, the L2 load miss-rate,
and some quantile information. The quantile columns show the
number of load sites that contribute the given percentage (e.g.,
Q50 = 50%) of executed loads in absolute terms for Q100 and
percentages thereof for the remaining quantiles.

The results shown in Table 4.2 only take into account load
instructions within the 300 million simulated instructions of
each of the benchmarks. However, we found the eight seg-
ments to be very representative of the complete programs, as
full program executions revealed. For example, the predict-
ability of the entire programs is within five percent of the
numbers measured for the simulated segments.

Except for compress, all the programs have a quite low
L1 data-cache load miss-rate. Some of the reported L2 load
miss-rates are quite large. However, the corresponding num-
ber of accesses is very small and hence the large miss-rates
do not have a significant impact on the performance.

An interesting point is the relatively small number of load
sites that contribute most of the executed load instructions.
For example, 5% of the load sites that are executed at least
once account for 50% of the dynamically executed loads and
only 43% of the executed load sites account for 99% of the
executed loads.

4.2 Averaging Speedups

In this paper, we use the term speedup to denote how much
faster our baseline processor becomes when a load value pre-
dictor is added.

Speedup results are normally obtained by executing a
suite of programs on a simulated version of the enhanced
CPU. To get a meaningful estimate of the expected perform-
ance improvement that a load value predictor will deliver, the
speedup results of the individual benchmark programs need
to be averaged. This is often done using the arithmetic or
geometric mean even though neither mean is suitable for the
task. For example, if a predictor reduces the runtime of one
program to one half of what it used to be and does not affect
the runtime of three more programs, then the expected
speedup is 4/3.5 = 1.143, which is the old combined normal-
ized runtime over the new combined normalized runtime.
The runtime is normalized to give every program in the suite
the same weight. The expected speedup is identical to the
harmonic mean of the four individual speedups (2, 1, 1, 1).
Computing the arithmetic mean of the four speedups results
in 5/4 = 1.25 and the geometric mean yields 2 = 1.189.
Both results are not only different from the harmonic mean
speedup, but they are also too high and thus portray too op-
timistic a picture. In fact, the geometric and the arithmetic
mean of any set of numbers is always greater than or equal to
the harmonic mean. Therefore, all the averaged speedups
presented in this paper are harmonic mean speedups.

5. Results

The following subsections describe the results. In Section 5.1
we evaluate the performance of our Tag SAg L4V predictor by
comparing it to oracles (Section 5.1.1) and other predictors
from the literature (Section 5.1.2) as well as by analyzing the
operation of the individual predictor components separately
(Section 5.1.3). Section 5.2 presents a sensitivity analysis of
the predictor parameters. Section 5.2.1 investigates the pre-
diction potential, Section 5.2.2 examines the predictor size
versus width trade-off, Section 5.2.3 studies the history
length, and Section 5.2.4 explores the parameters of the satu-
rating counters.

To better analyze the space of parameters we only show
averages over the eight benchmarks and not the individual
programs. Furthermore, except for Sections 5.1.2 and 5.2.2,
we restrict ourselves to predictor sizes between 16kB and
29kB since even predictors of that size perform well but are
most likely not too large to be included in next generation
MiCroprocessors.



5.1 SAg L4V Predictor Overall Performance

In brief, our Tag SAg L4V predictor’s accuracy at commit is
98.1% using re-fetch. 32.8% of the load instructions are pre-
dicted with the correct value, 0.6% with an incorrect value.
This results in a harmonic mean speedup over SPECint95 of
12.5% relative to the same CPU but without the predictor.
With re-execute, the accuracy of the predicted load instruc-
tions that are committed/retired is 92.9%. 36.9% of the load
instructions are correctly predicted and 0.8% are incorrectly
predicted. The resulting harmonic mean speedup is 13.7%.

5.1.1 Comparison with Oracles

To get a better understanding of the performance of our pre-
dictor, we modified the simulator to provide various degrees
of perfect knowledge.

The first oracle (called perf-inh) inhibits all the incorrect
predictions that the oracle-less predictor (normal) would
make (i.e., no incorrect predictions take place).

The next oracle (perf-ce) incorporates a perfect confi-
dence estimator. In addition to inhibiting all incorrect pre-
dictions, the predictor is now forced to make a prediction
whenever the selected component contains the correct value.

The last oracle (perf-ce/sel) includes both a perfect confi-
dence estimator and a perfect selector. This means that the
oracle not only always makes a prediction if the correct value
is available and never makes a prediction otherwise, but also
that it chooses the component that will make a correct predic-
tion if there is such a component. In other words, if any
component in the predictor would make a correct prediction,
it is selected and a prediction is made, otherwise no predic-
tion is attempted.

Figure 5.1 shows the speedups of the oracle-less predictor
and the three oracles for re-fetch and re-execute.

Tag SAg L4V Speedup with and without Various Oracles
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Figure 5.1: Re-fetch and re-execute speedups of various predic-
tors with different degrees of perfect knowledge (oracles).

Inhibiting incorrect predictions (perf-inh) improves the
speedup somewhat relative to the ordinary predictor (nor-
mal). The improvement is not very large, though, indicating
that incorrect predictions either do not diminish the perform-
ance much or that there is only a small number of incorrect
predictions to begin with. Since the predictor’s accuracy is
over ninety percent, the latter is the more probable explana-
tion.

Adding perfect confidence estimation (perf-ce) results in
a significant increase in speedup, suggesting that our imper-
fect CE is rather conservative. Since our CE setting is the
result of a global optimization and therefore yields one of the
highest speedups possible, we conclude that trading off
missing potentially correct predictions for reducing the num-
ber of incorrect predictions is beneficial with the CPU we are
simulating. Apparently, incorrect predictions are indeed very
harmful and should therefore be avoided, meaning that a
high prediction accuracy is paramount.

Note that, because there are no mispredictions, the perf-
ce speedups for re-fetch and re-execute should be the same.
The minor discrepancy in the two speedups stems from dif-
ferent timing behavior within the modeled CPU after a load
value misprediction that affects the predictor updates, which
are non-speculative. The reason for this is that perf-ce does
not necessarily “correctly” predict wrong-path load instruc-
tions (that are executed due to branch mispredictions) since a
correct load value is not always defined in such a case.

Adding a perfect confidence estimator and a perfect se-
lector (perf-ce/sel) results in yet another big boost in
speedup, implying that our selection mechanism could be
improved. Overall, our predictor is able to reap about half of
the existing potential.

5.1.2 Comparison with Other Predictors

In this section we compare several predictors from the litera-
ture with our own. The sole metric for this comparison is the
harmonic mean speedup over SPECint95. To make the com-
parisons as fair as possible, every predictor is scaled to 16kB
of state for storing values. Note that, due to the different con-
fidence estimators, the overall predictor sizes vary between
about 17kB and 29kB of state. Our predictor with 21kB is
among the smaller ones.

We performed a detailed parameter space evaluation for
our predictor to determine the setting that yields the highest
speedup. For the predictors from the literature we use the
best parameter setting indicated by the authors. Observing
that the threshold has a significant effect on performance, we
also varied the threshold setting of these predictors to find an
optimal value. Figure 5.2 and Figure 5.3 present the result-
ing best mean speedup of the predictors with a re-execute and



a re-fetch misprediction recovery mechanism, respectively.
For lack of a better order, the predictors are sorted by size,
with the smallest being on the left side. On the far right side
we show the speedup achieved by doubling the size of the
64KkB L1 data cache instead of adding a load value predictor.

Mean Speedup of Several Predictors over SPECint95 using Re-execute
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Figure 5.2: The best harmonic mean speedup of several predic-

tors with sizes between 17kB and 27kB using a re-execute exe=

cution core.
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Figure 5.3: The best harmonic mean speedup of several predic-
tors with sizes between 17kB and 29kB using a re-fetch execu-
tion core.

Our predictor (Tag SAg LAV) outperforms all the other pre-
dictors, including larger and significantly more complex
ones. LD4V Stride comes close to the speedup of our predic-
tor when re-execution is utilized, but not with re-fetch.

While all the predictors perform quite well with the more
complex but more forgiving re-execution policy, their per-
formance suffers significantly when the currently available

and more realistic re-fetch misprediction recovery hardware
is used. Our predictor sustains the least performance de-
crease. Surprisingly, its re-fetch speedup is higher than any
other predictor’s re-execute speedup with only one exception:
LDA4V Stride performs somewhat better with re-execute than
our Tag SAg L4V using re-fetch. However, LD4V Stride per-
forms so poorly with re-fetch that it actually slows programs
down.

Note how much better Tag Bim LV performs than Bim
LV. Most of the difference in speedup does not come from
the partial tags but from the more adequate choice of CE pa-
rameters. In particular, changing the counter penalty from
one to seven for re-fetch made the biggest difference. This
significant improvement is a direct resuit of our detailed
pipeline-level simulations.

We suspect that other proposed predictors can also be im-
proved upon by imposing a heavier penalty on their counters.
However, we do not believe that they will reach the perform-
ance of our predictor unless they switch to a SAg-based CE,
since in all our measurements with otherwise identical com-
ponents, bimodal predictors always turn out to be inferior.

Since our predictor performs well with re-fetch, it is pos-

-sible that nore-execution core-is-necessary. - This result-is-en-— -

couraging, in particular for the near future because it means
that microprocessor designers can simply use the already ex-
isting branch misprediction hardware to recover from value
mispredictions.

All the predictors (except LD4V Stride using re-fetch)
outperform the doubled L1 data cache. This is surprising be-
cause doubling the cache requires over 64kB of additional
state, which is almost four times as much as the predictors
require when all the cache hardware is accounted for.
Clearly, there is a point beyond which adding a load value
predictor is likely to yield more benefit than using the same
number of transistors to increase the cache size.

To get a broader perspective on the performance of the
various predictors, we present Figure 5.4 and Figure 5.5,
which show the speedups of the predictors for different sizes.
The Figures no longer include Bim LV since Tag Bim LV out-
performs it. We added Tag SAg LV in its place, which is
identical to Tag Bim LV except it uses our SAg-based CE in-
stead of the bimodal one.

As expected, with re-execute, all the predictors perform
quite well across the entire range of sizes. With 16kB and
above, our last four value predictor outperforms all the other
predictors and the speedup gap to the second best predictor
(LD4V Stride) increases as the predictors become larger.
Note how Tag SAg LV consistently delivers an additional
percent of speedup over Tag Bim LV.

For small predictor sizes, the last four value predictor is
no longer tall enough to hold all the frequently executed load
instructions. As a result, its performance suffers signifi-



cantly. However, for both 4kB and 8kB, Tag SAg LV per-
forms about as well as the best predictors for these two sizes.

Re-execute Speedup of Several Predictors with Different Sizes
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Figure 5.4: The re-execute speedup of several predictors for dif-
ferent sizes. The sizes refer to the amount of state used to store
values and do not include the state of the confidence estimators.
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Figure 5.5: The re-fetch speedup of several predictors for differ-
ent sizes. The sizes refer to the amount of state used to store
values and do not include the state of the confidence estimators.

With re-fetch, the performance of most predictors is signifi-
cantly lower. Our last four value predictor now outperforms
the other predictors starting at a size of 8kB.

Again, Tag SAg LV is consistently superior to Tag Bim
LV. We take this as strong evidence that SAg CEs are better
suited for load value prediction than bimodal CEs.

For the smallest predictor size (4kB), the last four value
predictor is too short and its performance is accordingly low.
However, Tag SAg LV outperforms all the other predictors for
this size. Apparently, a SAg-based CE with a last n value
predictor (LV is a last one value predictor) makes a strong

combination for both re-fetch and re-execute.

Note that the performance of some of the predictors from
the literature actually decreases with re-fetch when increas-
ing the predictor size.

5.1.3 Component Performance

In this section we investigate the performance of the four
components of our predictor individually, To perform this
survey, we had to measure the numbers at the time of predic-
tion and not at the time of instruction commit. This means
that all the wrong path load instructions are included, which
are less predictable. Furthermore, we only show re-fetch re-
sults since the re-execute results are almost identical and do
not provide additional insight.

Figure 5.6 compares the four components of our last four
value predictor in absolute terms. The first set of four bars
(selected) indicates how often the individual components are
selected. The next set of bars (predicted) shows how many
times the components are used to make a prediction. The
third set of bars (correct) displays how frequently a compo-
nent contributes a value that results in a correct prediction.

The remaining three sets of bars indicate the percentage
of the time the four components report the maximum confi-
dence among the four components (maxconf), a confidence at
or above the threshold (thresconf), and the highest possible
confidence (tfopconf), respectively. Note that, as opposed to
the first three sets of bars, more than one component may be
counted at the same time. As a consequence, the sum of the
four bars in the first three sets cannot exceed one, whereas
the sum of the four bars in the last three sets may exceed one
but cannot exceed four.

Re-fetch Statistics of the Four Predictor Components
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Figure 5.6: The percentage of predictor accesses that result in
one of the components being selected, being used for a predic-
tion, and causing a correct prediction as well as the percentage
of time the components report the maximum confidence over
the four components, a confidence above the threshold, and the
highest possible confidence.



The first component, which stores the most recently loaded
value, is selected much more often than the remaining com-
ponents and thus performs most of the work. This is an ar-
tifact of the prioritization scheme (see Section 4).

In Figure 5.6, the bars labeled correct are very close to
the bars labeled predicted, indicating that most of the at-
tempted predictions turn out to be correct, which is in accor-
dance with the high overall accuracy.

It is interesting to see that all the maxconf bars are very
high. Clearly, at least one component has to report the maxi-
mum confidence at any time. However, the sum over the four
bars is about 2.7, meaning that on average 2.7 components
“share” the maximum confidence. We assume that this is
due to counters that are saturated (i.e., multiple counters are
either zero or top-1, as one would expect for highly unpre-
dictable and highly predictable loads, respectively).

The displayed topconf values are close to their thresconf
counterparts because the confidence estimator setting is very
conservative, in particular with re-fetch, and only predictions
with a high probability of success are made.

Interestingly, the sum over the thresconf bars (1.02) is
much larger than the sum over the predicted bars (0.32), in-
dicating that the selector eliminates 69% of the possible pre-
dictions. This does not necessarily represent a loss, however,
because multiple components often make identical predic-
tions. In fact, we found that whenever two or more compo-
nents have the same maximum confidence and their confi-
dence is not below the threshold, 99.9% of the time those
components make identical predictions with re-fetch. For re-
execute, the percentage is 99.6%. This is a good sign that
the actual component selected in case of a tie is almost al-
ways irrelevant.

Figure 5.7 presents a relative comparison of how indica-
tive several confidence measures are of resulting in a correct
prediction. The first set of bars (predcorr) shows the actual
accuracy of the four Tag SAg L4V components, that is, it
shows how often an attempted prediction turned out to be
correct. The second set (maxcorr) indicates how often the
components would be correct if they made a prediction when-
ever they have the maximum confidence. The third set
(threscorr) displays how often the four components would be
correct if they made a prediction whenever they report a con-
fidence at or above the threshold. The final set (fopcorr)
shows how frequently a correct prediction would be made if
all the components reporting the highest possible confidence
caused a prediction.

The predictor component that makes the majority of the
predictions (the first component) also has the highest accu-
racy. This is again an artifact of the prioritization since the
most predictable load values correlate highly with the times
when multiple components could make a correct prediction.
Consequently, whichever component is given the highest pri-

ority will make all the easy predictions and will therefore
have the highest accuracy.

Re-fetch Performance of the Four Predictor Components
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Figure 5.7: The average prediction accuracy of the four predictor
components for different schemes.

Both threscorr and topcorr have higher accuracies than our
predictor. This is because these schemes do not include an
imperfect selector. What is interesting is that both schemes
do not show considerably higher percentages than our imple-

- mentable predictor. In fact, the threscorr accuracy of compo-

nent one is roughly a percent lower than the accuracy (pred-

corr) of the same component in our predictor. This is due to

the fact that in our predictor the first component is not al-
ways selected when it reports a confidence at or above the

threshold, but only if it also reports the maximum confi-

dence. This shows that the intuitive approach of selecting

the most confident component does improve the prediction

accuracy.

5.2 Sensitivity Analysis

5.2.1 Using Distinct Last Values

Load value predictors to exploit last value [LWS96, Gab96],
stride [Gab96, SaSm97a], and finite context predictability
[SaSm97a] have been studied at length in the current litera-
ture. Last n value predictability, on the other hand, has been
less explored despite its simplicity and considerable potential.
The only proposed predictor to take advantage of last n pre-
dictability is Wang and Franklin’s last distinct four value
predictor [WaFr97].

Retaining the last n fetched values of a given load instruc-
tion is straight forward. To make the most of the retained
values, Wang and Franklin [WaFr97] suggest storing only



values that are not already stored (i.e., only distinct values).
Unfortunately, this approach requires content addressable
memory. Storing the last n values regardless of whether any
of them are identical is much simpler. Our results in Section
5.1.2 suggest that this low complexity approach is not only
more cost effective but also results in superior performance

because it makes selecting one of the values easier and more '

accurate.

Figure 5.8 shows the prediction potential for different n
when storing every loaded value versus only storing distinct
values. The potential is given as the percentage of the
fetched load values that are identical to at least one of the last
n (distinct) fetched values. The results only take into account
load instructions within the 300 million simulated instruc-
tions of each of the eight benchmarks. However, the num-
bers in Figure 5.8 are very representative of the generally ob-
served predictability, as complete executions of the programs
revealed.

Last n Load Value Predictability

Predictability (%)
g8 & & 8

-

Figure 5.8: The average last n value predictability (duplicate
values are allowed) and the average last n distinct value predict-
ability (no duplicates) of the load values within the 300 million
simulated instructions of each of the eight SPEC95 integer pro-
grams.

Figure 5.8 shows that larger n result in higher predictability
potential. This result is intuitive since the chance of finding
the correct value increases as the number of values becomes
larger. The increase is considerable for small n up to about
four. Then the “curve” starts flattening out and reaches satu-
ration at approximately » = 11, at which point almost no ex-
tra potential is gained by further increasing n.
' One very interesting observation is that for n larger than
four, the potential difference between distinct and non-dis-
tinct is virtually constant (3.3%). This means that the rela-
tive advantage of storing distinct values becomes smaller as n
gets larger.

For n = 4, which is the predictor width Wang and Frank-
lin chose [WaFr97], the difference of 3.6% represents one
eighteenth of the total potential of 64%. This means that the
simpler approach of retaining not necessarily distinct values
is theoretically able to perform almost as well as its more
complex counterpart.

5.2.2 Predictor Size and Width

It is important that a load value predictor’s height be large
enough to accommodate the (load instruction) working set
size (Section 4.1). If the predictor is too short, some fre-
quently executed load instructions will have to share a pre-
dictor slot, which almost always results in detrimental alias-
ing. Predictors that are too tall, on the other hand, underutii-
ize many of their slots. Consequently, once a predictor is
large enough to accommodate the working set size, further
increases in the predictor height will not increase the per-
formance because the additional slots will not be utilized ef-
fectively. Instead, additional real-estate could be used to in-
crease the amount of information stored in each slot, which
should enable the predictor to make better and/or more pre-
dictions and thus improve its performance. Hence, the opti-
mal predictor width depends on the working set size of the
programs and the available real-estate for the predictor.

To better evaluate the tradeoff between predictor width
and size, we present Figure 5.9 and Figure 5.10. They show
the best mean speedup we were able to obtain for various pre-
dictor sizes and widths.

Re-execute Speedup for Different Predictor Sizes and Widths

“ g

o

-

Speedup over Baseline (%)

M16kB |
[164kB

Predictor Width

Figure 5.9: Maximum mean speedup for three predictor sizes
and five predictor widths with a re-execute misprediction pol-
icy.

Figure 5.9 shows that for very small predictors (4kB of state
for storing values), a width of one results in the highest



speedup. Storing two values per slot and halving the number
of slots yields less speedup because there are not enough slots
for the SPECint95 working set sizes, which results in more
aliasing and lower performance. This effect is even more
pronounced for larger widths, hence the continuous decrease
in speedup as the predictor becomes wider and shorter.

With 16kB of state a width of four yields the best
speedup. The detrimental aliasing only sets in above four

entries per slot. When we increase the predictor size further

(to 64kB), the best width turns out to be eight. Only at six-
teen does the performance start to decrease again.

Re-fetch Speedup for Ditferent Predictor Sizes and Widths
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Figure 5.10: Maximum mean speedup for three predictor sizes
and five predictor widths with a re-fetch misprediction policy.

Figure 5.10 is identical to Figure 5.9 except that the mispre-
diction recovery mechanism used is re-fetch instead of re-
execute. The resulting optimal predictor widths are exactly
the same with one exception: a width of four (instead of
eight) now yields the best speedup in the 64kB case. This
change is due to the high misprediction sensibility of the re-
fetch mechanism. It appears that in the 64kB case, n = 8 re-
sults in both more correct predictions and more incorrect
predictions, which is advantageous with re-execute but
harmful with re-fetch.

5.2.3 History Length

We already found history lengths of ten bits to work well for
a predictor width of one [BuZo98]. Figure 5.11 shows that
ten bits also mark the beginning of the saturation point for
the last four value predictor, both for re-fetch and re-execute.
Note that it is important not to chose the history length too
large since every additional bit doubles the number of re-
quired saturating counters.

11

Speedup for Different History Lengths

Speedup over Baseline (%)

] 7 8 8 10 11 12
History Length (bits)

Figure 5.11: Mean speedup with respect to several history
lengths.

5.2.4 Counter Parameters

For space reasons, we cannot present all the results pertain-
ing to counter parameters but will only give a summary in
this section. :

With a re-execute misprediction recovery mechanism, we
found four-bit saturating up/down counters to work best with
our last four value predictor. Counters both smaller and
larger than four bits yield considerably less performance.
Consequently, we use a counter top of 16. We found a
threshold of nine with a penalty of three to work quite well
for this counter size, but the exact values are not very crucial.
Larger thresholds with penalties of three work just as well.
Likewise, a threshold of nine with a penalty above three
yields about the same speedup. However, penalties of one or
two result in significantly lower performance.

For re-fetch, thresholds and penalties of about half the
counter top value work very well with the last four value pre-
dictor. Five, six, and seven bit counters yield the best
speedup. We use the smallest of the three, which has a
counter top of 32, with a threshold and a penalty of 16.
Again, numbers near the ones we picked all result in ap-
proximately the same speedup.

6. Summary and Conclusions

The goal of this paper is to explore a technique to improve
the accuracy and in particular the coverage of a conventional
last value predictor by increasing its width to retain the last n
values rather than just the last value. The only new mecha-
nism that a last n value predictor requires is a selector that
chooses which of the n values to use for the next prediction.
Using the predictor’s n confidence estimators for this purpose



yields good results with very little extra hardware.

Once a load value predictor is large enough to hold all the
frequently executed load instructions, increasing the predic-
tor height does not result in significantly better performance
because any extra slots will not be used effectively. As an
alternative, we propose using additional real-estate to in-
crease the amount of information stored in each slot, which
enables the predictor to make better and/or more predictions
and thus improves its performance.

Our measurements show that, while very small predictors
(4kB of state) perform the best in the conventional last value
configuration, 16kB or larger predictors benefit from having
a width greater than one. For example, our 16kB predictor
performs best with a width of four when running SPECint95.

We use a mechanism similar to an SAg branch predictor
as a confidence estimator (CE) to decide on whether to make
a value prediction or not (instead of whether to predict a con-
ditional branch to be taken or not). When comparing other-
wise identical predictors, the one with our SAg CE consid-
erably outperforms its counterparts that use other approaches.

To evaluate the performance of the predictors and to thor-
oughly explore the parameter space, we performed hundreds
of detailed pipeline-level, cycle-accurate simulation of a su-
perscalar high-performance microprocessor with various pre-
dictors, including several from the literature. The results
show that our tagged SAg last four value predictor outper-
forms other predictors (that are all scaled to about the same
size), including significantly more complex ones. More im-
portantly, our predictor performs well enough with the ex-
isting re-fetch misprediction recovery mechanism that the
added benefit of a more complex and not yet realized re-exe-
cution core is small in comparison.

In spite of its good performance, a comparison of our pre-
dictor with some oracles revealed that there is still significant
opportunity for improvement left.

In addition to our last n value predictor, the contributions
of this paper include detailed simulation results for several
predictors over a wide range of parameters and sizes as well
as a significantly enhanced version of a simple bimodal last
value predictor.

We are currently trying to improve the predictor’s per-
formance further by hybridizing it with a stride predictor and
we are investigating ways to shrink the predictor size.

.
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