Simplifying the Construction of Interactive Programs
In a Functional Programming Environment

Eric Blough

CU-CS-884-99

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Simplifying the Construction of Interactive
Programs in a Functional Programming
Environment
by
Eric Browder Blough
Baccalaureus Artiem et Scientiae, University of South Carolina, 1988

M.S., University of Texas, 1991

A thesis submitted to the
Faculty of the Graduate School of the
University of Colorado in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
Department of Computer Science

1998

ii

iii

Blough, Eric Browder (Ph. D., Computer Science)
Simplifying the Construction of Interactive Programs in a Functional Programming Environment

Thesis directed by Professor Clayton Lewis

Functional programming offers numerous benefits to the programmer, including higher-
order functions, absence of control flow, automatic storage management, and static type infer-
ence and type checking. The writing of interactive programs has been a long-standing challenge
to the functional programming community, since the statefulness of input and output does not
merge smoothly with the statelessness of a pure functional language. Historic and recent ap-
proaches to interactivity clearly demonstrate the utility of functional programming of interactive
systems, but these approaches are cognitively problematic.

Spreadsheets offer numerous, but largely different, benefits for certain classes of pro-
gramming problems. These benefits include visible, manipulable data representations, auto-
matic consistency maintenance, absence of control flow, and immediate feedback. Although
the spreadsheet environment provides significant interactive power, it is limited and minimally
customizable, and has cognitive weaknesses of its own.

We present Esquisse, an alternative to both of these approaches that shares much with
each. Esquisse combines the full power of a functional programming language with an exten-
sible spreadsheet-inspired environment made of pure functional components. Esquisse demon-
strates that powerful interactive programs can be produced quickly with relatively low cognitive
cost, and suggests a promising direction for future research in functional programming environ-
ments.

iv

Acknowledgement

This research was funded in part by the United States Department of Energy grant
number DE-FG03-95ER 14499 to the University of Colorado.

vi

Contents

Chapter

1 Introduction

2

1.1

1.2

1.3

1.4

1.5

1.6

Functional Programming Languages
1.1.1 Functional languages provide novel tools, challenges, and approaches to
interactivity. e e
1.1.2 Functional programming approaches to interactivity must deal with the
statefulness of interactive systems.
1.1.3 The strengths of functional programming languages support diverse uses.
Spreadsheets e
1.2.1 Spreadsheets are expression-based programming environments.
1.2.2 Uses of spreadsheets center around equation-based models and experimen-
tation. L L e
1.2.3 Spreadsheets increase the accessibility of programming and programming
coneepts. L e e e e
Other Interactive Environments and Programming Systems
1.3.1 Research in human-computer interaction and programming environments
offers insights into cognitive barriers and implementation issues.

1.3.2 In NoPumpG, spreadsheet cells control interactive graphics and vice versa.

1.3.3 FunSheet is a spreadsheet based on a functional language.
1.3.4 Forms/3 uses spreadsheet-like cells for visual declarative programming.
Thesis . . . o o o o e e e
1.4.1 The strengths of functional programming and spreadsheets can be com-
bined in a powerful, flexible system.
1.4.2 A synthesis of functional programming and spreadsheets would support
graphical, interactive exploration of complicated models.
1.4.3 The programming walkthrough is well suited for evaluating a wide range
of programming environments. L L oL
Research Process 0 L o e
1.5.1 The programming walkthrough method evaluates program writeability.
1.5.2 The research process relied on the programming walkthrough method. . .
Contributions e e

Monadic I/0 in Haskell and Haggis

2.1

2.2

Interaction in Haggis is based on Haskell’s monadic I/O system.

2.1.1 Monadic I/O creates an “imperative sublanguage” within the functional
world of Haskell.

2.1.2 The do notation is the canonical form for monadic I/O in Haskell.

2.1.3 In Haggis, monadic I/O plays a central role.

The walkthroughs revealed cognitive obstacles to using monadic I/O.

2.2.1 Monadic actions simultaneously represent imperative statements and func-
tional values.

15
16
16

16

17
17

17
18
18
18
19

19

19

19
22
22
22
23

25
25

25
29
29
31

viii

2.2.2 The cognitive obstacles to programming in Haggis center around the need
to treat monadic I/O as both imperative and functional.

3 Microsoft Excel with Visual Basic

3.1

3.2

3.3

3.4

Visual Basic for Applications is an extension language for Microsoft Excel.

3.1.1 Visual Basic contains Excel-specific features.

3.1.2 The spreadsheet model contributes both positively and negatively.

The walkthroughs revealed challenges due to uneven design.

3.2.1 The macro recording feature facilitates learning Visual Basic, but is in-
flexible. e

3.2.2 Knowing when to use the Excel’s computational and interactive leverage

requires solid knowledge of the capabilities of both Excel and Visual Basic.

3.2.3 Visual Basic’s object structure is somewhat formidable to the novice. . . .
3.2.4 Visual Basic procedures can be triggered by some events, but not others.
3.2.5 Finding out how a Visual Basic procedure was called is complicated. . . .
The programming models of spreadsheets and Visual Basic conflict.
3.3.1 Users will need to add functionality to write programs..
3.3.2 The spreadsheet and the extension language are both environments for
specifying computations. e
3.3.3 The two computational environments (the spreadsheet and the extension
language) should be as compatible as possible.
3.3.4 Translating the correlation function from spreadsheet formulae to Visual
Basic (and vice-versa) means re-expressing the computation.
3.3.5 The spreadsheet formula language is not compatible with an imperative
language.
Visual Basic offers inspiration for a spreadsheet-like functional programming en-

VIFONIMENt. v o e e e e e e e
4 Esquisse
4.1 The strengths of functional programming and spreadsheets can be combined in a

4.2

4.3

4.4

4.5

powerful, flexible system.
Esquisse is a spreadsheet-inspired programming environment built around a func-
tional language. L
4.2.1 The design process for Esquisse centers around the programming walk-

through method.
4.2.2 Esquisse draws upon and extends the spreadsheet metaphor for storage,

display, and interaction.

4.2.3 The Esquisse interface supports creating, editing, and interacting with cells.

The implementation of Esquisse cleanly separates the purely functional from the
stateful. L
4.3.1 Some additional types are required to support the needs of the cell frame-
WOTK. . . e
4.3.2 Esquisse is implemented as a front end to the Gofer interpreter..
Substantial examples show Esquisse payoffs.
4.4.1 The logistic map is a simple system with chaotic dynamics.
4.4.2 One-dimensional cellular automata (1IDCAs) produce global patterns with
local rules.
4.4.3 The logistic map and 1DCA examples show the power of Esquisse.
The design and implementation of Esquisse reveal some issues and limitations.
4.5.1 Animation and simulations require minimal additional features.
4.5.2 In unusual cases, formulae can be nondeterministic, or can cycle endlessly.
4.5.3 Several factors restrict cell generality.

42

43
43
43
44

45

48
50
50
51
52
52

52

54

56

o6

56

57

58

58

58
59

63

63
65
67
67

73
76
80
80
80

ix

4.5.4 Two design issues arise concerning the implementation of interaction with

cells. . . o o 82
4.5.,5 Embedding the functional type inference system in Esquisse has two draw-
backs. 82
4.6 Isquisse compares favorably with existing programming systems. 83
4.6.1 Esquisse successfully addresses some of the cognitive challenges to pro-
Gramming. e e 83
4.6.2 Spreadsheets and functional languages have compatible programming mod-
els. . L 86
4.6.3 The evaluation of Esquisse offers insights about learning costs and long-
LEXm POWEL. . . . o v o L e e e 90
5 Conclusions 91
5.1 Esquisse describes the interactive structure of the spreadsheet cell in functional
terms, and extends it in a principled manner. 91
5.2 The design and development of Esquisse have also informed the study of functional
programming environments. L. Lo 92
5.3 Esquisse offers strong support for creating, customizing, and maintaining the
consistency of interface components and data structures. 92
Bibliography ’ 95
Appendix
A Temperature Conversion Walkthrough and Examples in Haggis 101
A.1 Temperature Conversion Walkthrough in Haggis 101
A.2 Starting Examples for Temperature Conversion Walkthrough in Haggis 112
A.2.1 Combinator Notation 112
A22 doNotation 112
A.3 Final Temperature Conversion Examples in Haggis 113
A.3.1 Combinator Notation 113
A32 doNotation L 113
B Line-Fitting Walkthrough and Examples in Haggis 115
B.1 Line-Fitting Walkthrough in Haggis 115
B.2 Starting Examples for Line-Fitting Walkthrough in Haggis 152
B.2.1 Combinator Notation 152
B.2.2 doNotation 153
B.3 Final Line-Fitting Examples in Haggis 154
B.3.1 Combinator notation 154
B.3.2 doNotation 155
B.3.3 Fitted Line and Correlation Calculation 157
C Temperature Conversion Walkthrough in Excel with Visual Basic 159
C.1 Temperature Conversion Walkthrough in Microsoft Excel Visual Basic 159
C.2 Final Temperature Conversion Example in Excel Visual Basic 171
D Line-Fitting Walkthrough in Excel Visual Basic 173
D.1 Line-Fitting Walkthrough in Microsoft Excel Visual Basic 173
D.2 Final Line-Fitting Example in Excel Visual Basic 190

E Temperature Conversion Walkthrough in Esquisse 193

F Line-Fitting Walkthrough in Esquisse 199

Figure
1.1
2.1

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6

Figures

The temperature conversion and line-fitting examples.
The final line-fitting and temperature conversion examples in Haggis.

Final temperature conversion program in Microsoft Excel with Visual Basic. . . .
Final line-fitting example in Microsoft Excel with Visual Basic.
Spreadsheet implementation of the correlation function.
Spreadsheet implementation of the correlation function (formula view)..

The Esquisse interface.
The Esquisse editor. e
The graphical method for iterating the logisticmap.
The logistic map example implemented in Esquisse.
The one-dimensional cellular automaton in Esquisse (rule 90).
The line-fitting and temperature conversion examples in Esquisse.

xi

21

31

46
47
53
55

xii

xiii

Algorithms
Algorithm

1 Temperature Conversion Example in Haggis 30
2 Line-Fitting Example (newElement and plotPoint) 34
3 trackCtrl (abbreviated) from the Line-Fitting Example, step 127 37
4 trackCtrl (abbreviated) from the Line-Fitting Example, step 133 38
5 The event handler for a press of button 2 in the starting example for the line-

fitting walkthrough 39
6 The drawLine function from the line-fitting example (step 112) 39
7 The drawLine function from the line-fitting example (step 117) 39
8 Macro recorded during the temperature conversion walkthrough (step 23). 48
9 Macro recorded - during the line-fitting walkthrough (step 23). 49
10 Least-Squares Correlation for Paired Data (Lyman Ott, Statistics) 53
11 Visual Basic implementation of the correlation function 54
12 The default display function for squarecells. 69
13 The customized display function for the line and curve cells. 70
14 Customized display function for the starting value cell. 71
15 The default event function for square cells. 71
16 The customized event function for the logistic map starting value. 71
17 The display function for the tracecell. 71
18 The formula for the tracecell. L. 73
19 The value of the ruleMaker cell. 74
20 The formula in the ruleNumber cell. 74
21 The formula in the ruleList cell. 75
22 The value of the evolve cell. 75
23 Thevalueof theplotcell. oL 76
24 The formula in the plot cell. 76
25 The display function of the plot cell. 77
26 Haskell implementation of the correlation function with more intermediate values. 87

27

A more concise Haskell implementation of the correlation function. 88

Xiv

Chapter 1

Introduction

Programming a computer is a complex skill that takes considerable time and effort to mas-
ter. A number of cognitive barriers that impede the programming process have been identified
for traditional languages [LO 1987]. We focus on two alternatives to traditional programming,
each of which reshapes these cognitive barriers in its own way.

Functional programming languages provide important tools for modularization and pro-
gram development that are not present in traditional languages [Hughes 1990]. Historically,
functional language approaches to writing interactive (and thus stateful) programs have been
complex and cumbersome. The advent of monadic I/O has brought an elegant, efficient, se-
mantically sound approach to stateful interaction. Another recent development is a collection
of interactive toolkits written in functional languages.

Spreadsheet applications fall even farther outside the realm of traditional programming,
and yet they have extended some level of programming power to a much wider audience than
traditional languages have. More recent spreadsheet programs offer extension languages for
creating graphics and interfaces, increasing the power of spreadsheets in new directions.

In addition to our study of these two programming approaches, we explore the benefits
of a synthesis of functional programming languages and the spreadsheet model of interaction.

1.1 Functional Programming Languages

1.1.1 Functional languages provide novel tools, challenges, and approaches to
interactivity.

1.1.1.1 Functional languagés provide powerful new programming tools.

Functional programming languages have long been a subject of active research by a
substantial and passionate research community, yet they are best known for what they lack: side
effects, control flow, loop constructs, and so on. Advantages such as automatic storage allocation
are all very well and good, but are hardly unique to functional programming languages. What
distinguishes functional programming languages from other language designs is the presence of
several important modularization tools that support the smooth creation of abstractions and
high-level aggregate operations.

For the purposes of this document, “functional programming languages” refers to side-
effect free, strongly typed, lazily-evaluated languages such as Haskell [HPJW+ 1992, HPF 1997]
and Miranda! [Turner 1986]. Examples are shown in Haskell, or in a few cases, Haskell-like
pseudocode.

Higher-order functions build specialized functions from general-purpose func-
tions.

One of the distinguishing features of pure functional programming is that functions are
“first-class” objects: they can be bound to names, used as elements of data structures, passed as

! Miranda is a trademark of Research Software Ltd.

arguments to functions, and returned as function results. They are also a powerful abstraction
tool. ‘

For instance, higher-order functions support the creation of special-purpose functions
from general-purpose functions. The foldr list-reduction function can be parameterized by a
function and an identity value to create a family of specialized functions [Hughes 1990]:

foldr :: (a ->Db) ->a -> [a] ->b
foldr £ x [] = x
foldr £ x y:ys = £ y (foldr f x ys)

sum = foldr (+) O

product = foldr (x) 1

or = foldr (|1) False

and = foldr (&&) True

append xs ys = foldr (:) ys xs

(These examples, with the exception of append from [Hughes 1990], are taken from the Haskell
Standard Prelude [HPJW+ 1992].) Notice that for sum, product, and, and or, foldr has been
given its first two arguments (the function and the identity value), but not the third (the list to
be reduced). A function applied to some (but not all) of its arguments is said to be curried;
currying is a simple, powerful, and quite useful way of defining one function in terms of another.

A general purpose numerical differentiation function is a more literal example of a function
returning another function. The general function can be parameterized to create a family of
functions which compute derivatives to different accuracies:

deriv :: (Fractional a) => a -> (a ->a) -> (a -> a)
deriv deltaX f = \ x -> (f (x + deltaX) - f x) / deltaX

deriv01l, deriv0001 :: (Fractional a) => (a -> a) -> (a -> a)
deriv0l = deriv 0.01
deriv0001 = deriv 0.0001

which can then be used to calculate a function £’ from a function f:

£’ :: (Fractional a) => (a -> a)
f’ = deriv0001 f

Lazy evaluation separates the issues of generating possible solutions and
choosing the best solution.

Writing a function in many programming languages often involves specifying not only
the result to be computed, but how much of it to compute. Many applications make use of a
generate-and-test strategy: a number of possible solutions are generated, and the first solution
which passes the test is returned. Game-playing programs, for instance, generate a tree of
possible move sequences, and assign values to each node (i.e., each game state). Since a lazy
functional language only evaluates an expression when the value of that expression is needed by
another part of the program, these two parts of the program can be separate functions. The
generator function will be evaluated only to the extent necessary to create exactly as much of
the game tree as the test function needs to find a solution. In languages which do not provide
lazy evaluation, these two functions must be integrated together in order to avoid generating
more of the tree than is necessary [McPhee 1992].

Consider a program which uses the Newton-Raphson method to find the roots of a func-
tion (an example from [Hughes 1990]). The Newton-Raphson method involves computing suc-
cessive approximations to a root:

nextApproximation :: .
(Fractional a) => (a -> a) -> (a -> a) -> (a -> a)
nextApproximation f £’ = \x ->x - (f x / £’ x)

An iterate function (provided in the Haskell Standard Prelude) can compute a list of such
approximations:

iterate :: (Fractional a) => (a -> a) -> a -> [a]
iterate f x = x:(iterate f (f x))

Another function can search the list for two approximations whose ratio is less than some epsilon:

within :: (Fractional a) => a -> [a] -> a
within epsilon x1:x2:xs | abs(x1-x2) <= epsilon = x2
| abs(x1-x2) > epsilon = within epsilon x2:xs

These functions can be combined to produce the root-finding function

findRoot :: (Fractional a) => (a -> a) -> a -> a -> a
findRoot f x0 epsilon
= within epsilon
(iterate (nextApproximation f (deriv0001 £)) x0)

Lazy evaluation allows the generator (iterate (nextApproximation f (deriv0001 £)) x0)
to be separated from the test (within epsilon). Each of these components is available for use
in other computations. The generator can generate an infinite list of approximations, because
only those approximations which are needed by the test function will be computed.

Some non-functional languages include constructs that present the elements of a data
structure one at a time. CLU iterators, for instance [Liskov 1996}, provide a variant of a loop
construct that iterates a body of code over the elements of a data structure. While this does
provide some generality, lazy evaluation supports infinite data structures and partial, directed
exploration of those structures; CLU iterators provide the elements of a data structure in an
unordered sequence, which is considerably less flexible.

Referential transparency makes implicit parallelism possible.

Lazy evaluation not only relieves the programmer from concerns about evaluation order,
it requires that the programmer give up direct control over evaluation. It is lazy evaluation that
forces functional programming languages to be stateless [Hughes 1990].

The result is referential transparency: any expression in a functional program can be
replaced with its value without affecting the program’s result. Since evaluation order is con-
strained only by the dependence of each expression on its subexpressions, expressions which
are independent can be evaluated in parallel. Functional language implementations can thus
provide parallelism implicitly, without requiring attention from the programmer.

Type inference supports powerful static type-checking with or without explicit
type signatures.

In the examples in the previous sections, we have provided explicit type signatures. Func-
tional programming languages are strongly typed and statically type-checked; furthermore, the
types of all but a small subset of expressions in the language can be inferred, without explicit
type signatures. In fact, even when explicit signatures are provided, type checking is performed
by inferring the type of the function and comparing the inferred type with the explicit signature.

Type inference is important because it safely supports overloaded functions. For example,
the (:) infix operator (pronounced “cons,” like its namesakes in Scheme and Lisp, or sometimes
“followed by”), has the type:

(:) :: a -> [a] -> [a]

That is, given a value and a list of values, it evaluates to a new list consisting of the first value
followed by the list of values:

1:[02,3] ---> [1,2,3]

The value must have the same type as the list (which is why the type variable a appears through-
out the type signature), but the list can be any type at all: integer, fractional, Boolean, even func-
tions from integers to Booleans (for example, [even, odd, prime, composite, perfect]).
The type system of Haskell and of other functional languages implements these constraints,
supporting the creation of a single (parametrically) polymorphic function, rather than a raft of
type-specific ones. (Haskell’s type classes support ad-hoc polymorphism as well, which is less
relevant to our discussion here.)

1.1.1.2 Functional languages change the cognitive barriers to programming.

Some cognitive barriers are lower.

The absence of a control model in functional languages frees the user from one of the
more difficult concepts in traditional programming. Functional languages also allow the user
to specify the dependencies among the data, instead of having to maintain them explicitly.
Function definitions tend to be shorter than their imperative counterparts, encouraging low
viscosity (greater ease in changing one part of the program without needing to change other
parts), and the presence of higher-level aggregate operations reduces somewhat the need for the
user to play “programming games” to construct them from primitives [LO 1987].

Some cognitive barriers remain.

Functional programming shares features with nonfunctional languages which are known
to pose cognitive obstacles to novices, such as the use of variables [Lewis 1989] and the need to
“pump” data from the human world to the computational world and back [Draper 1986, LO 1987,
Lewis 1989]. Higher-order functions, which are not present in most nonfunctional languages,
also appear conceptually difficult for novices [ERT 1987).

1.1.1.3 Since pure functional languages must be stateless, the statefulness of I/O
makes programming interactivity awkward from a functional perspective.

Computational environments provide access to the world outside the programming lan-
guage: operating system devices such as files, network connections, instruments, displays, and
interaction devices, and through these, the world of the human users. Both of these worlds are
inherently stateful. Computer systems and human memory store information and are history-
sensitive. Most objects in the human world are persistent and mutable, and for humans to have
a similar model of the contents of a file system or the visual appearance of the screen is arguably
quite natural.

The introduction of an imperative syntax for I/O in Haskell reinforces this point. The
imperative syntax is syntactic sugar for pure functional syntax, but its purpose is to make
functions which involve I/O more readable and writeable — an implicit acknowledgement of the
naturalness of a stateful model of I/0.

Statefulness prevents referential transparency and lazy evaluation.

Unfortunately, the introduction of state destroys referential transparency, and with it,
lazy evaluation. The challenge in the eyes of the functional programming community is to
provide access to the stateful world of interactive input and output in a manner which does not
directly introduce state into the functional language. Responses to this challenge are detailed
in section 1.1.2.

Statefulness presents cognitive obstacles.

The presence of state is at the root of several cognitive obstacles to programming. State
transitions force a need to understand evaluation order, and thus control flow. The use of state
variables tends to raise viscosity, since the same variable can be used in two widely separated

program locations, and a change in one location can affect the other. Maintaining consistency in
the presence of state is more difficult also, since state variables introduce dependencies between
potentially distant parts of the program. The cognitive issues suggest restricting these effects of
state.

1.1.2 Functional programming approaches to interactivity must deal with the
statefulness of interactive systems.

1.1.2.1 Historically, functional programming research on interactivity has fo-
cused on the problem of state in terminal-based environments.

Pure functional programs are completely declarative; they specify computations via ex-
pressions, not sequences of statements. This absence of state is essential to referential trans-
parency, lazy evaluation and implicit parallelism.

In sharp contrast, the world of input and output is highly stateful. References to I/0
devices are not transparent, and evaluation order is critical. Approaches to input and output
in functional languages are thus tightly bound to the problem of state. In fact, the approaches
to I/O described in this section are also used for other applications involving state, and they
can be and are combined in a single program. For example, the Fudgets system uses streams
for message passing between components and continuations for storing the internal state of a
component. Somewhat similarly, the (formerly standard) Dialogue I/O model of Haskell 1.2
[HPJW+ 1992] used both streams and continuations.

The game of hangman demonstrates the state problem.

Games are interactive and highly stateful. As a simple example, consider the game of
Hangman. One player thinks of a word and the other attempts to discover it by guessing letters.
As the guessing player guesses each letter, the player who chose the word reveals whether and
where that letter occurs in the word (example from [BW 1988]):

a -a---a-
n -an--an
h han--an
g hang-an
m hangman

A function can implement this part of the process:

reveal :: [Char] -> [Char] -> [Char]
reveal target guesses = map dash target
where dash w | w ‘elem‘ guesses = w
| w ‘notElem‘ guesses = ’-?

Given this definition of reveal, the computation necessary to obtain this “progress” string is
simply:

progress = reveal target guesses

Note that reveal requires the entire list of guesses, not just the most recent guess. The list
of letters which have been guessed is, in essence, the state of the game, and some part of the
surrounding program must maintain the list of guesses. This is the state problem: the value of
the guesses list stores the history of the letters guessed.

Functional programming approaches impose a total order and unique bindings
on state-related operations.

Since an expression in a pure functional language must always evaluate to the same value,
the state (e.g., the current state of the input channel) cannot have a single binding. Functional

programming research solves this problem by treating the changing state as a sequence of state
values. The input to a program can be viewed as a sequence of values; alternatively, the state of
the I/O system can be viewed as a sequence of state values, each computed from its predecessor
by some state transformation function. In either case, each item in the totally ordered sequence
has a unique binding. (This total ordering is only necessary for I/O operations; imposing a total
order on all evaluations would eliminate lazy evaluation.)

Five major functional programming approaches address the problem of state at the lan-
guage level. Fach provides a means for ensuring a total order on I/O operations (sequencing
them) and a unique binding for each I/O state access. The approaches vary in the amount of
support provided for the programmer, and the amount of care required on her or his part, to
guarantee these conditions. (The following discussion is based in part upon pages 5 through 14
of [NR 1994].)

Streams use lazy evaluation to interleave input and output.

Streams [Thompson 1990] are lazy lists: lists in which each successive element is computed
only when it becomes needed by another computation. The entire input to the program can be
treated as a single list of characters, as can the output:

type Input = [Char]
type Output = [Char]

thus binding successive state values to successive elements of the input or output streams.
Enforcing a total order on I/0 operations (sequencing) is partly the programmer’s responsibility,
since the entire input stream is potentially available to any part of the program.

To pass state from one part of a program to another, we define the type:

type Inter a b = (Input, a) -> (Input, b, Output)

where a and b are the types of state (other than the I/0 state) accepted and returned by the
interaction function. (If the interaction function needs to pass around more than one state
item, those items must be bundled into a tuple.) Interactions are composed using higher-order
functions called combinators, such as:

sequence :: Inter a b -> Inter b ¢ -> Inter a c
choose :: (a -> Bool) -> Inter a b -> Inter a b -> Inter a b
while :: (a -> Bool) -> Inter a a -> Inter a a

These combinators help the programmer enforce proper sequencing. The hangman example in
the streams method would look like this (ignoring the issues of entering the target string and
echoing the input):

guess :: Inter [Char] [Char]

guess (input, guesses) = (input’, newguess:guesses, output)
where (newguess, input’) = readChar input
output = printString (reveal target (newguess:guesses))

The use of input and input’ force the input stream to be read in the proper fashion, but it is
up to the programmer to ensure that they do so, and the extra bindings produce extra program
clutter, since the programmer must provide a name for the state of the input stream after each
operation.

This method does not specify how input and output are interleaved. The hangman
example forces input and output to alternate: for output to be computed, newguess must be
computed, which requires that input’ be computed by reading a character. In other cases, the
computation will not automatically enforce this ordering. Thompson [Thompson 1990} mentions
two cases in which this flexibility can produce undesired results. Output (such as a prompt) can

be delayed by pattern matching on the following input, and output which does not depend on
preceding input can be printed prematurely (and repeatedly), without waiting for the input to
be read.

Several solutions to these problems have been proposed: explicit echoing of the input,
a wait function which forces evaluation, or making input and output streams of requests and
responses rather than streams of characters [NR 1994, page 9].

Systems store the entire I/O state in a single data structure.

Another alternative is to pass the entire I/O state around via a data structure called
a system. [NR 1994, page 10]. Every function performing I/O takes the system state as an
additional parameter, and returns the new system state as an additional result. In the hangman
example, the system consists of the input and output (both lists of characters, as in the streams
approach).

type System = ([Char], [Char])
guess :: [Char] -> System -> ([Char], System)
guess guesses system = (newguess:guesses, system’’)
where
(newguess, system’) = readChar system
system’” = printString (reveal target (newguess:guesses))

system’
readChar :: System -> (Char, System)
printString :: [Char] -> System -> System

The system, system’, and system’” parameters enforce sequencing, but clutter the program
even more than in the streams example (as in the streams model, a distinct name must be
provided for the system after each I/O operation). The problems arising from intérleaving input
and output described on page 6 are applicable here, as are the approaches addressing them.

In this case, the System type is relatively simple, since only one input channel and only one
output channel are required, but in graphical applications, the System type includes widgets,
mouse and keyboard input, and so on, which can make dispatching input and output to the
appropriate functions quite involved.

History models use systems implicitly.

The history model [NR 1994, page 13] is similar to the systems model, but the system
parameter is implicit rather than explicit. In the hangman example, the progress string might
be specified by: :

progress = reveal target guesses

but this specification would behave as if it were written:

(progress, history’) = reveal target guesses history

This reduces program clutter, since all bindings to the I/O state are hidden. The I/O operations
are totally ordered, but at the cost of imposing a total order on the entire program. This
completely eliminates the benefits of lazy evaluation and the potential for implicit parallelism
in the non-1/0 parts of the program.

Continuation passing bundles state into function applications.

Continuation passing style (CPS) provides another solution. In CPS, instead of a function
returning a value (example from [NR 1994, page 10]):

add2 :: Int -> Int
add2 num = num + 2

the function takes a continuation, to which it passes its result:

add2 :: Int -> (Int -> a) -> a
add2 num cont = cont (num + 2)

The continuation function represents the computation in the “rest of the program”. Thus, add?2
takes the rest-of-the-program function as an argument and applies it to add2’s result. This
results in the program state being passed from function application to function application.
The function calls enforce the sequence of I/O operations, but it is up to the programmer to
ensure that the function calls are correct.

The streams, systems, and continuations approaches have been proven to be equivalent
in expressive power [HS 1988]. One advantage to CPS over streams and systems is that the
state can be passed as multiple arguments, rather than being bundled into a tuple. Another is
that the result passed to the continuation need not be named explicitly (as in the add2 example
above).

In CPS, the guess function becomes:

guess :: [Char] -> ([Char] -> Imput -> Output) -> Input -> Output
guess guesses cont input
= output ++ cont (newguess:guesses) input’
where output = reveal target (newguess:guesses)
(newguess, input’) = readChar input

The arguments newguess:guesses and input’ are passed to the continuation directly, without
needing to be bundled into a tuple or given.

Unfortunately, the input and output streams must be dealt with explicitly, and the in-
terleaving problems described on page 6 are still possible.

Monads encapsulate the I/O world and force strict evaluation of I/O operations.

Monadic I/O [PJW 1993], the newest and most popular model, hides the input and output
streams and the I/0 state, providing only an interface via I/O functions which represent actions.
This saves the programmer from the pitfalls of managing the input and output explicitly, and
the interleaving problems do not arise. In addition, I/O operations are performed when the
corresponding I/0 functions are evaluated, not when the resulting values are needed by some
other part of the program,; that is, I/O evaluation is strict, not lazy. Finally, the type signatures
of I/O operations are much simpler.

Sequencing of I/O operations is explicit, via combinators which link I/O operations to-
gether:

return :: a -> I0 a
>) :: I0a->I0b->I00D
(>>=) ::I0a->(a->I0Db) ->I00b

(The (>>) and (>>=) are infix operators, sometimes read “sequence” and “bind.”) The return
action performs no I/O but returns the value passed to it; (>>) performs the first action given
it, followed by the second action, and returns the value returned by the second action; (>>=)
performs two actions, passing the result of the first to the second, and returning the value of
the second.

The I/O operations needed for the hangman example are getChar and putStr, which
read a character and display a string, respectively.

guess :: [Char] -> I0 [Char]

guess guesses = :
getChar >>= \ newguess ->
putStr (reveal target (newguess:guesses)) >>
return newguess:guesses

Monadic I/O is described in greater detail in Chapter 2.

These five approaches present various cognitive obstacles.

Although four of these five interaction mechanisms implement input and output without
disrupting the formal properties of functional languages, they do so at the cost of additional
cognitive obstacles (the exception is the history approach, which adds minimal cognitive diffi-
culty, but completely destroys lazy evaluation and referential transparency). All of the four have
special type signatures for functions which include I/O: the types for continuations appear the
most problematic, while the types for monads appear the least so. All four require that each
I/0 operation be handled explicitly by the user. :

Streams, systems, and continuations have some unfortunate drawbacks not shared by
monads. All three require that the user generate distinct names for different versions of the 1/0
state (the continuations approach avoids this for the function results passed to the continuation,
but other names are sometimes necessary). Because of this, the user must be careful to return
the correct version of the I/O state for use by other functions. Finally, all three are subject
to the pitfalls described on page 6; the echoing and wait function workarounds to those pitfalls
create more work for the user and present more opportunities for error.

1.1.2.2 Recent functional programming research has demonstrated the viability
of functional languages for graphics and interaction.

Functional programming research since 1990 has produced a number of elegant approaches
to programming graphics and interaction, with the goals of demonstrating that functional lan-
guages are not only the equals of imperative languages for constructing graphical user interfaces,
but can surpass them in conciseness and power. As with the functional approaches to terminal-
oriented I/O, these systems do not necessarily address the cognitive barriers to programming
interactivity; the mechanisms for accessing this power have some of the same drawbacks, and in
some cases introduce new obstacles as well.

(Note: the ensuing discussion is drawn from papers written about these systems and from
examples provided by the system designers. In particular, the implementations of hangman
given in this discussion should be viewed as pseudocode, as they may deviate slightly, or even
significantly, from the actual system capabilities.)

Fudgets are interface components that communicate via streams.

Fudgets (functional widgets) [CH 1993] are best visualized as components with four pins,
two above and two below.

The upper two pins are the application input and output message streams. The lower
two pins are the implementation input and output event streams. Information flows through
the fudget from right to left, for consistency with the syntax of function composition.

A fudget is of type F a b where a and b are the types of input and output messages,
respectively. Fudgets are connected via combinators, which determine the connection of message
streams and the screen layout of the fudgets. For example, the fudget side-by-side composition
combinator

>>=< :: Fbc->Fab->Fac
can be used to place two text fudgets next to each other on the screen:
textF >==< textF

The output of the right fudget goes to the input of the left fudget; text typed in the right fudget
is echoed in the left one.

Input from and output to the message streams is handled by continuation passing, using
two functions

getSP :: (a ->SPab) ->SPab

10

putSP :: [b] ->SP ab ->SP ab

(the SP stands for “stream processor”). The function getSP (\a -> sp) is a stream processor
which reads a from the input stream, then becomes the stream processor sp (i.e., it calls the
continuation sp). Similarly, putSP [b] sp is a stream processor which places all the messages
in the list [b] on the output stream, then becomes the stream processor sp. The absF operator
is used to convert an ordinary (stream-processing) function into a fudget:

absF :: SPab ->Fab

Such a fudget is referred to as an abstract fudget, because it does not have a visible representa-
tion.

In implementing hangman in Fudgets, using three fudgets seems to be the most natural
approach, one each for the target, guesses, and progress strings. In the simplest implementation,
the target string is unchangeable, and the target fudget is omitted.

progress_f :: textF
guesses_f :: textF
textF = F String String

The stream-processing function for the hangman example is:

reveal _SP :: SP String String
reveal _SP = reveal SP’ "'
where reveal _SP’ guesses = getSP computeProgress
computeProgress newGuesses =
putSP [reveal newGuesses target]
(reveal _SP newGuesses target)

and the hangman program is thus:

progress_f >==< (absF reveal_SP) >==< guesses_f

If we wish target to be manipulable as well as guesses, it is also necessary to create a composite
fudget containing target_f (also of type textF) and guesses_f. The composite fudget consists
of target_f and guesses_f “in parallel”, with their input and output streams multiplexed
together. The disjoint union fudget combinator >+< accomplishes this:

>#< :: F al bl -> F a2 b2 -> F
(Either al a2) (Either bl b2) Either a b = Left a | Right b

In addition, the stream-processing function must be more sophisticated.

reveal _SP:: SP (Either String String) String
reveal _SP = reveal_SP> ("","")
where reveal SP’ (guesses,target) = getSP computeProgress
computeProgress (Left newGuesses) =
putSP [reveal newGuesses target]
(reveal _SP newGuesses target)
computeProgress (Right newTarget) =
putSP [reveal guesses newTarget]
(reveal _SP guesses newTarget)

and the hangman program is thus

11

progress_f >==< (absF reveal SP) >==< (guesses_f >+< target_f)

Fudgets provide an easily-understood interface model. Using the combinators to join existing
fudgets creates an interface relatively easily, since the fudget comes ready to “plug in.” However,
writing stream processors is still convoluted, and the input and output multiplexing can become
quite a chore for large applications, although the multiplexing does guarantee deterministic
concurrency. The need to create abstract fudgets separates computational and interface elements
and creates extra work.

Concurrent Clean uses a hierarchical systems model.

Concurrent Clean [AP 1994] is a lazy functional language based on term graph rewrit-
ing. Clean is distinguished by several features. Graph rewriting is explicit — specifying the
program also specifies the graph structure. Strictness annotations (the ! operator, also avail-
able in Haskell) allow the programmer to make the program more efficient by specifying that
a computation be eager rather than lazy. Various sorts of process annotations are available for
concurrent applications. Finally, and most importantly for interaction, Concurrent Clean has
an unusual system of environment passing and type and variable annotations which it uses to
perform input and output.

In a lazy functional program, a single expression may recur at several different points in a
program expression tree. Referential transparency states that the value of that expression must
be the same at each evaluation. If this is not the case, the program result will depend upon the
evaluation order, which violates the conditions of a declarative language.

Expressions referring to input and output, however, cannot have the same value each time
they are evaluated. For a functional program to interact properly with input and output devices,
an evaluation order must be enforced on the operations involving I/O. Function composition
can enforce an evaluation order, but the problem remains of ensuring that each expression is
evaluated exactly once.

Concurrent Clean addresses this problem via uniqueness (linear) types. Uniqueness anno-
tations to a type (via *) or variable (via .) specify that when the expression is evaluated in the
context of the annotation, the evaluation will occur exactly once. Since the term graph rewrit-
ing tree is an explicit part of Clean semantics, this is equivalent to saying that the annotated
expression occurs uniquely in the term graph tree.

Concurrent Clean I/0 occurs via environment passing, much like the system model dis-
cussed in the previous section. The Clean system provides a hierarchy of environments for files,
interaction devices, and so forth, allowing functions to access exactly as much of the I/0 state
as they need, without having to unpack the I/O world parameter and repack the I/O world
return value.

In this approximation to the hangman example, GuessState is a process with guesses
and progress as its local state. The ps:{pLocal=local, pI0State=io} matches local and
io to the pLocal and PIOState fields of ps, respectively, and the {ps & pLocal = x} syntax
specifies a value consisting of the value of ps with the pLocal field set to x.

:: GuessState share :== PState Local share
:: Local = { guesses :: Text,
progress :: Text }
guesses :: KeyState *(GuessState s) -> *(GuessState s)

guesses (c,_,_) ps:{pLocal=local, pIOState=io} =
{ps & plocal = {local & guesses = guessesl,
progress = progressl},
pIl0State = DrawInActiveWindow drawingFunctions io}
where drawingFunctions = DrawString progressi,
progressl = reveal target guessesl,
guessesl = addCharacter c¢ local.guesses

The Clean system differs significantly not only from other interactive functional programming

12

toolkits, but (as noted in [NR 1994]) from other functional programming languages. Clean
was originally designed to be an intermediate language between other functional languages,
and the strictness and uniqueness annotations and the lack of syntactic sugar are consistent
with this design. Unfortunately, the interface tools are built-in and inflexible, and there are
no combinators for composing objects. Finally, uniqueness types are somewhat tricky to use,
occasionally requiring more code than seems strictly necessary, and requiring some of the same
name-generation tricks common to the streams, systems, and continuations approaches.

Gadget Gofer components pass continuations along multiple input and output
channels.

Gadget Gofer [NR 1995] provides components similar to fudgets, but each component
can have an arbitrary number of input and output channels (wires). Each gadget is a process
(of type Process s, where s is the state of the process), which communicates asynchronously
through wires (of type Wire a, where a is the message type). Gadgets send messages to other
gadgets with the tx primitive:

tx :: Out m -> m -> Process s -> Process s

which takes an output pin, a message, and a process, and returns a process (a form of contin-
uation passing). Gadgets receive messages from their inputs via a combination of the rx and
from primitives:

rx :: [Guarded ‘s] -> Process s .
from :: Inm -> (m -> Process s) -> Guarded s

The from primitive takes an input pin and a continuation for that pin, and returns a guarded
continuation. The rx primitive takes a list of these guarded continuations and waits for a message
to arrive on one of the input pins, then chooses the guarded continuation which matches that
pin.

Gadgets also communicate with the display and input devices (referred to as the screen
manager, or SM) via wires, but these wires are encapsulated within functions and are not directly
available. For instance, a Gadget would use the txSM function to send a message to the screen
manager instead of to another Gadget:

txSM :: m -> Process s -> Process s

Implicit, hidden wires also provide access to the operating system and to the layout managers.
Gadget layout is specified by the programmer using layout combinators.
To program hangman, we need three other primitive functions:

wire :: (Wire a -> Process s) -> Process s
ip :: Wire a -> In a
op :: Wire a -> Qut a

The wire primitive creates a wire, which it passes to its continuation argument. The functions
ip and op simply select the input and output pins of a wire, respectively.

We can program the hangman example in Gadget Gofer with three gadgets. Two
(guesses and target) are what we assume a stock text Gadget would be; the third (progress)
is a special text Gadget with two input wires. Two wires, one each from target and guesses
to progress, complete the picture.

hangman :: Gadget
hangman =
wire $ \ gp ->
wire $ \ tp ->

13

let t = text "" (op tp)
g = text "" (op gp)
p=rx [

from tp $ \t -> txSM (reveal t g) $ p
from gp $ \g -> txSM (reveal t g) $ p
] ‘

Gadget Gofer is similar to Fudgets, and addresses two of the latter’s shortcomings: the need
for abstract fudgets (which separate computation from interaction) and the need to multiplex
messages through a single channel between fudgets, although determinism is lost. The dynamic
creation of wires and components is clean and flexible. The Guarded s notation using rx and
from handles the nondeterminism in the message passing. The continuation passing syntax is
still a bit cluttered, and (as the authors note) the construction and wiring of components still
seems a bit low-level.

Haggis uses monads for widgets and I/0 devices.

Haggis [FPJ 1995] is an interface framework which extends the monadic I/O concept
to include widgets, which Haggis refers to as “components.” All user interface components
are device abstractions, much as files, sockets, and the console are abstracted into file handles
in UNIX programming. Events relevant to a virtual device (the keyboard, for example) are
forwarded to that device by the Haggis implementation. Components can be combined by
composition functions; for instance, a composition function for creating a radio group from a
collection of buttons has the following (simplified) type signature:

radio :: [Button Int] -> I0 (Button Int)

It takes a list of buttons, puts them in a layout, and forks a process which implements the exclu-
sive choice that defines radio buttons. These composition functions thus handle communication
between components, such as the “ deactivate” message from the newly selected radio button to
the previously selected one.

To implement hangman in Haggis, we use the TextField component to store the target
and guesses strings. To create a TextField, we use the textField function:

textField :: String -> Component (TextField,DisplayHandle)

Since the progress string is not editable, we can use a Label for it:

label :: String -> Component (Label,DisplayHandle)

Before we can create the components, we need to create a DisplayContext (essentially, a win-
dow) to display them in. To do so, we use mkDC

mkDC :: [String] -> I0 DC

which creates a DisplayContext given a style specification (a list of Strings).
With the DisplayContext, we can create the three components:

dc <- mkDC ["#title: Hangman']
(target,targetDH) <- textField "eggplant" dc
(guesses,guessesDH) <- textField "" dc
(progress,progressDH) <- label "-------- " de

(we are using the do syntax for monadic I/O described in Chapter 2). The DisplayHandles
(variables ending in DH) are used to specify layout (and, in more sophisticated programs, to
capture events over a component). The vbox function

14

vbox :: [DisplayHandle] -> DisplayHandle

combines a list of DisplayHandles vertically into a single DisplayHandle, and realiseDH
creates the column of components on the display:

realiseDH (vbox [progressDH,guessesDH,targetDH])

We have created the components we need; now we specify the behavior by using the forkI0
function to create a process that watches the guesses component and updates the progress
component:

forkI0 (trackGuesses guesses progress)
where
trackGuesses target guesses progress =
newGuesses <- waitChangeString guesses
theTarget <- getString target
setLabel progress (reveal theTarget newGuesses)
trackGuesses target guesses progress

The event handler blocks (waitChangeString) until the string held by guesses changes, then
it extracts the target string and sets progress to the result of the reveal function. Hiding the
target string would involve using

mkTextField :: (String->Picture) -> String
~-> Component (TextField,DisplayHandle)

whose first argument is a function which specifies how the string is displayed.

Other environments address issues at the window system and application
levels.

EXene [GR 1991] is a multi-threaded window system toolkit built directly upon the X
Window System protocol. It is implemented in Concurrent ML and uses threads and channels
to encapsulate state. Concurrency and delegation replace object-orientation as the approach
to modularity and separation of concerns. EXene demonstrates the applicability of functional
programming to the low-level implementation issues of a windowing system.

BriX [Serrarens 1995] is a concurrent window system implemented in Haskell which uses
monads for widget communication in a manner similar to that of Haggis. A distinguishing
feature of BriX is that it is both concurrent and deterministic, like Fudgets and Clean, and
unlike eXene, Gadgets, and Haggis.

1.1.2.3 Interactive functional programming environments reduce some cognitive
obstacles, but introduce others.

The Fudgets, Concurrent Clean, Gadget Gofer, and Haggis systems each abstract away
some of the details of the traditional I/O models upon which they are built. The Fudgets system
uses streams to implement message passing, but the user need not know that, although she or he
might wonder why the access functions are named getSP and putSP, and the I/O multiplexing
problems persist. Similarly, a full understanding of continuations is not necessary to use the
Fudgets or Gadget Gofer systems; in particular, the difficult types are simplified. Even so, the
syntax for receiving and passing messages is clumsy and ill-motivated for the user who does not
understand continuations.

In Concurrent Clean, understanding and using uniqueness types and the I/O state retains
from the systems model the problem of generating different names for different versions of the
I/0 state, although the hierarchical I/O state reduces the user’s concern with multiplexing.

Haggis, by drawing exclusively upon monadic I/0, avoids all of the difficulties associated
with streams, systems, and continuations, and in fact with message passing as well. In its place,

15

Haggis requires the user to perform explicit event dispatching to enable interface elements to
communicate, but it is far from clear whether this approach is markedly easier. Discussion of
the monadic I/0 system in Haggis is provided in chapter 2.

1.1.3 The strengths of functional programming languages support diverse uses.
1.1.3.1 A wide range of real-world systems are implemented in pure functional
languages.

Philip Wadler maintains a list of real-world applications of functional programming, in-
cluding pure functional programming [Wadler 1998a, Wadler 1998c|. Artificial intelligence sys-
tems are well represented: theorem provers, expert system shells, natural language understand-
ing, and speech recognition. Functional programming also appears well suited for systems appli-
cations, including a concurrent client-server architecture for telecommunications, a “smart-card”
operating system, and, of course, compilers, parsers, and syntax tools. Other real-world uses
of functional programming include consistency maintenance for database transactions, query
languages for heterogeneous distributed databases, declarative animation, computing nucleic
acid shapes, a calculus for digital circuits, airline crew scheduling, and a protocol library for
distributed applications (including a web server).

1.1.3.2 Functional languages are particularly popular for certain classes of
problems.

Common element recur in these real-world applications, and suggest a list of problem
characteristics to which functional languages are well suited. Tasks involving artificial intel-
ligence techniques, such as proof systems, search, or symbolic manipulation, make use of the
declarative functional style, the power of lazy evaluation, and the ease with which new datatypes
can be created in functional languages.

Compilers, client-server architectures, and database query languages point to the ease
of specifying transformations in functional languages, and all are well-suited to demand-based
evaluation. In fact, the backward chaining used in expert systems neatly dovetails with lazy
evaluation [Wadler 1998a).

1.1.3.3 These applications show the value of functional language tools.

The functional programming tools described in section 1.1.1.1 find their uses in these
applications. Higher-order functions are used in theorem provers to manage subgoals and jus-
tifications; for instance, in LCF [Wadler 1998a], a proof tactic is a function from a goal to a
list of subgoals and a justification, while a justification is a function from proofs of subgoals to
proofs of goals. The concurrent functional language Erlang encapsulates common client-server
processing into functions that are the analogs of map and fold for list processing. Tail-calls and
higher-order functions maintain the state transitions.

Lazy evaluation plays a crucial role in minimizing memory usage in Natural Expert’s
database access supports concurrency in CPL/Kleisi’s query processing, and in the backward
chaining mentioned above. Finally, the type system helps ensure the soundness of theorem
provers and supports hierarchical database queries.

1.1.3.4 Functional tools also support experimentation and program develop-
ment.

Another application of the flexibility of functional tools occurs in program construction.
Lazy evaluation supports functions that solve large or unbounded problems, because other func-
tions can be used to control how much of the solution is computed. Changing the size of a

16

problem thus involves fewer modifications to a program. Higher-order functions, by separat-
ing different program computations, allow a much greater interchangeability of program parts;
“swapping in” a different parser or filter or transformation is greatly simplified.

Although the strong static type-checking of functional languages appears at first glance
to be an impediment to quick program construction (which is aided by the declarative, high-
level functional approach), it shortens debugging considerably. Static type-checking also offers
the strong advantage of ensuring that the parts of a program fit together properly. Type infer-
ence further simplifies the program construction process by eliminating the need to write type
signatures — and the user can always write them as a more careful correctness check.

1.2 Spreadsheets

1.2.1 Spreadsheets are expression-based programming environments.
1.2.1.1 Spreadsheet computations consist of expressions.

Spreadsheets consist primarily of a grid of cells; each cell holds a value (such as a number
or a character string) or a formula. Values are displayed in a variety of formats, and can be
directly edited by the user. Formulae are expressions consisting of constants (numeric, string,

..), arithmetic operators, built-in functions, and cell references. A formula cell displays the
current value of the expression it contains.

All of the computation in the spreadsheet occurs via the formulae. When a cell value
changes, any formula that references that cell is recomputed and the new value is displayed (and
other formula cells that reference the first one are updated, and so on). Similarly, whenever a
formula is edited, the newly edited formula is re-evaluated, followed by any cells whose formulae
reference it.

1.2.1.2 Spreadsheet formulae serve as one-way constraints to maintain consis-
tency.

Because all relevant formulae are re-evaluated whenever any cell is changed, the spread-
sheet contents remain consistent. The formulae are essentially one-way constraints: the values
to which they evaluate cannot be edited, so the issue of propagating values backwards is moot.

1.2.1.3 The spreadsheet provides spreadsheet programs with an interface for
free.

The spreadsheet environment provides an automatic interface for its computations. Data
storage, editing, and display are all bundled together into the spreadsheet cell. Formulae cannot
all be visible simultaneously under normal circumstances, but can be viewed and edited on a
cell-by-cell basis. The result is that spreadsheet computations need no facilities for reading,
editing, or printing data. The interface provided by the spreadsheet (while not always ideal) is
always available for any computation.

1.2.2 Uses of spreadsheets center around equation-based models and experi-
mentation.

Spreadsheets have been used for a wide range of applications, many of them educational.
([Neuwirth 1998] lists a substantial selection.) Some of the more prominent areas of use are ap-
plied mathematics (Fourier sound synthesis, root-finding, vector addition, series convergence),
physical science (molecular weight, ideal gas law, trajectory calculations, chemical equilibrium
problems, chemistry simulations), finance and financial modeling (Social Security retirement
payments, option pricing), statistics (fitting curves to data), and computer science (state ma-
chines, simulation of arithmetic units, algorithm animation, circuits), along with numerous other

17

miscellaneous examples (combinatorial identities, sums of collections of coins, computing par-
liament seats from votes, equation solving, ...).

These uses point to general characteristics. Spreadsheets are a powerful problem-solving
environment: they can be used to solve a wide range of problems. Spreadsheets are well suited for
experimentation and exploration. Changes can be made easily, and new results are immediate.
Additionally, the visible, editable, tabular data representation is appropriate for many different
tasks.

1.2.3 Spreadsheets increase the accessibility of programming and programming
concepts.
1.2.3.1 The spreadsheet has several features which reduce the cognitive cost of

writing programs.

Spreadsheets present the programmer with a familar, visible, editable data representation
[LO 1987]. No special operations are required to view or modify the data. In traditional
programming, data lives in an “inner world” of variables and computation. Modifying the data
involves extracting it from this inner world, then pumping the modified data back in. None of
this is necessary in the spreadsheet: the data can be modified incrementally.

Spreadsheets typically have a large number of aggregate operations available; the pro-
grammer need not construct these from more primitive operations. Since these aggregate oper-
ations are built in, there is no extra work such as importing or linking with libraries.

Formulae in spreadsheets specify (one-way) constraints, which are maintained automat-
ically. In traditional programming, consistency is up to the programmer, and typically cannot
be specified in so simple a fashion. Automatic consistency maintenance, in conjunction with the
visible data representation, provides immediate feedback to the programmer; there is no need to
reinvoke the program on the new data. Automatic consistency maintenance also obviates any
need for control flow. The absence of a control model and variables frees the programmer from
the need to keep track of state changes in the program over time.

1.2.3.2 Spreadsheets provide tools that change the user’s interaction with equa-
tions and programming.

Neuwirth [1995a, 1995b] has investigated the cognitive implications of the spreadsheet
model with a slightly different emphasis. He notes that spreadsheets provide a spatial organiza-
tion absent in traditional programming, and that clicking on cells to specify formula references
is a quasi-gestural, rather than symbolic, means of specifying computational relationships. The
use of pointing (clicking) also removes the need for variables to have names.

Neuwirth points out that chains of formulae can show recursion in a highly visual way:
for instance, the function 2™ can be expressed in a spreadsheet by a column of identical formula
cells. Each formula multiplies the value in the cell above by 2. The base case is a value cell
(with a value of 1) at the top of the column. He also demonstrates that spreadsheets support
easily converting constants into variables, and numerical representations into graphical ones.

1.3 Other Interactive Environments and Programming Systems

1.3.1 Research in human-computer interaction and programming environments
offers insights into cognitive barriers and implementation issues.

A number of other interactive environments address the goal of reducing the cognitive
cost of programming interactivity.

User interface toolkits such as Garnet [Myers 1989] and Mickey |[Olsen 1989] have explored
the construction of combinable interaction primitives. Mickey maps the Macintosh interface onto
declarative Pascal, while Garnet provides via Common Lisp a set of interaction abstractions

18

to the X Window System. Other toolkits such as Tcl/Tk [Ousterhout 1994] and InterViews
[LVC 1989] have taken imperative approaches.

The Model-View-Controller model of Smalltalk [GR 1983|, the Abstraction-Link-View
paradigm of the Rendezvous project [Hill 1992], and the Surface Interaction model of Presenter
[Took 1990] are approaches to the problem of connecting display images and interaction events
to program entities.

Many newer systems, such as (standalone) Visual Basic [Halverson 1998] and Java [AG 1997],
provide component libraries of interface objects. These objects can be connected to other inter-
face objects and to computational objects within a single object-oriented design.

Constraint systems such as DeltaBlue [SMFB 1993, FMB 1990 use multi-way constraints
as the primary means of problem specification, and constraint solving as the computational
engine. ThingLab [Borning 1981] is an ancestor of DeltaBlue’s approach to interface objects.

The Acme [Pike 1994] and Oberon [Wirth 1989] environments explore the integration of
interface and programming environment. Squeak [CP 1985] provides a programming-language
approach to mouse interaction.

Finally, many environments have integrated programming constructs and graphical ob-
jects, including Agentsheets [RS 1995], Boxer [dSA 1986], Cartoonist [Hiibscher 1995], Chem-
Trains [Bell 1992, and LiveWorld |[Travers 1994]. Other environments, such as DataSheets
[Wilde 1994], SchemePaint |Eisenberg 1995], and VIPR [CDZ 1995] have explored other combi-
nations of programming and direct manipulation.

1.3.2 In NoPumpG, spreadsheet cells control interactive graphics and vice
versa.

NoPumpG II [WL 1990] integrates a spreadsheet environment with interactive graphics.
In addition to traditional spreadsheet cells, NoPumpG provides “control cells” for graphical
primitives. For instance, a line primitive would have an x-coordinate cell and a y-coordinate cell
for each end. Moving a primitive changes its control cells, and editing the control cells modifies
the primitive. Cells can be also linked to other cells in this bidirectional fashion, and thus each
cell can contain a value and a formula.

Cells are placed freely, allowing them to be placed near the graphics they control, but also
sacrificing the structure provided by the traditional spreadsheet grid (including, unfortunately,
the range-filling operations typically provided). Although cells cannot, therefore, be referred to
by location, they can be given mnemonic names.

1.3.3 FunSheet is a spreadsheet based on a functional language.

FunSheet [dHRvE 1995] is a spreadsheet (implemented in Concurrent Clean) in which
the formula language is a lazy (but weakly typed) pure functional language. FunSheet’s formula
language provides higher-order functions. In addition, column references are also functions that
can participate in formula expressions; of course, the most common use of a column function is
to apply it to an integer to reference a single cell.

FunSheet also provides symbolic evaluation, which can be used to check two different
versions of a computation in different parts of a sheet, or to compute a simplified version of an
equation.

1.3.4 Forms/3 uses spreadsheet-like cells for visual declarative programming.

The visual declarative language Forms/3 [BA 1994] uses hierarchically-grouped spreadsheet-
like cells for specifiying visual abstract data types (VADTs). Cells refer to other cells via for-
mulae. Scoping is accomplished visually, and formulae can be written by direct manipulation.
When events occur over special “event receptor” cells, they are updated, triggering formulae
which refer to those cells. In addition, a “temporal vector” structure provides access to previous

19

cell values and supports programming complex interactions (for example, gestures). Forms/3 is
weakly typed, but event receptors behave lazily, preserving referential transparency.

The focus of Forms/3 is on purely visual programming of graphical and behavioral ab-
straction. Forms/3 does not support circular formula references, and it is unclear whether
interactions and computations can be bidirectionally connected as in NoPumpG II.

1.4 Thesis

Functional programming languages and spreadsheets offer enhancements to the program-
ming process that are different, yet complementary. The tools provided by functional languages
show the power available in the world of pure (stateless) expressions, but functional approaches
to interaction are still problematic. Spreadsheets, in contrast, have relatively weak, but still
expression-based, formula languages; the great strength of spreadsheets is in program construc-
tion and interaction.

Functional programming languages and spreadsheets also share important benefits. Both
environments support quick construction of small programs.

1.4.1 The strengths of functional programming and spreadsheets can be com-
bined in a powerful, flexible system.

The goal of this thesis is to address the weaknesses of functional programming languages
(cumbersome treatment of interaction) and the weaknesses of spreadsheets (computational lim-
itations and lack of interface flexibility) by combining the expressive computational power of
a functional language with the interaction-for-free power of the spreadsheet environment, and
expanding the spreadsheet model of interaction to include graphical interaction and customiza-
tion.

1.4.2 A synthesis of functional programming and spreadsheets would support
graphical, interactive exploration of complicated models.

A spreadsheet-like framework built on a functional language is an appropriate medium
for the quick construction, development, and exploration of sizeable models. The expressive
power and concise syntax provided by the functional language support complex computations,
while lazy evaluation allows varying portions of potentially unbounded computations to be
used. The modularity provided by higher-order functions and lazy evaluation, coupled with
the interactive flexibility of spreadsheet cells, supports easy modification and experimentation
during construction and development. The interactive power of the spreadsheet supports adding
interactive graphics to functional computations.

Given these strengths, a functional programming-spreadsheet synthesis seems most suited
to constructing and exploring mathematical or physical models, interactive search problems
(such as game-playing), signal processing and other problems expressible as data transforma-
tions, and problems involving iterates or recursive specifications (such as the Newton-Raphson
example on page 2).

1.4.3 The programming walkthrough is well suited for evaluating a wide range
of programming environments.

1.4.3.1 The programming walkthrough is useful for evaluation and for informing
design.

Our tool for examination is the programming walkthrough [BCLRWWZ 1994, a struc-
tured, process-oriented method for assessing the ease of constructing programs. The program-
ming walkthrough serves two purposes as an evaluative tool: to compare the ease of program

20

construction across systems, and to inform the design process of Esquisse, a programming envi-
ronment we have developed which synthesizes and expands upon the functional and spreadsheet
approaches.

1.4.3.2 The examples used in the walkthroughs are interactive mathematical
models.

Our approach centers around two example programs: line-fitting and temperature con-
version.

In the line-fitting example, the user wishes to explore fitting a line to a set of data. Some
of the data points should be treated as outliers; the user can experiment with fitting the line to
various subsets of the data. The problem statement for the line-fitting example is:

Given a list of (z,y) pairs, plot the pairs on the screen as points. Each point
should be either blue or yellow; blue points are inliers, while yellow points are
outliers. Plot a line that is the least-squares linear fit to the set of inliers (blue
points). A mouse click on a point should toggle its status between inlier (blue)
and outlier (yellow), or vice versa. The fitted line should always reflect the
current set of inliers.

The temperature conversion example features two linked thermometers, with their temperatures
displayed textually below them. One thermometer shows the temperature in degrees Fahrenheit,
the other shows it in degrees Celsius. Dragging either thermometer or editing either textual
display changes the other thermometer(s) and textual display(s) appropriately. The temperature
conversion example problem statement is:

Display two draggable vertical bars on the screen, one representing the Fahren-
heit temperature, the other the same temperature in Celsius. Also, display
with each bar its temperature in numeric (textual) form. Editing either number
should change both bars and the other number, and dragging either bar should
change the other bar and both numbers. At all times, the numeric temperatures
should agree with the heights of their corresponding bars, and the Fahrenheit
number-bar combination and Celsius number-bar combination should be in the
correct numeric relationship.

These examples (figure 1.1) capture many of the strengths of the functional-spreadsheet syn-
thesis. Both examples are highly interactive and exploration-based; one is statistical, the other
physical. Both of them add interactivity to a computation, yielding a flexible, graphical, inter-
active model. '

1.4.3.3 The walkthroughs explore a functional system and a spreadsheet system.

We strive for a useful synthesis of the functional programming and spreadsheet ap-
proaches. To this end, we explore in depth the cognitive implications of programming inter-
action in each of these systems. In the case of functional programming, we focus on Haskell
[HPJW+ 1992, HPF 1997], a widely used functional language, and in particular on its monadic
I/O system [PJW 1993], which rapidly became the I/O standard after its introduction. Since
we are interested in graphical interaction, we examine Haskell and monadic I/O in the context
of Haggis [FPJ 1995], the only functional toolkit for graphical interaction that uses monadic
I/0.

In the case of spreadsheets, we study Microsoft Excel, a popular and extensive spreadsheet
application. Access to graphical interaction in Excel is provided by Microsoft Excel with Visual
Basic for Applications; hence we examine the two together.

21

‘sefdurexe Supjy-aul] pue uolBIBAUOD srnjereduroy oYy, T°1 2InSig

22

1.5 Research Process

The dissertation research process consisted of three major activities. The first activity was
a comparative study of two existing systems, Haggis and Microsoft Excel with Visual Basic, using
. the programming walkthrough method. The second activity was the design and implementation
of Esquisse. The third activity was an evaluation of Esquisse, alone and in comparison with
Haggis and Microsoft Excel with Visual Basic.

The programming walkthrough served four purposes: to evaluate Haggis and Microsoft
Excel Visual Basic, to identify cognitive obstacles to be avoided in the design and implementation
of Esquisse, to evaluate Esquisse, and to compare Esquisse with Haggis and Microsoft Excel
Visual Basic.

1.5.1 The programming walkthrough method evaluates program writeability.

The programming walkthrough is a method for evaluating the process of writing pro-
grams. (The following description is specific to this dissertation; for a more general treatment,
see [BCLRWWZ 1994].) The walkthrough describes the steps a hypothetical user could take
to solve the problem, the guiding knowledge necessary to take those steps, and the cognitive
obstacles that might impede the hypothetical user in finding a solution.

The programming walkthrough can be applied at various levels of detail. The level of
detail can vary within the walkthrough, focusing in closely on areas of interest, then stepping
back for a high-level view. Since the ease or difficulty of programming interactive behavior is
the focus of this dissertation, the walkthrough focuses heavily on parts of the programming
task involving interactive behavior, focuses lightly on other parts involving interaction (such as
creating windows), and omits entirely the process of writing the computation.

Each of the six programming walkthroughs described in this dissertation consists of steps,
guiding knowledge, and cognitive obstacles, and each walkthrough was constructed via three
activities:

o dividing the program-writing task into a sequence of steps,

e identifying the knowledge the hypothetical programmer needs to successfully choose and
complete that step, and

¢ identifying cognitive obstacles that might impede the hypothetical programmer in suc-
cessfully choosing and completing that step.

These activities do not proceed in strict sequence. Identifying the knowledge required to com-
plete a step can show that the step is too large and needs to be divided. (For example, steps
21 through 49 of the line-fitting walkthrough in Haggis were originally a single step.) Guiding
knowledge and cognitive obstacles are in some sense mutual inverses, and changing one of them
frequently affects the other.

1.5.2 The research process relied on the programming walkthrough method.

The programming walkthrough method played a role in each part of the research pro-
cess. The following detailed outline of the research process shows the role of the programming
walkthrough in greater detail.

(1) Comparative Study (chapters 2 and 3)

(a) implementing the example programs in each of Haggis and Excel with Visual Basic

(b) writing walkthroughs for each example in each of Haggis and Excel with Visual
Basic

23

(c) using the walkthroughs to identify cognitive obstacles to programming the two
examples in Haggis and in Excel with Visual Basic

(2) Design and Implementation (chapter 4)

(a) designing Esquisse with an awareness of these obstacles

(b) implementing Esquisse
(3) Evaluation (chapter 4)

(a) implementing the example programs in Esquisse
(b) writing walkthroughs for each example in Esquisse

(¢) using the walkthroughs to identify cognitive obstacles to programming the examples
in Esquisse

(d) using the cognitive obstacles found for each system to compare Esquisse to Haggis
and Microsoft Excel Visual Basic

1.6 Contributions

This dissertation contributes to the study and design of spreadsheets, of functional pro-
gramming environments, and (more generally) to the study and design of programming envi-
ronments for interactive exploration.

Contributions to the study of spreadsheets include:

e increasing the generality of cell values and formulae

e opening the interactive capabilities of spreadsheet cells to customization

allowing cells to contain both values and multiple (possibly circular) formulae

describing the challenges of integrating the spreadsheet model with strong typing

addressing the programming-language issues surrounding cell editing and program con-
struction

Contributions to the study of functional programming environments include:

e providing (customizable) interactivity “for free” with specification of a computation

e providing a richer interaction betweén programmer and program

e supporting graphical representations for program entities

e providing consistency maintenance of interface with data, and between data elements

e increasing the flexibility of the environment for development and testing

This dissertation addresses the effectiveness of a functional programming-spreadsheet synthesis
for quick construction and exploration of interactive and graphical models, including models
with multiple equations or parts, complex computations, and unbounded data structures. It
also addresses the compatibility of the spreadsheet model and the functional model, particularly
in contrast to a spreadsheet-imperative combination.

24

Chapter 2

Monadic I/0 in Haskell and Haggis

Haskell provides access to the stateful world of input and output via the I/O monad.
Haggis builds on the Haskell approach by using the I/O monad to provide access to a wide
array of stateful interface components. As noted in Chapter 1, Haggis and Haskell use the I/0
monad because it provides an efficient, straightforward interface to input and output without
compromising the equational reasoning that is central to. Haskell.

Section 2.1 introduces the monadic I/O system in some detail, and is based in part on
the Gentle Introduction to Haskell, version 1.4, pages 30-33 [HPJW+ 1992|. Section 2.2 (page
31) presents the cognitive obstacles associated with monadic I/0 in Haggis, as discovered by
the programming walkthrough method.

2.1 Interaction in Haggis is based on Haskell’s monadic I/O system.

Since interface components are stateful, Haggis components are built on top of the I/0
monad, and are accessed and updated via the monadic combinators >>, >>=, and return; or,
equivalently, in do contexts.

2.1.1 Monadic I/O creates an “imperative sublanguage” within the functional
world of Haskell. ‘

Haskell is a non-strict, or lazy, language. Expressions are not evaluated unless and
until they are needed by another part of the computation. For this reason, lazy languages are
sometimes referred to as “call-by-need.”

Why does a program in a non-strict language do anything at all? The “need” in “call-
by-need” originates with the user, who wants to see output. In the terminal I/O model of
programming, program output consists of one or more expressions printed on the terminal. In
interface programming, such as that of Haggis, program output also includes (in fact largely
consists of) stateful changes to the display.

The need to produce output originates with main, which denotes the entire behavior of
the program; running the program consists of evaluating main. But main includes stateful effects
on the outside world, so it cannot be an ordinary stateless expression. Consider the program:

main = putStr "Hello!"

The user typed putStr "Hello!" to perform an action, not compute a value. Yet a pure
functional language like Haskell can only compute values, not perform actions. The solution is
that Haskell programs define actions, but do not invoke them. The definition of actions takes
place in the orderly world of Haskell expressions. The invocation of actions takes place outside,
in the world of program execution. The program shown above defines the action main to be the
action putStr "Hello!"; when the program is run, the action is executed, and Hello! appears
on the standard output.

26

To construct actions, Haskell provides atomic actions as system primitives, and the I/0
monad provides three operations (>>, >>=, and return) that build composite actions. Composite
actions are constructed in a manner similar to the sequential ordering of statements in imperative
programming languages.

In imperative languages, sequencing is trivial; in fact, it is unavoidable. In a lazy func-
tional language, in which the order of evaluation is explicitly not specified, sequencing must be
explicitly specified. The monadic combinators do just that.

2.1.1.1 Monadic I/O encapsulates state changes inside an abstract data type.

In the systems model described in Chapter 1, the I/O state was a value explicitly passed
from one I/O-performing function to another. Monadic I/O encapsulates the I/0 state behind
the monadic combinators. (An interesting consequence of encapsulating the I/O state is that it
turns out not to be needed at all.)

For purposes of explanation, assume (as in Chapter 1) that the state consists of two (lazy)
lists of characters, and define the type I0 a to be that of functions from states to value-state
pairs (compare with the systems example in Chapter 1).

type State = ([Char], [Char])
type I0 a = State -> (a,State)

One way to read the type I0 a is “an action that, when invoked, returns a value of type a.” For
example, in Chapter 1, the type of the guess function in the systems model was:

guess :: String -> State -> (String,State)

and in the monadic model it was:
guess :: String -> I0 String

We can now show that these are equivalent: by substituting String for a in the definition of
I0 a, we see that I0 String is equivalent to State -> (String,State), and thus the two
definitions of guess are identical. We can read the type of guess as “a function that maps a
String to an action returning a String.”

Consider a simpler example, that of reading a character from the keyboard. In the pair-
of-lists model of the state, reading a character is the equivalent of returning the head of the
input list of characters (the character read) and returning a new state consisiting of the tail of
the original input list and the original (unmodified) output.

getChar :: I0 Char
getChar (inputList,outputlist) =
(head inputList,(tail inputList, outputList))

In Haskell, getChar function would be written with pattern-matching, rather than head and
tail:

getChar (char:inputList,outputlList) =
(char, (inputList,outputList))

Suppose the user presses the z key. Applying getChar to the current state yields:

getChar (’z’:rest0fInput,outputSoFar) = -- pseudocode
(’z?, (restOfInput,outputSoFar))

27

Now consider an output action, the equivalent of putStr "Hello!" in the previous section.
Displaying “Hello!” on the output is equivalent to appending it to the output list of characters.
The input list is unaffected. The catch is that the putStr action does not have a useful value
to return. The convention in the I/O monad is to use the value () as an “empty value.” (The
value () is the only value of the trivial type () (also called “unit”) in Haskell.)

prompt :: I0 ()
prompt (inputList,outputlist) =
(O, (inputList,outputList ++ "Press a lower-case letter key"))

(The ++ is Haskell’s concatenation operator.) Now suppose that we wanted to print the prompt,
then read the character. The I/O monad defines >>, which sequences two actions into a com-
posite action. The composite action returns the value of the second action; the value of the first
action is discarded (the >> operator thus resembles progn in Lisp or begin in Scheme). The
type of >> is

(>>) :: IDa ->I0b ->1I0b
and for our definition of State, we can treat >> as if it were defined
(>>) £ g = g.snd.f

(the Haskell function snd selects the second element of a pair), or, equivalently (but less con-
cisely) as

(>>) f g state =
let .
(value,state’) = f state
in
g state’

(The parentheses are necessary because >> is an infix operator. The . denotes function com-
position in Haskell.) Note that value, which was returned from the first action f, is unused.
Given >>, we can see that

(prompt >> getChar) :: I0 Char -~ more pseudocode
(prompt >> getChar) (’z’:rest0fInput,outputSoFar) =
(’z?, (restOfInput,
outputSoFar ++ "Press a lower-case letter key"))

Now suppose that we next wish to print out the character in upper case. We can define an
action:

printUpper :: Char -> I0 O
printUpper char (inputlList,outputlist) =
(), (inputlist, outputList ++ [toUpper c]))

In Haskell, printUpper would be written:

printUpper ¢ = putStr [toUpper c]

Now we need to add printUpper to our sequence of actions. Using >> will not work, because
printUpper needs the value returned by the getChar action, and >> will throw it away. Instead,
we use >>=, which has type

28

(>»>=) :: I0a -> (a ->1I0b) ->I0Db
We can think of it as having the definition

(>>=) g h = (uncurry h).g

or equivalently

(>>=) g h state =
let
(value,state’) = g state
in
h value state’

Now we can put all three actions together:

(prompt >> getChar) >>= printUpper) :: I0 () -- still more pseudocode
((prompt >> getChar) >>= printUpper) (’z’:rest0fInput,outputSoFar) =
(O, (restOfInput,
outputSoFar ++ "Press a lower-case letter key" ++ "Z"))

Our example shows how the combinators >> and >>= sequence actions together. Our example
also shows how messy manipulating the state explicitly can be. The I/O monad hides all of
these state manipulations in the type I0 a. Our example, written in terms of the I/O monad,
is much simpler:

putStr "Press a lower-case letter key"
>> getChar >>= \ c¢ -> putStr [toUpper c]

or, in the do notation (see 2.1.2):

do
putStr "Press a lower-case letter key"
¢ <- getChar
putStr [toUpper c]

Notice the complete absence of any references whatsoever to the State. The absence of State
has a striking implication: we need not represent the state at all, because the combinators
will sequence actions regardless of how the state is represented! In fact, in Haskell, State is a
(nullary) data constructor whose sole purpose is to “fill in the slots” of the I0 type:

type I0 a = State -> (a,State)

but the State does not actually store anything at all.

2.1.1.2 Compound actions are constructed from sequences of primitive actions.

So how are actions constructed, if not by manipulating the state? Haskell provides prim-
itive actions such as putStr and getChar, and the combinators support creating compound
actions. The fragment of do notation above is an action composed from calls to putStr and
getChar. Since each compound action is a sequence of other actions, any action can be “un-
rolled” into a sequence of primitive actions. Given a program, the Haskell implementation
takes the sequence of primitive actions that comprise main and executes them (that is, their
implementations) in order.

29

Again, actions are defined in Haskell, but are invoked in the Haskell implementation. The
combinators >> and >>= define compound actions (consisting of sequences of primitive actions)
within the purely functional world of Haskell. It is the Haskell implementation that invokes
(executes) the actions in order.

Monadic I/O (via the >> and >>= combinators) creates an “imperative sublanguage”
within the purely functional world of Haskell expressions. Equational reasoning is completely
intact, yet portions of a Haskell program can be written in an imperative style to perform
imperative tasks. As we will see in section 2.2.1, the dual role of actions hides some conceptual
subleties.

2.1.2 The do notation is the canonical form for monadic I/O in Haskell.

Haskell provides an alternate notation for combinations of actions. This do notation hides
the sequencing operators and supports a format resembling imperative programming languages.
Discussion of monadic I/O in the Gentle Introduction to Haskell [HPJW+ 1992] is almost
exclusively in terms of do notation. The combinator notation and do notation are equivalent,
of course, and each can be transformed into the other:

Combinator Notation do Notation
actionl >> actionl
action2 action2
actionl >>= \ x -> x <- actionl
action2 action2
return expr return expr

Layout, which is irrelevant in the combinator notation, is used in the do notation to
distinguish statements in the absence of the combinators. Because the do notation omits the
combinators, we will refer to the first kind of statements as simple statements, the second
kind as pattern-binding statements, and the third kind as return statements. Simple
statements are equivalent to actions combined using >>, while pattern-binding statements are
equivalent to actions combined using >>=. The return statement (action), which we have not
discussed, is an empty action (that is, one that performs no I/0) that returns a value. It is used
to return a value from a composite action, and has type

return :: a -> I0 a

We will use the do notation throughout the remainder of this chapter except when discussing
the differences between combinator notation and do notation.

2.1.3 In Haggis, monadic I/O plays a central role.

Haggis uses Haskell’s use of the I/O monad to provide access to a wide range of interface
components. The final version of the temperature conversion example (algorithm 1) exemplifies
how extensively monadic I/O permeates Haggis programs. The program creates a display con-
text, then creates all the components, specifies their layout, and forks an event handler for each
of the two bars. The event handler waits until its bar changes value, then explicitly updates its
label and the other bar (which then updates the other label). (Infinite recursion is averted by
waitGauge, which waits for a value change, not merely an update.)

The functional and concurrency features produce an interesting twist: both event handlers
are the same function, track, given different parameters! Another slightly unusual feature is
that track is a recursive function with no base case. (Its evaluation does not “run away,”’

30

Algorithm 1 Temperature Conversion Example in Haggis

module Main(main) where

import Concurrent
import Haggis

main =
do
dc <- mkDC ["xtitle: TemperatureConversion"]
(fBar,fBarDH) <- mkBar (0,100) 32 YAxis dc
(cBar,cBarDH) <- mkBar (0,100) 0 YAxis dc

(fLabel,fLabelDH) <- label "32" dc
(cLabel,cLabelDH) <- label "0" dc
realiseDH dc (hbox [vbox [fBarDH, fLabelDH],
vbox [cBarDH, cLabelDH]])
forkI0 (track convertFtoC fBar cBar flabel)
forkI0 (track convertCtoF cBar fBar clabel)
return ()
where
convertFtoC f (5/9)*(£-32)
convertCtoF c (9/5)*c + 32
track convert src dst srclLabel =
do
v <- waitGauge (getLevelGauge src)
setLabel srclLabel (show v)
setLevel dst (convert v)
track convert src dst srclLabel

31

because each invocation of track must wait for the level to change.) Notice also thaf track is
higher-order: it fakes the conversion funiction as an argument.

The temperature conversion example fits reasonably well into the imperative perspective.
As we will see, more complicated programs, such as the line-fitting example, uricover interesting
issues.

2.2 The walkthroughs revealed cognitive obstacles to using monadic
1/0.

The programming walkthroughs of the temperature conversion (Appendix A) and line-
fitting (Appendix B) examples record the knowledge and actions a hypothetical user would need
i order to write these two programs in Haggis. The discussion in this section refers fo steps in
the temperature corversion walkthrough by referenices of the form (TC step 3),” and steps in
the line-fitting walkthrough by references of the form “(LF step 13).”

A few mnotes on the walkthroughs are in order as far as the do notafion is concerned.
Haggis was written to run with version 0.26 of the Glasgow Haskell Compiler, which does mot
support the do motation. Since the do motation is clearly the preferred form for monadic 1/0,
and since the dual nature of monadic I/O (combinators versus do) is part of the focus of the
walkthroughs, the walkthroughs accomodate both styles. Hernce, some steps in each walkthrough
appear in two forms: a combinator step (labeled, say, Step 46), and the same step in do notation
(labeled ‘Do’ Step 46).

The final programs and starfing examples are presented in both combimator and do
notation. Also, the mapI0 operation used in the line-fitting walkthrough is a precursor to the
accumulate $ map combination discussed in this section. Screen images of the final line-fitting
and temperature conversion examples are shown in figure 2.1.

%{}@ Line- Fitting]
Correlation: 9.48094670e-1

Figure 2.1: The final line-fitting and temperature conversion examples in Haggis.

32

2.2.1 Monadic actions simultaneously represent imperative statements and
functional values.

As noted above, actions are special values that are defined in Haskell, but invoked by
the Haskell implementation. Actions, together with the >> and >>= combinators, comprise an
“imperative sublanguage” within purely functional Haskell. An important consequence is that
the programmer must keep both the functional and imperative interpretations in mind, for the
following reasons:

e Actions look like procedures or function procedures, but they are Haskell values.
e Actions can return values, but they are not Haskell functions.

e Actions can be sequenced in an imperative-looking style, but iterative and conditional
structures are functional, not imperative.

e Iterative and control structures are expressions that evaluate to (compound) actions.

e Actions returning values can still be used as simple statements, hiding an important
piece of information for reasoning about functional programs.

e The do notation reinforces the imperative interpretation at the expense of the functional
interpretation.

e Sequences of “statements” in the imperative language scope and pattern-match impera-
tively.

As a result, the programmer cannot simply program one part of the program imperatively and
another functionally. If do notation were merely an imperative sublanguage of Haskell, she or
he would at least have the benefit of a clear separation between these two modes of thinking.
The “double identity” (functional and imperative) of monadic I/O means that the programmer
must not only deal with two sets of rules, but also how they interact with each other. She or
he must be able to move smoothly between the functional and imperative interpretations of a
single section of code.

2.2.1.1 Actions look like procedures or function procedures, but they are Haskell
values.

An action represents an imperative statement, but in Haskell’s world of expressions, an
action is just a value. For instance, (putStr "Hi") is a value: it can be part of a data structure,
it can be named, passed to a function, or returned as function result. In addition (because it
is an action), it can be sequenced into the combination of actions that make up main so that it
will be executed at runtime.

In the temperature conversion example (algorithm 1, page 30), each line in a do context
(to the right of <-) is an action (or, equivalently, evaluates to an action). For instance, the first
line of main:

mkDC ["*title: Temperature Conversion"]
is an action. So is the next-to-last line of main:
forkI0 (track convertFtoC fBar cBar fLabel)

and the last line:

return ()

33

and so is the third-to-last line of the entire program:

setLabel srcLabel (show v)

All of these are actions. All of them are values, too. Any of them can be part of a data structure,
passed to a function, bound to a name, and so on. All of them are returned by functions (mkDC,
forkI0, return, and setLabel).

2.2.1.2 Actions can return values, but they are not Haskell functions.

Every action in Haskell returns a value when invoked. For example, the action getChar,
when invoked, performs some action that returns a character. Actions return values, and Haskell
functions return values, but these two features are completely separate.

Haskell functions can be used in expressions. Consider the expression:

(head list0OfRocks):1ist0OfStones

The head function, applied to the list 1ist0fRocks, returns (evaluates to) the first element
of the list of rocks, and that result can be used to form a new list consisting of the first rock
followed by the list of stones.

In constrast, the action getChar cannot be used in expressions:

(getChar) :moreCharacters -~ incorrect

might seem to be a concise way to read a character and return a list consisting of that character
followed by the list moreCharacters, but getChar can only be used in an imperative context:

do
c <- getChar
return c:moreCharacters

The do context evaluates to an action that reads a character and then returns a list consisting
of that character followed by the list moreCharacters .
Conversely, pure Haskell functions cannot be used as if they were actions. Writing

do
r <- head 1listOfRocks -- incorrect
return r:list0fStones

would be completely nonsensical.

In the line-fitting example, a similar situation arises. Consider the newElement and
plotPoint actions (algorithm 2). In newElement, if transparentGlyph were a Haskell function,
the second element of its return value could be selected with the snd function:

-- incorrect
snd (transparentGlyph (withColour ¢ $ fillSolid $ circle r) dc)

but the snd function does not work, because transparentGlyph evaluates to an action. Simi-
larly, in plotPoint, if newElement were a Haskell function, the body of plotPoint could become:

-- incorrect
placeTransparent canvas coord (newElement colour)

but (newElement colour) evaluates to an action that returns a DisplayHandle (dh), not a
DisplayHandle itself.

34

Algorithm 2 Line-Fitting Example (newElement and plotPoint)

newElement :: Colour -> IO DisplayHandle
nevElement c =

do
(_,dn)
<- transparentGlyph (withColour c¢ $ fillSolid $ circle r) dc
return dh
plotPoint :: CompositeContainer -> Colour
~-> Coord

-> I0 CompositeContainerElt
plotPoint canvas colour coord =
do
dh <- newElement colour
placeTransparent canvas coord dh

35

Understanding the distinction between functions and actions comes into play in the line-
fitting walkthrough. In step 111, the hypothetical user constructs the drawLine action based
on the newElement and plotPoint actions (algorithm 2). Pasting the newElement definition
verbatim into plotPoint yields:

do
(_,dh) -> transparentGlyph (withColour c¢ $ fillSolid $ circle r) dc
return dh ‘
placeTransparent canvas coord dh

(The first two lines are from newElement, the last from plotPoint.) The hypothetical user
realizes that the return dh line is redundant - it simply passes along the value of dh — and
can be eliminated:

do
(_,dh) -> transparentGlyph (withColour c $ fillSolid $ circle r) dc
placeTransparent canvas coord dh

As in other programming contexts, knowledge about how to convert between functions and ex-
pressions (or between procedures and statement sequences) plays an important role in successful
programming.

2.2.1.3 Actions can be sequenced in an imperative-looking style, but iterative
and conditional structures are functional, not imperative.

We saw on page 28 that actions can be sequenced (and thus composed into a compound
action) by placing them on successive lines:

do
putStr "Press a lower-case letter key"
c <- getChar
putStr [toUpper cl

A similar format is also used with the combinator notation:

putStr "Press a lower-case letter key" >>
getChar >>=\ ¢ ->
putStr [toUpper c]

although the placement of lambda expressions in the combinator notation differs from that of
lambdas in other functional code.

Full-fledged imperative langauges provide other means for combining statements together,
most notably conditional and looping constructs. Haskell’s monadic I/O “imperative sublan-
guage” does not, relying instead on the functional tools that Haskell provides.

Suppose that we wish to write the putStr function shown above. The putStr function
evaluates to an action that will print out a character string. It is defined in terms of putChar,
which does the same for a single character. In an imperative language, we might write:

for i <- 1 to (length string) do -- pseudocode
putChar (string!!i) -- ! is list indexing

But the do notation does not provide iteration constructs! The functional approach is to use
map:

map putChar string

36

Using map is elegant and concise, but it does not work. To understand why, we need to examine
the types (in Haskell, [a] denotes the type of a list of items of type a):

string :: [Char]

putChar :: Char -> I0 Q)

map i (a -> b) -> [a] -> [b]

(map putChar) :: [Char] -> [I0 O] -- pseudocode
(map putChar string) :: [I0 ()] -- pseudocode

We see that (map putChar string) returns a list of actions, and none of them contain values
we care about. The source of the trouble is still unclear.

The first problem is that(map putChar string) needs to be an action, not a list of ac-
tions. because the combinators that underlie the do notation sequence individual actions. The
second reason is related, but more subtle. The list of actions returned by (map putChar string),
like all other lists in Haskell, is evaluated lazily (“by need”). The actions will not actually be
evaluated unless their values are used by some other part of the program — and the only way to
use actions is to sequence them with >> or >>= (or their do-context equivalents). The expression
(map putChar string), by itself, will not result in any I/0 at alll

We might write

return (map putChar string)

to address the first problem: return (map putChar string)) is an action. However, its type

is I0 [I0 ()] — it is an action, which when invoked, returns a list of actions. The actions in

the list (that is, all the putChar actions) will still never be sequenced, and thus never invoked.
Fortunately, the Haskell Standard Prelude provides:

sequence :: [I0 a] -> I0 ()
sequence = foldr (>>) (return ())

(The type is actually over all monads.) The correct solution is thus
sequence (map putChar string)

which not only has the correct type, that is, I0 (); it will also sequence the actions properly,
thus ensuring their execution.

A similar issue arose in the line-fitting example (steps 45-52) around plotting the points.
A function to plot a single point is relatively simple:

plotPoint :: CompositeContainer
-> Colour
-> Coord
-> 10 CompositeContainerElt
plotPoint canvas colour coord =
dh <- newElement
placeTransparent canvas coord dh

Here, the hypothetical user is in a position similar to the one we were describing with putChar:
she or he would like to define

plotPoints :: CompositeContainer
-> [Coord]
-> 777 -- something here, probably I0 type

plotPoints canvas = map (plotPoint canvas blue)

37

which will not work for the same reason that (map putChar string) did not — it returns a
list of actions, not an action. The type of the list is [I0 CompositeContainerElt], so here
the actions in the list return useful values that the hypothetical user needs. The accumulate
function

accumuiate :: [I0 a] -> 10 [a]

is like sequence, but it collects all the return values into a list instead of discarding them:

plotPoints :: CompositeContainer
-> [Coord]
-> I0 [CompositeContainerElt]
plotPoints canvas = accumulate (map (plotPoint canvas blue))

The line-fitting walkthrough shows that the need for sequence and accumulate is a nonobvious
consequence of the combination of a higher-order function and imperative actions that are also
values (LF step 48).

2.2.1.4 The iterative and control structures are expressions that evaluate to
(compound) actions.

Unlike the pseudo-iterative use of map in the previous section, conditionals like if-then-
else and case do not collide with lazy evaluation. In fact, in do notation, they appear to
be identical to their imperative counterparts. Consider the event handler from the line-fitting
example (as of step 127, algorithm 3). (The code has been trimmed down to save space and
provide better focus. The full final program is in Appendix B.)

Algorithm 3 trackCtrl (abbreviated) from the Line-Fitting Example, step 127

trackCtrl :: Mouse
-> CompositeContainer
-> Gauge [(Coord,Bool)]
-> 10 O
trackCtrl mouse canvas theDataGauge =
do
deviceEvent <- getMouseDown mouse
case whichButton of

1 ->
do
-- toggle the point that was clicked
-- update the data structure that holds the points
-~ (numerous statements omitted)
return ()
->

sendMouseEv mouse deviceEvent
trackCtrl mouse canvas theDataGauge

Notice that one of the three statements in the outermost do sequence is a compound
action consisting of a case expression (the other two are primitive actions). As it happens, the
case expression is a simple statement (in other words, it does not return a useful value), and so
the statement sequence comfortably resembles its analog in an imperative language.

At step 127 in the line-fitting example, the hypothetical user has just written a statement
to draw the fitted line. She or he needs to keep track of the line (via its CompositeContainerElt)

38

so that it can be deleted when the line is redrawn after the next change. But the CompositeContainerElt
for the line (named theNewLineCCE in the example) is created inside the case expression, and
it needs to be returned from that expression (recall that the case expression evaluates to an
action). (We are not considering here the well-known programming issue of keeping all branches
of the case consistent.) _

Six steps later, the case expression has been converted from a simple statement to a
pattern-matching statement (algorithm 4):

Algorithm 4 trackCtrl (abbreviated) from the Line-Fitting Example, step 133

trackCtrl :: Mouse
-> CompositeContainer
-> Gauge [(Coord,Bool)]
-> CompositeContainerElt
-> I0 O
trackCtrl mouse canvas theDataGauge thelLineCCE =
do
deviceEvent <- getMouseDown mouse
thePossiblyNewLineCCE
‘ <- (case whichButton of
1 ->
do
-- toggle the point that was clicked
-- update the data structure that holds the points
-- (numerous statements omitted)
theNewLineCCE <- drawlLine canvas theNewLineCoords
return theNewLineCCE

_ >
sendMouseEv mouse deviceEvent
return theLineCCE) -- end of case expression

trackCtrl mouse canvas theDataGauge thePossiblyNewLineCCE

Notice the parentheses around the case expression. They are not strictly necessary, but
are included to illustrate the extent of the expression. (In the line-fitting walkthrough, the case
expression is 35 lines long.) Here, the analogy with imperative languages breaks down, because
control constructs in imperative languages do not return values.

2.2.1.5 Actions returning values can still be used as simple statements, hiding an
important piece of information for reasoning about functional programs.

Section 2.2.1.2 discussed how the return values of actions can be extracted with <-.
However, the return value of an action need only be extracted if it is needed. Consider tracker,
the setup function in the line-fitting example (algorithm 5; the full example is in Appendix B).

From the starting example, the hypothetical user has no information about whether
placeTransparent returns a value, or what type that value might be. She or he might assume
that it returns no useful value, that is, that its return type is I0 (). The real issue arises when
the program is modified to use the return value of placeTransparent.

In the line-fitting walkthrough, the hypothetical user’s initial version of the drawLine
function (step 112, algorithm 6) discards the return value of placeTransparent. In step
113, the hypothetical user discovers that the CompositeContainerElt is needed from place-
Transparent, and modifies the statement accordingly (step 114, algorithm 7). Making the
modification shown in step 113 requires knowing that placeTransparent returns a useful value

39

Algorithm 5 The event handler for a press of button 2 in the starting example for the line-fitting
walkthrough

2 ->
dh <- newElement
placeTransparent canvas (x,y) dh

return ()

Algorithm 6 The drawLine function from the line-fitting example (step 112)

drawLine :: CompositeContainer ->
(Coord,Coord)
‘ -> 10 777
drawline canvas ((x1,y1),(x2,y2)) =
do
(_,dh)

<- transparentGlyph (withColour red $ line (x1,y1l) (x2,y2)) dc

placeTransparent canvas (r,r) dh
-- not finished yet

Algorithm 7 The drawLine function from the line-fitting example (step 117)

drawLine :: CompositeContainer ->
(Coord,Coord)
-> 10 CompositeContainerElt
drawLine canvas ((x1,y1),(x2,y2)) =
do

(_,dh)
<- transparentGlyph (withColour red $ line (x1,yl) (x2,y2)) dc

1ineCCE <- placeTransparent canvas (r,r) dh
-- not finished yet

40

and knowing what type that value is. Neither of these can be learned from a program in which
the value is discarded. Understanding this interaction between expression-oriented language
primitives and the imperative orientation of monadic I/O and do contexts is complex, unintu-
itive, and error-prone.

2.2.1.6 The do notation reinforces the imperative interpretation at the expense
of the functional interpretation.

As mentioned in section 2.1.2, the do notation hides the sequencing operators, which (in
general) declutters the syntax and presents a more-or-less familiar imperative appearance. (The
combinator notation has the disadvantage of not looking particularly imperative or particularly
functional.) In situations where the role of the sequencing operators is conceptually important,
their absence in the do notation is a drawback.

One such situation was discussed in sections 2.2.1.3 and 2.2.1.4: combining actions into
other actions. Lists can be combined with : or ++, functions with .or $, and so on. In each case,
the combining operator is explicit. (Function application is expressed by juxtaposition, which is
not an explicit operator, but function application is the most common operation in Haskell, and
one of the ones that the programmer understands best.) In the do notation, the operator that
combines actions is “appearing on successive lines!” In most programming languages, including
Haskell, line breaks are either irrelevant, or they separate statements (in imperative languages,
and in Haskell’s do notation!), or (in Haskell) equations in a definition — to have a line break
as a combinator is unprecedented, and understandably opaque.

The second situation has to do with the types and type signatures of actions. Since the
type of a do construct is the same as the type of its last statement, the absence of combinators
is not a liability in that instance. The plot thickens, however, when the program uses actions
outside of the typical do structure; the need to reason about types becomes greater (for instance,
in section 2.2.1.3), and the absence of the sequencing operators is more of a drawback.

The do notation reinforces the confusion between actions and functions (section 2.2.1.2),
but the imperative appearance of the do notation also helps distinguish its unusual scoping and
pattern-matching rules.

2.2.1.7 Sequences of “statements” in the imperative language scope and pattern-
match imperatively.

Writing Haskell programs involves writing definitions that consist of one or more equa-
tions. Haskell has three semantic contexts for definitions: let expressions, where clauses, and
the top level context. The do context differs sharply from these other three contexts in two
areas: pattern-matching semantics and scoping. (The combinator notation also follows these
rules, which are a consequence of the use of lambda expressions to extract the return values of
actions.)

Pattern-matching semantics in do notation must be failure-free.

One of the central features of Haskell is the use of pattern-matching in definitions. Con-
sider the definition of the length of a list [HPF 1997]:

length :: [al -> Int
length [] 0
length (x:xs) 1 + length xs

I

The pattern-matching works as follows: in an expression, say length [17,800], a match with
the first equation fails, because [17,800] cannot match []. A match with the second equation
is tried (and it successfully matches 17 with x and [800] with xs).

Defining functions via multiple equations means that patterns used as function arguments
need not match (like [] above); the next equation may contain a pattern that matches (like

41

(x:xs) above). (If none of the equations has a match, an error occurs.) Pattern-matches that
may not succeed, such as [] and (x:xs) in the definition of length above, are called refutable.
In contrast, some pattern-matches always succeed (are irrefutable), such as:

oneToFive :: [Int]
oneToFive = [1,2,3,4,5]

The reasons for the distinction between refutable and irrefutable pattern-matches have to do
with recursion in pattern-matched definitions, and are beyond the scope of this discussion, but
the implications are important.

Equations in which the left-hand side is a single pattern, like oneToFive above, are called
pattern-bindings. Pattern bindings are always irrefutable; they always succeed (even when
later use of the bound variables will cause an error). In the equation

(x:xs) = []

the match succeeds. Any use of x or xs will cause an error, but the definition itself is fine —
and if x and xs are never evaluated, no error occurs.

The catch is that the pattern-matching semantics of <- in do notation are neither
refutable nor irrefutable. Consider the statement

(x:x8) <- getLine

which will cause a static typing error. Why? Because pattern-bindings in do contexts are neither
refutable nor irrefutable. They cannot be refutable (as patterns in function definitions can be)
because there is only one binding (that is, there is no analogue to the multiple equations of
a function definition). But they are not irrefutable, either, because x and xs will always be
evaluated. (They are actually the arguments of a lamdba expression, and arguments to lambdas
are strict, not lazy.)

The result is that the programmer cannot write the getLine statement above, even if
she or he knows that (x:xs) will always match the return value of getLine, and even if the
result of getLine goes unused. Being unable to use pattern-matching is unusual in Haskell.

Variables defined by <- are only in scope in the following statements.

The scope rules for do contexts are also unique within Haskell. Bindings in let, where,
and top-level contexts are mutually recursive (that is, order is irrelevant). Consider

validIndexes = [1..maxIndex]
maxIndex = 10

The definition of validIndexes refers to maxIndex, but the definitions can occur in either order.
(Equation binding contexts behave like letrec in Lisp or Scheme.) In the do context, however,
order is relevant (as it is in Lisp’s and Scheme’s let):

do
c <- getChar
putChar c

Reversing the order of these two statements would cause an error: ¢ in putChar ¢ would be
undefined. Here, the reason is clear: it would be ridiculous to try to print c before it has been
read! In more complicated programs, these dependencies are less obvious. Just as impera-
tive programmers must take care to sequence bindings in the proper order, so must functional
programmers using do notation.

42

2.2.2 The cognitive obstacles to programming in Haggis center around the need
to treat monadic I/0 as both imperative and functional.

Monadic I/O is powerful, but it is also complicated. Actions look like procedures or
function procedures, but they are Haskell values. They can return values, but they are not
Haskell functions. Return values can be invisibly discarded, hiding an important piece of infor-
mation for reasoning about functional programs. Iterative and conditional structures are not
imperative constructs, but functional expressions that evaluate to compound actions. The do
notation reinforces the imperative interpretation at the expense of the functional interpretation,
and sequences of statements in either notation scope and pattern-match imperatively.

In short, the interference between the pure functional features of Haskell and the embed-
ded imperative features of monadic I/O present cognitive challenges significantly greater than
those of functional programming alone.

Chapter 3

Microsoft Excel with Visual Basic

Microsoft Excel, a popular commercial spreadsheet, and its extension language, Visual
Basic for Applications, are designed for users with relatively little programming experience.
Although Excel provides the advantages common to spreadsheets generally, Excel Visual Basic
has design weaknesses and, more broadly, suffers from the conflict between the imperative model
underlying Visual Basic and the expression-oriented model of spreadsheets.

Section3.1 sketches the structure of Excel with Visual Basic. Section 3.2 (page 45) de-
scribes the design weaknesses discovered by the programming walkthrough method, and section
3.3 (page 52) articulates the conceptual conflict between the spreadsheet and imperative models.
Finally, section 3.4 (page 56) relates the Excel/Visual Basic combination to the design principles
underlying Esquisse.

3.1 Visual Basic for Applications is an extension language for
Microsoft Excel.

Microsoft Excel® is a popular commercial spreadsheet application. Visual Basic® (specif-
ically, the Microsoft Excel implementation of the Microsoft Visual Basic Programming System,
Applications Edition®) is an extension language provided with Excel for automating tasks,
adding custom features and functions, and even creating complete applications [Microsoft 1994].

Visual Basic is an extension of BASIC. Visual Basic (like BASIC) is an imperative pro-
gramming language with variables, scoping, iteration, conditionals, procedures and functions. It
also provides an integrated editor (with syntax checking) and (of greatest interest to us) graphics
and interface support.

3.1.1 Visual Basic contains Excel-specific features.

As an embedded application language, Visual Basic has an extensive set of Excel-specific
features in addition to its general-purpose programming constructs. These features include data
structures that correspond to spreadsheet entities (for example, ranges of cells), and access to
virtually all spreadsheet functions. Since this spreadsheet-specific functionality is much higher-
level than the programming primitives of BASIC (and since interface programming uses this
functionality heavily), Visual Basic seems much more reminiscent of Excel than BASIC.

3.1.1.1 Excel-specific features form Visual Basic’s object model.

Visual Basic has objects that correspond to Microsoft Excel entities. Examples include
cells, ranges of cells, worksheets, charts, controls such as scrollbars, graphic objects, and files.
Certain collections of objects (for example, “all of the rectangles on the active sheet”) are also

L Microsoft Excel is a trademark of Microsoft Corporation.

2 Visual Basic is a trademark of Microsoft Corporation.

3 In this chapter, Visual Basic refers to the version of Visual Basic for Applications bundled with Excel, not
the standalone Visual Basic language and development environment.

44

objects. Some objects (such as ActiveSheet, ActiveCell, Selection) reflect the current state
of the interface.

3.1.1.2 Macro recording provides another link between Excel and Visual Basic.

Visual Basic replaces and augments the spreadsheet macro language of previous versions
of Microsoft Excel. Any manipulation that the user performs with the interface can be captured
by the macro recording facility, yielding a Visual Basic procedure that reproduces the direct-
manipulation actions.

3.1.1.3 User actions can trigger Visual Basic procedures

Visual Basic procedures have another important connection to Excel: they can handle
events that occur in the Excel interface. Visual Basic does this by the use of assigned macros:
parameterless procedures bound to an object that are called when an event occurs on that
object. Macros can be assigned via a menu option or from within Visual Basic.

3.1.2 The spreadsheet model contributes both positively and negatively.

Since Visual Basic is tied in to Excel, the utility and useability of the Visual Basic
extension depends in part on the power and ease of use of the spreadsheet model. Much of what
has been learned about spreadsheets applies to the Excel/Visual Basic combination.

3.1.2.1 The presence of the spreadsheet offers powerful computational and
interactive leverage.

One of the most attractive features of Microsoft Excel with Visual Basic is that the
spreadsheet alone is so powerful, both computationally and interactively: spreadsheets store
data in a visible, manipulable format, and Excel, like virtually all spreadsheets, has an exten-
sive library of built-in functions. Since spreadsheet formulae are one-way constraints that are
automatically maintained, some of a program’s “responses” to interactive events can be handled
by formulae. ‘

Visual Basic can make good use of these spreadsheet features: it can access and update
spreadsheet cells, and Visual Basic procedures can be triggered by spreadsheet events, such as
the user editing a cell or the spreadsheet recalculating. As a result, the computation and some
of the interface functionality and constraints can be handled by the spreadsheet, and the Visual
Basic procedures can control and respond to the spreadsheet.

3.1.2.2 The combination of the Excel spreadsheet and Visual Basic has certain
drawbacks.

These advantages are accompanied by certain shortcomings. Spreadsheets do not support
modularity nor abstractions, which help manage the complexity of user-defined functionality,
and they can be difficult to debug or redesign [LO 1987, p. 252]. The use of spreadsheet functions
for interface constraints is hampered by their unidirectionality, as many interface constraints are
bi-directional. Because a spreadsheet cell can contain either a value or a formula, but not both,
reciprocal pairs of unidirectional constraints are out of the question.

Visual Basic suffers, too, partly by comparison with Excel’s extensive library of built-in
functions and aggregate operations. Like those in many traditional programming languages,
Visual Basic’s core primitives are powerful only in combination, and synthesizing the proper
combination for a particular task requires substantial knowledge and skill [LO 1987, p. 253].

Visual Basic does have an object hierarchy with objects, properties, and methods — but
only for the existing Excel object structure. There is no facility for user-defined objects, nor for
inheritance (either class or prototype). As a result, Visual Basic’s object model is not useful for
constructing new abstractions, but only for using existing ones.

45

In fairness, Visual Basic is presented as a tool for adding custom interface functionality
to Excel, and should be considered in that light. Even so, although Visual Basic and Excel
complement each other, there are areas, such as support for abstraction, where neither does
particularly well.

3.2 The walkthroughs revealed challenges due to uneven design.

Excel and its Visual Basic present a conceptual counterpoint to Haskell’s monadic 1/O
system. While monadic I/0 is the result of careful theory-driven crafting, spreadsheets and
the BASIC language (upon which Visual Basic is built) were designed to be approachable by
non-programmers (or at least, in the case of BASIC, novice programmers). As a result, a num-
ber of the cognitive challenges presented by Microsoft Excel and Visual Basic for Applications
stem from arbitrary limitations and (apparently) ad hoc design decisions, rather than from the
emergent consequences of a theoretical design.

The programming walkthroughs of the temperature conversion (Appendix C) and line-
fitting (Appendix D) examples record the knowledge and actions a hypothetical user would need
in order to write these two programs in Microsoft Excel with Visual Basic. The discussion in
this section refers to steps in the temperature conversion walkthrough by references of the form
“(TC step 23),” and steps in the line-fitting walkthrough by references of the form “(LF step
22).” Screen images of the final temperature conversion and line-fitting examples are shown in
figures 3.1 and 3.2, respectively.

3.2.1 The macro recording feature facilitates learning Visual Basic, but is
inflexible.

A useful start to a Visual Basic extension program is the macro recording facility, for
two reasons. First, it enables users to write procedures by direct manipulation. Both the line-
fitting and temperature conversion walkthroughs made use of the this advantage. Second, macro
recording converts common (and for most users, accessible) interface knowledge into information
about writing groups of statements in Visual Basic. Both walkthroughs used macro recording to
gather information about programming-language statements that duplicated desired interface
functionality.

Since novice programmers have difficulty learning what primitives are appropriate to the
task at hand and how to synthesize them to produce the desired outcome, we might expect
macro recording to aid the transition from end user to programmer. Neither walkthrough offers
much support for this view, because a significant amount of knowledge is required to understand
the resulting procedure. There are several reasons for this.

Since macro statements are not displayed as the actions are taken, the programmer must
figure out after recording which statements correspond to which actions (TC step 23, LF step 22).
(Actually, she or he can switch to a Module and look at the macro being recorded; unfortunately,
the macro will also record the switch to the Module, adding to the clutter.)

The linear, context-insensitive nature of macro recording is inflexible. The macro record-
ing facility creates only one combination of primitives that produce the same outcome as the
user’s action. Since the macro recorder cannot know the user’s intent, the procedure produced
may or may not be well-suited to the user’s needs. And excellent example of this is absolute
versus relative cell addressing (TC step 43). Each has its uses, but the macro recorder has little
information to help it guess which addressing mechanism is appropriate to the user’s task.

Another limitation is that macros can only record what the interface can do, and thus
are no help with non-interface Visual Basic features. Concepts such as the object hierarchy,
attributes, and selection are not supported by macro recording. Recorded procedures also lack
conditional and iteration constructs, which are crucial to programming and challenging to un-
derstand (LF step 33). Furthermore, the statements generated in a single recording session are

46

30.00000143

Ad | ¥]

Figure 3.1: Final temperature conversion program in Microsoft Excel with Visual Basic.

47

"o1seq [ENSIA YIIM [90X7] JJOsOIIN ul ojdwrexs Surjy-oul] [eul] :z°¢ oIS

0000001 #S9S'S6 |SOLE'S 100000 m (TA TX 1A “1%) aur] penid| €2
OP6£ 0T |0000°001 [SOIES |0000°0 (T AT X1 AT x) sydooroju] [eoniop | 22
0000°001 |0000°001 00000 |0000°0 i(xewA ‘xewyx ‘urnwA ‘urwy) xoq Suipunog| 1
A X K X * az
9€96'0 |:uone[elo)| 61
SOIES ndoorou]| g1
80660 radofg| L1
91
Gl
® ¥ |¥9 | andl v9 [#9 | bl
OL |09 | dNdL 0L |09 €1
8 z¢ | ANAL 8¢ |TE |21
9 0S | dAN¥L ov [0S |1t
® W 0€ | AL Z¢ 0€ |81
@ € v | Andl z€ v | 6
/ 0z vz | andl 0z v | 8
xQM 0S ov | ANdLl [0S oF | &
) HSTvVA 08 6 | 9
e 9% (06 | dNdl 96 |06 | &
\\ A X |(powoees| A X b
@ ele(P319[eS erdlly | €
z
01 'SJuIod JO skesz 1
r i H g 4 3 a 3 |8]|®#

48

placed in a single procedure, which does not help (in fact, probably hinders) learning about
modularization of a program into procedures.

Macros can also provide irrelevant or undesired information. In the temperature conver-
sion example (step 23), linking a scrollbar to a cell causes all seven of the attribute values to be
recorded in the macro, even the six that did not change (algorithm 8):

Algorithm 8 Macro recorded during the temperature conversion walkthrough (step 23).

Sub Macro1()
ActiveSheet.ScrollBars.Add(74, 2, 15, 649).Select
With Selection

.Value = 0

.Min = 0

.Max = 100
.SmallChange = 1
.LargeChange = 10

.LinkedCell = "A30"

.Display3DShading = True
End With
ActiveSheet.ScrollBars.Add(131, 2, 15, 648).Select
With Selection

.Value = 0
.Min = 0
.Max = 100

.SmallChange = 1
.LargeChange = 10
.LinkedCell = "C30"
.Display3DShading = True
End With
End Sub

Finding the seventh one that did change is thus more difficult. In the macro from the
line-fitting example (step 23, algorithm 9):

Color attributes are set, not to color values, but to color table indexes. When the user
only clicked on one color, she or he can conclude (cautiously) that the index saved corresponds to
the color she or he clicked. If the user clicked on several colors in succession, the color attribute
for that object is set several times, increasing the potential for confusion. For example, in
Macrol, the first color (with an index of 2) to which the oval is set is the default color, not the
color in which the user was drawing — creating the oval and setting its color produced not one
but two color-setting statements.

In short, we note that macro recording is most effective when the user knows and can
perform the exact sequence of direct-manipulation actions required. A clear-cut action sequence
greatly simplifies the macro by eliminating the clutter of backtracking and changes (TC step 20,
LF steps 20 and 66). '

3.2.2 Knowing when to use the Excel’s computational and interactive leverage
requires solid knowledge of the capabilities of both Excel and Visual Basic.

Unfortunately, the application provides little help regarding when to use these features.
Knowing when to use Visual Basic procedures, when to record a macro, and how to set up a
mixed spreadsheet/Visual Basic program (that is, almost any Visual Basic program) can be a
tricky task.

49

The user must figure out when Visual Basic procedures are necessary, and when the
spreadsheet can do the job. For instance, the temperature conversion example specifies that
two cells and two scrollbars be connected so that a change to any of these four components will
change the rest accordingly. The Excel interface supports linking a scrollbar to a cell, so that a
change to either will change the other, so constructing two scrollbar-cell pairs is relatively easy
(TC step 5). Linking one cell to another via a formula is also a standard interaction in Excel
— it is the canonical computation — but it cannot be done in this case, because cells linked to
scrollbars cannot contain formulae, and because cells cannot contain both formulas and values
(TC step 2). Thus the user’s likely first intution about using formulae to perform the desired
temperature conversion is completely useless, if not counterproductive.

In contrast, in the line-fitting example, the user’s intuition to perform computation in
the spreadsheet is essential (LF steps 1 through 7). The slope, intercept and correlation of
the group of points can be easily calculated by spreadsheet functions that refer to the range of
spreadsheet cells in which the points are stored. Since these functions ignore blank cells in the
ranges, computing these functions for the selected points is only slightly more complicated than
computing them for all of the points (LF step 4). Calling the spreadsheet function and accessing
the spreadsheet cells from Visual Basic is significantly more cumbersome (and of course, writing
the functions in Visual Basic would be a substantial undertaking).

The user must also have a good grasp of when macro recording is useful and when it is
not. Macro recording is useful when:

e the desired program needs to do something that the user can do by direct manipulation,
and

e the user knows how to do that something by direct manipulation, but not by program-
ming.

In both walkthroughs (TC steps 8 and 10, LF step 15), it was clear that the user needed
to know how to create scrollbars or graphic objects by direct manipulation. Unless the user
has a thorough knowledge of the interface, she or he might not assume that scrollbars (for
instance) can be laid out by direct manipulation (TC step 8). Once knowing that, the user
would almost certainly choose to use direct manipulation and macro recording to find out the
necessary programming statements.

Knowing that the program needs to.create the scrollbars (in the temperature conversion
example) or the graphic objects (in the line-fitting example) is less obvious (TC step 9, LF
step 14). Since macros assigned to objects (including graphic objects and controls) do not stay
assigned when the workbook (collection of spreadsheets and program modules) is closed and
reopened, they must be reassigned each time Excel is run and the workbook containing the
program is opened. (Perhaps an “assign macro to be run when this workbook is opened” option
would address this problem effectively).

Algorithm 9 Macro recorded during the line-fitting walkthrough (step 23).

Sub Macroi()
ActiveSheet.Rectangles.Add (449, 27, 402, 369).Select
Selection.Interior.ColorIndex = 2
ActiveSheet.0vals.Add(797, 54, 16, 14).Select

Selection.Interior.ColorIndex = 2
Selection.Interior.ColorIndex = 5
Selection.Interior.ColorIndex = 6

ActiveSheet.Lines.Add (483, 346, 808, 78).Select
Selection.Border.ColorIndex = 3
End Sub

50

The user has two basic options. One is to manually reassign each macro to the appropriate
object when the workbook is opened. Given that there may be a number of objects, each needing
a different macro, this approach requires the user to either recall all the relationships or record
them explicitly.

The other alternative is to have Visual Basic “in charge” of the entire setup, including
creating the controls and/or graphic objects. With this approach, the user need only remember
to run the “set up everything” macro upon opening the workbook. The drawback, of course,
is that the user must construct a complete program, including the parts that could be left to
direct manipulation. This alternative was chosen in both walkthroughs (TC step 9, LF step 14).
However, for constructing the direct-manipulation parts of the program, macro recording is the
easiest way to “write” the Visual Basic code.

3.2.3 Visual Basic’s object structure is somewhat formidable to the novice.

Visual Basic has objects that correspond to Microsoft Excel entities, some of which reflect
the current state of the interface. As in object-oriented programming, objects are operated on by
their properties and methods. For instance, graphic objects and controls are created by an Add
method. When objects are created by direct manipulation, they remain selected. Conceptually
paralleling this, Visual Basic supports creation and selection in a single statement, such as this
one from the line-fitting recorded macro (LF step 23) shown earlier:

ActiveSheet.Rectangles.Add (449, 27, 402, 369).Select

When an object is selected, its properties and methods are also available via the selection, and
in fact, accessing and modifying the properties and methods of the selection is often much easier
than determining Visual Basic’s static name for that object. (Visual Basic’s name for the newly
created rectangle would be something like ActiveSheet.Rectangles(1).)

Unfortunately, both walkthroughs suggest that the object structure of Visual Basic is
somewhat formidable to the novice user (which is, in fact, a major reason why manipulating the
selection is easier). The code fragment above suggests a reading like “on the active sheet, with
its rectangles, add somehow or'maybe select or somehow both ...” (TC steps 22 and 26, LF
step 24). The presence of two “actions,” Add and Select, in the same statement, compounds the
inference problem, as the user must confront the pair of actions as a combination before having
an opportunity to understand them separately. The name Add is not particularly suggestive:
Draw or Create might be better (LF step 22). Finally, the use of the plural Rectangles is
confusing, because before this statement executes, there are no rectangles. To call a method of
a nonexistent group of objects to create one of them seems unnecessarily obscure.

Putting all of this together, it’s hard to justify the user’s successful comprehension of this
code fragment. In fact, the chief leverage available to the hypothetical user in each walkthrough
was the lack of other possible matches to the user’s actions: “I drew something, and these are
the only statements that were recorded” (TC step 23, LF step 22).

3.2.4 Visual Basic procedures can be triggered by some events, but not others.

What makes Visual Basic most useful, of course, is not the ability to create screen objects
(or any other interface-duplicating functionality), but the ability to handle events. Visual Basic
does this by the use of assigned macros: parameterless procedures bound to an object that
are called when an event occurs on that object.

Knowing how to use assigned macros involves four challenges: knowing what event trig-
gers are available, knowing which one is appropriate, knowing how to assign procedures to
objects and events, and knowing what events will trigger the macro.

Of these three, assigning macros is probably the easiest, since the user can select an object
by direct manipulation and use the “Assign Macro. .. ” menu command. With macro recording,
the user can see how Visual Basic assigns macros. In the walkthrough of the line-fitting example

51

(step 67), with macro recording on, the user selects an oval and assigns a (preexisting) macro
to it. The procedure that Visual Basic writes is:

Sub Macro2()
ActiveSheet.DrawingObjects("0Oval 2").Select
Selection.OnAction = "TogglePoint"

End Sub

where TogglePoint is the macro the user chose to assign.* So assigning a macro is simple:
set the OnAction property (or other property, see below) to a string containing the name of the
macro (see also TC step 37). To users with programming knowledge, the use of a string and the
lack of mention of potential parameters may be confusing (LF steps 69 and 70).

The recorded macro also assists with two other challenges: it informs the user of the
existence of the OnAction property, and that it can be used with graphic objects. In general,
the on-line help or the user manual are the ways to learn about available event triggers and their
uses; only a few can be discovered by macro recording. The documentation is also necessary
for the user to find out what is not available (a much harder task; TC step 47, LF step 73); for
instance, dragging an object cannot trigger a macro (TC step 3).

The appropriateness of formulae varies significantly across problems. In the temperature
conversion example, there are no spreadsheet formulae, there only two cells that can be edited,
and the procedure called must be able to determine which cell was edited (so that it can update
the other one; TC step 46 and 49). In this case, the OnEntry trigger (TC steps 47 and 48) is the
appropriate choice. In the line-fitting example, there are a large number of cells and formulae,
and there is no need to determine which cell was edited (if any), so the OnCalculate property
(LF step 73) is by far the best (it also helps with the case in which a point is clicked, and the
user has not interacted with any cells at all.)

Knowing what events will trigger the macro is perhaps the most subtle of the challenges.
For instance, the OnEntry callback (used in the temperature conversion example) is triggered
when a cell is edited by the user, but not when the cell is changed by a procedure, a spreadsheet
formula, or even by the user via a cut or paste operation (TC step 33).

The user must also know how spreadsheet, functions, linked cells, and explicit Visual Basic
procedures interact with each other — or at least, in what order they are evaluated. Consider
the temperature conversion example (TC step 42). When one of the two scrollbars is moved, the
cell linked to it will change, and then the Visual Basic procedure that updates the other cell and
scrollbar will be called. This ordering is important, because the procedure uses the value in the
linked cell, and it only makes sense to do so if the cell and scrollbar have the same (new) value.
Knowing this fact saves the user some work and some extra programming, greatly simplifiying
the writing of the temperature conversion example.

3.2.5 Finding out how a Visual Basic procedure was called is complicated.

In contrast to many other interactive toolkits, Visual Basic procedures assigned to graphic
objects, controls, worksheets, and so on do not take arguments (TC step 49, LF step 56). In
many situations, of course, the appropriate response depends on which object was the subject
of the interaction. In the line-fitting example, a single procedure is called regardless of which
point is clicked, yet that procedure needs to toggle the status of that point before recalculating
the correlation and fitted line (LF 56). In the temperature-conversion example (TC step 49), a
single procedure responds to OnEntry events, but the procedure needs to update the unedited
cell from the edited one, not vice versa.

Visual Basic’s approach is to set the Caller property of the Application object to the
non-Visual Basic entity that called Visual Basic (TC step 51, LF step 57). A procedure called by

4 Note that in this statement, the oval is referred to as ActiveSheet.DrawingObjects("Oval 2"), whereas the
statement that created it used ActiveSheet.Ovals — another unjustified complication.

52

another procedure will have access to the name of the outside entity, and not to the procedure
that called it. The Caller property can be set to a diverse range of values: cell references, graphic
objects, menu items, and so on, as appropriate. In the temperature conversion example (TC step
54), when a cell is edited, the Caller property is set to that cell’s cell reference; Cells (30, 1),
for example.

In the line-fitting example (LF step 57), the Caller property is set to the name ("0Oval 2")
of the point (graphic object) that was clicked. Unfortunately, a name of the form "Oval 2" is
not useful as is. The user must use the Evaluate method of the Application object to convert
this name into a useful index. Thus, the proper incantation is (LF step 57):

index = Application.Evaluate(Application.Caller).Index

which means “find out who the caller is, get the object associated with that name, and then
get that object’s index.” (Notice that, much as with the Add and Select situation above, the
statement returns the value of a property of the return value of a function call. Expressing
several actions in a single statement is concise and powerful, but the need to synthesize a
complex statement from several simple parts, which themselves are not well understood, is a
common obstacle to learning traditional programming [LO 1987].) In any event, the index
(which records the order of creation) can be used to compute the row in the spreadsheet that
holds the coordinates and status of the clicked point; further conversion or translation is not
necessary.

The alternative, having a separate procedure assigned to each object, is a reasonable solu-
tion if the objects have different behaviors or the number of objects is small and known a priori.
When a large number of objects are created, or the exact number is not known initially, the pro-
grammer is stuck with Application.Evaluate(Application.Caller).Index. In the case of
cell editing events, separate procedures are not an option, because macros can only be assigned
to the OnEntry properties of Applications and Worksheets (not to cells or ranges) and thus
the programmer must use Application.Caller (but fortunately not Application.Evaluate)
to determine which cell was edited (TC step 58).

3.3 The programming models of spreadsheets and Visual Basic
conflict.

The programming walkthrough analysis of Excel and Visual Basic identified limitations
and design flaws that are relatively shallow. What about deeper issues? Are the spreadsheet
and imperative programming models compatible? An example-based analysis shows a significant
mismatch between the two.

3.3.1 Users will need to add functionality to write programs.

Consider the correlation computation in the line-fitting example. Microsoft Excel provides
a correlation function, and the walkthrough uses this built-in function. In the general case,
programmers will need functionality that is not built-in (no matter how extensive the built-in
functionality may be), and they will need to create it.

The correlation r is calculated from three quantities: Syz, Syy, and Sy, (algorithm 10),
which in turn depend on the sums of the z and y values (3" z and > y), the sums of their
squares (3°z? and Y 4?), and the sum of their pairwise products (3" zy).

Suppose, that Excel did not include a correlation function. The programmer could write
the correlation function in essentially two ways: in the spreadsheet, or in Visual Basic.

3.3.2 The spreadsheet and the extension language are both environments for
specifying computations.

Figures 3.3

53

Algorithm 10 Least-Squares Correlation for Paired Data (Lyman Ott, Statistics)

— Say
"= 50250
Spe =S 2?2
Sey =21y

_ Qe

30

n

Syy =2 y% = Q.

A | B | C D E F G

1 |Number of Points: 10

2

3 All Data Squares and Products

4 X y xA2 yr2 x*y

5 90| 96 8100 9216 8640
6 94, 80 8836 6400 7520
7 40 50 1600 2500 2000
8 24 20 576 400 480
9 24, 32 576 1024 768
10 300 42 900 1764 1260
11 500 46 2500 2116 2300
12 32 38 1024 1444 1216
13 60, 70 3600 4900 4200
14 64, 64 4096 4096 4096
15

16 X y xA2 y 2 x*y
17 |Sums: 508 538 31808 33860 32480
18

19 Sxx Syy Sxy
20 6001.6) 49156, 51496
21 |Correlation: |

22 |Built-In Function: 0.94809

23 |This Spreadsheet 0.94809

24 |Visual Basic Function 0.94809

Figure 3.3: Spreadsheet implementation of the correlation function.

54

and 3.4 show a spreadsheet implementation of the correlation function. The spreadsheet
stores the data in two columns, one for z, one for y, and uses simple formulae to create columns
of squares of the = and y values, and a column of their products. Summing formulae at the
bottom of the columns compute Y 2, Sy, S z% S y? and 3 xy. The final four formulae
compute Syz, Syy, Szy, and 7. (In spite of the Al-style names used in the spreadsheet, the
calculation is readable.)

A Visual Basic implementation appears in algorithm 11. A loop from 1 to n computes

Algorithm 11 Visual Basic implementation of the correlation function

‘Function MyCorrelation(xyRange)

sumX = sumX2 = sumY = sumY2 = sumXY = 0

n = xyRange.Rows.Count

For i =1 Ton
sumX = sumX + xyRange(i, 1)
sumX2 = sumX2 + xyRange(i, 1) * xyRange(i, 1)
sumY = sumY + xyRange(i, 2)
sumY2 = sumY2 + xyRange(i, 2) * xyRange(i, 2)
sumXY = sumXY + xyRange(i, 1) * xyRange(i, 2)

Next i

SXX

sum¥2 - (sumX * sumX) / n
syy = sumY2 - (sumY * sumY) / n
sxy = sumXY - (sumX * sumY) / n
MyCorrelation = sxy / Sqr(sxx * syy)
End Function

Yoz (sumX), Y z? (sumX2), >y (sumY), > y? (sum¥2), and 5 2y (sumXY), which are then used
to compute Sgz, Syy, Sy, and finally the correlation.

3.3.3 The two computational environments (the spreadsheet and the extension
language) should be as compatible as possible.

Ideally, the spreadsheet formula implementation and the Visual Basic implementation of
the correlation function should be as close to identical as possible. Mastering a single computa-
tional model is easier for the user than mastering two different models. Furthermore, since the
spreadsheet and Visual Basic have different uses, the user might want to divide the computation
between the two models. The user might also wish to translate a computation from Visual
Basic into the spreadsheet or vice versa. Dividing or translating the computation is greatly
facilitated by a shared computational model. The user will have greater flexibility if translating
a computation from one environment to the other is simple and straightforward.

A comparison of figures 3.3 and 3.4 with algorithm 11 shows some similiarity and some
sharp differences. The last four lines of the Visual Basic implementation map nicely onto the
formulae in rows 20 and 22-24 of the spreadsheet implementation. Syz, Syy, Szy, and the corre-
lation are specified by expression bindings (formulae in the spreadsheet, assignment statements
in Visual Basic).

The assignment statements in the for loop do not map over as well to the spreadsheet.
For instance, in the statement

sumX2 = sumX2 + xyRange(i, 1) * xyRange(i, 1)

the expression

xyRange(i, 1) * xyRange(i, 1)

55

"(M81A R[NULIO}) WOIIOUNJ UOIYB[OII0 8Y) JO uoljejuswa[duul 1eayspealdg :H ¢ oInSrg

(H1D:6g)uonepriodlu= | uonodunj oiseq [ensiA| L2
(07407 LIOS/0TH= oyspeardS sy L €2
F1E:ed v1D:SD)TTIIOD= ‘uonoun] up-ljng| ¢
uoneRIIo) —.N
LAALID*LID)-LID=TA/LID«LID)L1d= QL1 SxL 1 D-L1H= 82z
AxS K4S XX§ 61
81
(STOISDINNS= (ST CDNNS= (SIH:STDNNS= (STDISDINNS= (ST SDNNS= ssungl)|
KX Wk) (4% A X 9]
Gl
PIDxv19= TI0+P10= Y19y 19= 9 ¥9 vl
€10x€1d= €10+€10= €1d+€1d= 0L 09 €l
TI0sTIg= TIDATIO= d71g= 8¢ (43 t4}
[1D+11d= 11D+110= I1d«119= 9 0S i1
01D+019d= 010+01D= 019019d= w o€ 8l
6D:64d= 6D:+60= 6d«6d= [T 6
80:8d= 80+80= 8d+84= 0z j4 8
LO+L9= LO+LD= L9sL9= 0s ot]
90+94= 90+90= 9d:94= 08 6 g
SOxSd= SDxED= Sd.Sd=) 96 06 S
KX A vX A X b
eed 1V [
Z
01 SpuIod Jo roquinN| g

9 4 3 a J a ')

56

computes z? for the current loop index, closely resembling the computation carried out by the
formulae in column E (rows 5-14). Computation of y? and z;y; is analogous.

The poorest mapping is between the assignment part of the statements in the for loop
and the summation formulae on row 17. The expression-based computation of z? above fits into
its assignment statement

2

sumX2 = sumX2 + z;

but the assignment part of the statement has no analog in the spreadsheet, and the assignment
statement computes > z? only in combination with the for loop.

3.3.4 Translating the correlation function from spreadsheet formulae to Visual
Basic (and vice-versa) means re-expressing the computation.

To convert the Visual Basic MyCorrelation function into a group of spreadsheet formulae,
the user must create a column of formulae for the z2, y?, and z,y; expressions in the assignment
statements in the for loop, then place summation formulae for >z, 2%, Sy, ST ¢?, and
Y- xy at the bottoms of the columns. To convert the spreadsheet formulae that compute the
correlation into Visual Basic code, the user can call the spreadsheet’s Sum function from Visual
Basic to compute Y~z and Y_ y, but she or he must still write a loop to compute > 2%, >~ y?
and) zy, because the z?, y2, and z,y;must be calculated individually, then summed.

3.3.5 The spreadsheet formula language is not compatible with an imperative
language.

In short, the spreadsheet and imperative computational models look to be a poor match.
Although imperative languages have some expression-oriented features (expressions and pure
functions), typical imperative programs, such as MyCorrelation, are highly stateful. Func-
tions in most imperative languages can have side-effects (as can expressions in some languages,
notably C). Furthermore, imperative combining structures, such as the for loop, depend heav-
ily on statefulness. Finally, although some assignment statements resemble equation bindings,
statements like x = x + 1 do not map onto equation bindings at all.

3.4 Visual Basic offers inspiration for a spreadsheet-like functional
programming environment.

In spite of some design flaws found by the walkthroughs, Microsoft Excel with Visual Basic
shows the power of the spreadsheet model as an environment for describing computation and,
in a limited fashion, interface constraints. The leverage provided by the spreadsheet (especially
in the line-fitting example) allowed the Visual Basic programs to be much shorter and simpler
than standalone programs could have been.

However, a comparison of the spreadsheet computational model of Excel and the imper-
ative computational model of Visual Basic points to difficulties getting the two models to work
well together. We will see in chapter 4 that the functional model is a much better match to the
spreadsheet model, computationally speaking.

The walkthrough experience also suggests areas for improvement. As noted above, bidi-
rectional constraints (formulae) would further simplify the temperature conversion example. A
clean, coherent language model with more support for abstraction and a more consistent set
of design choices would simplify the manipulation of data and interface objects. Finally, the
power of automatic consistency maintenance in the spreadsheet, especially in contrast with the
need to maintain consistency explicitly in Visual Basic, suggests that the spreadsheet model be
expanded to include interface objects as well as data, rather than enhancing the spreadsheet
model with a new and different model.

Chapter 4

Esquisse

Having examined monadic I/O in Haggis, and the combination of Excel with Visual Basic,
we now turn to Esquisse. Esquisse has been designed and implemented to articulate a vision:
that the cognitive costs of writing interactive programs can be much lower in a programming
environment that combines functional programming languages and the spreadsheet model of
interaction.

Section 1 discusses the benefits of combining spreadsheets and functional programming,.
Sections 2 and 3 describe Esquisse and its implementation. Section 4 provides two extended
examples that illustrate the benefits of Esquisse, and chapter 5 discusses some of Esquisse’s
limitations. Section 6 evaluates Esquisse via the programming walkthrough, and analyzes the
compatibility of spreadsheets and functional languages. Section 7 discusses some higher-level
issues.

4.1 The strengths of functional programming and spreadsheets can
be combined in a powerful, flexible system.

The functional and spreadsheet models have significant common ground: both lack con-
trol flow and use functions to specify one-way constraints (a functional program can be viewed as
a set of constraints), and spreadsheet formula languages, like functional languages, are stateless
and expression-based.

The functional and spreadsheet models also complement each other well. The functional
language offers computational power and abstraction mechanisms like higher-order functions
and lazy evaluation. The spreadsheet’s powerful interaction and computational model demon-
strates that complex computations can be carried out, and data can be freely manipulated,
without requiring the user to specify control flow or input and output, or to explicitly maintain
relationships among data items. Both environments support quick program construction.

Combining a functional language with a spreadsheet offers an opportunity to overcome
the weaknesses of each individually. Spreadsheets lack modularity and abstractions; functional
languages provide higher-order functions and lazy evaluation. Functional programming lan-
guages support interactivity with some difficulty; interaction is central to the spreadsheet model.
Spreadsheets are clumsy at solving large, complex problems; functional languages provide com-
putational power.

Esquisse, as a synthesis of these two approaches, presents significant advantages. Esquisse
provides support for quick construction of computationally significant interactive programs. It
expands the power of spreadsheets by extending the interaction model to include graphical
representations and interaction, and it supports customization of interactive appearance and
behavior. It provides a form of stateful interaction without the messy cognitive challenges
required by existing functional programming approaches. In addition, Esquisse formalizes several
important features of the spreadsheet model.

Esquisse is especially suited for constructing interactive models for experimentation. Two
examples are given in section 4.4, page 67.

58

4.2 Esquisse is a spreadsheet-inspired programming environment
built around a functional language.

Esquisse combines a functional programming language with an extension of the spread-
sheet model to capitalize on the assets of both.

4.2.1 The design process for Esquisse centers around the programming walk-
through method.

Esquisse grew out of a prototype written as a first attempt to articulate this synthesis of
functional programming and spreadsheet-style interaction [Blough 1996]. The design of Esquisse
is the result of programming walkthroughs performed on that prototype and on the Haggis and
Excel with Visual Basic systems.

4.2.2 Esquisse draws upon and extends the spreadsheet metaphor for storage,
display, and interaction.

Esquisse is a direct outgrowth of the spreadsheet model: cells store and display values,
cells are linked by formulae to other cells, cell values can be edited, and when a cell’s value
changes, cells whose formulae depend on its value are updated also. All of these features have
been expanded: cell values, formulae, and their display and interaction have all been broadened.
The expression-based, stateless formula language of the spreadsheet has been expanded into a
full-fledged pure functional programming language. Esquisse uses the functional language Gofer,
a variant of Haskell.

4.2.2.1 The fundamental unit of computation and interaction is the cell.

In Esquisse, as in a spreadsheet, cells store values, display them, and support interaction
with them. Esquisse cells differ from their spreadsheet counterparts in two simple ways: they
are not laid out in a grid, and each cell has a type which is determined by the type of value it
contains.

Unlike spreadsheets, Esquisse “opens up” the mechanics of the cell display and interaction
to the user.

Ignoring formulae for the moment, an Esquisse cell consists of a value and two functions.

data Cell a = Cell a (DisplayFunction a) (EventFunction a)
type DisplayFunction a = a -> CellPicture
type EventFunction a = Event -> a -> a

(The actual types are slightly more complicated; see section 4.3.1, page 63.)

4.2.2.2 A cell’s display function and event function govern its interactive be-
havior.

The display function maps the cell value to a graphical representation (which can also be
textual) of type CellPicture (based on the Picture type of [FPJ 1995]). More precisely, the
display function produces the only graphical depiction of the cell. For example, the graphical
depiction of the word “happy” would be text "happy"; the graphical depiction of a circle of
radius 3 would be circle 3. Whenever the cell’s value changes, the display function (with the
cell value as an argument) is evaluated to produce a new depiction. Thus, the cell’s value and
depiction are always consistent.

The event function maps an event and the current cell value to a new cell value. For
example, the standard text event function would map the event “the h key was pressed” and the
value "" to the value "h". The event function is evaluated whenever an event (keypress, mouse
click, drag, ...) occurs over the graphical depiction of the cell.

59

The display function and event function are dependent on each other and on the cell’s
value. First, all must share the same base type (denoted by a in the above definitions). Second,
since all that the user has to interact with is the graphical depiction specified by the display
function, the shape and extent of that depiction determine which events, spatially speaking, are
reported to the cell.

4.2.2.3 A cell’s formulae govern its computational behavior.

A cell’s value can be changed not only by events that occur over its graphical depiction,
but also by evaluation of its formulae.

A formula consists of a function and a collection of cells (the “source cells” for the func-
tion). When the value of one of the source cells changes, the function is applied to the values of
the source cells, and the result is the new value of the cell. In a typical spreadsheet, the cell F3
might contain the formula =C3+D3. In Esquisse, cell £3’s formula would have source cells ¢3 and
d3. The function could be written literally as \ ¢ d -> c*d, but more succintly as (*), which
is how the multiplication operator (and in fact, any infix operator) is written as a standalone
function in Haskell.

Implementation note: since functions can be cell values, each formula function is stored
in a cell. Because a formula function cell is created as part of a formula, it is not displayed, and
it can only be edited in the editor. The Esquisse implementation is discussed further in section
4.3 (page 63).

4.2.3 The Esquisse interface supports creating, editing, and interacting with
cells.

Esquisse provides a direct-manipulation interface, shown in figure 4.1. The Modes panel
(near the top of the leftmost column) is the control center of the interface. The modes work as
follows:

e Select mode supports the selection of one or more cells. When cells are selected, the
Operations panel is active.

e The Draw, Text, and Expression modes support the creation of a single cell. In Draw
mode, the Drawing panel is available. In Text and Expression modes, the Fonts panel
is available. The Colors panel is available in all three modes.

e Interact mode supports interaction with a cell via its event function. In a sense, Select
mode and the cell creation modes are just support structure; Interact mode holds the
core functionality of Esquisse. In Interact mode, none of the other panels (Operations,
Drawing, Colors, Fonts) are available.

The Refresh, Load, Save, and Quit buttons are available at any time. The Ready indicator
changes to Working while Esquisse is processing.

4.2.3.1 Cells are created by direct manipulation., and all interaction with a cell
is governed by its event function.

Graphical cells are drawn on the screen. For instance, each bar in the temperature con-
version example was created by clicking on the filled rectangle button, clicking on the appropriate
color, and dragging out the rectangle. The rectangle cell’s value is ((x,y), (w,h)) :: ((Int,Int),(Int,Int)
where x and y are the lower left corner, and w and h are the width and height respectively. (Es-
quisse’s coordinate system is Cartesian, with the origin in the lower left corner of the work area.)
Of course, the display function maps this value to a rectangle of width w and height h with its
lower left corner at (x,y). ‘

60

Figure 4.1:

The Esquisse interface.

Drawing

61

Once the graphical cell is created (drawn), the interface mode switches automatically to
Interact. The default event function for these graphics cells implements dragging: the default
event function applied to an event matching MouseDrag _ dx dy (where dx and dy are the
x- and y-displacements) and a cell value ((x,y), (w,h)) will evaluate to the new cell value
((x+dx,y+dy) , (w,h)).

Text and expression cells are placed by clicking on the screen. The two number cells in
the temperature conversion example were created by selecting the appropriate color and font,
and clicking in the work area. Once the cell has been placed (it is displayed as a lone text
cursor), the interface mode switches automatically to Interact. The default event function for
text and expression cells supports text editing: for example, the default event function applied
to an event matching Key Down Key_Delete maps a cell value to a the same value minus the
character before the cursor. For more on the role of the cursor, see section 4.3.1.

Default interactions and custom interactions are treated identically. Custom interactions
are simply customized event functions; no more, no less. The user can edit any cell’s event
function to create a custom interaction. For instance, in the temperature conversion example,
the two bars have a custom interaction of resizing from one end of the bar, instead of having
the default interaction of dragging. This is acheived by a simple change to the event function
(see the Esquisse temperature conversion walkthrough appendix). ‘

4.2.3.2 The Esquisse editor supports modification of a cell’s value, display
function, event function, and formulae.

After selecting a group of cells (in Select mode), the user can open editors for them
by clicking the Edit button. The editor (shown in figure 4.2) displays the name, type, value,
display function, and event function, along with any formulae the cell may have (see the Esquisse
walkthrough appendices). (Esquisse does not support interaction with any cell in the work area
while a cell has an open editor.)

Each field of the editor is in fact an expression cell, and editing is supported by the
default text interaction function. When the editor is closed, the value of the cell in each field of
the editor is extracted and the original cell is updated.

4.2.3.3 Expression cells are re-evaluated after each event.

Expression cells are in some sense the most “generic” cells in Esquisse: they can hold
arbitrary values, and they are displayed textually. As a result, they are good medium for
introducing Esquisse’s approach to type inference and error handling. ,

Since Esquisse is a functional programming environment, Esquisse cells have types. How-
ever, editing an éxpression cell poses problems for type inference. Consider the function for
converting Celsius to Fahrenheit:

\ ¢ -> round ((9.0/5.0)*(fromInteger c)) + 32

with a type of Int -> Int, and suppose that the user is typing this function into an expression
cell. For the first few keystrokes, the value cannot be parsed, and thus cannot be assigned a
type. When the user has written:

\ ¢ -> round

Gofer infers that it has type a -> (Float -> Int). But when the user finishes typing the
function, it has type Int -> Int — the type has changed simply in the course of entering the
function!

Because this situation occurs frequently, Esquisse cells can change type when they are
edited. This does not weaken the type system, because the types of the display function, event
function, and formulae must all match the type of the value (formula updates with a type

62

Display

fFunction:

vent

sFunction:

(TwoFacedObject maybe_error cursorLocation valueStringList) -
case maybe_error of
ok {{x y),ry ->

(Just (x - (abs 1), v ~ (sbs 1)},
Just magenta,
Rothing,
fillSolid {circle (sbs)}
NotOk error errorStrings ->
textNotOkDisplayFunction (0, 0)
' {(Just magenta)
defaultFont
Brror
srrorStrings
cursorLocation
valusStringlist

soevent&(Event _ _ _ _ eventType)
tfo@({TwoFacedtbject maybe_error cursor valueString) ->
case maybe_error of
0k {{=x.v}.r} ->»
case eventType of
MouseDrag _ dx dy ->
TwoFacedObject
{0k ({xedx, yedy), £))
Nolursar
[show {{x+dx, y+dy}.)]
_ => tfo
e
let
(newlursor, newV¥alueString)
= handleStandardTextEvents event
. {0, 0y
defaultFont
{cursor, valueString)
in
TwoFacedObject
(HotOk NotEvalustedYet [“Waiting for evsluation. ..]}
newursor
newValueString |

rvalidValue

Figure 4.2: The Esquisse editor.

63

different from that of a cell’s value will not change the type of that cell, but will cause a type
error).

Error handling is also handled incrementally. If an expression cell’s value cannot be
computed, the error is displayed along with the value. The error message changes with continued
editing, and when editing yields a valid value, the value is displayed without an error message.

4.3 The implementation of Esquisse cleanly separates the purely
functional from the stateful.

The implementation of Esquisse, as well as its design, raises issues related to the imple-
mentation of programming environments and interpreters. Additionally, the particular imple-
mentation chosen for Esquisse helps demonstrate the purity of its functional model, and clearly
specifies the boundary between the purely functional and the imperative parts of Esquisse.

4.3.1 Some additional types are required to support the needs of the cell
framework.

The implementation of editing in Esquisse differs from that in a tradional interpreter. In
an interpreter, expressions are parsed from textual to evaluable form, then bound or executed.
The resulting expressions are printed out, but not all expressions have meaningful printable
representations. Typing \ x -> x + 3 into the Gofer interpreter yields vi21 — the essential
structure of the function is not displayed.

Because Esquisse cells store editable values, a printable representation must be available.
A cell containing \ x -> x + 3 must always have (or be able to generate) the text string
"\ x -> x + 3", so that the user can edit it. Even if the function’s display function is non-
textual, the Esquisse editor will, and must, display the function textually.

4.3.1.1 TwoFacedObjects store texual and evaluated versions of the same value.

Because some values (such as functions) cannot be printed from their evaluated forms,
Esquisse maintains a textual version of each value along with the value:

data TwoFacedObject a = TwoFacedObject a Cursor [String]

A TwoFacedObject stores both the value and the printable representation, along with a Cursor,
which stores the position of the cursor in the printable representation:

data Cursor

= NoCursor -- no cursor
| OnelLineCursor Int -- cursor in one-line string
| MultiLineCursor (Int,Int) -- cursor (row,col) in

-- multi-line string

The \ x -> x + 3 function as a TwoFacedObject would be:

TwoFacedObject
N\ x->x+3)
(MultiLineCursor (1,6))
[u\ x _>u’n x + 3"]

The textual representation is formatted on two lines, with the cursor is at the end of the first
line:

\ x ->
x + 3

64

Keeping the value and the textual representations consistent cannot be done within Gofer,
because setting the text from the value requires a function that can print out all values, and
setting the value from the text requires eval. (If it could be done within Gofer, there would be
no need to implement TwoFacedObjects in the first place.) Esquisse can and does maintain the
consistency of TwoFacedObjects, except for those that are currently exposed to the user (see
section 4.3.1.3 about how TwoFacedObjects could be put under the hood).

4.3.1.2 The algebraic type MaybeError supports spreadsheet-style error handling.

Error handling in Esquisse is modeled on error handling in spreadsheets. Because cells
are persistent and editable, and because an error may only affect some cells, Esquisse, like
spreadsheets, cannot simply terminate with an error message.

In the approach taken in Esquisse, a value of type a is actually stored as a value of type
MaybeError a:

data MaybeError a = 0k a | NotOk Error [String]

Normal values are tagged by Ok: the lambda expression we have been using would be (0k (\ x -> x + 3)).
If we had omitted the initial \, writing instead x -> x + 3, the appropriate MaybeError value
would be (NotOk InvalidValue ["Syntax error"]). The error values are:

data Error
= InvalidValue
| UnreadableString
| NotEvaluatedYet
| DisplayFunctionError
| EventFunctionError
| FormulaError
| DivOError
| EmptyCell
| NoInstance
| TypeError
| UndefinedName

Notice that in the example above, erroneous MaybeError values do not store a printable rep-
resentation of the erroneous value. To meet that need, Esquisse uses TwoFacedObject and
MaybeError in combination, and the base type of a Cell storing values of type a is not a, but
TwoFacedObject (MaybeError a). Since display functions and event functions can be edited
and can contain errors, they too must have this more complex type. As a result, the actual type
Cell is:

type DisplayFunction a = TwoFacedObject (MaybeError a)
-> CellPicture
type EventFunction a = Event -> TwoFacedObject (MaybeError a)
-> TwoFacedObject (MaybeError a)

data Cell a = Cell (TwoFacedObject (MaybeError a))
(TwoFacedObject (MaybeError (DisplayFunction a)))
(TwoFacedObject (MaybeError (EventFunction a)))

Since formula functions are stored in their own cells, they too have this editing and error-handling
support.

65

4.3.1.3 Hiding some of the cell internals would simplify display and event
functions.

The TwoFacedObjects and MaybeError values show through to the programmer in the
display and event functions for a cell (see the Esquisse walkthrough appendices for screen im-
ages). Our experience with Esquisse suggests that these implementation details could be more
fully hidden.

The MaybeError type could be hidden entirely, at the cost of not allowing
customizable error handling.

Esquisse provides default display and event function cases for error handling for cases in
which a cell contains an error value. The display function case simply displays the error and the
textual representation that, when evaluated, caused it. The event function case supports text
editing of the erroneous text.

The added flexibility of being able to change the display and event functions to handle
error values differently may not be worth the added clutter. If so, the MaybeError type and
its display and event function cases could be pushed down into the implementation without
trouble. (The errors associated with formula evaluation and updating are already inaccessible
to the user.)

The TwoFacedObject type could be encapsulated behind a set of access and
update functions.

Getting rid of TwoFacedObjects is less trivial. The salient point here is that, at various
points, the user’s functions (display functions, event functions, and formulae) need to access or
update the evaluated or textual versions of the value’s TwoFacedObject (and, of course, have the
two stay consistent). Direct references to TwoFacedObjects could be replaced with functions
named, say, showValue, showText, and eval, which could perform the necessary operations
without exposing the TwoFaced(Objects.

4.3.2 Esquisse is implemented as a front end to the Gofer interpreter.

Esquisse is not written as a monolithic system for three reasons. First, as a programming
environment, Esquisse needs to be able to evaluate expressions, and pure functional languages do
not-support evaluation within the language. Second, available functional language interpreters
like Gofer [Jones 1991] are designed specifically for evaluating expressions.

Third, and most importantly, implementing Esquisse as a front end to the Gofer in-
terpreter provides a clean separation of the purely functional portion from the non-functional
portion. This division helps us see how little non-functional “glue” is required to hold the func-
tional pieces together. The front end communicates with Gofer via a pair of UNIX! pipes.

Referring to Esquisse as a “front end” to the Gofer interpreter is misleading, because in
fact a substantial fraction of the mechanics of Esquisse are also written in Gofer. In fact, the only
parts of Esquisse not written in Gofer are the non-functional ones: the interface and a portion
of the cell mechanism. The non-Gofer parts of Esquisse are written in Haggis [FPJ 1995] and
Concurrent Haskell [PJGF 1996].

The following portions of Esquisse are implemented in Gofer:

e the Cell, TwoFacedObject, Cursor, MaybeError, and Error datatypes

o functions that create the editor cells from the original cell

e the CellPicture datatype (a trimmed-down and slightly modified Picture datatype)
e the Event type (a modification of DeviceEvent from Haggis)

e basic cell types: Expression, Text, Line, Circle, Square, Rectangle, Ellipse

1 UNIX is a trademark of AT&T Bell Laboratories.

66

The remainder of Esquisse is implemented in Haggis, specifically:

e the interface, including interface modes, drawing, and communication with I/O devices

e cell names, including storage of all cell names and the names of the currently selected
cells

e cell updates

e formula bindings (for example, cell d’s value is the function in cell £ applied to the value
in cell s)

e propagation of formula updates
e detection of events, routing events to cells, rendering of cell pictures

e communication with Gofer (having Gofer evaluate expressions and bindings, parsing the
results)

Most of these front-end items are obviously stateful: the inferface, event detection and routing,
picture rendering, and storage of the list of all cells and the list of selected cells. The inclusion
of formulae is perhaps less clear. Formulae cannot be part of the cell framework for two reasons:
typing and propagation. Since propagation is one of the mechanisms for stateful update of cells,
it cannot be implemented in the pure functional part of the cell framework.

Typing is more subtle. If formulae are included in cells, then they influence the type of
the cell, much as the display function and event function do. The difference is that the types of
the display and event functions are completely determined from the base type of the cell, while
formulae can have any type that returns the base type of the cell. For example a cell of type
Cell Int could have formulae of any of the following types:

Float -> Int
[al -> Int
Int -> Int -> Int

and so on. Including formula types in the type of the cell would have two consequences: cells

of the same base type that had different formulae would have different types, obscuring their

fundamental commonality; and cell types would quickly become quite complicated. Hence, the

solution in Esquisse is to put each formula in its own purely functional cell, but to connect the

cells and update them (via formula propagation) from outside the pure functional framework.
The implentation handles a typical interaction as follows:

(1) An event (a click, a drag, a keypress) occurs in (the graphical representation on the
screen of) a cell. Haggis has Gofer evaluate the cell event function on the event and
the cell’s value. The result is a new cell value. (Because Gofer “displays” the value
to Haggis, the cell value cannot be an infinite structure; in fact, it cannot even be a
moderately large finite structure. This is a consequence of the implementation, not a
conceptual shortcoming.)

(2) Haggis has Gofer create a new cell, differing from the existing cell solely by having the
new value. We call this “updating” the cell, although it is purely functional in nature.
Cells are indexed by the implementation, so the name of the new cell is the name of the
old cell with the index incremented.

(3) Haggis has Gofer evaluate the cell’s display function applied to the cell value. The result
is a picture, which Haggis displays.

67

(4) For each formula that depends on the value of the cell, Haggis looks up the formula,
including the destination cell, the source cells, and the formula function cell. Haggis
then has Gofer evaluate the value of the formula function cell (that is, the formula
function) applied to the values of the source cells. Haggis checks if the result of this
function application is the same as the value of the destination cell. If so, Haggis
does nothing. (This is how infinite loops are avoided, although they can still occur if
mutually recursive formulae do not have a fixed point — see section 4.5.2.2, page 81 for
more details). If the result of applying the formula to the source cells differs from the
value of the destination cell, Haggis “updates” the destination cell as described in step
2 and displays the destination cell’s value as described in step 3.

(5) Step 4 is repeated for any formulae depending upon the destination cell. This process
is repeated until all formulae have been evaluated at least once and formula cycles have
reached fixed points.

Steps 3 and 4 can be performed concurrently, although the current implementation of Esquisse
does not, do this. The order of formula evaluation for the (possibly multiple) formulae in a given
cell is explicitly not specified, because the cell framework is fundamentally declarative (for more
detail, see section 4.5.2.1, page 80). Because of this, all of the formula evaluations in step 4
could be concurrent.

Although the order of formula evaluation for the formulae dependent upon a given cell is
unspecified, the connectivity of the cells enforces a partial order that is breadth-first in nature:
formulae that depend upon the cell in which the event occur are evaluated; their evaluation can
trigger the evaluation of other formulae (which depend on cells that depend on formulae that
depend on the initial cell), and so on.

4.4 Substantial examples show Esquisse payoffs.

Although the walkthroughs (see section 4.6.1, page 83) demonstrate the cognitive benefits
of Esquisse, the larger examples described in this section show the payoffs of the functional and
spreadsheet models together, and of Esquisse’s interactive machinery.

4.4.1 The logistic map is a simple system with chaotic dynamics.

The logistic map is a simple dynamical system that exhibits deterministic chaos. The
heart of the logistic map is the equation:

Xyl =S Zn - (1 —24)

Iterating this function on a starting value yields a sequence of values that follows one of several
patterns, depending on the value of the control parameter s. For s € [0,1], the sequence
converges on the fixed point 0. For s € [1,3], the sequence converges on a fixed point which
increases from 0 to approximately 0.664801. (Zero remains a fixed point, but is unstable for
s > 1.) At s = 3, the fixed point bifurcates into a limit cycle of length two. The next
two bifurcations, at s ~ 3.45 and s ~ 3.55, produces limit cycles of length four and eight,
respectively. The bifurcations continue to double until s ~ 3.57, at which point the cycle never
repeats. For a more thorough explanation, see chapter 5 of Peak and Frame [PF 1995].

There is a graphical method for exploring this system. We start by plotting the logistic
map and the line y = z on the same plot. We then choose a starting point on the z-axis, and
draw a vertical line up to the curve. Next, we draw a horizontal line to the y = z line. We
continue to move vertically to the curve, then horizontally to the line, until we reach a fixed
point (if there is one) or feel we have seen enough. Figure 4.3 shows six iterations for s = 3.5,
with a starting point of approximately 0.7.

68

Figure 4.3: The graphical method for iterating the logistic map.

69

4.4.1.1 The logistic map example uses cells containing functions and formulae
returning functions.

To implement this example in Esquisse, we use the Expression button to create a (textual)
cell containing the logistic map:

\'s -> (\ x -> s*xx(1.0-x))

which we will refer to as logistic. We also create expression cells to hold the control parameter
s and the number of iterations n. (Esquisse does not implement renaming cells from their default
names, but we use mnemonic names here for clarity.)

The curve and the line, like the logistic map, can be stored as function values. The line
is simply id (the identity function in Haskell), while the curve is \ x -> s*x*(1.0-x), but for
a specific value of s. We can do this by passing a specific value for s to the logistic function
above. For example, logisitic 2 evaluates to the function:

\ x -> 2%x%(1.0-x)

To ensure that the curve cell contains a logistic map function with the proper value of s, the
curve cell contains a formula referring to the logistic cell and the s cell, and containing the
function

\ lIm s -> 1m s

The formula takes the general logistic map and the value of s, and applies the logistic map to
s to get a specific logistic map function. (We could even have used ($) instead of the lambda
expression.) ‘

4.4.1.2 The logistic map example requires customized display and event func-
tions.

Displaying the curve and line requires some customization, for Esquisse does not (cur-
rently) provide plotting cells. We start with a square cell of the desired size, which we draw
with the interface. The display function shown in algorithm 12 is the default for the square

Algorithm 12 The default display function for square cells.

0k ((x,y),s) -> (Just (x,y),
Just black,
Nothing,
square s)

(only the Ok case is shown; see section 4.3.1.1 on page 63 for details).

We modify the display function (algorithm 13) so that applies the polyline function to
a list of (z, f(x)) pairs. The pairs are scaled from the unit interval to the width and height of
the plot. Notice that the customized display function draws the plot with an origin of (0,0),
which means that the curve and line cells will be superimposed. Notice also that the type of
the customized display function has been changed from

((Int,Int),Int) -> Picture

to

(Float -> Float) -> Picture

70

The event function must also be modified, so that its base type is Float -> Float rather than
((Int,Int),Int). As we shall see, the curve and line cells will not be interactive, so their
event functions can simply ignore the event and return the cell value unchanged.

We also need a cell x0 for the starting value xzo. We could simply type values into an
expression cell (as with s and n), but the ability to click on the plot to specify a starting value
allows us to interact directly with the displayed result, so we create a customized cell.

Since the depiction of a cell determines what events it senses, we create another square
cell of the same size as the curve and line cells. Since it will only contain a (changing)
x-coordinate, we “hard-wire” the display function to draw a square regardless of the value (al-
gorithm 14); this has the added effect of visually framing the example. We customize the event
function (algorithm 14), which initially supports dragging the square (algorithm 15), so that
it ignores the existing value and maps the (screen-based) x-coordinate of any mouse click to a
value in the interval [0, 1]. The customized event function also ignores drag events, so that the
cell cannot be moved around inadverdently. '

4.4.1.3 Functional tools come in handy for tracing the evolution of the map.

The only cell left to be created is the trace cell, which will display the evolution of the
map via the graphical method described in on page 67. We decide that the trace cell will
contain the list of points, and the display function (algorithm 17) will draw the polyline from
those points. The trace cell overlaps with the 1ine, curve, and x0 cells, and, like the 1ine and
curve cells, its event function ignores all events, returning the cell value unchanged.

To link the trace to the logistic map and starting value, we add a formula to the trace
cell (algorithm 18). The source cells for the formula are logistic, s, n, and x0. The formula
thus guarantees that the trace will reflect the current values of the logistic map function, the
control parameter s, the number of iterations n to trace, and the starting value zp.

The trace formula makes heavy use of functional tools. In the let expression, the value
of 1 is an infinite list of iterates of the logistic map on the starting value. The small, recursively
defined dup function maps a list to a new list with each element appearing twice in a row. The
last line of the formula performs most of the computation. The built-in function zip creates a
list of pairs from two lists; in this case, the duplicated list of points is zipped with itself, but with
the copy that is to become the y-coordinate “shifted” by preceding it with a zero. Evaluating
the zip expression thus yields a sequence of alternating vertical and horizontal line segments
that trace the iteration. Finally, take selects only the first n pairs of lines. The formula thus
sets the cell value to the trace of the first n iterates.

In the completed example (figure 4.4), clicking anywhere over the plot generates a new
trace starting at the x-coordinate of the click. In addition, the value of the control parameter
scan be edited to change the height of the curve; the trace will redraw from the existing z¢, but
with the new curve. Of course, the number of iterations (that is, the length of the trace) can be
edited similarly. Even the map itself can be changed; for example, it could be replaced by the
tent map

Algorithm 13 The customized display function for the line and curve cells.

0k £ -> (Just (0,0),
Just black,
Nothing,
polyline
[(x, (round.(700.0%))
(f (((/700.0) .fromInteger) x)))
[x <~ [0..7001])

71

Algorithm 14 Customized display function for the starting value cell.

0k _ -> (Just (0,0),
Just black,
Nothing,
square 700)

Algorithm 15 The default event function for square cells.

\ event@(Event _ _ _ _ eventType)
tfo@(TwoFacedObject maybe_error cursor valueString) ->
case maybe_error of
0k ((x,y),r) ->
case eventType of
MouseDrag _ dx dy ->
TwoFacedObject (0k ((x+dx,y+dy),r))
NoCursor
[show ((x+dx,y+dy),r)]
- -> tfo
NotOk _ _ ->

Algorithm 16 The customized event function for the logistic map starting value.

\ event@(Event _ x _ _ eventType)
tfo@(TwoFacedObject maybe_error
cursor

valueString) ->
case maybe_error of
Ok _ ->
case eventType of
MouseButton Down _ ->
TwoFacedObject
(0k ((fromInteger x)/700.0))
NoCursor
[show ((fromInteger x)/700.0)]
_ -> tfo
NotOk ->

Algorithm 17 The display function for the trace cell.

Ok pairlist ->
(Just (0,0), Just red, Nothing,
polyline
$ map (\ (x,y) ->
(round (700.0%x), round (700.0%y)))
pairList) .

72

Figure 4.4: The logistic map example implemented

Operstion

in Esquisse.

73

Tptl = §- Ty if v, <05
Zny1 =8 (1 —z,) otherwise

or sine map
Tnyr = (2) - sin(n-zy)

(two other maps exhibiting dynamical chaos) with a just a few keystrokes.

4.4.2 One-dimensional cellular automata (1DCAs) produce global patterns with
local rules. '

Cellular automata (CAs) are arrays of cells> that evolve according to uniform local rules.
The simplest such automata are the one-dimensional cellular automata. A one-dimensional
celluar automaton (1DCA) counsists of a (typically infinite) row of cells. Each cell can have two
states: 0 or 1. The state of a cell in the next generation is determined by its state and the states
of its left and right neighbors. These three states together constitute the cell’s “neighborhood.”
The rule specifies the mapping between these current states and the future state. For example,
a cell might have state 1 in the next generation if and only if both of its neighbors have state 1
- in this generation.

Wolfram [Wolfram 1994, p. 419] presents a notation for 1DCA rules. The above rule
would be

| 111 [110 | 101 | 100 | 011 [010 [001 | 000 |
(1 lofJ1JofJoJoJo]o]

in this notation. The top row, which is the same for all rules, depicts the current states
of the left neighbor, the cell itself, and the right neighbor. The bottom row depicts the new
state of the cell. Thus, the bottom row specifies that the cell will have state 1 if its both left
and right neighbors currently have state 1.

This notation has the advantage that the bottom row can be viewed as a binary number,
thus giving each rule a unique number between 0 and 255. The rule shown above is 128 + 32 =
160.

4.4.2.1 The 1DCA example uses higher-order functions to create cellular au-
tomaton rules.

In implementing a one-dimensional celluar automaton in Esquisse, one of the first ques-
tions to come up is how to implement rules. From a computational standpoint, rules should be
functions from the current state of the neighborhood to the future state of the cell. From the
standpoint of editing, the eight-digit standard notation makes the most sense.

2 Cells in cellular automata are conceptually separate and -distinct from the cells in Esquisse.

Algorithm 18 The formula for the trace cell.

\ 1m s n x0 ->

let
1 = iterate (lm s) xO
dup [1 =[]
dup (x:xs) = x:x:(dup xs)
in

take (2*n) $ zip (dup 1) (0.0:(dup $ tail 1))

74

Higher-order functions support both representations cleanly. The eight-digit notation is
easily supported by a simple list of 0s and 1s (stored in an expression cell that we will call
ruleList®). A higher-order function ruleMaker (algorithm 19) maps the rule list to a function

Algorithm 19 The value of the ruleMaker cell.

\ rulelist ->
\' 1 cr -> ruleList!!(4%1+2%c+r)

that looks up the current neighborhood configuration and returns the corresponding next state.
(List indexing is specified by !! in Haskell.)

4.4.2.2 The 1DCA example uses bidirectional formulae to maintain two rule
representations.

The ability to also specify rules by number is a convenient feature. We can create an
expression cell ruleNumber to store the number, and write two formulae to keep ruleList and
ruleNumber consistent. Converting the list to the number is easy (algorithm 20); converting the

Algorithm 20 The formula in the ruleNumber cell.

ruleListToRuleNumber ruleList
= sum $ zipWith (*) rulelist $ map (27) [0..]

number back to the list is more complicated (algorithm 21). Together, the two formulae ensure
that when one cell is edited, the other will change to maintain consistency.

4.4.2.3 The function that evolves the automaton can be placed in a cell.

Having set up the rule, we need a function to evolve the automaton forward in time.
Algorithm 22 shows the value of the evolve cell. The evolve function defines oneStep (which
maps a state to the next state), then uses it (and the iterate function) to create a list of
successive states. The left and right neighbors of the cell are grouped with the cell by zipping
three “copies” of the cells, each shifted a different amount. Concatenating an infinite list of zeros
onto the end of the start state ensures that none of the automaton’s cells will be accidentally
dropped off the end of the list.

We also need a start state. We choose a single seed; that is, a 1 preceded and followed
by Os:

(take 250 $ repeat 0) ++ [1]

The trailing 0s will be added by evolve.

4.4.2.4 The evolution of the automaton is an infinite list of infinite lists.

Given a rule and a start state, evolve returns an infinite list of states, representing the
entire future of the automaton. Each state is also an infinite list. In principle, we could simply
store this list in a cell; due to the unfortunate implementation choice described in section 4.3.2,
this is not possible. Of course, we do not want to display the entire list; we want to display some
spatial extent over some number of generations. Instead of storing the list in a cell, we store a

8 Actually, ruleList stores the rule in reverse order. This could be corrected by adding reverse to ruleList’s
incoming and outgoing formulae.

75

Algorithm 21 The formula in the ruleList cell.

ruleNumberToRuleList digits n
= ruleNumberToRuleList’ n [] $ reverse
$ take digits $ map (27) [0..]
where
ruleNumberToRuleList’ 0 result [] = result
ruleNumberToRuleList’ n result (p:ps)

=if p<=n
then ruleNumberToRuleList’ (n-p) (1:result) ps
else ruleNumberToRuleList’ n (0:result) ps

Algorithm 22 The value of the evolve cell.

\ rule start ->
let
oneStep rule cells
= tail $§ zipWith3 rule
(0:0:cells) (0:cells) cells
in
iterate (oneStep rule) (start ++ (repeat 0))

76

function that, when given a width and a number of generations to display, returns that portion
of the automaton’s evolution.

To create the plot, we draw a square cell. We could start with any type of cell. A graphics
cell seems a reasonable prototype for a plot cell, and a square seems as good a choice as any.
We change its value to be the function described above (algorithm 23).

Algorithm 23 The value of the plot cell.

\ width numGenerations ->
(map (take width)) . (take numGenerations)
$ evolve (ruleMaker rulelList) start

The plot cell needs for evolve, ruleMaker, ruleList, and start to be defined. The
solution is to put a formula in the plot cell that defines the value (algorithm 24). When the

Algorithm 24 The formula in the plot cell.

\ evolve ruleMaker rulelList start ->
\ width numGenerations ->
(map (take width)) . (take numGenerations)
$ evolve (ruleMaker ruleList) start

plot cell value is set by the formula, evolve, ruleMaker, rulelList, and start will be the
values of the source cells of the formula.

The display function of the plot cell is shown in algorithm 25. The plot display function
passes a width and a number of generations to the function value of the cell, converts the list of
lists of 0s and 1s to coordinates, and displays the resulting points (using the segments function).

4.4.2.5 Esquisse supports the visibility of the automaton machinery.

The complete example is shown in figure 4.5. All of the parts of the computation relevant
to cellular automata are visible and editable: the rule as a number, the rule as a list, the
starting configuration, the ruleMaker, and the evolve function. The formulae and the display
function for the plot cell are not visible: the conversion formulae between the number and list
representations are not part of the automaton, and the formula and display function for the
plot cell are mostly concerned with plotting, not the mechanics of the automaton.

The user can modify the rule number, rule list, or starting configuration, and the plot
will automatically update. The rule shown is rule 90, which produces a Sierpinski gasket from
a starting configuration consisting of a single 1 surrounded by 0s.

4.4.3 The logistic map and 1DCA examples show the power of Esquisse.

The benefits of the Esquisse approach can be grouped into three categories: benefits due
to functional programming, benefits due to the spreadsheet mechanics, and benefits that arise
from the combination of the two.

4.4.3.1 Higher-order functions and lazy evaluation contribute power.

Both the logistic map and the one-dimensional cellular automaton make heavy use of
higher-order functions. The logistic map can be expressed as a function that takes a control
parameter s and returns a mapping function. Rules for the cellular automaton can be generated
by a higher-order function that takes a list denoting the rule, and returns the corresponding

77

Algorithm 25 The display function of the plot cell.

0k £ ->
let
listToXs list = listToXs’ O [] 1list
listToXs’ _ result [] = result
listToXs’ n result (b:bs)
= listToXs’ (n+1) (if b ==
then result
else n:result) bs
listToYs list = listToY¥s’ 0 [] list
listToYs’ _ result [] = result
1istToYs’ n result (1:1s)
= 1listToYs’ (n+1) (if null 1
then result
else (n,1):result) 1s
yxsToPoints (y,xs)
= map (\ x -> ((x,300-y), (x+1,300-y))) xs
in
(Just (100,150),
Just red,
Nothing,
segments
. concat
. (map yxsToPoints)
. 1listToYs
(map listToXs)
$ £ 500 235)

78

Operations i

e mreo e beivenind

Figure 4.5: The one-dimensional cellular automaton in Esquisse (rule 90).

79

rule function. Both examples use iterate and variants of zip (both higher-order functions) to
generate sequences of results.

In both examples, the sequences of results are infinite. In the cellular automaton example,
the individual states are also infinite. Consequently, the computations are quite general: editing
the plot cell (in the cellular automaton) or the trace cell (in the logistic map) is sufficient to
change how much of the result is computed. Both cells apply transformations to the results in
the course of plotting them, and these transformations can be applied to infinite lists as easily
as finite data.

The presence of high-level operations such as map, zip, zipWith3, and iterate provide
for quick construction of the examples.

4.4.3.2 Visible state, consistency maintenance, and built-in interactivity provide
accessibility.

Interactivity is central to both examples. In the cellular automaton, the power comes
from the ability to explore the space of one-dimensional cellular automata by modifying the
rule and the start state. In addition, the evolve and ruleMaker functions are available for
reference, or even for modification. In the logistic map example, the control parameter, the
number of iterations, and even the logistic map itself can be edited. Furthermore, clicking in
the plot “edits” the starting value for the iterations. No special work is required (no I/O needs
to be performed) to make the expressions cells visible and editable, and the starting value cell
is customized with little difficulty.

The formulae in the cellular automaton example maintain the consistency of the two
rule representations, and ensure that the plot is consistent with the rule and start state. In
the logistic map example, the curve and trace formulae keep them consistent with the logistic
map and control parameter; and, in the case of the trace, the starting value and the number
of iterations. The formulae allow relationships to be specified once by the programmer, and
maintained by Esquisse.

4.4.3.3 Esquisse supports functions in cells, customizable display and interac-
tion, and interactive graphics.

A provocative benefit of the spreadsheet-functional language combination is that func-
tions can be cell values. As a result, computation is not doomed to be hidden in formulae, but
can be placed in cell values. The logistic map, the ruleMaker, and the evolve function, in addi-
tion to being higher-order functions, are also cell values. As cell values, they can be arguments
to and return values from formulae (which themselves are thus higher-order functions). Also, as
cell values, they are visible and editable.

Esquisse extends the spreadsheet model by allowing customization of display and inter-
activity. The plot cell in the cellular automaton example and the curve, line, x0, and trace
cells in the logistic map example are all (radical) customizations of existing cells. Although cells
like curve, line, and plot (slightly modified) are candidates for “standard” cells, the trace and
x0 cells are the sort created for specialized use. Programming is for situations in which the
solution to a problem does not exist yet; customization of appearance and behavior supports
that flexibility.

Esquisse also extends the spreadsheet model by supporting graphical representations of,
and interactions with, cell values. The trace and x0 cells just mentioned together implement
an unusual and powerful graphical interaction. The line-fitting and temperature conversion
examples support interaction with cell values in a more direct way.

80

4.5 The design and implementation of Esquisse reveal some issues
and limitations.

The process of designing and implementing Esquisse involved numerous design issues,
some of whose consequences are discussed here.

4.5.1 Animation and simulations require minimal additional features.
4.5.1.1 Clock cells would support animation.

Clock cells are perhaps the simplest enhancement for adding animation. A cell whose
formula references the clock cell can then update itself each time the clock changes, and thus
can (for example) move around or change in some other animated fashion.

Esquisse can support animation in an extremely primitive fashion via an imitation clock
cell. The user can create a counter cell that increments each time it is clicked. While the user
clicks on this cell repeatedly, it behaves as the clock cell in the previous paragraph.

An important design question is how compatible the clock is with the largely functional
model of Esquisse. The clock could simply be an add-on, but a principled integration is prefer-
able.

4.5.1.2 Access to previous cell values would support simulations.

Esquisse can support certain simulations; in fact, the logistic map and the one-dimensional
cellular automaton are simulations that work well in Esquisse. Broader classes of simulations,
such as numerical integration and interactive simulation games, support interaction during the
simulation. Such simulations can be readily implemented with a small extension to Esquisse:
a language construct for accessing the previous value of a cell (or, in some cases, more than
one previous value). This is simpler than it might seem, because all of the values of all cells in
BEsquisse are persistent. Esquisse cell values are purely functional, and all of them are available
via the Gofer interpreter. The only necessary addition is a language construct that can be
translated to reference the previous cell (or cells).

4.5.2 In unusual cases, formulae can be nondeterministic, or can cycle endlessly.
4.5.2.1 The unspecified ordering of formulae can affect some formula combina-
tions.

Since Esquisse provides formulae for consistency maintenance, rather than stateful up-
date, the order of evaluation for a given cell’s formulae is deliberately left unspecified. For many
applications, the order of evaluation does not affect the final result. Consider the temperature
conversion example, with a Kelvin thermometer added. All three thermometers are storing a
single quantity, the temperature, and each formula is a function of exactly one variable, so no
indeterminacies are possible.

Now consider a three-cell implementation of the ideal gas law PV = nRT", with cells for
pressure, volume, and temperature. Each cell has a single formula of two variables: the pressure
cell’s formula is P = ﬁ%’ﬂ) the volume cell’s is V = 1‘—%—?—, and the temperature cell’s is T = %.
Now suppose the value of the pressure cell changes. Esquisse will do one of two things: update
the temperature, or update the volume — the user cannot choose. Modifying the order in which
the formulae are listed in each cell is no help; each cell has only one formula. Worse, in the
actual physical situation described by the ideal gas law, the temperature and volume may both
change, and Esquisse does not support this outcome at all.

Specifying constraints as separate entities, coupled with some of the techniques used in
constraint programming, might yield a more satisfactory solution.

81

4.5.2.2 Formula cycles that lack fixed points will “run away.”

Esquisse handles circular formula references by finding a fixed point, as described in sec-
tion 4.3.2, page 65. This works well when a formula cycle has a fixed point (as in the temperature
conversion example, or the rule number to rule list conversion in the one-dimensional cellular
automaton. Requiring a fixed point makes sense for consistency maintenance: two cells a and b
with formulae ¢ = b+ 1 and b = a + 1 cannot be made consistent.

Floating-point numbers bring additional complications. In the temperature conversion
example, the temperatures are stored as integers, not floating-point numbers, because the error
in floating point computation can produce either cycles that evaluate indefinitely, or runaway
evaluation due to accumulated error. Redefining equality on floating-point numbers is not a
good solution, because the acceptable error range varies. As with formula indeterminacy, more
sophisticated constraint mechanisms are the most promising avenue.

4.5.3 Several factors restrict cell generality.
4.5.3.1 Cells can only be created via the interface, not by formulae or other

cells.

Esquisse provides stateful interactivity in combination with a functional language by
keeping (the stateful parts of) the cell framework “out of reach” of the functional language.
Hence, cells are stateful containers for functional computation. Cells can be created with the
interface, but not from within the functional language.

4.5.3.2 Creating groups of cells is not supported.

Also, groups of cells cannot be modularized or abstracted to a single cell. Consider the
temperature conversion example. A thermometer with both a bar and a numeric display (with
either modifiable) is an obvious candidate for a container cell. Creating a composite cell brings
up questions of what the value, display function, and event function are for that cell. Of course,
container cells could have a different structure; the issue then becomes whether the benefits of
container cells warrant complicating Esquisse further.

Although the partitioning of Esquisse into stateful and stateless is central to its cogni-
tive benefits (section 4.6), several complications ensue. First, the interface and the language
have different functionality, which hinders automating an interactive process, and, conversely,
unpacking a computational process to make it more interactive. Second, since cell values are
values in a functional language, cells could be created by the language only by being the values
of other cells. In other words, cells would need to be first-class objects

4.5.3.3 First-class cells present typing and complexity problems.

Having cells as first-class objects presents two difficulties: typing and complexity. The
typing issue is closely related to the typing problems surrounding formulae (see section 4.3.2,
page 65). Putting cells within cells (even without their formulae) can quickly result in cells with
quite complex type signatures. (The purely functional Cell implementation has no difficulty
storing and inferring the types of arbitrary cell nestings; the problem is that if typing is to be
useful, type signatures need to be relatively concise.)

The other difficulty lies in managing the relationships between nested cells: connections
between cells at the same level, connections between cells and their container cells, connections
(if permitted) between cells in different containers. (The issue of connections also relates to
scoping.) Further research may uncover a principled solution.

82

4.5.3.4 Declarations cannot be put in cells.

Another difficulty arises when new data types are needed. Haskell provides a powerful
mechanism for creating arbitrary data structures, but even first-class cells cannot hold data
declarations. Even if a cell did contain a data declaration, other cells would have no access to
it. Modules address this issue in Haskell; perhaps an useful analogy between modules and cells
(or container cells) can be found.

4.5.4 Two design issues arise concerning the implementation of interaction with
cells.
4.5.4.1 No computational mechanism is provided to deal with overlapping cell
depictions.

In the line-fitting example, the fitted line, the points, and the clipping rectangle cells
are all superimposed. In the logistic map example, the curve, line, trace, and starting value
cells are superimposed. The benefits are obvious: several components of a visual display (a plot
in both cases) can be treated independently, but displayed together. In both examples, some
cells (the points, the starting value) are chiefly for interaction, some cells (the fitted line, the
trace) display the results of the interaction, and some cells (the clipping rectangle, the curve and
the line) are basically graphical constants. When cells are superimposed, only the top cell can
receive events. The user can change the stacking order via the Esquisse interface, but a more
principled approach to stacking or superimposing cells might eliminate this need.

4.5.4.2 Cell display and event functions and formulae are reevaluated after each
keystroke.

Textual editing of cell values presents an interesting design choice. In Esquisse, when an
event occurs over a cell, the event and display functions are evaluated, followed by formulae that
reference that cell. For graphical (non-textual) cells, propagating formulae after each event make
sense, because each event is individually meaningful. For textual cells, especially expression cells,
individual events (such as deleting a character) are meaningful only in the context of the larger
sequence of events (changing a numeric value). In particular, the intermediate states of the
textual cell are almost certainly meaningless. Propagating their values via formulae will result
in propagating errors, not meaningful values. In contrast, the event and display functions do
need to be updated, so that the value changes and the user sees the change. An edit mode
for cells, analogous to that provided by spreadsheets, would address this difficulty; the issue
remaining is how to integrate such a mode into the cell framework.

4.5.5 Embedding the functional type inference system in Esquisse has two
drawbacks.

Esquisse uses the type inference system of Gofer somewhat naively; both of the following
issues could be mitigated by a type inference system tailored for Esquisse.

4.5.5.1 Using show in display functions risks unresolved type overloading.

As discussed in section 4.3.1.1, page 63, TwoFacedObjects maintain textual and evaluated
versions of each value. When a value changes due to a formula update, the textual version of
the value must be updated. For many, but not all, types, the overloaded function show will
evaluate to a readable string that represents the value. However, show must be able to infer the
type of its argument from the surrounding context, and sometimes the context does not resolve
the issue. This problem also occurs in traditional functional programs, so it is not unique to
Esquisse, but it occurs more often in Esquisse because the parts of a cell are evaluated separately

83

before evaluated as a unit. A better solution is desirable because unresolved overloading can be
confusing, and because other information is available from other parts of the cell.
4.5.5.2 The editing process can result in premature type specialization.

Another consequence of type inference and the re-evaluation of textual cells after each
event is premature type specialization. In the line-fitting example, the cell containing all of the
points has a formula:

\ ¢l c2 c3 c4 cb c6 c7 c8 c9 cl10 ->
[c1,c2,c3,c4,c5,c6,c7,c8,c9,c10]

This function has the very general type:

a->a->a->a->a->a->a->a->a->a -> [a]

but a simple typographical error, such as 10 for c10, can cause the type inferencer to specialize
the type a to (in this case) type Int . A more sophisticated handling of type inference is called
for.

4.6 Esquisse compares favorably with existing programming sys-
tems.

4.6.1 Esquisse successfully addresses some of the cognitive challenges to pro-
gramming.

The programming walkthroughs show that Esquisse’s features work together to support
program construction. Some of these features are essentially spreadsheet features, while others
significantly extend spreadsheet functionality.

As with the other walkthroughs in this dissertation, the programming walkthroughs of
the temperature conversion (Appendix E) and line-fitting (Appendix F) examples record the
knowledge and actions a hypothetical user would need in order to write these two programs in
Esquisse. The discussion in this section refers to steps in the temperature conversion walkthrough
by references of the form “(TC step 23),” and steps in the line-fitting walkthrough by references
of the form “(LF step 22).” Screen images of the final line-fitting and temperature conversion
examples are shown in figure 4.6.

4.6.1.1 Esquisse shares many features with spreadsheets.

Esquisse stores data in a visible, manipulable representation. In the temperature conver-
sion example, the Fahrenheit and Celsius temperatures are stored in the heights of the rectangles
and the in the numeric expression cells. All the data in the temperature conversion example
are interactive. In the line-fitting example, the position of each point stores its (x,y) pair, and
the color of each point stores its status. The fitted line (LF step 38) is stored as a line (a pair
of (x,y) pairs), the clipping rectangle (LF step 31) is stored as a square, and the correlation is
stored as a floating-point number (LF step 43), and is displayed textually. In the line-fitting
example, the points are manipulable (LF step 15). The other items are also manipulable, but
manipulating them is nonsensical in the context of the example. Furthermore, they can be
made non-interactive by replacing their event functions with \ _ v -> v, the event function
that simply returns the value unchanged.

Computation takes place on the visible data, not in a separate “inner world” of compu-
tation. The formula functions in the temperature conversion example (TC steps 29, 32) are
applied to the values of the numeric expression cells. The fitted line and correlation function
(LF steps 34, 35) is applied to the list of points, which is computed (by a trivial function) from
the points themselves (LF steps 23, 24). In both of these cases, all of the function arguments

84

9% 2nd1g

0 samjereduwia) pue Juniy-sul oy

TSIDALIO

7 ur so[dwrexe uo

‘assinbs

85

are visible, manipulable data items; none of them required translation from the world of the
user to the world of computation.

Although the data are continuously visible, Esquisse formulae, like their spreadsheet
counterparts, are not. This has the advantage of not cluttering the display, but the acute disad-
vantage of hiding the computational machinery that is the heart of the program. This contributes
to difficulty of debugging and redesign [LO 1987]. A solution available in Esquisse, but not in
spreadsheets, is to put the formula functions in cells, and simply call the functions from the
formulae. In the line-fitting example, the user could have put the fittedLineAndCorrelation
formula in a cell (named expression_20, say). The cell holding the resulting (line, correla-
tion) pair (named expression_13in the walkthrough) could have source cells expression_20,
expression_11, and square_14, and the formula function:

\ fittedLineAndCorrelationFunction list0fPoints ((x,y),s) ->

fittedLineAndCorrelationFunction
(map (fst.fst)
(filter snd 1listOfPoints))
((x,y), (x+s,y+s))

That is, the function could be passed in like any other parameter. Taking this a step further, the
user could extract the body of the lambda expression and place it in a cell, leaving a function
like \ £ 1 s ->f 1 s as the formula function. Although somewhat ad hoc, this does make
essentially all of the formula visible. Furthermore, it allows the user to control which formulae
she or he sees.

Interaction with the data is supported by the interface (by the cells) and, at most, needs
to be customized by the user. The numeric expression cells in the temperature conversion
example (TC steps 4, 5, 9, 10) support editing with no programming whatsoever. The circles
in the line-fitting example (LF steps 5-17) required significant editing, but they initially had
dragging behavior, as did the rectangles in the temperature-conversion example. The rectangles
in the temperature conversion example required only a small modification to become draggable
bars (TC steps 15-17).

Formulae provide automatic consistency maintenance. The temperature conversion for-
mulae (TC steps 29, 32) keep the heights of the rectangles and the values in the number cells
consistent with each other. The fitted line and correlation formula (LF step 35) keeps the fitted
line and correlation coefficient consistent with the points and the clipping rectangle.

Because consistency is maintained automatically and the formulae are pure functions,
there is no flow of control. In a sense, this is unsurprising, because functional languages are
stateless. It is significant, however, that the line-fitting example responds to events and recom-
putes results automatically, and the temperature conversion program resolves cyclic formulae to
a fixed point, all without flow of control.

Changes to the data produce visible results immediately, without explicit re-execution of
the “program.” Clicking a point, dragging a temperature bar, or editing a numeric expression
cell produces immediate results, both in the affected cell and in the cells linked to it by formulae.
No explicit updates need to be (or even can be) programmed.

Even the smallest fragments of a program (including the initial cells themselves) “work”
on their own, and thus programs can be constructed incrementally. In Esquisse, interaction can
be tested after almost every change, with no additional effort. As soon as the user creates a
numeric expression cell, she or he can edit it. The same goes for graphic cells and dragging. -
After customizing a temperature rectangle, the user can immediately test the customization
with no additional effort. (The customized point in the line-fitting example is analogous.) After
linking one temperature rectangle to its numeric counterpart, the user can test that they are
linked properly. Finally, after linking the two numeric cells together, the final version can be
tested. This is a far cry from writing test programs, and a significant improvement to evaluating

86

expressions repeatedly at a prompt.

4.6.1.2 Esquisse also provides features that significantly extend spreadsheets.

Cells are not confined to a grid but can be positioned arbitrarily. This allows the free
formatting of the temperature conversion example, and it is necessary in the line-fitting example,
where the points are cells whose locations are determined by their values. In fairness, the lack
of a grid has two drawbacks: cells must be created explicitly, and they obviously cannot be
referred to by row and column.

Cells can contain arbitrary data values, including functions and (in principle) infinite data
structures. This aids modularity and abstraction, as a function can be stored in a single cell
and be an argument to many formula functions, rather than be copied into each of them. The
benefits of infinite data structures for modularization are discussed in Chapter 1; storing them
in Esquisse cells brings those advantages into the cell framework. Esquisse does not, however,
currently provide another potentially useful abstraction - the facility to group cells together to
form composite cells.

Cells contain both values and (possibly multiple) formulae. This makes bidirectional
constraints (implemented by cyclic, or mutually recursive, formulae) possible, such as (all of)
the formulae in the temperature conversion example. Multiple formulae support bidirectional
constraints for cell groups of three or more: in the temperature conversion example, the Fahren-
heit number cell has a formula that depended on the Fahrenheit rectangle, and another formula
that depended on the Celsius number cell.

Cells can not only be created by typing (TC steps 4, 5, 9, 10) but also by drawing (TC
steps 1-10), and all graphics objects are also cells. Drawing a rectangle or a circle creates not
just a depiction, but a interactive component that can be linked to other components with
formulae (TC step 11, LF step 5).

The interactivity provided by Esquisse is not fixed, but can be tailored to a wide range
of interactions. Both the temperature conversion and line-fitting examples made use of this
feature. This flexibility of Esquisse frees the user from dependency upon built-in functionality.

Custom interactions need not be written from scratch: the cells provided by Esquisse
can be used as examples. The temperature conversion example customizes the rectangle cell
(TC steps 12-17), and the line-fitting example customizes the circle cell (LF steps 5-17). Both
examples use several non-customized cells “off the shelf” — we would expect this to be even
more true with a larger selection of default cell types.

Customization of a cell consists of editing at most three relatively simple items: the value,
the display function, and the event function. The value, display function, and event function can
each be edited in isolation, provided their types do not change; for instance, the temperature
conversion example involved only a simple event function customization. If any one of them
changes type, however, all three must be edited. The customization of the circle cell in the
line-fitting example falls into this category: the value was modified to add the (Boolean) status,
the display function was modified to display the status, and the event function was modified to
toggle the status; the modifications also ensured that the three of them had compatible types.

4.6.2 Spreadsheets and functional languages have compatible programming
models.

In chapter 3, we examined the conflict between the spreadsheet and imperative program-
ming models. A similar analysis of the spreadsheet programming model and the functional
programming model shows far greater compatibility.

87

4.6.2.1 Computations in a spreadsheet and in a functional language map closely
on to one another.

Consider again the spreadsheet implementation of the correlation function (figures 3.3
and 3.4), and the functional implementation shown in algorithm 26. The correlation is specified

Algorithm 26 Haskell implementation of the correlation function with more intermediate val-
ues.

correlation :: [(Int,Int)] -> Float

correlation theCoordinatelist = sxy / sqrt (sxx * syy)
where

sxx = sumX2 - (square sumX)
syy = sumY2 - (square sumY)
sxy = sumXY - sumX * sumY /
sumX2 = sum (map square xs)
sumY2 = sum (map square ys)
sumXY = sum (zipWith (*) xs ys)
sumX = sum Xxs
sumY = sum ys
square n = n * n
xs = map fromIntegral xList
ys = map fromIntegral yList .
(xList, yList) = unzip theCoordinatelList
n = fromIntegral $ length theCoordinatelList

n
n

BN

in term of Syz, Syy, and Sy, which are in turn computed from Y 2% (sumX2), 3 2 (sumX), 3" y?
(sumY2), >y (sumY), and 3 zy (sumXY) . The lists of x- and y-coordinates are extracted from
the list of pairs with unzip, and fromIntegral enables the integer coordinates to be converted
to floating-point numbers.

As in the Visual Basic implementation in chapter 3, the equations for Sz, Syy, Szy,
and the correlation map nicely onto rows 20 and 22-24 of the spreadsheet implementation. In
addition, the equations for sumX and sumY are identical to the formulae in B17 and C17 of the
spreadsheet implementation. The relationship between the equations for sumX2, sumY2, and
sumXY and the spreadsheet formulae for 5" 2% Y y?, and 5 a2y is only slightly more compli-
cated: the sum expression in each equation corresponds to the formula in E17, F17, or G17 (as
appropriate), and the map square (or zipWith (%), in the case of 3 xy) expression corresponds
to the formulae in column E, F, or G (as appropriate), rows 5-14.

The analogy between map (or zipWith) and columns of identical formulae is quite striking.
Both techniques take a sequence (or more than one sequence) of values and create a new sequence
of values, each of which is a function of the corresponding value(s) in the original sequence(s).
Furthermore, although there is a spreadsheet formula for each value, spreadsheet users enter
the formula once, then drag to fill the rest of the column with that formula. Thus entering the
formula corresponds to specifying the function to be mapped, and filling the column corresponds
to specifying map or zipWith.

The functional implementation has a few additional ingredients not found in the spread-
sheet. As in the Visual Basic implementation, the (z,y) pairs must be separated, and the
number of points calculated. Unique to the functional implementation is the need to convert
the integers to floating-point numbers; both the spreadsheet and Visual Basic implementations
use silent coercion.

88

4.6.2.2 Translating a computation from spreadsheet formulae to a function
definition (or vice-versa) is straightforward.

Converting the Haskell correlation function into a group of spreadsheet formulae is
fairly direct. Simple equations, such as those for sumX, sumY, sxx, syy, sxy, and the correlation
itself, translate directly into formulae, and translating those formulae into equations is simple
also. Converting mapping functions, such as those used in the equations for sumX2, sumY2, and
sumXY, into columns of formulae is less direct, and converting columns of formulae into mapping
functions is the most difficult of the conversions, but (as noted above) they are analogous. A
statement sequence in a loop (as in Visual Basic) does not correspond as closely to a column
of formulae. (The analogy here between mapping functions and columns of formulae resembles
Neuwirth’s [1995a, 1995b] comparisons of recursion and chains of formula discussed in chapter

1.)

4.6.2.3 The evaluation models of spreadsheets and functional languages are
similar.

Spreadsheets and functional languages have additional common ground. Spreadsheet
formula languages are expression-based and stateless. Spreadsheet recalculation, like lazy evalu-
ation, is demand-driven: only cells whose values depend on cells that have changed are updated.
Equation bindings (as noted above) map well onto spreadsheet formulae, as both specify rela-
tionships, not actions.

4.6.2.4 Functional languages support program transformation.

Of course, there is more than one way to write a functional program, and some functional
programs will map onto spreadsheets better than others. An alternate, and more concise, version
of the correlation function is shown in algorithm 27. The equations for sumX2, sumX, sumY2,

Algorithm 27 A more concise Haskell implementation of the correlation function.

correlation :: [(Int,Int)] -> Float

correlation theCoordinatelist = sxy / sqrt (sxx * syy)
where
sxx = sum (map square xs) - (square (sum xs)) / n
syy = sum (map square ys) - (square (sum ys)) / n
sxy = sum (zipWith (*) xs ys) - (sum xs).* (sum ys) / n
square n = n * n
xs = map fromIntegral xList
ys = map fromIntegral yList
(xList, yList) = unzip theCoordinatelist
n = fromIntegral $ length theCoordinateList

sumY, and sumXY are absent, and thus the equations for sxx, syy, and sxy are slightly more
complicated. »
Translation between this concise verion and the spreadsheet version of the computation
is more difficult. Essentially, the version in algorithm 26 lies between the two. Fortunately,
introducing intermediate values in expression-based languages is almost trivial. Extracting
sum (map square xs) to create an equation for sumX2 involves a minimal transformation of
the program. The reverse transformation — substituting sumX2’s expression into the equa-
tion for sxx — is, if anything, even simpler. (For comparison, consider extracting the sumX2
computation from the For loop in the Visual Basic MyCorrelation function from chapter 3.)

89

4.6.2.5 Imperative languages have functional features, but are still imperative.

The discussion here and in chapter 3 has portrayed the functional and imperative pro-
gramming models as diametrically opposed. In reality, however, imperative languages have
functional languages, and functional languages have stateful operations. Even Haskell, as a pure
functional language, has the imperative sublanguage of monadic I/0, quarantined behind the
monadic operators so that equational reasoning remains intact.

Perhaps the most imperative of all languages is assembler, which provides no expressions,
and no pure functions. Fortran provides expressions, and pure (and impure) functions, but no
higher-order functions. Pascal, C, and Modula are still quite imperative, but do provide a limited
form of higher-order functions. In all of these languages, expressions are not necessarily pure,
because they can contain calls to impure functions. C expressions can contain stateful operators
as well as impure functions.

Crossing the boundary into functional languages are Lisp and Scheme, which are impure,
weakly typed languages, but do provide true higher-order functions. Scheme also provides
explicit laziness with delay and force. The functional language ML is the pioneer of the strong
static typing, type inference, and parametric polymorphism that have become mainstays of
functional programming. Finally, the pure functional languages Haskell, Miranda, and Lazy ML
provide lazy evaluation.

From this, we might be tempted to mitigate the conflict between spreadsheets and imper-
ative languages by using the “more functional” features of imperative languages. However, the
fact that functional features can bridge the gap between the imperative and spreadsheet pro-
gramming models argues for, not against, the superiority of functional languages as companions
of spreadsheets. The imperative model for combining operations (stateful loops, for example)
does not transfer over to spreadsheets as well as the mapping operations of the functional model
do.

4.6.2.6 There are some mismatches between spreadsheets and functional lan-
guages.

Spreadsheets and functional languages are highly compatible, but they do not match
perfectly. Spreadsheet cells cannot contain functions, and spreadsheets do not support higher-
order functions. Spreadsheet cells cannot contain aggregate values, and spreadsheet formulae
do not provide pattern-matching. ‘

The most compelling mismatch is that spreadsheet cells are weakly typed. Since spread-
sheet cells can be edited, the type of value in a cell can change over time. Weak typing thus
simplifies the editing situation: values with incorrect types cause formula errors (see section
4.2.3.3, page 61 for how Esquisse handles strong typing and spreadsheet-style editing). It may
be that strong typing is fundamentally incompatible with the spreadsheet model. It may be that
the right way to integrate strong typing into the spreadsheet model remains to be discovered.
For now, the advantages of types for spreadsheet (or Esquisse) cells are unclear.

4.6.2.7 There are some mismatches between spreadsheets and programming
languages generally.

Some additional differences between spreadsheets and functional languages have to do
with general-purpose programming, not functional programming in particular. Spreadsheets
have no local environments, no modules, and no scoping. Spreadsheets do not support complex
data structures smoothly nor in any general fashion. And spreadsheets have no recursion, except
in the manner described by Neuwirth [Neuwirth 1995b].

90

4.6.2.8 Functional languages provide a good match to the spreadsheet model.

In summary, the features of functional languages (with the exception of strong typing) are
well suited to use with spreadsheets. Some higher-order functions can correspond to columns
of formulae. Spreadsheet recalculation and lazy evaluation are both demand-driven. Most
importantly, spreadsheets and functional languages are expression-based and stateless, vastly
aiding transformations within and between the two models.

4.6.3 The evaluation of Esquisse offers insights about learning costs and long-
term power.

4.6.3.1 Esquisse can be general-purpose, but is best at merging interaction with
computation.

Esquisse provides a rich, interactive interface to a general-purpose functional program-
ming language. As a result, an Esquisse program can, in principle, perform any computation
that a functional program can. But formal universality does not carry much practical weight.
A more relevant question is: for what problems is Esquisse suited? We could write a compiler
in Esquisse, but the benefits Esquisse offers would be underutilized.

As discussed in chapter 1, the strengths of spreadsheets and functional programming
languages together are suited for experimentation and exploration of (among other applications)
substantial equational models. The examples in section 4.4, page 67, bear this out. Game-
playing and search programs are also appropriate applications. In short, Esquisse’s strengths
are best used for interactive computations.

4.6.3.2 The programming walkthroughs demonstrate the low learning costs of
Esquisse. ‘

The line-fitting and temperature conversion examples are highly interactive. The pro-
gramming walkthroughs for those examples in Esquisse showed that interactivity can be pro-
grammed with surprising ease and facility.

The line-fitting and temperature conversion examples are instances of very simple func-
tional programs. Neither example uses higher-order functions or lazy evaluation. In contrast,
the logistic map and one-dimensional cellular automaton examples are full-blown functional
programs, making heavy use of both higher-order functions and lazy evaluation. The contrast
between the two suggests that Esquisse could be used successfully by programmers with different
levels of functional programming skill.

Chapter 5

Conclusions

Having drawn on the strengths of spreadsheets and functional programming, Esquisse
has made contributions to both programming models. Esquisse has also demonstrated that the
cognitive cost of writing interactive programs can be lower than in Haggis or Microsoft Excel
with Visual Basic.

5.1 Esquisse describes the interactive structure of the spreadsheet
cell in functional terms, and extends it in a principled manner.

First, we have upgraded the spreadsheet to give it the consistency and power of a func-
tional programming environment. We have expanded the range of possible cell values to include
arbitrary values, including functions and aggregate data structures, including infinite data struc-
tures. We have also expanded the formula language to a full-fledged functional language, with
higher-order functions, lazy evaluation, referential transparency, and type inference. Both of
these increase the modularity and abstraction available to the user.

Second, we have unpacked the interactive capabilities of the spreadsheet cell into two pure
functions, one of which specifies the cell’s depiction (graphical, textual, or a combination), the
other of which describes how the cell’s value changes when the user interacts with the cell. This
simple cell structure turns out to have surprising power, supporting a wide range of interactive
behaviors.

Third, we have expanded the role of formulae by allowing an arbitrary number of formulae
per cell, and by allowing each cell to contain both a value and zero or more formulae. Order
of evaluation of formulae is not specified, preserving the declarative nature of the functional
language. This enhancement supports multi-way constraints, a common feature in interactive
applications.

Fourth, we have identified the features of spreadsheets that mesh poorly with the func-
tional model. Formulae (when included as part of the cell structure) make cells’ types compli-
cated, and they reduce the usefulness of typing. Cell updates and type changes due to editing
could be better resolved with the functional model. The semantics of mutually recursive formu-
lae still warrant further investigation. Also, we note that providing cells at multiple abstraction
levels complicates typing.

Fifth, we have described some of the programming-language issues surrounding the use
of the spreadsheet’s editing model for program construction. We have presented an preliminary
approach, the TwoFacedObject, for managing these issues. In a similar vein, we have shown a
functional approach to spreadsheet error values.

Comparison of the programming walkthroughs of the temperature conversion and line-
fitting examples in Excel with Visual Basic and in Esquisse clearly shows the benefits of Es-
quisse’s principled, consistent approach and powerful extensions.

92

5.2 The design and development of Esquisse have also informed
the study of functional programming environments.

As an environment for functional programming, Esquisse has clear advantages over tra-
ditional interpreter-based environments. Like interpreters, it supports incremental program
construction, but unlike them, it supports incremental construction of multiple program frag-
ments concurrently on the screen, rather than through the file system and a text editor. Program
construction in Esquisse is as natural with graphical entities as well as textual ones.

In Esquisse’s functional programming environment, interaction is almost free; complexi-
ties such as interface toolkits and functional access to the stateful world of input and output are
handled by the cell structure and its implementation. Creating custom interactions is accom-
plished by editing relatively simple functions, not monadic or continuation-passing functions.

Esquisse offers a much richer interaction between programmer and programming envi-
ronment than a typical interpreter. Since all parts of the program are continuously visible and
manipulable, the cost of switching focus from one part of the program to another is arguably
less than that of switching files in an editor. The graphical capabilities of cells offer a much
wider range of display possibilities for function results (plots, for example), and the interactive
capabilities of combinations of cells offer greater flexibility for testing functions. The function
to be tested can be linked via a formula to a cell holding its argument. Changing the value in
the argument cell requires less effort and is less error-prone than reentering an expression at an
interpreter prompt, and is more flexible than mapping a function over one or more argument
lists. '

These advantages of Esquisse are even more striking when compared with Haggis. In
Haggis, components and their event handlers must be created explicitly, and the programmer
must write imperative monadic statements to maintain invariant relationships or constraints
between components. {(The programmer must also deal with the peculiarities of mingling func-
tional and imperative constructs, as described in Chapter 2). The components thus created are
opaque; they cannot be perused without access to their source code; customizing them requires
editing and recompiling the program as a whole. Although components can be rather elegantly
composed (as described in [FPJ 1995]), the infrastructure required to test a component is much
higher than that of pure functional programming or Esquisse. Comparison of the programming
walkthroughs of the temperature conversion and line-fitting examples in Haggis and in Esquisse
clearly shows the benefits of Esquisse’s built-in interaction structure.

5.3 Esquisse offers strong support for creating, customizing, and
maintaining the consistency of interface components and data
structures.

Haggis, Excel with Visual Basic, and Esquisse all provide mechanisms for creating in-
teractive programs. KEsquisse offers substantial support for direct-manipulation creation, cus-
tomization, and automatic consistency maintenance of interactive data structures, using a pure
functional language. Each of these features improves upon Haggis, Excel with Visual Basic, or
both, as shown in the following table:

93

| | Haggis | Visual Basic] Esquisse]
component within language | direct manipulation | direct manipulation,
creation only (some provided) customized
component all programmed some provided, all provided
behavior some programmed (some customized)
access and monadic I/0O Visual Basic’s formulae
update object model (pure functions)
consistency mostly explicit except automatic
maintenance explicit in spreadsheet (formulae)
data structures, some separate some separate data structures
interface data structures | interface components are interface
components required required components

The walkthrough examples show these benefits. Esquisse offers some interaction for free;
for example, the number cells in temperature conversion example can be edited as soon as they
have been created. Linking components together is simple: formulae connect the temperature
cells together, and formulae update the line and correlation when points change. Some cus-
tomizations are easy, such as changing the temperature bars so that dragging changes their
heights instead of moving them. Even sophisticated customizations are manageable, such as
changing the points in the line-fitting example to store the status, or creating plot cells for the
logistic map and one-dimensional cellular automaton. The changes affect the value, the display
function, and the event function, but they are still relatively simple.

In summary, the results of the programming walkthroughs of the temperature conversion
and line-fitting examples in each of the three systems suggest that implementing these examples
in Esquisse involves significantly less cognitive effort than implementing them in Haggis, and
that Esquisse also compares favorably with Excel with Visual Basic.

94

[ACM 1993]

[AP 1994]

[AG 1997]

[Backus 1978]

[BC 1993]

[BCLRWWZ 1994]

[BW 1988]

[Blough 1996]

[BG 1987]

[BA 1994]

[CP 1985

[CH 1993

Bibliography

Hal Abelson, Natalya Cohen, Jim Miller. Introduction to SWAT: the
Scheme Widget Application Toolkit. Massachusetts Institute of Technol-
ogy, July 1993.

Peter Achten, Rinus Plasmeijer. The Ins and Outs of Clean 1/0. Journal
of Functional Programming 5:1, January 1995, pages 81-110.

Ken Arnold, James Gosling. The Java Programming Language (Java se-
ries, second edition). Addison-Wesley, 1997.

John Backus. Can programming be liberated from the von Neumann style?
A functional style and its algebra of programs. In Communications of the
ACM, 21:8, pages 613-641.

Brigham Bell, Clayton Lewis. ChemTrains: a language for creating be-
having pictures. In IEEE Symposium on Visual Languages, 1993, pages
188-195.

Brigham Bell, Wayne Citrin, Clayton Lewis, John Rieman, Robert
Weaver, Nicholas Wilde, Benjamin Zorn. Using the programming walk-
through to aid in programming language design. Journal of Software Prac-
tice and Experience 24:1, 1994, pages 1-25.

Richard Bird, Philip Wadler. Introduction to Functional Programming.
Prentice Hall, Hertfordshire, UK, 1988.

Eric Blough. Lowering the Marginal Cost of Programming Interactivity
in a Functional Programming Environment. Ph.D. Proposal, University
of Colorado, May 1996.

Polly Brown, John Gould. An experimental study of people creating
spreadsheets. ACM Transactions on Office Information Systems 5:3, July
1987, pages 258-272.

Margaret M Burnett, Allen L Ambler. Interactive Visual Data Abstrac-
tion in a Declarative Visual Programming Language. Journal of Visual
Languages and Computing 5, 1994, pages 29-60.

Luca Cardelli, Rob Pike. Squeak: a language for communicating with
mice. In Proceedings of SIGGRAPH’85, 1985, pages 199-204.

Magnus Carlsson, Thomas Hallgren. FUDGETS: a graphical user interface
in a lazy functional language. In Proceedings of the 6th ACM Conference |
on Functional Programming and Computer Architecture, pages 321-330.
ACM Press, 1993.

96

[CDZ 1995

[CR 1991]

[dHRVE 1995]

[ASA 1986]

[Draper 1986]

[Eisenberg 1995]

[ERT 1987]

[FPJ 1995]

[FMB 1990]

[SMFB 1993]

[GR 1991]

[GR 1983]

[Halverson 1998|

[Hill 1992]

[HGSG 1990]

Wayne Citrin, Michael Doherty, Benjamin Zorn. The Design of a Com-
pletely Visual OOP Language, in Visual Object-Oriented Programming,
M. Burnett, A. Goldberg, and T. Lewis (eds.), Prentice-Hall, Englewood
Cliffs, NJ, 1995, pages 67-93.

W. Clinger, J. Rees. Revised® Report on the Algorithmic Language
Scheme. MIT AI Memo No. 848b, Massachusetts Institute of Technology,
1991.

Walter de Hoon, Luc Rutten, Marko van Eekelen. Implementing a func-
tional spreadsheet in Clean. Journal of Functional Programming. 5:3, July
1995, pages 383-414.

Andrea diSessa, Hal Abelson. Boxer: a reconstructible computational
medium. Communications of the ACM 29:9, 1986, pages 859-868.

Steven Draper. Display managers as the basis for user-machine communi-
cation. In Donald Norman, Steven Draper (eds.), User Centered System
Design: New Perspectives on Human-Computer Interaction. Lawrence
Erlbaum Associates, Hillsdale, NJ, 1986, page 339.

Michael Eisenberg. Programmable Applications: Interpreter Meets Inter-
face. SIGCHI Bulletin 27, 2 (April 1995).

Michael Eisenberg, Mitchell Resnick, Franklyn Turbak. Understanding
Procedures as Objects. In Empirical Studies of Programmers: Second
Workshop. Ablex, 1987, pages 14-32. :

Sigbjorn Finne, Simon L Peyton Jones. Composing Haggis. In Proceed-
ings of the Fifth Eurographics Workshop on Programming Paradigms in
Computer Graphics, Maastrict, Netherlands, September 1995.

Bjorn Freeman-Benson, John Maloney, Alan Borning. An incremental con-
straint solver. Communications of the ACM, 33:1, January 1990, pp. 54~
63.

Michael Sannella, John Maloney, Bjorn Freeman-Benson, Alan Born-
ing. Multi-way versus one-way constraints in user interfaces: experience
with the DeltaBlue algorithm. Technical Report 92-07-05a, Department of
Computer Science and Engineering, University of Washington, May 1993.
(also appears in Software — Practice and Experience)

Emden W. Gansner, John H. Reppy. eXene. In Proceedings of the 1991
CMU Workshop on SML, 1991.

A Goldberg, D Robson. Smalltalk-80: The Language and Its Implemen-
tation. Addison-Wesley, Reading, MA.

Microsoft Press, Michael Halvorson. Microsoft Visual Basic 6.0: Deluxe
Learning. Microsoft Press, 1998.

Ralph D Hill. The Abstraction-Link-View Paradigm: Using Constraints to
Connect User Interfaces to Applications. In Proceedings of CHI'92, ACM
Press, May 1992, pages 335-342.

J-M Hoc, T R G Green, R Samuray, D J Gilmore. Psychology of Pro-
gramming. London, Academic Press, 1990.

[Hiibscher 1995]

[Hudak 1989]

[HS 1988]

[HPJW+ 1992]

[HPF 1997]

[Hughes 1990]

[HHN 1986]

[Jones 1991]
[LPJ 1994]

[Lewis 1989]

[LVC 1989]
[Liskov 1996]

[LO 1987]

[LRB 1991]

[McPhee 1992]

97

Roland Hiibscher. Visual programming with temporal constraints in a
subsumption-like architecture. Technical Report CU-CS-778-95, Depart-
ment of Computer Science, University of Colorado, 1995.

Paul Hudak. Conception, Evolution, and Application of Functional Pro-

gramming Languages. ACM Computing Surveys, 21:3, September 1989,
pages 359-411.

Paul Hudak, R S Sundaresh. On the expressiveness of purely functional
I/0O systems. Yale University Research Report YALEU/DCS/RR-665, De-
partment of Computer Science, 1988.

Paul Hudak (ed.), Simon Peyton Jones (ed.), Philip Wadler (ed.), Brian
Boutel, Jon Fairbairn, Joseph Fasel, Mara M. Guzmn, Kevin Hammond,
John Hughes, Thomas Johnsson, Dick Kieburtz, Rishiyur Nikhil, Will
Partain, John Peterson. Report on the Programming Language Haskell:
A Non-strict, Purely Functional Language, Version 1.2. ACM SIGPLAN
Notices 27:5, May 1992.

Paul Hudak, John Peterson, Joseph Fasel. A gentle introduction to
Haskell, version 1.4. texttthttp://haskell.org/tutorial.

John Hughes. Why functional programming matters. In David A. Turner,
editor, Research Topics in Functional Programming, Addison Wesley,
1990, pages 17-42.

E.L. Hutchins, John Hollan, Donald Norman. Direct Manipulation Inter-
faces. In Donald Norman and Stephen Draper (eds.), User Centered Sys-
tem Design, New Perspectives on Human-Computer Interaction, Lawrence
Erlbaum Associates, Hillsdale, NJ, 1986, pp. 87-124.

Mark P. Jones. Gofer version 2.30. Yale University, 1991.

John Launchbury, Simon L Peyton Jones. Lazy functional state threads.
In Proceedings of the ACM Conference on Programming Language Design
and Implementation, June 1994.

Clayton Lewis. New Approaches to Programming. Technical Report CU-
(CS-429-89, Department of Computer Science, University of Colorado,
1989.

Mark Linton, John Vlissides, Paul Calder. Composing user interfaces with
Interviews. IEEE Computer, 22:2, February 1989, pages 8-22.

Barbara Liskov. A history of CLU. In History of programming languages
II, ACM Press, 1996, pp. 471-497.

Clayton Lewis, Gary M Olson. Can Principles of Cognition Lower the
Barriers to Programming? In Empirical Studies of Programmers: Second
Workshop. Ablex, 1987, pages 248-263.

Clayton Lewis, John Riemann, Brigham Bell. Problem-centered design for
expressiveness and facility in a graphical programming system. Human-
Computer Interaction 6, 1991, pages 319-355.

Nic McPhee. The Importance of Lazy Evaluation in Search. Unpublished
paper, University of Texas at Austin, 1992.

98

[Microsoft 1994]

[Myers 1989]

[Nardi 1993]

[Neuwirth 1995a]

[Neuwirth 1995b]

[Neuwirth 1998]

[NR 1994]

[NR 1995]

[Olsen 1989|

[Ott 1984]

[Ousterhout 1994]

[PF 1994]

[PIGF 1996]

[PJW 1993

[Pike 1994]

[PLRW 1992]

Microsoft Corporation. Visual Basic User’s Guide [for Microsoft Excel].
Microsoft Corporation, 1994.

Brad Mpyers. Encapsulating Interactive Behaviors. In Proceedings of
CHI'89, ACM Press, May 1989, pages 319-324.

Nardi, B. A Small Matter of Programming:: Perspectives on End User
Computing. MIT Press, 1993.

Erich Neuwirth. Spreadsheet structures as a model for proving combinato-
rial identities. Journal of Computers in Mathematics and Science Teach-
ing, 14:3, pp. 419-434, 1995.

Erich Neuwirth. Visualizing Formal and Structural Relationships with
Spreadsheets. In A. DiSessa, C. Hoyles, and R. Noss, Computers and
Exploratory Learning, Springer-Verlag, 1995.

Spreadsheets, Mathematics, Science, and Statistics Education. textt-
thttp://sunsite.univie.ac.at/Spreadsite/

Rob Noble, Colin Runciman. Functional languages and graphical user in-
terfaces: a review and a case study. Technical Report 94-223, Department
of Computer Science, University of York, February 1994.

Rob Noble, Colin Runciman. Gadgets: lazy functional components for
graphical user interfaces. In Manuel Hermenegildo and S. Doaitse Swier-
stra, editors, PLILP’95: Seventh International Symposium on Program-
ming Languages, Implementations, Logics, and Programs, volume 982 of
Lecture Notes in Computer Science, Springer-Verlag, 1995, pages 321-340.

Dan R Olsen Jr. A Programming Language Basis for User Interface Man-
agement. In Proceedings of CHI 89, ACM Press, May 1989, pages 171-176.

Lyman Ott. An introduction to statistical methods and data analysis (sec-
ond edition). PWS Publishers, 1984.

John Ousterhout. Tcl and the Tk Toolkit. Reading, MA, Addison-Wesley,
1994.

David Peak, Michael Frame. Chaos under control: the art and science of
complexity. W.H. Freeman and Company, 1994.

Simon L Peyton Jones, Andrew Gordon, Sighjérn Finne. Concurrent
Haskell. In Proceedings of the 23rd ACM SIGPLAN/SIGACT Sympo-
sium on Principles of Programming Languages, pages 295-308, January
1996.

Simon L. Peyton Jones, Philip Wadler. Imperative functional program-
ming. In ACM Conference on Principles of Programming Languages. ACM
Press, January 1993, pages 71-84.

Rob Pike. Acme: a user interface for programmers, in Proceedings of the
Winter 1994 USENIX Conference, pages 223-234, 1994.

Peter Polson, Clayton Lewis, John Rieman, Cathleen Wharton. Cognitive
walkthroughs: a method for theory-based evaluation of user interfaces.
International Journal of Man-Machine Studies, 36, pages 741-773.

[PVM 1994]
[RS 1995]
[Serrarens 1995]

[Shneiderman 1983]
[SB 1989

[Thompson 1990]
[Took 1990]

[Travers 1994]

[Turner 1986}
[Wadler 1998a)

[Wadler 1998b]
[Wadler 199&c]|

[Wilde 1994]

[WL 1990]
[Wirth 1989)]

[Wolfram 1994]

99

Jorg Poswig, Guido Vrankar, Claudio Morara. VisaVis: A Higher-Order
Functional Visual Programming Language. Journal of Visual Languages
and Computing 5, 1994, pages 83-111.

Alexander Repenning, Tamara Sumner. Agentsheets: a medium for creat-
ing domain-oriented visual languages. IEEE Computer 28:3, March 1995,
pages 17-25.

Pascal Serrarens. BriX: A Deterministic Concurrent Functional X Win-
dows System. Department of Computer Science, University of Bristol,
June 1995.

Ben Shneiderman. Direct Manipulation: A Step Beyond Programming
Languages. IEEE Computer 16, 8 (1983), pp. 57-69.

Michael Spenke, Christian Beilken. A spreadsheet interface for logic pro-
gramming. In Proceedings of CHI’89, ACM Press, May 1989, pages 75-80.

Simon Thompson. Interactive functional programs: a method and a formal
semantics. In David Turner (ed), Research Topics in Functional Program-
ming, pages 249-285, Addison-Wesley, 1990.

Roger Took. Surface interaction: a paradigm and model for separating
application and interface, in Proceedings of CHI’90, pages 35-42, April
1990.

Michael Travers. Recursive interfaces for reactive objects, in Proceedings
of CHI'94, pages 379-385, April 1994.

An Overview of Miranda. SIGPLAN Notices, December 1986.

Philip Wadler. An angry half-dozen. SIGPLAN Notices, 33:2, February
1998, pp. 25-30.

Philip Wadler. Why no one uses functional languages. SIGPLAN Notices,
33:8, August 1998, pp. 23-27.

Philip Wadler. Functional Programming in the Real World.
http://www.cs.bell-labs.com/"wadler/realworld/index.html.

Nicholas Wilde. DataSheets: designing an end-user programming envi-
ronment to support a specific domain. Technical Report CU-CS-733-94,
Department of Computer Science, University of Colorado, 1994.

Nicholas Wilde, Clayton Lewis. Spreadsheet-based interactive graphics:
from prototype to tool. In Proceedings of CHI’90, pages 153-159, 1990.

Niklaus Wirth, J. Gutknecht. The Oberon System, Software Practice and
Experience 19:9, September 1989, pages 857-894.

Stephen Wolfram. Cellular automata and complexity: collected papers.
Reading, MA, Addison-Wesley, 1994.

100

Appendix A

Temperature Conversion Walkthrough and Examples in Haggis

A screen image of the final line-fitting example in Haggis appears in figure 2.1.

Al Temperature Conversion Walkthrough in Haggis

Step 1:
choose TwoBars as starting example

Guiding Knowledge:
creating a custom component is much more work
than modifying an existing component
the TwoBars example looks a lot like the desired example
the TwoBars interaction shows that the bars are linked
no other example looks helpful
the TwoBars example runs and behaves similarly to temperature conversion

Obstacles:
TwoBars is horizontal, TC is vertical

Step 2:
infer that ["xtitle: Bars"] specifies that the window title is Bars
change title to Temperature Conversion

Guiding Knowledge:
the example’s window title is Bars
Temperature Conversion is a more meaningful and appropriate title

Obstacles:
["*title: Temperature Conversion"] is cluttered
and modifying it is thus likely to be error-prone

Step 3:
infer that levl, lev2, are the two bars
that dhl, dh2 are the two display handles
that ["*title: Bars"] specifies that the window title is Bars

Guiding Knowledge:
dh is a "standard" abbreviation for display handle
lev suggests level
an expression: componentCreator ... >>= \(c,dh) ->
creates a component ¢ and its display handle dh
the example’s window title is Bars

Obstacles:
understanding (c,dh) pairs is central to using Haggis
understanding >>= \ ... -> (at least as a template) is also critical
’Do’ Step 3:

infer that levli, lev2, are the two bars
that dhl, dh2 are the two display handles
that ["*title: Bars"] specifies that the window title is Bars

Guiding Knowledge:
dh is a "standard" abbreviation for display handle
lev suggests level
an expression: (c,dh) <- componentCreator ...
in a ’do’ context creates a component ¢ and its display handle dh
the example’s window title is Bars

102

Obstacles:
understanding (c,dh) pairs is central to using Haggis
understanding do ... <~ ... (at least as a template) is also critical
do x <- ... syntax makes x look undeclared, because it binds a new x

this is far from obvious and violates programmer intuition
(but then, programmers have trouble including declarations anyway,
so maybe this isn’t likely to confuse)

Step 4:
rename levl, lev2, dhl, dh2 to fBar, cBar, fBarDH, cBarDH
change title to Temperature Conversion

Guiding Knowledge:

names that reflect the purpose of an entity are the least confusing
programming languages allow renaming of variables and parameters
program still runs after names are changed

(not a guarantee, but a positive sign)
the scope of the lambda expressions extends all the way

to the end of the indentation level (here, the end of the program)
indentation level can indicate scope and subexpression grouping

Obstacles:
scope may be challenging, especially since:
= (and >> as well) associate to the right
lambdas are at the end of the line, apparently disembodied
succeeding lines are not intended to show additionmal scope level
indentation level as a scope indicator may be unclear

’Do’ Step 4:
rename levl, lev2, dhi, dh2 to fBar, cBar, fBarDH, cBarDH
change title to Temperature Conversion

Guiding Knowledge:
names that reflect the purpose of an entity are the least confusing
programming languages allow renaming of variables and parameters
program still runs after names are changed
(not a guarantee, but a positive sign)
the scope of an x introduced by x <- in a do context extends all the way
to the end of the ’do’ indentation level (here, the end of the program)

Obstacles:
scope may be challenging, especially since:
succeeding lines are not intended to show additional scope level
indentation level as a scope indicator may be unclear
in "do x <- ...", x looks undeclared (see other version of this step)

Step 5:
make bars vertical by changing XAxis to YAxis

Guiding Knowledge:

problem statement and domain knowledge indicate vertical bars
XAxis/YAxis make bars horizontal/vertical
program will show vertical bars

Obstacles:
simply need to know this

Step 6:
place bars side-by-side by changing vbox to hbox

Guiding Knowledge:

problem statement and domain knowledge specify side-by-side bars
program shows stacked vertical bars
vbox/hbox arrange their arguments (DHs) from top to bottom / left to right
DHs (display handles) are the graphical depictions of the bars
to make the bars vertical and still side-by-side,
both orientation and boxing must change

Obstacles:
some understanding (unclear how much) of vbox, hbox, DH is necessary

Step 7:
infer that initial heights of bars are O for F and 100 for C

Guiding Knowledge:
"mkBar range start orient dc'" makes a bar of height "start"

Obstacles:

103

potential confusion between range (low,high) and starting value

Step 8:
change initial values of bars to 32 for F and 0 for C

Guiding Knowledge:
problem statement specifies that bar heights should be proportionate
32 Fahrenheit is O Celsius
these values are a reasonable starting temperature (domain knowledge)

Obstacles:
see step 7

Step 9:
decide that next step is to change the link connecting the bars
to an F<-->C conversion

Guiding Knowledge:
the TwoBars interaction shows that the two bars are linked
the problem statement specifies that the thermometers be linked
by F<-->C conversions

Obstacles:

Step 10:
infer that "track" connects the two Bars

Guiding Knowledge:
"track src dst" suggests that track updates dst from src
track is passed fBar and cBar in the forkIO lines

Obstacles:
understanding event handlers is central to using Haggis successfully
it’s not clear how deep the understanding must be
might not need to understand forkI0O here, but will need to later

Step 11:
infer that waitGauge (getLevelGauge src)
waits for the src’s value to change

Guiding Knowledge:
Bar is just Level with some additional features
getLevelGauge returns the value of the Level (src) as a Gauge
a Gauge is a stateful storage component
waitGauge waits for the value of the Gauge to change

Obstacles:
stateful storage is perhaps more problematic than interface components
because interface components have visible state change
all nontrivial Haggis programs use Gauges or similar entities
waiting for an event is a typical Haggis feature
understanding that waiting on the Gauge is the same as
waiting on the level is potentially problematic

Step 12:
infer that waitGauge (getLevelGauge src) >>= \v ->
waits for src’s value to change, then passes it on as v

Guiding Knowledge:
>>= \x -> executes its left side, then passes the result as x
because
>>= executes its left side
then passes the result to the lambda on its right side
\x -> begins a function with one parameter, x

Obstacles:
understanding >>= \ ... -> well enough
there are two features combined here (in waitGauge, actually)
waiting for the Gauge to change
getting the Gauge’s value
and understanding them in combination is significantly more difficult

’Do’ Step 12:
infer that (within a ’do’ context) v <- waitGauge (getLevelGauge src)
waits for src’s value to change, then sets v to that value

Guiding Knowledge:
in a ’do’ context, x <- executes its left side,
then sets x to the result

104

in a ’do’ context, statements are evaluated sequentially
a ’do’ context consists of all statements between a ’do’
and the next statement indented no farther than the ’do’

Obstacles:
understanding do ... <- ... well enough
see other version of this step for discussion of waitGauge
imperative syntax is at variance with the functional model

Step 13:
conclude that the first line of track sets v to the height of the src Bar
immediately after each interaction with the src¢ Bar

Guiding Knowledge:
waitGauge waits for a change in value, then returns the value
interactions with the Bar change the value

* the value of the Bar is its height and vice versa

Obstacles:
knowing that the value of the Bar is its height
and not some more complicated value

Step 14:
infer that setLevel dst (100-v)
sets the value of the dst Bar to be 100-v,
where v is the value of the src Bar

Guiding Knowledge:
setLevel dst x sets the value of the level dst to the new value x
Bar is just Level with some additional features
(the (100-v) also suggests that the Bar’s value is numeric)

Obstacles:
usual caveats about >>= \x -> or do x <~

Step 15:
conclude that track repeatedly waits for the src Bar to change,
then sets the dst Bar to 100 minus the new value of the src Bar

Guiding Knowledge:
the body of track waits and sets
track calls itself recursively

Obstacles:
the fact that track is bottomless recursion might be disturbing

Step 16: -
infer that two "track" processes are created:
one waiting for changes to fBar and setting cBar, and
one waiting for changes to cBar and setting fBar

Guiding Knowledge:
forkI0 takes a expression and creates a process
that evaluates that expression
track is called as "track fBar cBar" in one forkIO call, and
track is called as "track cBar fBar" in the other

Obstacles:
not clear how much understanding of forkID is required
separately threaded event handlers is a significant concept

Step 17:
infer that the two processes are different
because their parameters are different

Guiding Knowledge:
"track" is defined only once
the two track processes are passed parameters differently
parameterizing functions is a common in functional programming especially
the two bars need separate track processes
because they have different behavior
and because each active component has its own track process

Obstacles:
understanding that there are two processes and why they differ

Step 18:
infer that the fBar track process must set the cBar to 5/9 (F-32)
infer that the cBar track process must set the fBar to 9/5 C + 32

105

Guiding Knowledge:
These are the formulas for f->c and c->f
when one bar changes, the other must change accordingly (problem stmt)

Obstacles:
some possibility of source/destination confusion

Step 19:
infer that (100-v) in "track" must be replaced
by the appropriate function of v in each case

Guiding Knowledge:
100-v computes the value of the dst bar from the value of the src bar
interaction with the bars shows that the bar heights sum to 100
the f->c and c->f conversion functions will compute the value of one bar
from the value of the other

Obstacles:
none

Step 20:
consider copying "track" and replacing 100-v with
(6/9%(v-32)) and (9/5%v + 32) in the two copies

Guiding Knowledge:
copying the function creates two versions, one for each process

Obstacles:
none

Step 21:
instead of copying, decide to add a function parameter "convert" to track
and replace (100-v) with (convert v)

Guiding Knowledge:
duplication of expressions can be avoided by parameterization
the two track processes already have different parameters

Obstacles:
copying the function seems more '"obvious"
perhaps even to a functional programmer (certainly to the author)
the HU might copy the function as in the previous step,
then notice (or not) that the differences can be extracted
into the single parameter "convert"

Step 22:
modify track to take a parameter "convert"
in definition and recursive call [and type signature! (not present)]
note that other calls to track must also have a parameter added

Guiding Knowledge:
adding a parameter must happen in
the type signature
the definition
recursive calls
calls in other expressions

Obstacles:
standard programming problem of needing to make a change
in several places to maintain consistency

Step 23:
in the where clause, create functions convertFtoC and convertCtoF

Guiding Knowledge:
the functions need to go in a let or where clause
in the same scope as track

Obstacles:
scope knowledge (including the use of "where')
in a >>= or do context

Step 24:
write convertFtoC f = (5/9)*(f-32)
and write convertCtoF ¢ = (9/5)%c + 32

Guiding Knowledge:
these are the conversion formulas for F<-->C (domain knowledge)

106

Obstacles:
opportunity for source/destination confusion

Step 25:
add convertFtoC to "track fBar cBar" to get "track convertFtoC fBar cBar"
add convertCtoF to "track cBar fBar'" to get "track convertCtoF cBar fBar'

Guiding Knowledge:
a call to track (now) has the form '"track convert src dst"
adding a parameter to the definition of track requires
passing in a corresponding value in all calls to track
passing in the conversion function requires adding it to the calls

Obstacles:
need to make changes in multiple places comsistently
At this point, the program looks like this:
module Main(main) where

import Concurrent
import Haggis

main =
mkDC ["*title: TemperatureConversion'] >>= \dc ->
mkBar (0,100) 32 YAxis dc >>= \ (fBar,fBarDH) ->
mkBar (0,100) 0 YAxis dc >>= \(cBar,cBarDH) ->

realiseDH dc (hbox [fBarDH,cBarDH]) >>
forkI0 (track convertFtoC fBar cBar) >>
forkI0 (track convertCtoF cBar fBar) >>
return ()
where .

convertFtoC f = (5/9)*(£-32)

convertCtoF ¢ = (9/5)*c + 32

track convert src dst =

waitGauge (getLevelGauge src) >>= \v ->

setLevel dst (convert v) >>
track convert src dst

or, in the ’do’ version:
module Main(main) where

import Concurrent
import Haggis

main =
do
dc <- mkDC ["*title: TemperatureConversion"]
(fBar,fBarDH) <- mkBar (0,100) 32 YAxis dc
(cBar,cBarDH) <- mkBar (0,100) 0 YAxis dc
realiseDH dc (hbox [fBarDH,cBarDH])
forkI0 (track convertFtoC fBar cBar)
forkI0 (track convertCtoF cBar fBar)
return ()
where
convertFtoC f (6/9)*(£-32)
convertCtoF ¢ = (9/5)*c + 32
track convert src dst =
do
v <- waitGauge (getLevelGauge src)
setLevel dst (convert v)
track convert src dst

Step 26:
decide that next step is to add numeric labels

Guiding Knowledge:
problem statement specifies showing temperatures in numerals
all other parts of the problem statement are complete

Obstacles:
none

Step 27:
divide adding labels into three steps

107

specifying how the labels will be created
specifying how the labels will be displayed
specifying how the labels will change

Guiding Knowledge:
components must be created and displayed
and their interactive behavior and relationship(s) to other components
must be specified

Obstacles:
none

Step 28:
decide to add label creators first

Guiding Knowledge:
labels must be created, so might as well start there
where labels are created can affect how they are used in the program

Obstacles:
none

Step 29:
infer that creators may be placed anywhere between mkDC and realiseDH

Guiding Knowledge:
dc needed from mkDC to pass to creators
DH needed from creators to pass to realiseDH
label and bar creators are not otherwise dependent on each other
because they don’t share parameters/return values

Obstacles:
unclear how necessary this understanding of dc and dh is
HU might succeed by sheer imitation

Step 30:
decide to add label creators together immediately after Bar creators

Guiding Knowledge:
the location is between mkDC and realiseDH
picking a clear convention is useful when no other guidelines exist
might as well keep them together

Obstacles:
none

Step 31:
add Fahrenheit label creator and Celsius label creator
label "32" dc >>= \(fLabel,fLabelDH) ->
label "0" dc >>= \(cLabel,cLabelDH) ->

Guiding Knowledge:
labels are created with "label initialValueString dc"
"label" creates alabel and aLabelDH
where alabel is the label
and alLabelDH is its graphical depiction
the label creator chains with >>= \
each Bar and its numeric display need to be consistent
the initial values of the Bars are 32 (Fahrenheit) and O (Celsius)
labels display strings
"32" is the initial value of the Fahrenheit Bar as a string
"0" is the initial value of the Celsius Bar as a string

Obstacles:
the >>= \(c,dh) -> contains a lot of syntactic clutter -~ including ()
remembering to use strings for initial values is forgettable
’dc’ is also a bit cluttery -- unmemorable and system-oriented

‘Do’ Step 31:
add Fahrenheit label creator and Celsius label creator
(fLabel,fLabelDH) <- label "32% dc
(cLabel,cLabelDH) <- label "0" dc

Guiding Knowledge:
labels are created with "label initialValueString dc"
the label creator creates alabel and aLabelDH
where alabel is the label
and aLabelDH is its graphical depiction
the label creator creates/sets them using <-

108

each Bar and its numeric display need to be consistent

the initial values of the Bars are 32 (Fahrenheit) and 0 (Celsius)
labels display strings

"32" is the initial value of the Fahrenheit Bar as a string

"0" is the initial value of the Celsius Bar as a string

Obstacles:
<- is less cluttery than >>= \(c,dh) ->
but it does produced the appearance of an undeclared variable
remembering to use strings for initial values is forgettable
’dc’ is also a bit cluttery -- unmemorable and system-oriented

Step 32:
decide to display labels under bars, resulting in a 2x2 array

Guiding Knowledge:
numbers (being small) will fit best above or below bars (which are narrow)
since temperatures increase upwards, visual anchor of bar is at bottom
since numbers won’t grow or shrink, best to put them in an anchored place

Obstacles:
knowing how to choose best-looking option requires layout experience
for example, knowing about visual anchors
knowing what the available layout options are in Haggis
requires a relatively deep understanding of hbox and vbox

Step 33:
infer that putting numbers under bars requires changing hbox [fBarDH, cBarDH]

Guiding Knowledge:
DHs are graphical depictions of components
hbox arranges components horizontally in a row (not in a table or grid)
flLabelDH and cLabelDH need to be passed to realiseDH
in order for the labels to appear on the display

Obstacles:
not clear how much of hbox’s layout adjustments need to be understood

Step 34:
infer that hbox and vbox can be nested

Guiding Knowledge:
hbox, vbox :: [DH] -> DH

Obstacles:
understanding that hbox and vbox fold [DH] into DH
is critical to understanding the nesting

Step 35:
notice that there are two choices for nesting which produce a 2x2 array
hbox [vbox [fBarDH, fLabelDH], vbox [cBarDH, cLabelDH]]
vbox [hbox [£fBarDH, cBarDH], hbox [fLabelDH, cLabelDH]]

Guiding Knowledge:
can group a 2x2 array by columns first, or by rows first

Obstacles:
understanding the boxes-and-glue approach is critical to
understanding the visual difference between these two options
neither option is the same as a 2x2 grid
grouping by columns or rows is a system-imposed idiosyncrasy

Step 36:
decide to choose the first nesting and change hbox [fBarDH,cBarDH] to
hbox [vbox [fBarDH, fLabelDH], vbox [cBarDH, cLabelDH]]

Guiding Knowledge:
we don’t know! either should work
second choice might result in numbers and bars being different widths
first choice might result in numbers and bars being different heights
since heights of numbers won’t change (but widths might), go with first

Obstacles:
HU might not know difference between choices,
nor that widths of numbers might change while heights won’t
formatting this long line readably on two lines is a (small) task

Step 37:
infer that labels (unlike bars) do not need track processes

109

Guiding Knowledge:
labels will not be changed by direct interactions
labels will be changed due to interactions with bars
track processes are needed only for components with direct interactions

Obstacles:
since labels must be updated, .
it is far from obvious that they don’t need track processes
HU might end up writing track processes for labels and then discarding them

Step 38:
conclude that track processes for bars must update labels

Guiding Knowledge:
bars will change due to interactions
labels will change when bars change
track processes run when bars change
labels have no track processes of their own

Obstacles:
understanding the dynamics of propagating the results of interactions

Step 39:
infer that a bar’s track process only needs to update its own label
in addition to updating the other level (which it already does)

Guiding Knowledge:
waitGauge (in the other bar’s track process) waits for a change in value
regardless of what changes the value (an interaction or another function)
setLevel (in this bar’s track process) sets that Gauge’s value
so, when this bar’s process sets the other bar
the waitGauge for the other bar will return a value
and the setLabell in for that bar will update its label

Obstacles:
the connections here are complex
even though they are well-designed and consistent
the HU might well call setLabel for the other label anyway
not realizing that that is unnecessary

Step 40:
infer that setLabel is the function to use

Guiding Knowledge:
setLabel :: Label -> String -> I0 ()
"setLabel theLabel theString" sets theLabel to display theString

Obstacles:
simply must know that setlLabel is the right function
fortunately, this is reasonable
type signatures are risky because
understanding how the types match on >>= and >> is harder than average

Step 41:
infer that the label that setlLabel sets must be passed in as a parameter
to the track function/process

Guiding Knowledge:
parameters to track are a function and two Bars
names occurring in track must be parameters or in a ’let’ or ’where’

Obstacles:
knowing whether a forked process has access to the globals in its
defined context is tricky (I don’t know)
in this case, the parameters to the two incarnations of track
are different, so scope doesn’t matter -- they must be passed in

Step 42:
add srcLabel as the last parameter to track
in the definition, in the recursive call [and in the type signature]

Guiding Knowledge:
parameters must be added in
definitions
recursive calls
type signatures
order of parameters is not important if the function won’t be curried
when order of parameters isn’t dictated by semantics,

110

group parameters logically

Obstacles:
standard programming problem of needing to make a change
in several places to maintain consistency (see step 22)

Step 43:
change the two track calls from
forkI0 (track convertFtoC fBar cBar) >>
forkI0 (track convertCtoF cBar fBar) >>
to
forkI0 (track convertFtoC fBar cBar fLabel) >>
forkI0 (track convertCtoF cBar fBar cLabel) >>

Guiding Knowledge:
changing a function’s parameter list requires
changing all calls of that function
the label to be passed is the one belonging to the source Bar
flabel is the label belonging to fBar
cLabel is the label belonging to cBar

Ubstacles:
opportunity to confuse source and destination
possibility of adding labels outside parentheses
>> is syntactic clutter

’Do’ Step 43:
change the two track calls from
forkI0 (track convertFtoC fBar cBar)
forkIO (track convertCtoF cBar fBar)
to
forkI0 (track convertFtoC fBar cBar fLabel)
forkI0 (track convertCtoF cBar fBar cLabel)

Guiding Knowledge:
changing a function’s parameter list requires
changing all calls of that function
the label to be passed is the one belonging to the source Bar
fLabel is the label belonging to fBar
cLabel is the label belonging to cBar

Obstacles:
opportunity to confuse source and destination
possibility of adding labels outside parentheses
(seems less likely here due to absence of clutter)

Step 44:
infer that (in track)
setLabel must go between waitGauge and the recursive call
setLabel can go before or after setLevel

Guiding Knowledge:
recursive call must be last
setLabel needs v, and so must come after waitGauge
setLabel and setLevel both chain with >> -- or, equivalently, return I0 (),
so order is unimportant

Obstacles:
reasonable, given even the minimum of understanding of scope and >>
that is required by previous steps

Step 45:
decide to put setlLabel before setlLevel

Guiding Knowledge:
we don’t know!
put "local" changes before changes to other components

Obstacles: .
if the system is slow, the choice is between
having the bars consistent and the labels lag
having each bar consistent with its label, but the pairs out of sync
it almost certainly doesn’t matter,
which means there’s no guideline for what should be first
(and which is one of the reasons why functional programming
eliminated sequencing)
(in imperative languages, some sequencing is arbitrary, and some isn’t)

Step 46:

infer that setlabel must be passed (show v), not v

Guiding Knowledge:
srclLabel needs to display the same value that src (the Bar) does
v is a number and is the most recent value of the src Bar
labels display strings, not numbers
(show v) converts the value v to a string

Obstacles:
the need for this conversion is easily forgotten
possible source-destination confusion is already taken care of,
because only one label has been passed in to track,
and only one bar’s value is available

Step 47:
add "setLabel srcLabel (show v) >>" before the setLevel function

Guiding Knowledge:
setLabel is an interaction function that returns I0 (),
so it chains with >>

Obstacles:
probably ok given previous steps
understanding how I0 types work with >> and >>=
>> is syntactic clutter

’Do’ Step 47:
add "setLabel srcLabel (show v)" before the setLevel function

Guiding Knowledge:
setLabel is an interaction function that returns I0 (),
so it must be placed in a ’do’ context
a ’do’ context consists of all statements between a ’do’
and the next statement indented no farther than the ’do’

Obstacles:
probably ok given previous steps
understanding ’do’ contexts is required
in this case, ’do’ seems to be less confusing

Step 48:
conclude that the program is finished

Guiding Knowledge:
all of the conditions of the problem statement have been met

Obstacles:
knowing that program is finished might take a little checking,
both mental and visual
Hmm, now the program looks like:

module Main(main) where

import Concurrent
import Haggis

main =
mkDC ["*title: TemperatureConversion"] >>= \dc ->
mkBar (0,100) 32 YAxis dc >>= \ (fBar,fBarDH) ->
mkBar (0,100) 0 YAxis dc >>= \(cBar,cBarDH) ->
label "32'" dc : >>= \(fLabel,fLabelDH)
label "0'" dc >>= \(cLabel, cLabelDH)

realiseDH dc¢ (hbox [vbox [fBarDH, fLabelDH],
vbox [cBarDH, cLabelDH]]) >>

forkI0 (track convertFtoC fBar cBar fLlabel) >>

forkI0 (track convertCtoF cBar fBar cLabel) >>

return ()

where

convertFtoC f = (5/9)*(£-32)

convertCtoF ¢ = (9/5)*c + 32

track convert src dst srclabel =

waitGauge (getLevelGauge src) >>= \v ->
setlLabel srcLabel (show v) >>
setLevel dst (convert v) >>

track convert src dst srcLabel

or, in the ’do’ version:

->
->

111

112

module Main(main) where

import Concurrent
import Haggis

main =
do
dc <- mkDC ["*title: TemperatureConversion"]
(fBar,fBarDH) <- mkBar (0,100) 32 YAxis dc
(cBar, cBarDH) <- mkBar (0,100) 0 YAxis dc

(fLabel,fLabelDH) <- label "32" dc
(cLabel,cLabelDH) <- label "0" dc
realiseDH dc (hbox [vbox [fBarDH, flLabelDH],
vbox [cBarDH, cLabelDH]1)
forkI0 (track convertFtoC fBar cBar fLabel)
forkI0 (track convertCtoF cBar fBar cLabel)
return ()
where
convertFtoC f = (5/9)*(£-32)
convertCtoF ¢ = (9/5)*c + 32
track convert src dst srcLabel =
do
v <- waitGauge (getLevelGauge src)
setLabel srcLabel (show v)
setLevel dst (convert v)
track convert src dst srclabel

A.2 Starting Examples for Temperature Conversion Walkthrough
in Haggis

A.2.1 Combinator Notation

module Main(main) where

import Concurrent
import Haggis

main =
mkDC ["*title: Bars"] >>= \dc ->
mkBar (0,100) 0 XAxis dc >>= \(levli,dhl) ->
mkBar (0,100) 100 XAxis dc >>= \(lev2,dh2) ->
realiseDH dc (vbox [dhl,dh2]) >>
let
gl = getlLevelGauge levl
g2 = getlLevelGauge lev2
in

forkIO (track levl lev2) >>
forkI0 (track lev2 levl) >>
return ()
where
track src dst =
waitGauge (getLevelGauge src) >>= \v ->
setlLevel dst (100-v) >>
track src dst

A.2.2 do Notation

module Main(main) where

import Concurrent
import Haggis

main =
do
de <- mkDC ["*title: Bars']
(levi,dh1) <- mkBar (0,100) 0 XAxis dc
(lev2,dh2) <- mkBar (0,100) 100 XAxis dc
realiseDH dc (vbox [dhi,dh2])
Jet
gl = getLevelGauge levl
g2 = getLevelGauge lev2
in

113

forkI0 (track levl lev2)
forkIO (track lev2 levl)

return ()
where
track src dst =
do

v <- waitGauge (getLevelGauge src)
setLevel dst (100-v)
track src dst

A.3 Final Temperature Conversion Examples in Haggis
A.3.1 Combinator Notation

module Main(main) where

import Concurrent
import Haggis

main =
mkDC ["*title: TemperatureConversion'] >>= \de ->
mkBar (0,100) 32 YAxis dc >>= \(fBar,fBarDH) ->
mkBar (0,100) 0 YAxis dc >>= \(cBar,cBarDH) ->
label '32" dc >>= \(fLabel,fLabelDH) ->
label "0" dc >>= \(cLabel,cLabelDH) ->

realiseDH dc¢ (hbox [vbox [fBarDH, fLabelDH],
vbox [cBarDH, cLabelDH]]) >>

forkIO (track convertFtoC fBar cBar fLabel) >>
forkI0 (track convertCtoF cBar fBar clabel) >>
return ()
where

convertFtoC f = (5/9)*(£-32)

convertCtoF ¢ = (9/B5)%c + 32

track convert src dst srclLabel =

waitGauge (getLevelGauge src) >o= \v ->
setLabel srcLabel (show v) >>
setLevel dst (convert v) >>

track convert src dst srcLabel

A.3.2 do Notation

module Main(main) where

import Concurrent
import Haggis

main =
do
dc <- mkDC ["*title: TemperatureConversion"]
(fBar,fBarDH) <- mkBar (0,100) 32 YAxis dc

(cBar, cBarDH) <- mkBar (0,100) 0 YAxis dc
(fLabel,fLabelDH) <- label "32" dc -
(cLabel,cLabelDH) <- label "0" dc
realiseDH dc (hbox [vbox [fBarDH, fLabelDH],
vbox [cBarDH, cLabelDH]])
forkIO (track convertFtoC fBar cBar fLabel)
forkIO (track convertCtoF cBar fBar cLabel)
return ()
where
convertFtoC f = (5/9)*(£-32)
convertCtoF ¢ = (9/B6)%c + 32
track convert src dst srcLabel =
do
v <- waitGauge (getLevelGauge src)
setLabel srcLabel (show v)
setlevel dst (convert v)
track convert src dst srcLabel

114

Appendix B

Line-Fitting Walkthrough and Examples in Haggis

A screen image of the final line-fitting example in Haggis appears in figure 2.1.

B.1 Line-Fitting Walkthrough in Haggis

Step 1:
choose Canvas as a starting example

Guiding Knowledge:
creating a custom component is much more work
than modifying an existing component
the Canvas example looks a lot like the desired example
the DrawArea example also looks plausible
but the items created on the Canvas can be dragged around
whereas the items in the DrawArea example are not draggable

Obstacles:
choosing DrawArea would be a big mistake
because finding which object was clicked
would involve implementing the equivalent of hitCompositeContainerElt

Step 2:
infer that ["#title: Canvas"] specifies that the window title is Canvas

change title to Line-Fitting

Guiding Knowledge: .
the example’s window title is Canvas
Line-Fitting is a more meaningful and appropriate title

Obstacles:
["*title: Line-Fitting"] is cluttered
and modifying it is thus likely to be error-prone
this is not likely to be a problematic step
and it’s not central to the task anyway

Step 3:
infer that compositeContainer creates a canvas (CompositeContainer)
that ’canvas’ is the canvas
that ’dh’ is its display handle

Guiding Knowledge:
dh is a "standard" abbreviation for display handle
’canvas’ suggests a canvas
an expression: componentCreator ... >>= \(c,dh) ->
creates a component ¢ and its display handle dh
the example’s window title is Canvas

Obstacles:
HU must have some idea of what a '"canvas" is
understanding (c,dh) pairs is central to using Haggis
understanding >>= \ ... -> (at least as a template) is also critical

’Do’ Step 3:
infer that compositeContainer creates a canvas (CompositeContainer)
that ’canvas’ is the canvas
that ’dh’ is its display handle

Guiding Knowledge:

116

dh is a "standard" abbreviation for display handle
’canvas’ suggests a canvas
an expression: (c,dh) <- componentCreator ...
in a ’do’ context creates a component ¢ and its display handle dh
the example’s window title is Canvas

Obstacles:

HU must have some idea of what a "canvas" is

understanding (c,dh) pairs is central to using Haggis

understanding do ... <- ... (at least as a template) is also critical

do x <- ... syntax makes x look undeclared, because it binds a new x
this is far from obvious and violates programmer intuition
(but then, programmers have trouble including declarations anyway,

so maybe this isn’t likely to confuse)

Step 4:
infer that catchMouseEv does something with the mouse
and that ’mouse’ is somehow the mouse

Guiding Knowledge:
‘mouse’ suggests the mouse

Obstacles:
it’s not clear how deeply the HU must understand catchMouseEv
does the HU need to understand events and event dispatching?
clearly, this example does not bring up issues of conflicts
between the contained and container widgets, etc., etc.
the use of dh as parameter and "return value"
is potentially quite confusing

Step 5:
infer that 2 -> describes what happens when mouse button 2 is clicked

Guiding Knowledge:
button 2 creates circles in the window
’case whichButton’ suggests that 2 and 1 are (some kind of) buttons
in 2 ->
newElement suggests the creation of a new something
’placeTransparent canvas’ suggests placing the something on the canvas

Obstacles:
HU must know that mouse buttons are numbered, and how they are numbered
it’s helpful if HU notices that placeTransparent gets newElement’s dh

Step 6:
infer that trackCtrl may be where the mouse behavior is defined

Guiding Knowledge:

trackCtrl is passed mouse and canvas in the forkIO line

the 2 -> case matches the behavior of mouse button 2

trackCtrl’s first line involves getMouseDown and ’MouseButton Down’
which suggest interactions with the mouse

dragger also takes mouse and canvas
but it’s called only by trackCtrl
and it also has cce and offset as parameters -- a less clear match

Obstacles:
this is a critical step, and trackCtrl is a substantial function
this step simply must happen for progress to occur
some parts are hard to decipher (eg sendMouseEv)

Step 7:
infer that 1 -> describes what happens when mouse button 1 is clicked

Guiding Knowledge:
button 1 allows the items to be dragged
the 1 -> case calls a function called ’dragger’
hitCompositeContainerElt and elementHit suggest (weakly) selection

Obstacles:
HU must know mouse button numbering (see step b)
HU must be familiar with the term "dragging"
the 1-> case is harder to decipher than the 2 -> case
there’s a lot of other stuff (eg getCompositeContainerEltCoord)
that is less obvious .

Step 8:
infer that dragger somehow implements dragging the circles in the window

Guiding Knowledge:
the name ’dragger’ suggests dragging
dragger takes the canvas and mouse as parameters (among others)
one of the cases for whichEvent is ’Motiom’

Obstacles:
HU must be familiar with the term "dragging"
it would be helpful if the HU recognized ’cce’ as the circle being dragged

Step 9:
infer that dragger will not be needed

Guiding Knowledge:
points in the line-fitting example do not need to be draggable
(in fact, it doesn’t make much sense for them to be draggable)
dragger implements dragging

Obstacles:
this is quite a reasonable step,
and it’s useful, because the HU need not understand how dragger works

Step 10:
decide to plot the points first,
then get them to change color when clicked

Guiding Knowledge:
the points must be displayed (problem statement)
the points must be displayed to be clicked on
the 1 -> case implements (somehow) behavior in response to clicking

Obstacles:
this step seems unproblematic

Step 11:
add the list of points to the program, with the name "problems",
as a list of pairs

Guiding Knowledge:
the list of points must be defined to be plotted
pairs are a common representation for points
placeTransparent, hitCompositeContainerElt, and dragger all use pairs
a list is the canonical homogeneous compound data structure
data values are defined by name = value-expression
"problems" is the name of the source data set

Obstacles:
if the points are Floats, substantial conversion complications ensue

Step 12:
add the type signature problems :: [Coord] to the program

Guiding Knowledge:
type signatures help make programs more readable and errors more detectable
Coord’ is defined as (Int,Int)
the points are each of type (Int,Int)
the type of a list of Coord is [Coord]

Obstacles:
the type of Coord is an important detail of Haggis
knowing that Coord is the right type to use
is relatively deep (but higher-level) Haggis knowledge

Step 13:
decide that the point-plotting function (plotPoints)
should go between the compositeContainer and return () lines

Guiding Knowledge:
the compositeContainer line creates the canvas
plotPoints needs the canvas to plot the points
the return () line ends the function

Obstacles:
plotPoints can go after forkIO
but it’s almost inconceivable that the HU would conclude/infer that
and data dependencies will later force plotPoints to come before forkIO
the most "natural' place to put plotPoints
is between compositeContainer and catchMouseEv
but this appears to be only stylistic

117

118

Step 14:
decide to put plotPoints
between the compositeContainer and catchMouseEv lines

Guiding Knowledge:
this seems to be the 'natural" place to put it
(other examples show catchMouseEv and forkI0 consistently last

Obstacles:
the HU might think that putting plotPoints
before catchMouseEv and forkI0 is necessary, although it is not
however, assuming that plotPoints must come before catchMouseEv
has no foreseeable negative consequences

Step 15:
infer that plotPoints needs two parameters
the canvas (’canvas’)
the list of points (’problems’)

Guiding Knowledge:)
plotPoints needs the points to be able to plot them
plotPoints needs the canvas to be able to plot the points on it

Obstacles:
seems ok

Step 16:
decide that (for now at least) plotPoints won’t return a useful value

Guiding Knowledge:
since the HU is only plotting the points, no information is needed

Obstacles:
plotPoints will need to return a useful value later,
but it’s not clear how much the HU should think about that now

Step 17:
write ’plotPoints canvas problems >>’ after the compositeContainer line

Guiding Knowledge:
>> is used to chain when no value is passed along

Obstacles:
probably ok
need to understand >>, at least as a template
>> is not as complex as >> \x ->
but it’s still significant
knowing the connection between "returning no value" and >>
requires more than pattern-following knowledge of monadic I/0

’Do’ Step 17:
write ’plotPoints canvas problems’ after the compositeContainer line

Guiding Knowledge:
no <- is needed when the "statement" doesn’t return a value

Obstacles:
probably ok
need to understand how to write statements in a ’*do’ context
knowing the connection between 'returning no value"
and a statement without <-
may require more than pattern-following knowledge of monadic I/0

Step 18:
write the type signature of plotPoints
plotPoints :: CompositeContainer -> [Coord] -> IO 77

Guiding Knowledge:
plotPoints takes canvas and problems and "doesn’t return a value"
canvas is of type CompositeContainer
problems is of type [Coord]
I0 functions that "don’t return values" return I0 a
where ’a’ can be anything

Obstacles:
knowing that I0 <anything> can be the return type
for functions that chain with >>
or for statements in a ’do’ context that don’t use <-
requires understanding the type structure of monadic I0, not just >>

119

knowing that the type is not necessarily I0 ()
is significant and subtle, too

Step 19:
decide to proceed with the function definition
even though the type signature is incomplete

Guiding Knowledge:
if part of the type signature is unconstrained
see if the function implementation suggests a type

Obstacles:
this step should be ok

Step 20:
decide that a mapping function would be appropriate for plotting the points

Guiding Knowledge:
mapping functions apply a function to a list of items
the points are a list
plotting a single point is an operation that can be expressed as a function
there is no other obvious way to do this

Obstacles:
mapping would probably occur to the HU
folding might also, and it’s not clear how the HU would know to avoid it
the apparent conflict between sequentially-evaluated monads
and purely-functional mapping could be quite problematic

Step 21:
consider using map to plot the points

Guiding Knowledge:
map is the canonical mapping function

Obstacles:
HU might be unsure if map is the appropriate function (and rightly so)

Step 22:
infer that the mapped function must be applied to [Coord]
rather than CompositeContainer and [Coord]

Guiding Knowledge:
map :: (a->b) -> [a] -> [b]
that is, map takes a function and a list, and returns a list
the mapped function (whatever it is) will be the function
[Coord] will be the list

Obstacles:
the extra parameter (CompositeContainer)
could make this inference tricky
presumably, a functional programmer would successfully make the inference

Step 23:
infer that the mapped function must have type Coord -> 77

Guiding Knowledge:
the mapped function is applied to [Coord]
and so its parameter must be Coord
the result type of the mapping doesn’t matter,
so the return type of the mapping is undetermined
the mapped function must have type a->b not a->b->c
the mapped function might or might not return IO a
it’s not clear at this point

Obstacles:

this follows pretty straightforwardly from step 22

however, it involves reasoning about partial information
(in the absence of a return type)
which is potentially more confusing and error-prone
than the analogous case with total information

also, knowing that the return type won’t necessarily be I0 a
is a significant, if subtle, issue

Step 24:
infer that mapped function will plot a single point

Guiding Knowledge:
plotPoints (the result of the mapping) will plot all of the points

120

a mapping takes a function which computes/does a single thing
applies it to a list

and in that way computes/does a bunch of things

Obstacles:
this seems reasonable given steps 20 through 23
the critical issue is why the HU would notice this now
noticing this the key to step 26
the alternative is that the HU wouldn’t notice
until she/he wrote the mapped function
but that makes for a messier walkthrough

Step 256:
infer that, to plot the point, the mapped function will need two parameters
the canvas (type CompositeContainer)
the point to be plotted (type Coord)

Guiding Knowledge:
the mapped function needs the point to be able to plot it
the mapped function needs the canvas to be able to plot the point on it
the canvas and point have types CompositeContainer and Coord respectively

Obstacles:
seems ok (compare step 15)

Step 26:
notice that
to plot the point, the mapped function needs exactly two parameters
(CompositeContainer and Coord)

to be mapped, the mapped function needs exactly one parameter
(Coord)

Guiding Knowledge:
steps 23 and 25

Obstacles:
the critical issue is in step 24

Step 27:
notice that the CompositeContainer used will be the same for each point

Guiding Knowledge:
all the points will be plotted in the same canvas (CompositeContainer)

Obstacles:
the critical issue here is why the HU would notice this
(because it resolves the extra parameter "problem" in step 26)
to notice it, the HU probably must alsc make the inference in step 25

Step 28:
infer that the mapped function
need not take CompositeContainer as a parameter
but can reference it in some other way (currying, scope)

Guiding Knowledge:
the CompositeContainer will be the same for each point (step 27)
specialized functions can be made from general-purpose functions
by currying
by returning a lambda expression
or, specialized functions can be defined in a where (or let) clause
(within the scope of the general function)

Obstacles:
making specialized function by currying or by returning a lambda expression
is one of the programming "plans" or "games" in functional programming
knowing about where and let clauses and scope is an important FP feature

Step 29:
notice that
if the mapped function doesn’t take CompositeContainer as a parameter
then it will have type Coord -> 77
which is the type it must have

Guiding Knowledge:
the mapped function, to be mapped, must have type Coord -> 7?7 (steps 23,26)
to plot the point, it needs CompositeContainer (step 25)
which it need not take as a parameter (steps 27 and 28)
the result type of the mapping doesn’t matter,
so the return type of the mapping is unknown

121

Obstacles:
this follows from steps 23 through 28
which is quite a bit to put together
(see also the partial reasoning problem in step 23)

Step 30:
infer that the mapped function can be written
as a curried version of a function that takes CompositeContainer
as a lambda expression returned from such a function
or in a where (or let) clause inside the scope of plotPoints

Guiding Knowledge:
the mapped function needs CompositeContainer (step 25)
which it need not take as a parameter (steps 27 and 28)
the ways of referencing something which isn’t a parameter are
currying, lambda expressions, and where (or let) clauses

Obstacles:
see step 28

Step 31:
decide to write the mapped function
as a curried version of a function which takes CompositeContainer

Guiding Knowledge:
a curried version is easier and less messy
than returning a lambda expression
a function which takes CompositeContainer seems more generic

Obstacles:
there’s really no reason to choose currying over ’‘where’
in fact, ’where’ is the simpler choice
however, choosing currying now simplifies the walkthrough later

Step 32:
infer that the uncurried function (call it plotPoint) would have type
plotPoint :: CompositeContainer -> Coord -> 77

Guiding Knowledge:
the name ’plotPoint’ is descriptive and analogous to plotPoints
plotPoint needs CompositeContainer and Coord as parameters (step 26)
plotPoint’s return type is unknown
because the mapped function’s return type is unknown (step 23)

Obstacles:
this is pretty reasonable given steps 23 and 26
it still requires knowledge about currying
note that producing a function to be curried
is more complicated conceptually
than noticing that an existing function can be curried

Step 33:
infer that what plotPoint should do is what the 2 -> case does

Guiding Knowledge:
the 2 -> case corresponds to the user pressing mouse button 2
pressing mouse button 2 creates a circle on the canvas
plotPoint should create a circle on the canvas

Obstacles:
hopefully, the HU hasn’t forgotten by now about 2 ->

Step 34:
notice that the body of the 2 -> case refers to names outside of it
canvas
x

¥

Guiding Knowledge:
a name that appears in an expression but is not defined there
is defined outside of it

Obstacles:
this is reasonable for a functional programmer
the ’canvas’ reference would just work, anyway, even if it were copied
the x and y references would be revealed by the compiler
of course, newElement and placeTransparent also refer to the outside scope
but they are functions, and the HU might think of them differently

122

(in spite of the fact that there is no difference in FP)
and newElement is defined earlier in the let
and placeTransparent in the Haggis libraries

Step 35:
infer that (in the placeTransparent line)
canvas is of type CompositeContainer
(x-r,y-r) is of type Coord

Guiding Knowledge:
the type signature of placeTransparent is:
placeTransparent :: CompositeContainer
-> Coord
-> DisplayHandle

-> I0 CompositeContainerElt
the line is

placeTransparent canvas (x-r,y-r) dh
the parameters to a function must have types that are the same
as the types in the corresponding positions in the type signature

Obstacles:
this should be a piece of cake for a functional programmer

Step 36:

infer that the plotPoint definition should begin
plotPoint canvas (x,y) =

Guiding Knowledge:

plotPoint takes two parameters, the canvas and the point to be plotted
(x,y) is a logical name choice for the point to be plotted
since it is used in the 2 -> case
and x and y are needed individually in (x-r,y-r)
r (the offset used for centering) is defined elsewhere in the let
and so only x and y need to be passed in
a (non-curried) function definition begins with the name of the function
followed by its parameters (in the correct order, of course)

Obstacles:
this should be straightforward for a functional programmer
the HU (probably) needs to understand
that r is being subtracted to center the dot

Step 37:
decide that canvas and (x-r,y-r) in the body of 2 ->
can be preserved in the body of plotPoint

Guiding Knowledge:
plotPoint should do exactly what the 2 -> case does

canvas, x, and y are the "parameters" (outside references) of the 2 -> case
canvas and (x,y) are the corresponding parameters of plotPoint
r will be in scope for plotPoint just as it was in the 2 -> case

Obstacles:

the key here (and in step 33) is understanding that an expression
can be parameterized and made into a function
it’s not clear how large a conceptual hurdle this is

Step 38:

write plotPoint (except for the type signature)
plotPoint canvas (x,y) =

newElement >>= \ dh ->
placeTransparent canvas (x-r,y-r) dh >>
return ()

Guiding Knowledge:
this is the body of 2 ->

written as a function named plotPoint with parameters canvas and (x,y)

Obstacles:
this should be trivial for a functional programmer given steps 36 and 37
the issues around >>= and >> should not come up
since this is just wrapping up an expression as a function

’Do’ Step 38:
write plotPoint (except for the type signature)
plotPoint canvas (x,y) =
do

dh <- newElement
placeTransparent canvas (x-r,y-r) dh

123

return ()

Guiding Knowledge:
this is the body of 2 ->
written as a function named plotPoint with parameters canvas and (x,y)

Obstacles:
this should be trivial for a functional programmer given steps 36 and 37
the issues around ’do’ and <- should not come up
since this is just wrapping up an expression as a function

Step 39:
infer that, given the definition in step 38
the type signature of plotPoint is
plotPoint :: CompositeContainer -> Coord -> I0 ()

Guiding Knowledge:
the parameters of plotPoint have types CompositeContainer and Coord
the body of plotPoint is a chain using >>= and >> ’
the return type of a chain is the return type of the last line of the chain
return () returns a value of type I0 ()

Obstacles:
this is actually much more complicated just under the surface
the return type of plotPoint is the return type of the chain
but the simple rule ’return type of the last element of of the chain’
is a consequence of the way the type signatures and associativity
of >>= and >> work
and the HU has to know when that rule works
(only when there are no parentheses, for instance)
the case expression in trackCtrl is a complicated example
if the HU doesn’t know this rule (or is not convinced)
the HU needs to understand how to derive type signatures
working through these type signatures is a lengthy, tedious derivation
involving the types of >>= and >> and all of the functions used
and the associativity of >>= and >>
and the scope of lambda expressions (all the way to the right)

Do’ Step 39:
infer that, given the definition in step 38
the type signature of plotPoint is
plotPoint :: CompositeContainer -> Coord -> I0 ()

Guiding Knowledge:
the parameters of plotPoint have types CompositeContainer and Coord
the body of plotPoint is a chain in a ’do’ context
the return type of a chain is the return type of the last line of the chain
return () returns a value of type IO ()

Obstacles:
this is actually much more complicated just under the surface
the return type of plotPoint is the return type of the chain
but the simple rule ’return type of the last element of of the chain’
is a consequence of the way the type signatures and associativity
of >>= and >> work
and >>= and >> are invisible in the ’do’ syntax
and the HU has to.know when that rule works
(only when there are no parentheses, for instance)
the case expression in trackCtrl is a complicated example
if the HU doesn’t know this rule (or is not convinced)
the HU needs to understand how to derive type signatures
working through these type signatures is a lengthy, tedious derivation
involving the types of >>= and >> and all of the functions used
and the associativity of >>= and >>
and the scope of lambda expressions (all the way to the right)
the HU also needs to be able to translate back and forth between
the ’do’ syntax and the >>= and >> syntax

Step 40:
infer that, given plotPoint, the mapped function is (plotPoint canvas)
which has type Coord -> IO ()

Guiding Knowledge:
the mapped function will be plotPoint
curried with a CompositeContainer (step 31)
(plotPoint canvas) is plotPoint curried with a CompositeContainer
plotPoint has type CompositeContainer -> Coord -> IO ()
so (plotPoint canvas) has type Coord -> IO ()

124

Obstacles:
this requires an understanding of currying
and probably of function application associating to the left
and type signatures associating to the right
but is otherwise unproblematic

Step 41:
conclude that
map (plotPoint canvas) problems
should plot the points

Guiding Knowledge:
mapping a point-plotting function onto the list of points
should plot the points
(plotPoint canvas) is a point-plotting function
problems is the list of points

Obstacles:
this seems pretty straightforward given step 40

Step 42:
write plotPoints
plotPoints canvas points =
map (plotPoint canvas) points

Guiding Knowledge:
’plotPoints canvas problems’ is how plotPoints is called in tracker
’points’ is an appropriate name for the list of points
’canvas’ is a reasonable name for the canvas

Obstacles:
potential confusion of
’points’ (formal argument) versus ’problems’ (actual argument)
and of
’canvas’ (same name for both formal and actual arguments)
the HU might notice
that a curried definition could omit ’points’ altogther
that is,
plotPoints canvas = map (plotPoint canvas)
or even
plotPoints canvas = map $ plotPoint canvas

Step 43:
infer from the type signatures of plotPoint and map
that the type signature of plotPoints is
plotPoints :: CompositeContainer -> [Coord] -> [I0 ()]

Guiding Knowledge:
this follows from the types of ’map’ and ’plotPoint’

Obstacles:
the HU needs to understand how to derive type signatures

Step 44:
infer from the plotPoints call in tracker
that the type signature of plotPoints is
plotPoints :: CompositeContainer -> [Coord] -> IO a
where the type of ’a’ is unknown for the moment

Guiding Knowledge:
CompositeContainer and [Coord] are the types of ’canvas’ and ’problems’
any function which chains (whether with >> or >>=) returns I0 a
(where a is some type, possibly () in the case of >> chaining)

Obstacles:
inferring all but the return type should be trivial at this point
inferring the return type involves understanding (at least partially)
the types of >> and >>=, at the very least
understanding that they must be preceded and followed
by functions returning I0 a (for various a)

up to this point in the walkthrough,
type signatures probably have been a slight liability (extra work)
here is where they become critical, albeit also quite messy

’Do’ Step 44:
infer from the plotPoints call in tracker
that the type signature of plotPoints is
plotPoints :: CompositeContainer -> [Coord] -> IO a

125

where the type of ’a’ is unknown for the moment

Guiding Knowledge:
CompositeContainer and [Coord] are the types of ’canvas’ and ’problems’
any function in a ’do’ context (with or without ’<-’) returns I0 a
(where a is some type, possibly () in the case of >> chaining)

Obstacles:
inferring all but the return type should be trivial at this point
inferring the return type involves understanding (at least partially)
the types of >> and >>=, at the very least
even when they are absent in the ’do’ context
or, alternatively, understanding the types of "statement succession"
(with or without ’<-’) in a ’do’ context
understanding that they must be preceded and followed
by functions returning I0 a (for various a)

up to this point in the walkthrough,
type signatures probably have been a slight liability (extra work)
here is where they become critical, albeit also quite messy

Step 45:
notice that the return types of the plotPoints call and definition conflict

Guiding Knowledge:
a function’s type signature must match its definition and all calls
I0 a cannot match [I0 ()], because IO cannot match [] (list)
(no matter how ’a’ is instantiated)

Obstacles:
the HU must know how to compare type signatures
including those that have type variables
(which means knowing how type variables can be instantiated)
the HU could find this out from the compiler
which might produce an error message like
"Couldn’t match the type 10 a
against [I0 CompositeContainerElt]"
(the actual error message from GHC is
"Couldn’t match the type
¢ _State _RealWorld -> (Either I0Errori3 a._136, _State _RealWorld)’
against ‘[I0 CompositeContainerElt]”’.
which is much less lucid)
but the real questions are why? and what to do about it?

Step 46:
infer that the plotPoints definition must change to have return type I0 a

Guiding Knowledge:
the definition returns a list because map does
the call needs ID a because >> and >>= do
(the call is constrained by the sequential I0 "statement" format)
the definition can be changed (added to)

Obstacles:
the HU should see without much difficulty that the call cannot change
the HU would reasonably conclude that the definition must change
the catch is how to change the definition

’Do’ Step 46:
infer that the plotPoints definition must change to have return type I0 a

Guiding Knowledge:
the definition returns a list because map does
the call needs ID a because it is in a ’do’ context
(the call is constrained by the sequential I0 "statement" format)
the definition can be changed (added to)

Obstacles:
the HU should see without much difficulty that the call cannot change
the HU would reasonably conclude that the definition must change
the catch is how to change the definition

Step 47:
infer that either
something needs to be added to the plotPoints definition
to change the return type to I0 a
or map is the wrong mapping function to use

Guiding Knowledge:

126

sometimes a ’wrapper’ around an expression

can convert the return value to the desired type
‘map’ was considered tentatively (steps 20 and 21) and might be wrong
’map’ is used with pure functions, and might not work with monadic ones

Obstacles:

the ’wrapper’ idea is another functional programming plan/game

this is a lot of steps to take given that the HU is using map provisionally
the HU might want to know earlier that mapping is the way to go

before investing all of this effort

the HU might want to know about maplQ before going this far

but the HU probably wouldn’t see another way of plotting the points
except to write something recursive from scratch
and that something would need to look a lot like mapIO
(for difficulty in writing mapI0, see obstacles for step 50)

Step 48:
conclude that adding a wrapper won’t solve the problem

Guiding Knowledge:
adding ’return’ around the body of plotPoints
makes the return type I0 [I0 CompositeContainerElt]
which looks odd and strange and isn’t used anywhere
and is actually a monad of unevaluated closures
which means that the points never get plotted
as the HU will see if she/he compiles and runs the program
taking the head of the list of IO CompositeContainerElt’s
makes the return type I0 CompositeContainerElt
and it seems strange to make the first point ’more important’
and it also means only the head of the list is evaluated
which means only the first point is plotted (as the HU will see)
trying to append ’>> return ()’ to the body of plotPoints
won’t work because the type returned by map isn’t I0 a
which is the same problem that the plotPoints definition is posing

Obstacles:
for the HU to reject the ’return’ idea purely on aesthetics is farfetched

for the HU to understand the effect of lazy evaluation
in conjunction with the strict evaluation of monadic I/0
requires sophisticated knowledge
of the mechanics of functional languages and of the I0 monad
(much more so than understanding ’head $ map square [2..]’, for example)
so the most likely outcome is that the HU will run the program
and wonder why it doesn’t work
the ’head’ idea is unlikely to begin with
the chaining idea seems logical, but quickly falls flat
the HU might not notice that it’s just moving the problem
eventually (when the values need to be used)
something like mapI0 will be required
to extract all the values and put them in one monad
that is, to convert [I0 a] to I0 [a]

’Do’ Step 48:
conclude that adding a wrapper won’t solve the problem

Guiding Knowledge:
adding ’return’ around the body of plotPoints
makes the return type I0 [I0 CompositeContainerElt]
which looks odd and strange and isn’t used anywhere
and is actually a monad of unevaluated closures
which means that the points never get plotted
as the HU will see if she/he compiles and runs the program
taking the head of the list of IO CompositeContainerElt’s
makes the return type I0 CompositeContainerElt
and it seems strange to make the first point ’more important’
and it also means only the head of the list is evaluated
which means only the first point is plotted (as the HU will see)
wrapping the body with ’do ... return ()’
won’t work because the type returned by map isn’t I0 a
which is the same problem that the plotPoints definition is posing

Obstacles:
for the HU to reject the ’return’ idea purely on aesthetics is farfetched

for the HU to understand the effect of lazy evaluation
in conjunction with the strict evaluation of monadic 1/0
requires sophisticated knowledge
of the mechanics of functional languages and of the I0 monad
(much more so than understanding ’head $ map square [2..]7, for example)
so the most likely outcome is that the HU will run the program

and wonder why it doesn’t work
the ’head’ idea is unlikely to begin with
the chaining idea seems logical, but quickly falls flat
the HU might not notice that it’s just moving the problem
eventually (when the values need to be used)
something like mapI0 will be required
to extract all the values and put them in one monad
that is, to convert [I0 a] to ID [a]

Step 49:
conclude that map is the wrong function
and a monadic version of map is needed

Guiding Knowledge:
the ’wrapper’ idea won’t work
no other ideas seem plausible
pure functions like map may not always work with monads
because monads must be evaluated sequentially
and pure functions like map aren’t sequential

Obstacles:
knowing that a monadic version of map is needed is hard to justify
the ’sequential’ argument rests on the HU having a reasonably clear idea
of how the ’sequential’ monadic world and the purely functional world
are joined

Step 50:
infer that mapI0 :: (a -> ID b) -> [a] -> I0 [b]
is the right function

Guiding Knowledge:
it is like map
but the mapping function must return a monad
and the result of the mapping is a monad containing a list
plotPoint (the mapping function) returns a momad (IO ())
plotPoints needs to return a monad of something
plotPoints currently returns [I0 O]
which seems close to IO [()]

Obstacles:
knowing that mapI0 will work depends on
understanding how to compare two type-variable-filled type signatures
the HU simply must know about mapI0, or guess its existence and find it
if the HU concludes mapping is inappropriate
she/he could be lost for a long time
the alternative is to write mapl0, which could be quite a challenge
involving substantial knowledge of how ID monads work
including monadic functions (>>=) and their types
the correct definition is probably something like:
mapI0 :: (a -> I0 b) -> [a]l -> I0 [b]

mapI0 £ [] = return (]
mapI0 f (x:xs) = f x >>= \ h ->
mapI0 £ xs >>= \ t ->

return h:t

’Do’ Step 50:
infer that mapI0 :: (a -> ID b) -> [al -> I0 [b]
is the right function

Guiding Knowledge:
it is like map
but the mapping function must return a monad
and the result of the mapping is a monad containing a list
plotPoint (the mapping function) returns a monad (IO ())
plotPoints needs to return a monad of something
plotPoints currently returms [I0 ()]
which seems close to I0 [()]

Obstacles:
knowing that mapI0 will work depends on
understanding how to compare two type-variable-filled type signatures
the HU simply must know about mapI0, or guess its existence and find it
if the HU concludes mapping is inappropriate
she/he could be lost for a long time
the alternative is to write maplD, which could be quite a challenge
involving substantial knowledge of how I0 monads work
including menadic functions (>>=) and their types
which is arguably harder in the ’do’ context
where the functions are missing ("statement succession")

127

128

the correct definition is probably something like:
mapI0 :: (a -> I0 b) -> [a] -> I0 [b]
mapI0 £ [] = return []
mapI0 f (x:xs) = do
h < fx
t <- mapIO0 f xs
return h:t

Step 51:
change ’map’ to ’mapI0’ in the definition of plotPoints
and add ’import MiscIO’ to the top of the program

Guiding Knowledge:
’mapl0’ can be applied to same arguments as ’map’ was
(the return type will be different)
‘mapI0’ is in the MiscIO library, which must be imported

Obstacles:
knowing that (plotPoint canvas) will work for mapID
depends on knowing how to manipulate type signatures
the HU simply must know that mapI0 is in the MiscIO library
and how to import libraries (Concurrent and Haggis offer templates)

Step 52:
infer that the type signature of plotPoints is now
plotPoints :: CompositeContainer -> [Coord] -> I0 [()]

Guiding Knowledge:
this follows from the types of ’mapI0’ and ’plotPoint’
(compare step 43)

Obstacles:
the HU needs to understand how to derive type signatures
(compare step 43)

Step 53:
conclude that the program will now plot the points correctly

Guiding Knowledge:
the type issue with plotPoints has been resolved
the program runs and plots the points

Obstacles:
this should be no problem if the HU still has her/his sanity

Step 54:
delete case 2 in trackCtrl

Guiding Knowledge:
since the program now plots the points
and since adding new points is not part of the problem statement
case 2 in trackCtrl is no longer needed

Obstacles:
there’s no compelling reason to delete this now
but it will simplify future modifications to newElement
and thus the walkthrough is simpler if this step occurs here
even if the HU kept case 2 around indefinitely
the only obstacles would be propagating the modifications to newElement

Step 55:
infer that r (in ’r = 10’) is the radius
and change it to 5

Guiding Knowledge:
the existing circles look a bit big for points
r is a common abbreviation for radius
r is the argument to ’circle’
’circle’ takes a single parameter, the radius, and returns a Picture
r is defined to be 5 by ’r = 5’

Obstacles:
this might be a bit hard to figure out
but let’s face it, it’s not critical to interactivity
the HU could finish the example just fine with big, blobby points

Step 56:
decide that the next step is to get the dots to change color
(as decided in step 10)

129

Guiding Knowledge:
the points need to change color when clicked
the 1 -> case implements (somehow) behavior in response to clicking
the points are displayed now, and thus can be clicked on
the line will need to change as the points are clicked on,
so drawing it now seems premature

Obstacles:
this step seems reasonable and unproblematic
(note: inferences about case 1 -> and dragger are in steps 7,8,9)

Step 57:

infer that case 1 -> finds which dot was clicked
and that cce is that dot

Guiding Knowledge:
hitCompositeContainerElt returns (via chaining) elementHit
the Nothing ->, Just cce -> is a Maybe construct
the cce thus extracted is passed to dragger

Obstacles:
the HU must understand how >>= binds return values (elementHit)
the HU must understand hitCompositeContainerElt
the HU must understand cases and the Maybe construct
it doesn’t seem to be critical to understand (x,y) yet
nor that getMouseDown ... x y binds x and y to the mouse position
in steps 76 and 77 understanding (x,y) as coords will matter
possible confusion with (x,y) in case 2 ->
we’ve already concluded that (x,y) in case 2 is of type Coord (step 35)
but in case 2, (x,y) is both the mouse and the cce coord

’Do?’ Step 57:
infer that case 1 -> finds which dot was clicked
and that cce is that dot

Guiding Knowledge:
hitCompositeContainerElt returns (via ’<-’) elementHit
the Nothing ->, Just cce -> is a Maybe construct
the cce thus extracted is passed to dragger

Obstacles:
the HU must understand how <- binds return values (elementHit)
the HU must understand hitCompositeContainerElt
the HU must understand cases and the Maybe construct
it doesn’t seem to be critical to understand (x,y) yet
nor that getlMouseDown ... x y binds x and y to the mouse position
in steps 76 and 77 understanding (x,y) as coords will matter
possible confusion with (x,y) in case 2 ->
we’ve already concluded that (x,y) in case 2 is of type Coord (step 35)
but in case 2, (x,y) is both the mouse and the cce coord

Step 58:

infer that replacing dragger with one or more statements
that change the dot’s color

will make the program change the dots’ colors when they are clicked

Guiding Knowledge:
when dots are clicked, they start being draggable
dragger is the function that makes them draggable

Obstacles:

the HU must understand that dragger implements dragging
even if she/he doesn’t understand how
the HU must understand the modularity/separability
of selection and dragging to know that she/he can replace dragging

Step 59:
infer that there is no way to change the color of a CompositeContainerElt

Guiding Knowledge:
CompositeContainerElts are primitive datatypes, not complex data structures
Haggis provides no functions resembling :
getCompositeContainerEltObject :: CompositeContainerElt -> a

Obstacles:
the HU might well assume that CompositeContainerElts can be modified, etc
especially since the name suggests an element, not an index
finding out that there is no such functionality

130

could be frustrating and time-consuming

(the reason it is absent has to do with strong typing and polymorphism
either not all CompositeContainerElts would be the same type,
or a CompositeContainer could only hold one kind of object)

Step 60:
infer that modifying the dot would mean
keeping track of which dot goes with which CompositeContainerElt
and modifying the dot when the CompositeContainerElt is clicked

Guiding Knowledge:
the dot is created at some point (in newElement)
to change the dot, there must be a function
that maps CompositeContainerElts to dots

Obstacles: »

the HU might not realize that the dot has an "application" handle
as well as a display handle
especially given how simple the dots are

the HU might not know exactly where the dot is created
even though transparentGlyph’s return value
is analogous to that of other component creators

keeping track of objects and their indexes is a common programming concern

Step 61:
decide to delete and recreate the dot rather than store and modify it

Guiding Knowledge:
the HU knows how to create it, having done so in plotPoint(s)
there is a function deleteCompositeContainerElt
which only needs the CompositeContainerElt (ie not the dot)
keeping track of the dots and the CompositeContainerElts
is complicated, more lengthy, and error-prone
because it involves storage, access, and update

Obstacles:
the HU might not think of this
but it’s a pretty reasonable step
the HU must know about deleteCompositeContainerElt
but this is reasonable given the number of other CompositeContainer
functions that the HU must know

Step 62:
replace dragger call with
deleteCompositeContainerElt cce

Guiding Knowledge:
replacing dragger with deleteCompositeContainerElt
will delete the dot instead of dragging it
dragger returns I0 ()
and so does deleteCompositeContainerElt
so the types are unaffected

Obstacles:

the HU might replace the dragger call with
deleteCompositeContainerElt cce >>
return ()
which is redundant but still ok
the HU might also choose to wait and replace the dragger call
with the delete-recreate sequence
and that’s ok too

the HU (upon compile/run) will see that mouse-1 clicks delete the points

’Do’ Step 62:
replace dragger call with
deleteCompositeContainerElt cce

Guiding Knowledge:
replacing dragger with deleteCompositeContainerElt
will delete the dot instead of dragging it
dragger returns I0 ()
and so does deleteCompositeContainerElt
so the types are unaffected

Obstacles:
seeing that the types are unaffected
might be more challenging in a ’do’ context
the HU might replace the dragger call with
deleteCompositeContainerElt cce

131

return ()
which is redundant but still ok
the HU might also choose to wait and replace the dragger call
with the delete-recreate sequence
and that’s ok too
the HU (upon compile/run) will see that mouse-1 clicks delete the points

Step 63:
infer that plotPoint is the right function to recreate the dots

Guiding Knowledge:
plotPoint plots a single point
plotPoint is the function used (by plotPoints) to plot the points initially

Obstacles:
if the HU doeésn’t realize this immediately
she/he will realize it after writing something resembling plotPoint

Step 64:
infer that ’withColour blue’ in newElement makes the dots blue

Guiding Knowledge:
plotPoint plots a single point
plotPoint calls newElement
newElement contains ’withColour blue’
the points plotted are blue

Obstacles:
this should be unproblematic
although the transparentGlyph call has quite a bit of other stuff in it

Step 65:
consider copying newElement and replacing ’blue’ with ’yellow?

Guiding Knowledge:
copying the function creates two versions, one for each color of dot
the dot needs to be recreated in a different color

Obstacles:
none

Step 66:
instead of copying, add a function parameter ’c’ to newElement
and replace ’blue’ with ’c’

Guiding Knowledge:
adding a parameter avoids duplication of the whole function
one function is easier to understand and maintain
than two similar functions are

Obstacles:
this is probably quite easy
however, some of the ’rules’ of functional programming
are suspended or different in the context of monadic I/0
and this might result in the HU having different ideas/intuitions
especially since the function (in this case) has no parameters

Step 67:
infer that the new type signature of newElement is (and write it as)
newElement :: Colour -> I0 DisplayHandle

Guiding Knowledge:
blue is a color
Colour is the type for colors
adding a parameter involves adding a type and a -> to the type signature

Obstacles:
this should be easy
adding to a no-parameter type signature might also seem a tiny bit strange
(see obstacles for step 66)

Step 68:
infer that the definition of plotPoint must also change
to take the color as a parameter

Guiding Knowledge:
plotPoint will be called to recreate the dot
the dot must be recreated in a different color

132

Obstacles:
this should be easy
especially after the HU makes the changes in steps 66 and 67

Step 69:
infer that plotPoint’s color parameter (’colour’) should come before ’coord’

Guiding Knowledge:
’colour’ is a natural name for the color parameter
plotPoint is curried to be passed to plotPoints
the mapped function is plotPoint without its ’coord’ parameter
if ’colour’ comes after ’coord’, then the currying won’t work

Obstacles:
this is actually a pretty subtle point
about currying and adding parameters to a function which is curried
but the HU could probably figure it out by trial and error, also

Step 70:
edit plotPoint to take an additional parameter ’colour’
between canvas and coord

Guiding Knowledge:
color seems more specific than canvas
general-to-specific is a way of ordering otherwise unconstrained parameters
the Haggis functions that take a CompositeContainer take it first
consistency with existing functions aids clarity and reduces errors

Obstacles:
this is no problem
the order of canvas and colour is irrelevant (so long as it is consistent)

Step 71:
edit the body of plotPoint to pass ’colour’ to newElement

Guiding Knowledge:
newElement has been modified to take the color as a parameter
plotPoint has ’colour’ as its color parameter
nothing else has changed

Obstacles:
this should be no problem
especially since it makes the call of newElement match its definition

Step 72:
edit the type signature of plotPoint to include Colour in the proper place

Guiding Knowledge:
the type signature must match the parameters in the definition

Obstacles:
this should be easy as well

Step 73:
infer that the color must be added
to the (curried) call to plotPoint in the plotPoints definition

Guiding Knowledge:
adding a parameter to a function means changing
the function definition
the type signature
all calls to the function (including recursive calls)
(see also step 69)

Obstacles:
this should be no problem

Step 74:
rewrite the plotPoints definition as
plotPoints canvas points =
mapl0 (plotPoint canvas blue) points

Guiding Knowledge:
the color must be passed to plotPoint
the mapped function must have type Coord -> IO ()
(plotPoint canvas blue) has type Coord -> I0 ()

Obstacles:
this should be straightforward

a possible typo would be to put ’blue’ outside the parentheses
but that’s unlikely

since this function returning I0 a is a one-liner
presumably the >> vs ’do’ issue doesn’t come up

Step 75:
infer that the place to add plotPoint is in the Just cce case in trackCtrl

after the deleteCompositeContainerElt call

Guiding Knowledge:
the deleteCompositeContainerElt call deletes the dot
the plotPoint call will recreate it
the dot needs to be deleted and recreated

Obstacles:
this is quite easy given step 62
the plotPoint call could precede the deleteCompositeContainerElt call
this would work just as well
and the new dot would cover the old one before it was deleted
(which hardly matters on a fast system with a buffered display)

Step 76:
infer that there are two choices for the ’coord’ parameter
to the new plotPoint call
(x,y) and (a,b)

Guiding Knowledge:
hitCompositeContainerElt takes (x,y) as its coord parameter
getCompositeContainerEltCoord returns (a,b)
dragger takes (x-a,y-b) as its ’offset’ parameter (of type coord)

Obstacles:
this step seems reasonable
the HU might even consider (x-a,y-b) a viable option (it isn’t)

Step 77:
choose (a,b) as the coord parameter for the new plotPoint call

Guiding Knowledge:
(a,b) is returned by getCompositeContainerEltCoord

getCompositeContainerCoord returns the coordinates
of the CompositeContainerElt

Obstacles:
it’s not obvious how (x,y) and (a,b) are different
but they must be different, otherwise (x-a,y-b) would always be (0,0)
the HU might choose (x,y) because it is used in case 2 ->
unfortunately, choosing (x,y) makes the element *jump’
so that the lower left cornmer is at the mouse pointer hot spot
this wouldn’t matter much if it were the start of dragging
but it matters here because it changes where the dot is on the display
and where the dot is affects whether the fitted line ’looks right’

Step 78:
in trackCtrl, replace
deleteCompositeContainerElt cce
with
deleteCompositeContainerElt cce >>
plotPoint canvas yellow (a,b)

Guiding Knowledge:
deleteCompositeContainerElt and plotPoint must be chained in an I/0 context

since deleteCompositeContainerElt doesn’t return a useful value
and plotPoint doesn’t need one from it
they can be chained with >>
plotPoint returns I0 ()
so it doesn’t need to be followed by >> return ()
in order to match the return type of trackCtrl
(see step 62)

Obstacles:
this should be ok given step 62
but it does involve the ’rules’ of monadic I0 chaining
and may involve understanding the I0 types (including for >> and >>=)

Do’ Step 78:
in trackCtrl, replace
deleteCompositeContainerElt cce
with

133

134

deleteCompositeContainerElt cce
plotPoint canvas yellow (a,b)

Guiding Knowledge:
deleteCompositeContainerElt and plotPoint must be chained in an I/0 context
since deleteCompositeContainerElt doesn’t return a useful value
and plotPoint doesn’t need one from it
deleteCompositeContainerElt doesn’t need a <- to its left
plotPoint returns I0 ()
so it doesn’t need to be followed by return ()
in order to match the return type of trackCtrl
(see step 62)

Obstacles:
this should be ok given step 62
but it does involve the ’rules’ of monadic IO "statement succession"
and may involve understanding the I0 types (including for >> and >>=)
which might involve tramnslating ’do’ syntax back to >> and >>= syntax

Step 79:
infer that the program will now change a clicked dot to yellow
but that the colors don’t toggle
and there is no computation in the program

Guiding Knowledge:
the program runs }
and clicking mouse-1 on a dot changes it to yellow
clicking again does (appears to do) nothing
the program is supposed to calculate the fitted line and correlation

Obstacles:
this should be no problem

Step 80:
infer that dragger is no longer needed
and delete it

Guiding Knowledge:
the call to dragger in trackCtrl has been deleted (step 62)
there are no other calls to dragger (except the recursive call)
a function which is never called can be deleted

Obstacles:
the HU might not delete this yet
but it’s not terribly important
the HU could have deleted it after step 62
but would probably concentrate on creating functionality first

Step 81:
infer that information about the points must be stored somehow

Guiding Knowledge:

of course, each point has coordinates
each point has a status (inlier or outlier)

that determines its color on the display

that determines whether it participates in the computation

(of the fitted line and correlation coefficient)

each point also has an index (a CompositeContainerElt) in the canvas
the CompositeContainerElt is only an index into the canvas

it is not linked to the object (or its color) or anything else
the CompositeContainer has no means for storing application data

Obstacles:
recognizing that the Haggis components cannot store the line-fitting data
and that some other structure must be created
is one of the most important (groups of) steps in this walkthrough
the HU must know this (or come to this conclusion) to solve the problem

Step 82:

infer that the CompositeContainerElt can be used to look up the point data
in whatever the data structure turns out to be ‘

Guiding Knowledge:
the CompositeContainerElt is the first information about the point
that is available when the point is clicked
looking up data requires that some sort of key or index be available

Obstacles:
this should be pretty obvious

it’s also important

Step 83:
infer that getCompositeContainerEltCoord can be used
to look up the coordinate, given the CompositeContainerElt

Guiding Knowledge:
getCompositeContainerEltCoord is used to find
where to place the replacement point
the original point is placed with the coordinates from the data set
the original point and its replacement are in exactly the same spot

Obstacles:
this is a little bit subtle
and so the HU might miss it and store the CompositeContainerElt
but it saves the HU from storing the CompositeContainerElt
so it shortens the walkthrough
and makes the final program a better solution

Step 84:
infer that the only other piece of data needed is the status
and thus that it is the only piece of data that needs to be looked up

Guiding Knowledge:
the coordinates and the status are needed for the computation
the index (CompositeContainerElt) is needed by Haggis
the index is returned when the points are clicked
the coordinates can be found from the index
clicking is the only way the user can interact with the program

Obstacles:
this is reasonable, especially given step 83

Step 85: :
infer that the coordinates can be used to look up the status

Guiding Knowledge:
coordinates can be compared for equality
coordinates use integers, not floating-point numbers
and thus can be compared exactly
the coordinates are available for use as indexes

Obstacles:
knowing that pairs can be compared for equality
and used as keys in a search
is a little subtle, but perhaps not to a functional programmer
knowing that Coords are Ints and not Floats requires good Haggis knowledge
knowing that exact comparisons of Floats are problematic
involves knowing some details about floating-point numbers on computers

Step 86:
infer that the index (CompositeContainerElt) need not be stored

Guiding Knowledge:
the index is needed only by Haggis
the index is needed only to create and destroy dots
and to look up the coordinates of the point
the coordinates of the point can then be used to look up the status

Obstacles:
this is a little subtle (see step 83)

Step 87:
conclude that the data structure will store the statuses
and will be indexed by or searchable by the coordinates

Guiding Knowledge:
the CompositeContainerElt need not be stored nor used as an index
the coordinates can be used to look up the status

Obstacles:
this is reasonable

Step 88:
decide to use a list of (coordinate,status) pairs as the data structure
as opposed to an array indexed by the coordinates and storing the statuses

Guiding Knowledge:
an array indexed by the coordinates and storing the statuses

135

136

would be very sparse

would be messy to create
lists are a more common and familiar data structure in functional languages
a list of pairs is fairly easy to create and filter

Obstacles:
the array would be easy to update and fairly easy to filter
updating the list is messier (see comparison-of-array-and-list)
[of course, what’s really needed here is a dictionary!]

Step 89:
infer that a Gauge is the appropriate Haggis component
for storing the list of (coordinate,status) pairs

Guiding Knowledge:
Gauge is the Haggis component that
stores arbitrary data statefully

Obstacles:
the HU simply has to know about Gauge; there’s no way around it
Gauge also supports waiting for a change in the stored data
but the HU probably doesn’t see the value of that at this point
(and might finish the example just fine without ever seeing that value)

Step 90:
infer that
gauge (zip problems (repeat True))
will create a Gauge that stores the list of (coordinate,status) pairs

Guiding Knowledge:
’gauge’ takes an initial value
and creates a (monad containing a) Gauge
all the points are inliers initially
’zip’-ping the list of points with a list of True
will produce the correct initial list of (coordinate,status) pairs

Obstacles:
the HU must know about the Gauge creator ’gauge’ and how it works
the HU must know how to zip lists (including when one is infinite)
the HU must know or be able to create this little trick (zip X (repeat XX))

Step 91:
infer that the type of
gauge (zip problems (repeat True))
(from step 90)
is I0 (Gauge [(Coord,Bool)])

Guiding Knowledge:
knowing and/or deriving the types of zipped lists
gauge returns a monad of a Gauge of its argument
type constructors associate to the right

Obstacles:
this is actually a relatively simple type derivation
the Gauge and I0 types are the new parts
the novelty might be a little (but not hugely) confusing

Step 92:
infer that
gauge (zip problems (repeat True))
should chain with >»= \ x ->
and that the ’x’ will be a Gauge
containing the list of (coordinate,status) pairs

Guiding Knowledge:
this gauge creation call returns a useful value
and therefore it should chain with >>=, not >>
the useful value is the Gauge
>>= "strips off" the IO monad part

Obstacles:
this is the first time in this walkthrough
that the HU is writing a function (call) that chains with >>=
the HU must understand >>= and how it extracts values from I0 monads
(at least as well as described in the Guiding Knowledge)

’Do’ Step 92:
infer that
gauge (zip problems (repeat True))

should have x <- on its left
and that the ’x’ will be a Gauge
containing the list of (coordinate,status) pairs

Guiding Knowledge:
this gauge creation call returns a useful value
and therefore it needs a <-
the useful value is the Gauge
<- "strips off" the I0 monad part

Obstacles:
this is the first time in this walkthrough
that the HU is writing a function (call) that uses <-
the HU must understand <- and how it extracts values from I0 monads
(at least as well as described in the Guiding Knowledge)
the ’do’ version may be more complicated than the >>= version
and the HU might have to translate to >>= to understand

Step 93:
infer that
gauge (zip problems (repeat True)) >>= ...
could be put anywhere in tracker
but that it should probably go before forkIO

Guiding Knowledge:
none of its parameters are the results of other functions in tracker

its return value is not currently needed by any of the functions in tracker

trackCtrl will need it to choose the new color of a clicked dot

Obstacles:
this is another case of (largely) unconstrained ordering
the HU might have to move the ’gauge’ line up due to later constraints

Do’ Step 93:
infer that .
. <- gauge (zip problems (repeat True))
could be put anywhere in tracker
but that it should probably go before forkIO

Guiding Knowledge:
none of its parameters are the results of other functions in tracker
its return value (to the left of the <-)
is not currently needed by any of the functions in tracker
trackCtrl will need it to choose the new color of a clicked dot

Obstacles:
the use of <- is odd
because it places a return value to the left of the function
this is another case of (largely) unconstrained ordering
the HU might have to move the ’gauge’ line up due to later constraints

Step 94:
put the line
gauge (zip problems (repeat True)) >>=\ theDataGauge ->
at the very beginning of tracker

Guiding Knowledge:
other functions might need to use it
it’s clear that it won’t need other function’s return values
’theDataGauge’ is a descriptive name
for the gauge containing the coordinate and status data

Obstacles:
this should be ok given steps 92 and 93

’Do’ Step 94:
put the line
theDataGauge <- gauge (zip problems (repeat True))
at the very beginning of tracker

Guiding Knowledge:
other functions might need to use it
it’s clear that it won’t need other function’s return values
’theDataGauge’ is a descriptive name
for the gauge containing the coordinate and status data

Obstacles:
this should be ok given steps 92 and 93

137

138

Step 95:
add a parameter theDataGauge (as the last parameter)
to the call to trackCtrl in the forkIO line
to the definition of trackCtrl
to the recursive call at the end of trackCtrl
modify the type signature to include Gauge [(Coord,Bool)]

Guiding Knowledge:
trackCtrl needs to reference the Gauge containing the point data
the possible choices are parameters, globals, and where or let clauses
globals and where or let clauses won’t be in the same scope
as the scope of theDataGauge in tracker
adding a parameter comsists of changing
the type signature
the definition
all calls (including recursive calls)

Obstacles:
the only significant possibility for confusion
concerns the scope issues
of forked processes
of values encapsulated in I0 monads
it seems that a forked process '"takes with it" its (static) scope
but it’s not clear whether monads can be defined in such a way
that the forked process can see them
(except by taking them as parameters)
the potential for confusion isn’t so much about how to do the right thing
as it’s about why all of this works the way it does
there’s also a small possible confusion that the type signature
should have I0 (Gauge [(Coord,Bool)]) instead of Gauge [(Coord,Bool)]

Step 96:
add a line
getGauge theDataGauge >>= \ thePointData ->
between the getCompositeContainerEltCoord
and deleteCompositeContainerElt lines in trackCtrl

Guiding Knowledge:
the status of the point is needed to know what color to make the dot
the coordinates of the point are needed to look up the status
the list of (coordinate,status) pairs is needed
because it is where the coordinates can be used to look up the status
getGauge gets the list of (coordinate,status) pairs from the Gauge
thePointData is a somewhat descriptive name for that list
the getGauge call could come anywhere before the placeElement call
(because the placeElement call is where the status is needed)
but it makes sense to put it near the getCompositeContainerEltCoord call
because the getCompositeContainerEltCoord call
is where the coordinate is found from the CompositeContainerElt

Obstacles:
the HU must know about getGauge; it’s part of knowing about Gauge
the dependency issues are not too hard
and they would get sorted out later if not anticipated now
the arbitrariness of statement ordering crops up again here

Do’ Step 96:
add a line
thePointData <- getGauge theDataGauge
between the getCompositeContainerEltCoord
and deleteCompositeContainerElt lines in trackCtrl

Guiding Knowledge:
the status of the point is needed to know what color to make the dot
the coordinates of the point are needed to look up the status
the list of (coordinate,status) pairs is needed
because it is where the coordinates can be used to look up the status
getGauge gets the list of (coordinate,status) pairs from the Gauge
thePointData is a somewhat descriptive name for that list
the getGauge call could come anywhere before the placeElement call
(because the placeElement call is where the status is needed)
but it makes sense to put it near the getCompositeContainerEltCoord call
because the getCompositeContainerEltCoord call
is where the coordinate is found from the CompositeContainerElt

Obstacles:
the scope understanding issues might be harder or easier for <- than >>=
because the newly introduced value is on the left
the HU must know about getGauge; it’s part of knowing about Gauge

139

the dependency issues are not too hard
and they would get sorted out later if not anticipated now
the arbitrariness of statement ordering crops up again here

Step 97:
decide to use ’partition’ to find the point in the list

Guiding Knowledge:
’partition’ partitions a list according to a predicate
the predicate can test for the desired coordinate
and then ’partition’ will return
a list of the point with the desired coordinate
and a list of the other points
after the point is found, it needs to be modified (status changed)
"modification" in a functional language means returning a new value
returning a new list consists of
adding the new point to the original list of points minus the old point
the new list will be new point
added to the list (returned by ’partition’) of the other points

Obstacles:
the HU must do sophisticated reasoning and know some standard list tricks

Step 98:
infer that ’partition’ will best be written in a ’where’ or ’let’ clause

Guiding Knowledge:
’partition’ returns a pair
here, the pair consists of the point to change and the other points
both members of the pair are needed for different purposes
so the ’partition’ expression can either be duplicated
or it can be put in a where or let
duplication of any non-small expression is potentially harder to understand

Obstacles:
the HU must have some way of dealing with this complicated set of issues

Step 99:
infer that a ’let’ is necessary

Guiding Knowledge:
’partition’ (more specifically, the predicate passed to it)
needs (a,b) to compare with the coordinate
of each (coordinate,status) pair
(a,b) is bound in a lambda expression in the function (trackCtrl)
and the scope of the lambda expression does not extend
into the where clause for the function

Obstacles:
this is a subtle point
the scope of a lambda extends to the end of the sequence of >> and >>=
but does not extend into a where clause
which is not obvious
in part because the associativity of >> and >>= avoids parentheses
(which helps declutter, but in this case helps ambiguate scope)

Step 100:
write a ’let ... in’ clause for trackCtrl immediately after the getGauge line
let
([thePoint],otherPoints) =
partition (\ (coord,_) -> coord = (a,b)) thePointData
in
indent the succeeding lines (through ’return ()’) in one more level

Guiding Knowledge:
\ (coord,_) -> coord = (a,b)
returns True only for the point with coordinates (a,b)
thePointData is the list of (coordinate,status) pairs
(a,b) is the coordinate of the clicked point
[thePoint] can be pattern-matched as a singleton list
because there should only be one point with coordinates (a,b)
thePoint and otherPoints are descriptive names
for the point and the list of other points respectively
the ’let ... in’ clause must go after the getGauge line
because thePointData is needed to compute the values in the ’let’
immediately after the getGauge line is a good place
because later lines will use these values
indenting subsequent lines helps clarify scope

140

Obstacles:
the HU must have knowledge of partition, writing small lambdas,
pattern-matching, and descriptive naming
the HU must know how to put in a let clause including how far to indent it
the indentation of lets mixed with >> and >>= sometimes looks strange
not indenting subsequent lines appears to be standard in Haggis
((=(a,b)) . fst) would also work instead of the lambda
but it is arguably more obscure, if more elegant
there’s really no need to bind a and b separately
(since the dragger call is gone)
but it’s not worth making (and justifying) that change

’Do’ Step 100:
write a ’let ... in’ clause for trackCtrl immediately after the getGauge line
let
([thePoint],otherPoints) =
partition (\ (coord,.) -> coord = (a,b)) thePointData
in
indent the succeeding lines (through ’return ()’) in one more level

Guiding Knowledge:
\ (coord,_) -> coord = (a,b)
returns True only for the point with coordinates (a,b)
thePointData is the list of (coordinate,status) pairs
(a,b) is the coordinate of the clicked point
[thePoint] can be pattern-matched as a singleton list
because there should only be one point with coordinates (a,b)
thePoint and otherPoints are descriptive names
for the point and the list of other points respectively
the ’let ... in’ clause must go after the getGauge line
because thePointData is needed to compute the values in the ’let’
immediately after the getGauge line is a good place
because later lines will use these values
indenting subsequent lines helps clarify scope

Obstacles:
the HU must have knowledge of partition, writing small lambdas,
pattern-matching, and descriptive naming
the HU must know how to put in a let clause including how far to indent it
the indentation of lets in a ’do’ context sometimes looks strange
not indenting subsequent lines appears to be standard in Haggis
((=(a,b)) . fst) would also work instead of the lambda
but it is arguably more obscure, if more elegant
there’s really no need to bind a and b separately
(since the dragger call is gomne)
but it’s not worth making (and justifying) that change

Step 101:
add to the ’let ... in’ clause in trackCtrl
theNewStatus = not (snd thePoint)

Guiding Knowledge:
thePoint is a (coordinate,status) pair
’snd’ selects the second member from the pair (in this case, status)
status is a Bool
’not’ inverts Bool values
theNewStatus should be the Boolean inverse of the current status
(that’s what toggling is, after all)
order doesn’t matter in a ’let ... in’ clause

Obstacles:
this should be no problem
the HU must know about component projections for pairs
and inverting Boolean values
the HU must know that ordering doesn’t matter in ’let’ clauses

Step 102:
change ’yellow’ to ’(if theNewStatus then blue else yellow)’
in the plotPoint call in trackCtrl

Guiding Knowledge:
the plotPoint call recreates the clicked point in yellow
the plotPoint call needs to recreate the clicked point
in blue if theNewStatus is True
in yellow if theNewStatus is False

Obstacles:
the HU must know how to use if-then-else expressions
the HU must know to parenthesize the expression

141

the HU could also use case (modeled on the case expressions in the program)
all of this is typical functional programming

Step 103:
add to the ’let ... in’ clause in trackCtrl
theNewPointData = ((a,b),theNewStatus):otherPoints

Guiding Knowledge:
the new list of (coordinate,status) pairs is a list containing
a pair consisting of the coordinates and new status of the clicked point
the (coordinate,status) pairs for the other points
’:? is the operator to use to combine an item and a list
order doesn’t matter in a ’let ... in’ clause

Obstacles:
this is (very) basic functional programming
the nested tuples are a little messy
the HU should have no problem with this

Step 104:
add (after the ’let ... in? lines in trackCtrl)
setGauge theDataGauge theNewPointData >>

Guiding Knowledge:
the data structure ’theDataGauge’ must be updated
so that it matches the display
so that clicking changes the status of the point in the data structure
theNewPointData is the correct new value for theDataGauge

setGauge doesn’t return a value, so >> is the correct chaining operator
setGauge must go after the ’let’ expression

because the ’let’ expression computes theNewPointData
setGauge could go anywhere after the ’let’ expression

putting setGauge near getGauge might help program readability (chunking)
but perhaps not noticably

Obstacles:

-the HU must know about setGauge; it’s part of knowing about Gauge
the arbitrariness of statement ordering crops up again here

’Do’ Step 104:
add (after the ’let ... in’ lines in trackCtrl)
setGauge theDataGauge theNewPointData

Guiding Knowledge:
the data structure ’theDataGauge’ must be updated
so that it matches the display
so that clicking changes the status of the point in the data structure
theNewPointData is the correct new value for theDataGauge
setGauge doesn’t return a value, so it doesn’t use <-
setGauge must go after the ’let’ expression
because the ’let’ expression computes theNewPointData
setGauge could go anywhere after the ’let’ expression

putting setGauge near getGauge might help program readability (chunking)
but perhaps not noticably

Obstacles:

the HU must know about setGauge; it’s part of knowing about Gauge
the arbitrariness of statement ordering crops up again here

Step 105:
infer that the fitted line
must be drawn initially
must be deleted and redrawn each time a point is clicked

Guiding Knowledge:
the user needs to see the fitted line upon running the program
the fitted line (and correlation) will change when a point’s status does

Obstacles:
this seems reasonable
there is some question as to why the HU would infer this now

Step 106:
infer that the line-drawing function (call it drawlLine)
will take two endpoints as parameters
and draw a line on the canvas

Guiding Knowledge:
the endpoints will specify where the line is

142

the ’line’ function in Haggis takes the endpoints as parameters
the line needs to be drawn on the canvas (CompositeContainer)

Obstacles:
the HU must know about the ’line’ function

Step 107:
infer that drawline can be modeled on newElement combined with plotPoint

Guiding Knowledge:
newElement creates a dot (given a color)
plotPoint calls newElement, then places the dot on the canvas

Obstacles:
it’s reasonable for the HU to look at plotPoint for inspiration
modeling a function on two functions in combination is a little complicated

Step 108:
infer that ’circle r’ in newElement
could be replaced by ’line (x1,y1) (x2,y2)’

Guiding Knowledge:
’circle r’ creates a circle
’line (x1,y1) (x2,y2)’ creates a line
both the circle and the line are of type Picture

Obstacles:
the HU has to know that ’circle’ and ’line’ both create Pictures
because there is no reason she/he would assume
that they return the same type

Step 109:
infer that £illSolid can be discarded

Guiding Knowledge:
lines don’t have interiors which can be filled or not filled
f£illSolid has type Picture -> Picture
and so the types are unaffected by its removal

Obstacles:
this step seems reasonable
it’s possible that fillSolid could be meaningful for a line
the HU needs to know the type of fillSolid

Step 110:
write the first part of drawlLine:
drawline canvas ((x1,y1),(x2,y2)) =
transparentGlyph (withColour red $ line (x1,y1) (x2,y2)) dc >>= \ (_,dh) ->

Guiding Knowledge:

this is the first line of newElement with
the color changed to red
£illSolid omitted .
’circle’ changed to ’line’ as described in step 108

((x1,y1),(x2,y2)) needs to be a parameter of drawLine

’canvas’ needs to be a parameter of drawLine

’canvas’ comes before ’coord’ in plotPoint (and in many Haggis functions)
so for consistency it should come first here also

(_,dh) was used in newElement, so it should work here, too

Obstacles:
this seems reasonable given steps 107 through 109
there’s a lot of stuff just copied without full comprehension
(transparentGlyph, dc, and >>= \ (_,dh) ->)

Do’ Step 110:
write the first part of drawLine:
drawline canvas ((x1,y1),(x2,y2)) =
(.,dh) <- transparentGlyph (withColour red $ line (x1,y1l) (x2,y2)) dc

Guiding Knowledge:

this is the first line of newElement with
the color changed to red
£il1Solid omitted
’circle’ changed to ’line’ as described in step 108

((x1,y1),(x2,y2)) needs to be a parameter of drawlLine

’canvas’ needs to be a parameter of drawline

’canvas’ comes before ’coord’ in plotPoint (and in many Haggis functions)
so for consistency it should come first here also

143

(.,dh) was used in newElement, so it should work here, too

Obstacles:
this seems reasonable given steps 107 through 109
there’s a lot of stuff just copied without full comprehension
(transparentGlyph, dc, and ’(_,dh) <-%)

Step 111:
infer that the ’return dh’ line of newElement
and the ’newElement’ line of plotPoint
can be eliminated

Guiding Knowledge:
’return dh’ creates a return value from the dh in the previous line (_,dh)
‘newElement colour >>= \ dh ->’ just calls newElement and extracts the dh

Obstacles:
part of this is functional programming (and generic programming)
knowledge about converting functions to expressions (and back)
the HU must know about how the IO monad complicates this conversion

’Do’ Step 111:
infer that the ’return dh’ line of newElement
and the ’newElement’ line of plotPoint
can be eliminated

Guiding Knowledge:
’return dh’ creates a return value from the dh in the previous line (_,dh)
’dh <- newElement colour’ just calls newElement and extracts the dh

Obstacles:
part of this is functional programming (and generic programming)
knowledge about converting functions to expressions (and back)
the HU must know about how the IO monad complicates this conversion
is the ’do’ syntax harder or easier here?

Step 112:
write the second line of the body of drawlLine:
placeTransparent canvas (0,0) dh

Guiding Knowledge:
placeTransparent places the (DisplayHandle of the) object on the canvas
the line’s origin is the origin of the canvas
and so (0,0) is where the line Glyph should be placed

Obstacles:
this is simple copying except that
knowing that (0,0) is the correct Coord to pass in is quite tricky
the HU might expect that one of the endpoints would be the correct Coord
this is just something that the HU must know

Step 113:
infer that drawline needs to put the line at the back of the display list
and that toBackCompositeContainerElt will accomplish this
and that toBackCompositeContainerElt needs the CompositeContainerElt
for the line

Guiding Knowledge:
the line may be clicked on
the line may cover one or more points and prevent them from being clicked
putting the line at the back keeps it from covering the points

Obstacles:
this is another thing that the HU must know
from programming interaction with multiple overlapping objects
the HU must know about display lists

Step 114:
add to the end of the second line of the body of drawlLine:
>>= \ lineCCE ->

Guiding Knowledge:
placeTransparent returns (in a monad) a CompositeContainerElt
1lineCCE is a descriptive name for the line’s CompositeContainerElt
1lineCCE is needed by toBackCompositeContainerElt

Obstacles:
the HU must know (as in many other steps) how to use >>= \ x ->
to extract the result of a function of type I0 x

144

‘Do’ Step 114:
add to the beginning of the second line of the body of drawLine:
lineCCE <-

Guiding Knowledge:
placeTransparent returns (in a monad) a CompositeContainerElt
lineCCE is a descriptive name for the line’s CompositeContainerElt
1lineCCE is needed by toBackCompositeContainerElt

Obstacles:
the HU must know (as in many other steps) how to use x <-
to extract the result of a function of type I0 x

Step 115:
write the third line of the body of drawline:
toBackCompositeContainerElt 1ineCCE >>

Guiding Knowledge:
toBackCompositeContainerElt puts the 1lineCCE at the back of the display list
toBackCompositeContainerElt doesn’t return a useful values
I/0 functions that don’t return useful values chain with >>

Obstacles:
this is probably ok given step 113

’Do’ Step 115:
write the third line of the body of drawLine:
toBackCompositeContainerElt 1lineCCE

Guiding Knowledge:

toBackCompositeContainerElt puts the 1ineCCE at the back of the display list
toBackCompositeContainerElt doesn’t return a useful values

I/0 functions that don’t return useful values don’t use <-

Obstacles:
this is probably ok given step 113

Step 116:
infer that drawlLine needs to return the line’s CompositeContainerElt

Guiding Knowledge:
the line may be clicked on
clicking on the line should have no effect
the only way to detect clicking on the line
is to compare the CompositeContainerElt clicked
with the line’s CompositeContainerElt

Obstacles:
the HU has to foresee this problem or deal with it when it comes up
(assuming that the HU forsees the problem simplifies the walkthrough)
forseeing this problem involves experience
with programming interaction and handling events

Step 117:
write the fourth and final line of the body of drawLine:
return lineCCE

Guiding Knowledge:
drawLine needs to return the line’s CompositeContainerElt
drawLine is an I/0 function, and so it needs to return a monad
’return 1ineCCE’ returns the line’s CompositeContainerElt in a monad

Obstacles:
this seems fine given the extensive knowledge other steps require about I/0

Step 118:
write the type signature for drawLine
drawLine :: CompositeContainer -> (Coord,Coord) -> IO CompositeContainerElt

Guiding Knowledge:
the parameters are ’canvas’ and ’((x1,y1),(x2,y2))’
which have types CompositeContainer and (Coord,Coord) respectively
the return value is a monad of a CompositeContainerElt
and therefore has type I0 CompositeContainerElt

Obstacles:
the HU must know how to construct type signatures
the HU must know that a monad of x has type I0 x

145

Step 119:
infer that
a drawline call in tracker will draw the initial line
a drawLine call in trackCtrl will redraw the line as needed

Guiding Knowledge:
the line needs to be drawn initially and after each interaction (step 105)
drawLine is the function that will draw the line
tracker is the function that sets up the initial interface
trackCtrl (specifically the ’Just cce’ case of case ’17)
is the function in which the interaction’s changes take place

Obstacles:
this is important, but doesn’t seem difficult

Step 120:
infer that
the initial line will be calculated from ’problems’ and ((0,0), (100,100))
redrawn lines will be calculated from theNewPointData and ((0,0),(100,100))
both lines will be calculated by calling fittedLineAndCorrelation

Guiding Knowledge:
fittedLineAndCorrelation calculates the fitted line (and correlation)
from a list of points and a clipping window
the initial list of points is ’problems’
the list of points for the redrawn line is part of ’theNewPointData’

Obstacles:
this seems ok
knowing that theNewPointData is not (quite) the right value
is a small chance for (brief) confusion
knowing to use theNewPointData
rather than thePointData (which is out-of-date) could be tricky
(this is an imperative trap!)

Step 121:
infer that the list of inliers in theNewPointData is
filter snd theNewPointData

Guiding Knowledge:
filter takes a predicate and a list and returns the elements of the list
for which the predicate is True
snd selects the second component of a pair
the second element of each pair in theNewPointData is a Boolean
indicating whether the point is an inlier
the desired lists consists only of the inliers

Obstacles:
the HU might write the equivalent (but slightly more complicated)
filter (\ (_,b) -> b == True) theNewPointData
filter (\ (_,b) -> b) theNewPointData
because using ’snd’ depends on the combination of ’snd’
with a list of (_,Bool) pairs
where the Bool is the filtering criterion

Step 122:
infer that the desired list of coords for calculating the redrawn line is
map fst (filter snd theNewPointData)

Guiding Knowledge:
(filter snd theNewPointData) is still a list of pairs
map applies a function to each element of a list
fst selects the first component of a pair

Obstacles:
the HU might miss this (the author did initially)
it requires thinking clearly about types (formally or informally)
the BU is unlikely to write a lambda in place of fst (compare step 121)
because the interaction of functionality in that case is absent here

Step 123:
in the ’where’ clause at the end of the main program, add
theClippingWindow = ((0,0),(100,100))

Guiding Knowledge:
the clipping window will be the same for both the initial and redrawn lines
so it can be defined in a ’where’ clause accessible to both
definitions in a function’s ’where’ clause

146

are accessible throughout the entire function
the definition of theClippingWindow needs to be accessible
in both tracker and trackCtrl

Obstacles:
this seems ok
indentation could trip the HU up briefly

Step 124:
infer that (in tracker) drawLine can go anywhere after compositeContainer

Guiding Knowledge:
drawLine needs the canvas to draw on it
compositeContainer creates the canvas

Obstacles:
this seems reasonable
the HU must know about dependencies
compare steps 13,93,100,104

Step 125:
add drawline canvas theLineCoords >>= \ 1lineCCE ->
after plotPoints in tracker

Guiding Knowledge:
drawLine can go anywhere after compositeContainer
it seems natural to plot the points first, then draw the line
drawline takes the canvas and the line coordinates as parameters
the line coordinates can be a single name (theLineCoords)

because they are not needed individually

drawlLine returns a monad of a line CompositeContainerElt
the drawline call is being placed in a monadic I/0 context
drawlLine chains with >>= in a monadic I/0 context

Obstacles:
here is another case of arbitrary statement ordering
as with steps 92,93,94 the HU is inserting into a monadic chain
a function that returns a useful value and chains with >>=
knowing that theLineCoords will do instead of ((x1,y1),(x2,y2))
is subtle, but luckily not particularly critical

’Do’ Step 125:
add lineCCE <- drawLine canvas theLineCoords
after plotPoints in tracker

Guiding Knowledge:
drawlLine can go anywhere after compositeContainer
it seems natural to plot the points first, then draw the line
drawline takes the canvas and the line coordinates as parameters
the line coordinates can be a single name (theLineCoords)

because they are not needed individually

drawLine returns a monad of a line CompositeContainerElt
the drawLine call is being placed in a monadic I/0 context
drawLine uses ’<-’ in a ’do’ context

Obstacles:
here is another case of arbitrary statement ordering
as with steps 92,93,94 the HU is inserting into a statement sequence
a function that returns a useful value and uses <-
knowing that theLineCoords will do instead of ((x1,y1),(x2,7y2))
is subtle, but luckily not particularly critical

Step 126:
add a ’where’ expression at the beginning of tracker
where
(theLineCoords,correlation) =
fittedLineAndCorrelation problems theClippingWindow

Guiding Knowledge:
fittedLineAndCorrelation computes the endpoints for the initial fitted line
from the initial set of problems and the 100x100 clipping window
the ’where’ clause defines ’thelineCoords’ and ’correlation’ locally
to the tracker function

Obstacles:
the ’where’ looks a little odd hanging off by itself at the end of tracker
and the indentation might be a little tricky
these are aspects of functional programs that have numerous nested clauses
and are not peculiar to interactive programs

147

Step 127:
add to the ’let’ expression in trackCtrl
(theNewLineCoords,theNewCorrelation) =
fittedLineAndCorrelation (map fst (filter snd theNewPointData))
theClippingWindow

Guiding Knowledge:
the definition of (theNewLineCoords,theNewCorrelation)
must be in the ’let’ expression
because it needs theNewPointData
which would not be accessible from a ’where’ clause (see step 99)
also, the ’let’ has been written
and putting all definitions together is typically clearer
this definition combines the results of steps 122 and 123

Obstacles:
this seems ok
since order of definitions in a let is irrelevant
the placement of this definition is left to style and aesthetics

Step 128:
after plotPoint in trackCtrl, add
drawLine canvas theNewLineCoords >>= \ theNewLineCCE ->

Guiding Knowledge:
the whole point of calculating theNewLineCoords was for drawing the line
the CompositeContainerElt of the new line must be kept track of
so that clicking on it can be ignored (see step 116)
and so that it can be deleted (step 129)
it seems appropriate to (re)draw the line after (re)plotting the points

Obstacles:
the HU has to know that a special case must be written
so that clicking the line will be ignored
this is, perhaps, nonintuitive

’Do’ Step 128:
after plotPoint in trackCtrl, add
theNewLineCCE <- drawLine canvas theNewLineCoords

Guiding Knowledge:
the whole point of calculating theNewLineCoords was for drawing the line
the CompositeContainerElt of the new line must be kept track of
so that clicking on it can be ignored (see step 116)
and so that it can be deleted (step 129)
it seems appropriate to (re)draw the line after (re)plotting the points

Obstacles:
the HU has to know that a special case must be written
so that clicking the line will be ignored
this is, perhaps, nonintuitive

Step 129:
infer that, to delete the old line, the line CompositeContainerElt is needed

Guiding Knowledge:
deleteCompositeContainerElt requires a CompositeContainerElt parameter
the old point was deleted by passing its CompositeContainerElt
to deleteCompositeContainerElt

Obstacles:
this seems to be ok
the HU might forget to delete it
but would realize the need to do so
when the window became cluttered with lines

Step 130:
after ’deleteCompositeContainerElt cce >>’ in trackCtrl, add
deleteCompositeContainerElt theLineCCE >>

Guiding Knowledge:
conceptually, it makes some sense to group the deletions together
theLineCCE is a descriptive name for the line’s CompositeContainerElt

Obstacles:
this is "working from the inside out"
which can be confusing
but does start from the need for the change

148

’Do’ Step 130:
after ’deleteCompositeContainerElt cce’ in trackCtrl, add
deleteCompositeContainerElt theLineCCE

Guiding Knowledge:
conceptually, it makes some sense to group the deletions together
thelLineCCE is a descriptive name for the line’s CompositeContainerElt

Obstacles:
this is "working from the inside out"
which can be confusing
but does start from the need for the change

Step 131:
add theLineCCE as a parameter to trackCtrl
in the definition of trackCtrl
in the forkIO call in tracker

Guiding Knowledge:
’theLineCCE’ in tracker needs to be passed to trackCtrl
’theLineCCE’ used to delete the line
needs to be a parameter in trackCtrl’s definition

Obstacles:
this seems ok for a programmer who knows how to add parameters to functions

Step 132:
add theNewLineCCE to the recursive call in trackCtrl

Guiding Knowledge:
trackCtrl’s recursive call must match its definition
the next invocation of trackCtrl
must have the new line CompositeContainerElt

Obstacles:
up to this point, the parameters passed to trackCtrl
and those passed to the recursive call
have been identical
this step brings up the (previously dormant) issue
of storing state in parameters
in fact, thePointData and theNewPointData could be passed in this fashion
eliminating the need for Gauge
(it’s not clear that a Gauge-less solution would be simpler)
see step 134 for how messy getting a return value
from nested imperative cases can be
the need for onward-passed parameters to be returned
from nested imperative cases
suggests that (especially multiple) onward-passed parameters
would be fairly complicated

Step 133:
change ’return ()’ at the end of the ’Just cce’ case in trackCtrl to
return theNewLineCCE
and change the >> at the end of the case expression to
>>= \ theNewLineCCE ->

Guiding Knowledge:
the nested ’Just cce’ case didn’t return a value (’return ()?)
and the outer ’case’ expression chained with >>
but the ’Just cce’ case needs to return theNewLineCCE
and the outer ’case’ expression needs to chain with >>=
because theNewLineCCE’s scope ends
with the end of the ’Just cce’ case

Obstacles:

this is where the functional and imperative worlds collide

the HU might gather that theNewLineCCE’s scope is over
by the change in indentation

but she/he might be misled by the imperative "until-the-end" rule

actually modifying the return value and the chaining operator
requires significant understanding of the way the monadic expressions
chain with the monadic operators >> and >>=

*Do’ Step 133:
change ’return ()’ at the end of the ’Just cce’ case in trackCtrl to
return thelNewLineCCE
and, at the beginning of the outer ’case’ expression, add
theNewLineCCE <-

Guiding Knowledge:
the nested ’Just cce’ case didn’t return a value (’return ()’)
and thus the outer ’case’ expression didn’t need <-
but the ’Just cce’ case needs to return theNewLineCCE
and the outer ’case’ expression needs to use <-
because theNewLineCCE’s scope ends
with the end of the ’Just cce’ case

Obstacles:
this is where the functional and imperative worlds collide
the HU might gather that theNewLineCCE’s scope is over
by the change in indentation
but she/he might be misled by the imperative "until-the-end" rule
actually modifying the return value and adding the <-
requires significant understanding of the way the monadic expressions
are joined by "statement succession"
(or by >> and >>=, which requires translation from the ’do’ syntax)
putting <- at the beginning of the outer ’case’ expression
seems more error-prone than putting >>= after it

Step 134:
change ’Nothing -> return ()’ in trackCtrl to
Nothing -> return theLineCCE
change ’>_ -> sendMouseEv mouse deviceEvent’ to
_ ~> sendMouseEv mouse deviceEvent >>
return theLineCCE

Guiding Knowledge:
all cases of ’case elementHit’ must return the same type
the ’Just cce’ case returns (the new line’s) CompositeContainerElt
in the Nothing case and the ’_’ case, there is no new line
so the existing line’s CompositeContainerElt is the one to return

Obstacles:
knowing that the old line CompositeContainerElt is the one to return
might be tricky
(especially in the ’_ -> sendMouseEv’ case
where the HU might not know what sendMouseEv means)
the HU must know that sendMouseEv returns I0 ()
in order to know that it can be chained safely using >>
this step is due to the "unintended consequence of a change'" problem
the HU must know and remember to revise the Nothing case (author didn’t)
the HU must know and remember to revise the ’_’ case (author didn’t)
this step casts serious doubt on the use of parameters to store state
(see step 132)
since bundling the line CompositeContainerElt in with the Gauge
would be tedious
but would avoid this problem

’Do’ Step 134:
change ’Nothing -> return ()’ in trackCtrl to
Nothing -> return theLineCCE
change ’_ -> sendMouseEv mouse deviceEvent’ to
_ -> sendMouseEv mouse deviceEvent
return theLineCCE

Guiding Knowledge:
all cases of ’case elementHit’ must return the same type
the ’Just cce’ case returns (the new line’s) CompositeContainerElt
in the Nothing case and the ’_’ case, there is no new line
so the existing line’s CompositeContainerElt is the one to return

Obstacles:
knowing that the old line CompositeContainerElt is the one to return
might be tricky
(especially in the ’_ -> sendMouseEv’ case
where the HU might not know what sendMouseEv means)
the HU must know that sendMouseEv returns I0 ()
in order to know that it can be followed by another statement
. without putting <- to its left also
this step is due to the "unintended consequence of a change" problem
the HU must know and remember to revise the Nothing case (author didn’t)
the HU must know and remember to revise the ’_’ case (author didn’t)
this step casts serious doubt on the use of parameters to store state
(see step 132)
since bundling the line CompositeContainerElt in with the Gauge
would be tedious
but would avoid this problem

149

150

Step 135:
add CompositeContainerElt to the type signature of trackCtrl

Guiding Knowledge:
trackCtrl’s type signature must match its definition

Obstacles:
this is an easy step to forget
this should be no problem (once remembered)

Step 136:
infer that the ’Just cce’ case needs to split into
a case for when the line is clicked on
a case for when one of the points is clicked on

Guiding Knowledge:
the line is identified by a CompositeContainerElt
the ’Just cce’ case is where the CompositeContainerElt is detected/bound
the ’Just cce’ case cannot be made into a pattern match

Obstacles:
the fact that case expressions can’t pattern match could be tricky
but is not part of programming interaction (nor is it complicated by it)
the HU might be tempted to write the cases as
Just theLineCCE -> ...
Just cce -> ...
but that won’t work

Step 137:
modify the ’Just cce’ case to read
Just cce
| cce == theLineCCE ->
return theLineCCE
| True ->
and indent the rest of the lines in the ’Just cce’ case one level

Guiding Knowledge:
to specify alternate expressions for different values
use a guarded expression
if the line is clicked on, return without doing anything
the case expression must return the CompositeContainerElt
for the current line

Obstacles:
the HU must know how to use guarded expressions
including how to use True as the default case
knowing to return theLineCCE is just like returning it in the Nothing case
80 it’s reasonable that the HU would do so in this case

Step 138:
infer that adding the label to display the correlation consists of
creating the label (displaying the correlation)
updating the label when a point is clicked

Guiding Knowledge:
the label must be created
the label must initially display the correct correlation
the label must be updated when the correlation changes
the correlation changes each time a point is clicked

Obstacles:
this should be no problem

Step 139:
in tracker, after drawlLine, add
label (show correlatiom) dc¢ >>= \ (theLabel, labelDH) ->

Guiding Knowledge:
label creates a label (given a string to display and a DisplayContext)
(show correlation) is a string consisting of the correlation coefficient
label returns a label and a DisplayHandle for the label

Obstacles:
the HU must know to not name ’labelDH’ just ’dh’
because it will shadow the ’dh’ of the canvas
which is needed for both catchMouseEv and for displaying
this is pretty straightforward; it requires
knowing how to create a label

151

knowing how to use show to display a value
knowing that component creators return a (component,displayhandle) pair

’Do’ Step 139:
in tracker, after drawlLine, add
(thelabel, labelDH) <- label (show correlation) dc

Guiding Knowledge:
label creates a label (given a string to display and a DisplayContext)
(show correlation) is a string consisting of the correlation coefficient
label returns a label and a DisplayHandle for the label

Obstacles:

the HU must know to not name ’labelDH’ just ’dh’
because it will shadow the ’dh’ of the canvas
which is needed for both catchMouseEv and for displaying

this is pretty straightforward; it requires
knowing how to create a label
knowing how to use show to display a value
knowing that component creators return a (component,displayhandle) pair

Step 140:
infer that labelDH must be returned with (canvas) dh in order to be displayed

Guiding Knowledge:
the DisplayHandle determines the display of the component
the ’dh’ of canvas is passed to realiseDH

Obstacles:
knowing this could be tricky
the HU must know that DisplayHandles determine appearance
the HU must understand how ’dh’
is returned by tracker and passed to realiseDH

Step 141:
in tracker, replace ’return dh’ with
return (vbox [labelDH, dh])

Guiding Knowledge:
vbox combines a list of DisplayHandles into a single DisplayHandle
the return value of tracker needs to be I0 DisplayHandle
vbox stacks its parameters on top of each other
putting the label on top avoids screwing up the coordinate system

Obstacles:
the HU needs to know how to use vbox to combine DisplayHandles
the HU needs to know to put the label on top
but this may just be a Haggis bug

Step 142:
infer that the label needs to be passed to trackCtrl
for it to be updated

Guiding Knowledge:
trackCtrl is where the clicks are detected
and where the line is updated

Obstacles:
this should be no problem given previous analogous steps

Step 143:

modify
the trackCtrl call in tracker (forkIO)
the trackCtrl definition
the trackCtrl recursive call

to take theLabel as an additional parameter

modify the trackCtrl type signature

to take Label as an additional parameter

Guiding Knowledge:
adding a parameter to a function includes changing
the type signature
the definition
all calls of the function (including recursive calls)

Obstacles:
this should be no problem

Step 144:

152

in trackCtrl, after setGauge, add
setLabel theLabel (show theNewCorrelation) >>

Guiding Knowledge:
the label must be set to the current correlation
setLabel sets a label to a value (string)
(show theNewCorrelation) is a string containing the new correlation
setLabel doesn’t return a value, so it chains with >>

Obstacles:
this should be ok given previous steps such as 104 and 139

Do’ Step 144:
in trackCtrl, after setGauge, add
setLabel theLabel (show theNewCorrelation)

Guiding Knowledge:
the label must be set to the current correlation
setLabel sets a label to a value (string)
(show theNewCorrelation) is a string containing the new correlation
setLabel doesn’t return a value, so it doesn’t need <-

Obstacles:
this should be ok given previous steps such as 104 and 139

Step 145:
conclude that the Line-Fitting example is complete

Guiding Knowledge:
all of the parts of the problem statement have been completed
the program runs; the line and correlation change when points are clicked

Obstacles:
this should be no problem

B.2 Starting Examples for Line-Fitting Walkthrough in Haggis
B.2.1 Combinator Notation

module Main(main) where

import Concurrent
import Haggis

main =
mkDC ["*title: Canvas'] >>= \ de¢ ->
let
tracker :: I0 DisplayHandle
tracker =
compositeContainer (Just (200,200)) dc >>= \ (canvas,dh) ->
catchMouseEv dh >>= \ (mouse,dh) ->
forkI0 (trackCtrl mouse canvas) >>
return dh
r = 10

newElement :: I0 DisplayHandle
newElement =

transparentGlyph (withColour blue $ fillSolid $ circle r) dc >>= \ (_,dh) ->
return (resizer dh)

trackCtrl :: Mouse -> CompositeContainer -> IO ()
trackCtrl mouse canvas =
getMouseDown mouse >>=
\ deviceEvent@(DevEv _ x y _ (MouseButton Down whichButton)) ->
(case whichButton of

2 ->
newElement >>= \ dh ->
placeTransparent canvas (x,y) dh >>
return ()

1 ->

hitCompositeContainerElt canvas (x,y) >>= \ elementHit ->
case elementHit of
Nothing -> return ()
Just cce ->
toFrontCompositeContainerElt cce >>

B.2.2

getCompositeContainerEltCoord cce >>= \ (a,b) ->
dragger canvas cce mouse (x-a,y-b)
o>
sendMouseEv mouse deviceEvent
) >> -- end of case expression
trackCtrl mouse canvas

dragger :: CompositeContainer -> CompositeContainerElt
-> Mouse
-> Translation
-> 10 O
dragger canvas cce mouse offset@(offset_x,offset_y) =
getMouseEv mouse >>= \ deviceEvent@(DevEv _ x y _ whichEvent) ->
case whichEvent of
Motion ->
moveCompositeContainerElt cce (x - offset_x, y - offset_y) >>
dragger canvas cce mouse offset
MouseButton Up _ ->
sendMouseEv mouse deviceEvent
->
sendMouseEv mouse deviceEvent >>
dragger canvas cce mouse offset

in
tracker >>= \ dh ->
realiseDH dc dh >>
return ()

do Notation

module Main(main) where

import Concurrent
import Haggis

main
do

dc <~ mkDC ["*title: Canvas"]
let
tracker :: I0 DisplayHandle
tracker =
do
(canvas,dh) <- compositeContainer (Just (200,200)) dc
(mouse,dh) <- catchMouseEv dh
forkI0 (trackCtrl mouse canvas)
return dh
r =10

newElement :: I0 DisplayHandle
newElement =
do

(_,dh) <- transparentGlyph (withColour blue $ fillSolid $ circle r) dc

return (resizer dh)

trackCtrl :: Mouse -> CompositeContainer -> I0 ()
trackCtrl mouse canvas =
do

deviceEvent@(DevEv _ x y _ (MouseButton Down whichButton)) <- getMouseDown mouse

(case whichButton of
2 ->
do
dh <- newElement
placeTransparent canvas (x,y) dh
return ()
1>
do
elementHit <- hitCompositeContainerElt canvas (x,y)
case elementHit of
Nothing -> return ()
Just cce ->
do
toFrontCompositeContainerElt cce
(a,b) <- getCompositeContainerEltCoord cce
dragger canvas cce mouse (x-a,y-b)
->
sendMouseEv mouse deviceEvent

153

154

B.3

B.3.1

-~ fittedLineAndCorrelation ::

) -- end of case expression
trackCtrl mouse canvas

dragger :: CompositeContainer -> CompositeContainerElt

-> Mouse
-> Translation
-> 10)

dragger canvas cce mouse offset@(offset_x,offset_y) =

do

deviceEvent@(DevEv _ x y _ whichEvent) <- getMouseEv mouse

case whichEvent of
Motion ->
do

moveCompositeContainerElt cce (x - offset_x, y - offset_y)

dragger canvas cce mouse offset
MouseButton Up _ ->
sendMouseEv mouse deviceEvent
->
do
sendMouseEv mouse deviceEvent
dragger canvas cce mouse offset

in

do
dh <- tracker
realiseDH dc dh
return ()

Final Line-Fitting Examples in Haggis

Combinator notation

module Main(main) where

import Concurrent

import Haggis

import MiscIO

import FittedLineAndCorrelation

[(Int,Int)] -> ((Int,Int), (Int,Int))

-> (((Int,Int),(Int,Int)), Float)

mkDC ["#title: Line-Fitting"] >>= \ dc ->
let

tracker :: ID DisplayHandle

tracker =
gauge (zip problems (repeat True))
compositeContainer (Just (200,200)) dc
plotPoints canvas problems
drawLine canvas thelLineCoords
label (show correlation) dc
catchMouseEv dh

>>= \ theDataGauge ->

>>= \ (canvas,dh) ->

>>

>>= \ theLineCCE ->

>>= \ (theLabel, labelDH) ->
>>= \ (mouse,dh) ->

forkI0 (trackCtrl mouse canvas theDataGauge theLineCCE theLabel) >>

return (vbox [labelDH,dh])

where
(theLineCoords,correlation) =

fittedLineAndCorrelation problems ((0,0),(100,100))

r=5

newElement :: Colour -> I0 DisplayHandle
newElement ¢ =

transparentGlyph (withColour c¢ $ fillSolid $ circle r) dc >>= \ (_,dh) ->

return dh

plotPoint :: CompositeContainer -> Colour
-> Coord

-> I0 CompositeContainerElt

plotPoint canvas colour coord =
newElement colour >>=
placeTransparent canvas coord dh

plotPoints :: CompositeContainer -> [Coord] -> IO
plotPoints canvas = mapI0 $ plotPoint canvas blue

\ dh ->

[CompositeContainerElt]

155

drawLine :: CompositeContainer -> (Coord,Coord) -> ID CompositeContainerElt
drawline canvas ((x1,y1),(x2,y2)) =
transparentGlyph (withColour red $ line (x1,y1) (x2,y2)) dc >>= \ (_,dh) ->
placeTransparent canvas (0,0) dh >>= \ 1lineCCE ->
toBackCompositeContainerElt lineCCE >>
return lineCCE

trackCtrl :: Mouse
-> CompositeContainer
-> Gauge [(Coord,Bool)]
-> CompositeContainerElt
-> Label
-> 10 O
trackCtrl mouse canvas theDataGauge thelLineCCE thelLabel =
getMouseDown mouse >>=
\ deviceEvent@(DevEv _ x y _ (MouseButton Down whichButton)) ->
(case whichButton of ’
1->
hitCompositeContainerElt canvas (x,y) >>= \ elementHit ->
case elementHit of
Nothing -> return theLineCCE
Just cce
| cce == theLineCCE ->
return theLineCCE

| True ->
getCompositeContainerEltCoord cce >>=\ (a,b) ->
getGauge theDataGauge >>= \ thePointData ->
let

(theNewLineCoords,theNewCorrelation) =

fittedLineAndCorrelation (map fst (filter snd theNewPointData))
theClippingWindow

theNewPointData = ((a,b),thellewStatus):otherPoints

theNewStatus = not (snd thePoint)

([thePoint],otherPoints) =

partition (\ (coord,.) -> coord == (a,b))
thePointData
in

setGauge theDataGauge theNewPointData >>
setLabel thelabel (show theNewCorrelatiomn) >>
deleteCompositeContainerElt cce >>
deleteCompositeContainerElt theLineCCE >>
plotPoint canvas (if theNewStatus

then blue

else yellow) (a,b) >>
drawLine canvas theNewLineCoords >>= \ theNewLineCCE ->

return theNewLineCCE
->
sendMouseEv mouse deviceEvent >>
return theLineCCE
) -- end of case expression
>>= \ theNewLineCCE ->
trackCtrl mouse canvas theDataGauge theNewLineCCE theLabel

in
tracker >>= \ dh ->
realiseDH dc dh >>
return ()
where

problems :: [Coord]
problems = [(90, 96),

(94, 80),
(40, 50),
(24, 20),
(24, 32),
(30, 42),
(50, 46),
(32, 38),
(60, 70),
(64, 64) 1

theClippingWindow = ((0,0),(100,100))

B.3.2 do Notation

module Main(main) where

156

import Concurrent

import Haggis

import MiscIO

import FittedLineAndCorrelation

-- fittedLineAndCorrelation :: [(Int,Int)] -> ((Int,Int), (Int,Int))
-- -> (((Int,Int), (Int,Int)), Float)

main =
do
dc <- mkDC ["#title: Line-Fitting"]
let
tracker :: I0 DisplayHandle
tracker =
do
theDataGauge <- gauge (zip problems (repeat True))
(canvas,dh) <- compositeContainer (Just (200,200)) dc
plotPoints canvas problems
theLineCCE <- drawlLine canvas theLineCoords
(theLabel, labelDH) <- label (show correlation) dc
(mouse,dh) <~ catchMouseEv dh

forkI0 (trackCtrl mouse canvas theDataGauge theLineCCE theLabel)
return (vbox [labelDH,dh])

where
(theLineCoords,correlation) =
fittedLineAndCorrelation problemis ((0,0),(100,100))

r=25

newElement :: Colour -> I0 DisplayHandle
newElement ¢ =

do
(_,dh) <- transparentGlyph (withColour ¢ $ fillSolid $ circle r) d
return dh -
plotPoint :: CompositeContainer -> Colour

-> Coord
-> I0 CompositeContainerElt
plotPoint canvas colour coord =
do
dh <- newElement colour
placeTransparent canvas coord dh

plotPoints :: CompositeContainer -> [Coord] -> I0 [CompositeContainerElt]
plotPoints canvas = mapI0 $ plotPoint canvas blue

drawLine :: CompositeContainer -> (Coord,Coord) -> I0 CompositeContainerElt
drawline canvas ((x1,y1),(x2,y2)) =
do

(.,dh) <- transparentGlyph (withColour red $ line (x1,yl1) (x2,y2)) dc
1lineCCE <- placeTransparent canvas (0,0) dh
toBackCompositeContainerElt 1ineCCE

return 1lineCCE

trackCtrl :: Mouse
-> CompositeContainer
-> Gauge [(Coord,Bool)]
-> CompositeContainerElt
~> Label
-> 10 Q)
trackCtrl mouse canvas theDataGauge theLineCCE theLabel =
do
deviceEvent@(DevEv _ x y _ (MouseButton Down whichButton)) <- getMouseDown mouse
theNewLineCCE <- (case whichButton of
1 ->
do
elementHit <- hitCompositeContainerElt canvas (x,y)
case elementHit of
Nothing -> return theLineCCE
Just cce
| cce == theLineCCE ->
return theLineCCE
| True ->
do
(a,b) <- getCompositeContainerEltCoord cce
thePointData <- getGauge theDataGauge
let

157

(theNewLineCoords,theNewCorrelation) =

fittedLineAndCorrelation (map fst (filter snd theNewPointData))
theClippingWindow

thelNewPointData = ((a,b),theNewStatus):otherPoints

theNewStatus = not (snd thePoint)

([thePoint],otherPoints) =
partition (\ (coord,_.) -> coord == (a,b))

thePointData
in

do
setGauge theDataGauge theNewPointData
setLabel thelabel (show theNewCorrelation)
deleteCompositeContainerElt cce
deleteCompositeContainerElt theLineCCE
plotPoint canvas (if theNewStatus

then blue
else yellow) (a,b)
theNewLineCCE <~ drawLine canvas theNewLineCoords
return theNewLineCCE
->
do
sendMouseEv mouse deviceEvent
return theLineCCE

) -- end of case expression
trackCtrl mouse canvas theDataGauge theNewLineCCE theLabel
in
do
dh <- tracker
realiseDH dc dh
return ()
where
problems :: [Coord]
problems = [(90, 96),
(94, 80),
(40, 50),
(24, 20),
(24, 32),
(30, 42),
(50, 46),
(32, 38),
(60, 70),
(64, 64)]

theClippingWindow = ((0,0),(100,100))

B.3.3 Fitted Line and Correlation Calculation

module FittedLine (fittedLineAndCorrelation) where

fittedLineAndCorrelation :: [(Int,Int)] -> ((Int,Int), (Int,Int))

-> (((Int,Int), (Int,Int)), Float)

fittedLineAndCorrelation theCoordinateList theClippingWindow =
(({round x1, round y1), (round x2, round y2)), correlation)

where
((x1, y1)

, (x2, y2)) =

clipToRectangle (slope, intercept)

((\ ((a,b),(c,d)) -> ((fromIntegral a, fromIntegral b),
(fromIntegral c, fromIntegral d)))
theClippingWindow)

(slope, intercept, correlation) =
slopeInterceptAndCorrelation $

zip (map (fromIntegral . fst) theCoordinatelist)
(map (fromIntegral . snd) theCoordinateList)

slopeInterceptAndCorrelation :: [(Float, Float)] -> (Float, Float, Float)
slopeInterceptAndCorrelation xys = (slope, intercept, correlation)

where

intercept =
(sum ys) / (fromIntegral n) - slope * (sum xs) / (fromIntegral n)
slope = sxy / sxx
correlation = sxy / sqrt (sxx * syy)
sxx = sum (map square xs) - (square (sum xs)) / (fromIntegral n)

158

syy = sum (map square ys) - (square (sum ys)) / (fromIntegral n)
sxy = sum (zipWith (%) xs ys) - (sum xs) * (sum ys) / (fromIntegral n)

square n = n * n
(xs, ys) = unzip xys
n = length xys

clipToRectangle :: (Float, Float) -> ((Float, Float), (Float, Float))

-- line is (slope, intercept)
-- rectangle is ((left, bottom), (right, top))
-- returned line segment is ((x1, yi1), (x2, y2)) with yi1 <= y2

-> ((Float, Float), (Float, Float)

clipToRectangle (slope, intercept) ((left, bottom), (right, top))
{- given that y1 <= y2 -}

y1l > top

y1 < bottom

y2 > top

otherwise

where (x1, yi, x2, y2)

It

yl < bottom &% y2 < bottom =
y1 < bottom &% y2 > top =

"

(0.0, 0.0}, (0.0, 0.0)) {-
(0.0, 0.0y, (0.0, 0.0)) {-
(((bottom - intercept) / slope, {-
bottom),
((top - intercept) / slope,
top))

((C (bottom ~ intercept) / slope, {-
bottom),

(x2,
y2))

((x1, {-
y1), ’
((top - intercept) / slope,
top)) .
((x1, y1), (x2, y2)) {-

| slope >= 0 = (left,

slope * left + intercept,
right,
slope * right + intercept)

| otherwise = (right,

slope * right + intercept,
left,
slope * left + intercept)

)

no line
no line
both

y1 only

y2 only

neither

-}
-}
-}

Appendix C

Temperature Conversion Walkthrough in Excel with Visual Basic

A screen image of the final temperature conversion example in Excel with Visual Basic
appears in figure 3.1.

C.1 Temperature Conversion Walkthrough in Microsoft Excel Vi-
sual Basic

Note: this walkthrough is for a solution using scrollbars. The
scrollbars, in addition to not looking much like thermometers, show
temperatures increasing downwards.

Step 1:
decide to use spreadsheet cells for the numeric editable displays

Guiding Knowledge:
spreadsheet cells display data and allow it to be edited

Obstacles:
hard to imagine for someone with spreadsheet knowledge
HU might use entry boxes instead,
which is feasible, but more work

Step 2:
consider and discard the idea of using formulas to link the
two editable numeric display cells

Guiding Knowledge:
formulas are used to link cells in spreadsheets
values in cells containing formulas cannot be edited

Obstacles:
reasonable
most spreadsheet users would know the GK
any attempt to use formulas would quickly fail

Step 3:
decide to use scrollbars to graphically display and change the temperatures

Guiding Knowledge:
scrollbars display and afford manipulation of a value within a range
scrollbars can be linked to cells, so that :
both display the same value
changing either changes the other
no other widgets look reasonable
graphics (such as rectangles) cannot be dragged
nor can the location of a click be determined
a disadvantage:
(vertical scrollbars’ values increase downwards, unfortunately)

Obstacles:
scrollbars are not the "obvious" right answer to thermometers
the weaknesses of graphic objects (dragging, clicking)
requires deep system knowledge

Step 4:
divide the problem into three steps

160

choosing the layout of the scrollbars and numeric cells
displaying the scrollbars
connecting the scrollbars and cells

Guiding Knowledge:
need to choose where cells and scrollbars will go
need to create scrollbars somehow
need to connect them to get desired behavior

Obstacles:
seems reasonable to create scrollbars before exploring how to link them
in a direct-manipulation interface, creation includes placement

Step 5:
further divide the last step above into
linking each scrollbar to its numeric cell
connecting the two scrollbar-cell pairs somehow

Guiding Knowledge:
linking scrollbars to cells accomplishes two of the necessary connections,
leaving only one connection to be handled some other way

Obstacles:
it’s likely that the HU, knowing about scrollbars,
would know about linked cells
[the program could be written with no links, simply OnAction and OnEntry
but that would be much more tedious
and the notion that the HU would know about OnAction and OnEntry
and not linked cells is farfetched]

Step 6:
realize that Visual Basic code will be needed

Guiding Knowledge:
linked cells only connect one cell with one scrollbar
formulas cannot link the cells
Visual Basic procedures can be triggered when
a cell is edited .
a scrollbar is manipulated

Obstacles:
the realization that Visual Basic code is needed is important
attempting write the program without Visual Basic code
could waste considerable time and effort

Step 7:
summarize steps of the problem solution as
choosing the layout of the scrollbars and numeric cells
displaying the scrollbars
linking each scrollbar to its numeric cell
connecting the two scrollbar-cell pairs with Visual Basic procedures

Guiding Knowledge:
the third original step was divided,
and its second part requires the use of Visual Basic procedures

Obstacles:
none -- it’s just a summary of previous steps

Step 8:
infer that part, but not all, of the problem can be done
by direct manipulation

Guiding Knowledge:
cells can be modified by direct manipulation
components such as scrollbars can be laid out with direct manipulation
linking cells to scrollbars can be done with direct manipulation
connecting the two scrollbar-cell pairs requires Visual Basic

Obstacles:
trying to do more than necessary in Visual Basic will take time and effort
the HU could possibly assume that programming is required for all parts

Step 9:
notice that having the entire solution in Visual Basic may be simpler

Guiding Knowledge:
having all functionality originating in one place is conceptually easier
Visual Basic functionality must be reestablished when a document is opened

161

additions or changes to the spreadsheet may change references
in Visual Basic
having the entire solution in Visual Basic
puts all of the functionality in one place
allows recreation of the solution easily
avoids possibly ambiguous connections with the spreadsheet side

Obstacles:
creating the scrollbars by direct manipulation,
then setting up OnAction calls for them
is substantially more complicated
than using Visual Basic to create and bind the scrollbars
because the newly created scrollbar is also the Selection
and can be addressed as such, instead of ActiveSheet.Scrollbars(l)
the latter case runs the risk of the scrollbars getting bound backwards
however, recognizing these potential complications ahead of time is tricky

Step 10:
notice that creating part of the solution by direct manipulation is easier

Guiding Knowledge:
direct manipulation, when compared with writing programs,
requires less cognitive effort
takes fewer steps

Obstacles:
presumably, the HU would know that DM is easier than programming
but she/he might not think about it (see step 8)

Step 11:
decide to record the direct-manipulation portion of the solution as a macro
then use the macro recording as a starting point for the full solution

Guiding Knowledge:
macro recording creates programs from direct manipulations
a program created by macro recording can be a template or starting point
recording a macro and editing it to create a program
puts all the functionality into the program
is easier than writing a program from scratch

Obstacles:
the HU must know about macro recording, and about editing macros
otherwise, writing the program will be tremendously more work

Step 12:
turn on macro recording by:
selecting Record New Macro... from the Record Macro submenu

of the Tools menu)
clicking Ok in the dialog box

Guiding Knowledge:
macro recording is turned on and off via the Tools menu

Obstacles:
should be ok -- just basic (Mac) interface usage

Step 13:
proceed to the first major step (layout), and
infer that each number should be closest to its scrollbar/thermometer

Guiding Knowledge:
put related or mutually dependent entities near each other for clarity

Obstacles:
should be ok

Step 14:
decide to put the scrollbars in column B, with the numbers in A and C

Guiding Knowledge:
the bars should be side by side (problem statement)
so it makes sense to put them in a column
each number must go in a cell, and thus in a column
the numbers should go next to their respective bars

Obstacles:
lots of similar solutions should work fine, too

Step 15:

162

decide to create the scrollbars using the Forms toolbar

Guiding Knowledge:
a make-scrollbar button is on the Forms toolbar

Obstacles:
this is something HU must know
to create the scrollbars by direct manipulation
and possibly, to know that scrollbars are available at all

Optional Step (if Forms toolbar is not displayed):
display the Forms toolbar by
selecting Toolbars... from the View menu
clicking the Forms checkbox in the scrollable list
clicking Ok in the dialog box

Guiding Knowledge:
the Toolbars... option on the View menu controls display of toolbars
clicking the checkbox next to the name of a toolbar will display it

Obstacles:
displaying the toolbar should be easy for an experienced interface user
knowing how to display toolbars is slightly more sophisticated
most critically, the absence of the Forms toolbar
(not displayed by default) could contribute to
the HU not knowing that scrollbars are available
(although the scrollbar-creator button graphic is hardly lucid)

Step 16:
create the Fahrenheit scrollbar by
clicking on the scrollbar button
dragging from the top of column B to the bottom along the left side

Guiding Knowledge:
graphic objects and components are created by
clicking the appropriate toolbar button and
dragging out the desired (rectangular) size and shape of the object

Obstacles:
the scrollbar-creator button’s graphic is minimally clear
dragging out a scrollbar should be no problem for an experienced XL user

Optional Step (if newly created scrollbar is deselected):
select the Fahrenheit scrollbar by command-clicking on it

Guiding Knowledge:
active objects such as scrollbars must be selected with command-click,
because they respond to clicks (that do not happen with modifier keys)

Obstacles: .
one of those things that you just have to know

Step 17:
link the Fahrenheit scrollbar to cell A30, by
selecting Object... from the Format menu

selecting the Controls tab
typing *A30° into the Linked Cell box
clicking the Ok button

Guiding Knowledge:
the linked cell of a scrollbar can be specified
via the Controls tab in the Format Object dialog
the Format Object dialog is available via Object... on the Format menu
$A830 is the absolute reference to cell A30

Obstacles;
HU either knows how to link via direct manipulation or doesn’t
linking a cell and scrollbar together in Visual Basic isn’t difficult,
but this action records (in the macro)
how to use the Selection to set attributes
and that is a major source of information for the HU
that can save a major headache
absolute references are important in some contexts and not others
knowing what they are and when to use them is important
typing ’=A30° works, as do ’Sheet1!A30’ and ’Sheetl!A30°
formula line shows (e.g.) =A30 not A30
in other words, there are multiple ways to specify the linked cell
and no clear indication of which is best
or how they differ in this situation

163

Step 18:
create the Celsius scrollbar in the same fashion as the Fahrenheit scrollbar,
(as in step 16) but along the right side of column B

Guiding Knowledge:
same as in creating the Fahremheit scrollbar (see step 16)
the choice of left and right is arbitrary,
as long as each number cell is next to its scrollbar

Obstacles:
see step 16
the second time should present no difficulty, given the first experience

(Optional Step above (after step 16) is applicable here also)

Step 19:
link the Celsius scrollbar to cell C30
just as the Fahrenheit scrollbar linked to cell A30

Guiding Knowledge:
same as with the linking of the Fahrenheit scrollbar to A30

Obstacles:
see step 17

Step 20:
turn off macro recording
by selecting Stop Recording on the Record Macro submenu of the Tools menu
or by clicking the Stop (square) button on the floating toolbar

Guiding Knowledge:
turning off macro recording avoids undesired recording
macro recording is turned on and off via the Tools menu
or can be turned off by the Stop button on the floating toolbar
that appears when macro recording is turned on

Obstacles:
remembering to turn off macro recording is tricky
actually turning it off should be easy
failing to turn it off means more (mostly mess) to sort through

Step 21:
look at the macro by (scrolling the tabs and) selecting the Module 1 tab

Guiding Knowledge:
a new macro is stored in a newly created Module
clicking the tab of a sheet or module displays it in the window
scrolling the line of tabs may be necessary to see all tabs

Obstacles:
should be ok for Excel user who knows about sheets and workbooks

The macro is

bl
> Macrol Macro

> Macro recorded 3/21/98
3

bl

Sub Macrol()
ActiveSheet.ScrollBars.Add(74, 2, 15, 649).Select
With Selection

.Value = 0
.Min = 0
.Max = 100

.SmallChange = 1

.LargeChange = 10

.LinkedCell = "A30"

.Display3DShading = True
End With
ActiveSheet.ScrollBars.Add(131, 2, 15, 648).Select
With Selection

.Value = 0
Min = 0
.Max = 100

.SmallChange = 1
.LargeChange = 10

164

.LinkedCell = "C30"
.Display3DShading = True
End With
End Sub

(note that macro will have additional statments
if .the various optional steps above are taken
or if the HU does additionmal direct manipulations while recording)

Step 22:
infer that the ActiveSheetScrollBars.Add lines
match the creation of the scrollbars

Guiding Knowledge:
the first line of the macro is one of these,
and the first action was to draw a scrollbar
there are two lines, and two scrollbars were created
’Add’ suggests creation
the documentation says that Scrollbars.Add(x,y,w,h) creates a scrollbar

Obstacles:
the .Select is potentially confusing,
since it specifies an attribute of a newly-created object
even though the documentation is probably necessary
for understanding ...ScrollBars.Add()
the macro helps the HU find the appropriate documentation

Step 23:
infer that the rest of the macro must record the cell linking

Guiding Knowledge:
only four actions were performed when the macro was being recorded
creating the Fahrenheit scrollbar
linking it to A30 using the Controls tab of the Format Object dialog
creating the Celsius scrollbar
linking it to C30 using the Controls tab of the Format Object dialog
the two creation steps correspond to the two .Add statements

Obstacles:
the fact that the other attributes are gratuitously set to their defaults
provides significantly more code to sift through

Step 24:
infer that the With Selection ... End With sequences
correspond to the fields on the Control tab
in the scrollbar’s Format Object dialog

Guiding Knowledge:
these sequences immediately follow the .Add statements
and the Format Object dialog was opened for each scrollbar
immediately after its creation
the scrollbar creation actions correspond to the .Add statements
the names
.Value, .Min, .Max, .SmallChange, .LargeChange, .LinkedCell
roughly match the entries
Current Value, Maximum Value, Minimum Value,
Incremental Change, Page Change, Cell Link
in the dialog box
(there’s no dialog entry that matches the .Display3DShading name)
the values in the dialog box (0, 0, 100, 1, 10)
match those recorded by the macro
the Cell Link box was modified by direct manipulation to A30 (C30)
and the macro matches this exactly
(of course, there is no value match to the .Display3DShading value)

Obstacles:
slight mismatches between the Visual Basic and dialog box names
make this step a bit less obvious
also, the macro doesn’t record that the dialog box was opened,
just that the values were changed (even though most weren’t)

Step 25:
infer that With Selection means that the selection’s properties
are being set by the With sequence

Guiding Knowledge:
the properties must belong to some object

165

the object is named in the With <object> part of the With statement

Obstacles:
although the Selection is a convenient way to set properties
it may be less obvious as an object
than the more "persistent" objects such as ActiveSheet.Scrollbars(1)

Step 26:
infer that .Select in the .Add statement selects the newly created scrollbar

Guiding Knowledge:
the scrollbar was selected after it was drawn
the With Selection ... End With statement appears to change the scrollbar,
but it changes the selection
which suggests that the scrollbar is selected

Obstacles:
the .Select specifies an action (selection)
upon a newly created object (scrollbar)
which could be hard to infer smoothly from the syntax

Step 27:
conclude that the macro recorded the direct-manipulation actions as:
the .Add statement created the scrollbar
the .Select part of that statement selected it
the With Selection ... End With sequence linked the cell

Guiding Knowledge:
this interpretation is highly consistent with the sequence of actions
and with the sequence of observations of the interface display

Obstacles:
this seems reasonable based on previous steps

Step 28:
decide to set the Fahrenmheit scrollbar value to 32 in the macro

Guiding Knowledge:
.Value corresponds to the value of the scrollbar
if the Celsius bar is at O, the Fahrenheit bar should be at 32
because 0 C = 32 F

Obstacles:
this should be fine based on previous steps

Step 29:
change the .Value statement in the first With Selection ... End With
to read .Value = 32

Guiding Knowledge:
the first With Selection ... End With corresponds to the first scrollbar
the first scrollbar created was the Fahrenheit scrollbar

Obstacles:
small chance of setting the wrong one
note that min and max are NOT changed
this is important, because setting matching ranges
(for example F in [32..212], C in [0..100])
will result in both scrollbars looking identical
so having min and max correspond would be a mistake

Step 30:
change the name of the macro from Macrol to SetUpThermometers
in the first line and in the header
add a comment ’Draw Fahrenheit Scrollbar before the first .Add statement
and a comment ’Draw Celsius Scrollbar before the second .Add statement

Guiding Knowledge:
the name of a macro should reflect what it does
the header should contain the name
the name of the macro appears in the first line Sub <macroname> ()
the name Macrol is also in the comment header above the first line
the comments clarify which statements are for which scrollbars

Obstacles:
HU might not bother to do this, but it’s all quite reasonable

Step 31:
conclude that the macro SetUpThermometers will

166

create two scrollbars with values of 32 and O
and link them to A30 and C30

Guiding Knowledge:
the macro was recorded by creating the scrollbars
and linking them to the cells
the only changes the macro have been
the initial value of the first (Fahrenheit) scrollbar
renaming the macro and adding comments

Obstacles:
should be ok

Step 32:
recall that the final major step is to connect the two scrollbar-cell pairs
using Visual Basic procedures

Guiding Knowledge:
the macro recorded the first three steps
laying out the scrollbars and cells
creating the scrollbars
linking the scrollbars to their respective cells
thus only the original fourth step remains
connecting the two scrollbar-cell pairs can be done only with Visual Basic

Obstacles:
should be ok -- presumably HU still has sight of goal

Step 33:
infer that the other scrollbar-cell pair will need to be updated both
when the scrollbar moves
and when the cell is edited

Guiding Knowledge:
Visual Basic procedures can only be triggered
from direct user actions
from recalculation
in a few other cases (time, incoming data from another application)
there is no recalculation in this spreadsheet
the other cases don’t apply
the two possible actions are
moving a scrollbar
editing a cell

Obstacles:
HU might think that updating from scrollbar will be enough
since each scrollbar will change when its cell changes
knowing the full range of possibilities could be difficult
because there isn’t a simple unified model

Step 34:
infer that the relevant ways of updating one pair from another are among
OnAction, OnCalculate, OnData, OnDoubleClick, OnEntry, OnKey, OnRepeat,
OnSheetActivate, OnSheetDeactivate, OnTime, OnUndo, OnWindow

Guiding Knowledge:
these are the available properties
that can have attached Visual Basic procedures
that are called when certain events occur

Obstacles:
knowing all this constitutes a sophisticated knowledge
of how Visual Basic handles (responds to) interaction and other events

Step 35:
infer that OnAction is the only one that can be triggered by a scrollbar

Guiding Knowledge:
the only On... property that scrollbars have is OnAction
for scrollbars, OnAction is triggered whenever the scrollbar is
moved by the mouse
the On... properties are triggered only by user interactions
or by spreadsheet recalculation (caused by user interaction)
(or external events ~- time, data from another application)

Obstacles:
again, extensive knowledge of Visual Basic is required
to be sure that OnAction is the only option
it is, however, the only On... property listed for scrollbars

167

in the documentation

Step 36:
decide to use OnAction to update the other pair when a scrollbar is moved

Guiding Knowledge:
the scrollbar must update its cell and the other scrollbar and cell
the scrollbar is linked to its cell and thus need not update it
updating the other scrollbar and cell must be via Visual Basic
OnAction is the only scrollbar property
that can start a Visual Basic procedure

Obstacles:
the HU really has no other options
see previous steps

Step 37:
infer that the place to set OnAction for a scrollbar is anywhere
in the With Selection ... End With sequence for that scrollbar

Guiding Knowledge:
the With Selection ... End With sequence is
where other scrollbar properties are set
the order within the With is unimportant because
no statement references anything in any other statement

Obstacles:
knowing that .OnAction is a property
on the same level as .Value, etc
is a significant, but realistic, piece of knowledge

Step 38:
decide to have the scrollbar’s OnAction procedure
update the other cell, rather than the other scrollbar

Guiding Knowledge:
updating either is sufficient, because they are linked
referring to the other cell is simpler
than referring to the other scrollbar
because cell addressing is straightforward and coordinate-based

Obstacles:
knowing to make this choice makes the code a little more transparent
because scrollbar #1 could be anywhere on the sheet,
but cells(30,1) is labeled on the sheet by being in row 30 and column A

Step 39:
in the first With Selection ... End With sequence,
add a line
.OnAction = "UpdateCelsiusCell"

Guiding Knowledge:
.OnAction = "some action" in a With the0bject ... End With
sets the OnAction property of thelbject to "some action"
the value of UnAction needs to be the name of a Visual Basic procedure
the Visual Basic procedure needs to update the Celsius cell
so UpdateCelsiusCell is an appropriate name

Obstacles:
should be fine based on previous mental operations

Step 40:
decide that the next step is to write the UpdateCelsiusCell procedure

Guiding Knowledge:
it needs to be written
writing it is part of the task of having the Fahrenheit scrollbar
update the Celsius cell and scrollbar
completing a task is cognitively simpler than switching tasks
there is no reason to switch tasks

Obstacles:
the HU might do step 45 now, which would also be fine
doing this somehow seems to be better task focus (but maybe it’s not)

Step 41:
write a header and Sub UpdateCelsiusCell and End Sub

Guiding Knowledge:

168

the SetUpThermometers procedure is identical except for the name change

Obstacles:
copying a procedure structure
should be easy for even an almost-novice programmer
but might be tricky for a spreadsheet user writing her/his first program

Step 42:
decide that the body of the procedure will be
C =5/9 % (F -32)
where C is the Celsius cell and F is the Fahrenheit cell

Guiding Knowledge:
the Celsius cell needs to be updated
the Celsius cell’s value is computed from the Fahrenheit cell’s value
by the formula C = 5/9 * (F -32)
a scrollbar’s OnAction property is called after the linked cell is updated

Obstacles:
knowing that the linked cell is updated first is absolutely critical
otherwise, the HU would have to get the value from the scrollbar
which is not tremendously messy,
but using the cells leverages the HU’s knowledge of spreadsheets
also, perhaps, the cell "feels" more like a variable than the scrollbar

Step 43:
write the body of UpdateCelsiusCell:
Cells(30, 3) =5/ 9 * (Cells(30, 1) - 32)

Guiding Knowledge:
Cells(R, C) references the contents of the cell at row R and column C
the Celsius cell is C30, that is, row 30 and column 3
the Fahrenheit cell is A30, that is, row 30 and column 1

Obstacles:
HU could use Range(A30) and Range (C30)

(here the absolute references are absolutely critical!!)
knowing how Cells(row,col) works is core Visual Basic knowledge
the (row, column) instead of (x,y) addressing could trip the HU up

(even though it does match with Al-style addressing)

Step 44:
write an analogous UpdateFahrenheitCell procedure
with a body

Cells(30, 1) = 9 / 5 % Cells(30, 3) + 32

Guiding Knowledge:
analogous to previous three steps
the Fahrenheit-from-Celsius formula is
F = 9/5%C + 32

Obstacles:
should be no problem based on previous two steps
small chance of transposing the cells
since Cells(30,1) and Cells(30,3) look a lot like each other
and are not named mnemonically

Step 45:
in the second With Selection ... End With sequence,
add a line
.OnAction = "UpdateFahrenheitCell"

Guiding Knowledge:
analogous to that for the addition of .0OnAction to the first With

Obstacles:
should be no problem based on step 39

Step 46:
decide that the next and final step is to find a means for cell editing
to trigger update of other scrollbar-cell pair

Guiding Knowledge:
this is the only remaining functionality to implement

Obstacles:
none, although see step 33

Step 47:

169

decide that OnEntry is the appropriate property to use

Guiding Knowledge:

the choices are
OnAction, OnCalculate, OnData, OnDoubleClick, OnEntry, OnKey, OnRepeat,
OnSheetActivate, OnSheetDeactivate, OnTime, OnUndo, OnWindow

OnAction and OnKey are too general

OnCalculate is irrelevant because the sheet has no formulas

OnData is irrelevant because no data is linked to another application

OnDoubleClick would require double-clicking, which is arbitrary

OnRepeat and OnUndo implement menu options

OnSheetActivate, OnSheetDeactivate, and OnWindow are irrelevant
because they have to do with switching sheets and windows

OnTime could work, but would not provide immediate feedback

Obstacles:
as in steps 34 and 35, knowing what is not appropriate
requires extensive knowledge of Visual Basic’s interaction primitives

Step 48:
infer that the UnEntry property cannot be set for a single cell or range

Guiding Knowledge:
OnEntry is only available for Applications and Worksheets

Obstacles:
since a user typically edits one cell at a time
(except in block pastes or array formulas)
to have OnEntry apply only to worksheets and applications
is a cognitive mismatch
also, Application.Caller must be used (see step 51)

Step 49:
conclude that the procedure to which OnEntry is set must
determine which cell was edited
update the other cell appropriately

Guiding Knowledge:
OnEntry property can’t be set for a single cell
updating the other cell is simpler than updating the other scrollbar
(see similar step above)

Obstacles:
HU could get really stuck on the apparent paradox
between the OnEntry function called with no parameters by the worksheet
and the obvious need to determine which cell was edited
this seeming impossibility offers no clues about how to proceed

Step b50:
suspect that there must be some way to find out which cell was edited

Guiding Knowledge:
which cell was edited is central, a critical piece of information

Obstacles:
hopefully, the HU would pursue this suspicion long enough to succeed

Step b1:
decide to use Application.Caller to find out which cell was changed

Guiding Knowledge:
the Caller property is used to find out how Visual Basic was called
when Visual Basic is called by OnEntry, Caller holds the cell reference
only the Application has the Caller property, hence Application.Caller

Obstacles:
Application.Caller is documented and reasonably easy to find
its role, and the language design around it,
is opaque and poorly motivated

Step 52:
decide that the body of the OnEntry procedure will have the structure
if <FahrenheitCellChanged> then
ChangeCelsiusCell
else if <CelsiusCellChanged> then
ChangeFahrenheitCell

Guiding Knowledge:
if-then-else statements are used for choosing alternatives

170

Obstacles:
this seems reasonable knowledge for most programmers
(including spreadsheet users who use IF(,,) formulas)

integrating this with the Application.Caller incantation
might be less obvious
Note: this step is here rather than earlier because
if OnEntry could be specified per cell,
the existing UpdateCelsiusCell and UpdateFahrenheitCell could be used

Step 53:
conclude that the OnEntry procedure will
use Application.Caller to determine which cell was edited
use if-then-else (see previous step) to update the other cell

Guiding Knowledge:

Application.Caller holds the reference of the cell that changed
if-then-else will select the appropriate statement

Obstacles:
Application.Caller is strange enough that using it this way is nonobvious

Step 54:
infer that <FahrenheitCellChanged> in the next-but-last step
can be replaced by Application.Caller = Cells(30, 1)

Guiding Knowledge:
if the Fahrenheit cell changes,
then its reference will be stored in Application.Caller
the reference of the Fahrenheit cell is Cells(30, 1)

Obstacles:

knowing to use this substitution for <FahrenheitCellChanged>
is potentially problematic

Step 55:
infer that <CelsiusCellChanged> in the same step
can be replaced by Application.Caller = Cells(30, 3)

Guiding Knowledge:
analogous to previous step

Obstacles:
should be no problem given previous step

Step 56:
infer that ChangeCelsiusCell and ChangeFahrenheitCell in that step
can be replaced by UpdateCelsiusCell and UpdateFahrenheitCell

Guiding Knowledge:
UpdateCelsiusCell and UpdateFahrenheitCell have already been written
and they do just what ChangeCelsiusCell and ChangeFahrenheitCell specify

Obstacles:
the HU might duplicate the code and then notice (or not) the simplification

Step 57:
conclude that the body of the OnEntry procedure will be

If Application.Caller = Cells(30, 1) Then
UpdateCelsiusCell

Else
If Application.Caller = Cells(30, 3) Then

UpdateFahrenheitCell

End If

End If

Guiding Knowledge:
compiled from previous three steps
this is the exact syntax of If Then Else in Visual Basic

Obstacles:

should be no problem to substitute inferences from steps 54,55,56
If Then Else syntax in Visual Basic should pose no major problem
especially given the editor’s (minimal, but useful) feedback

Step 58:
in SetUpThermometers, add a line at the end
ActiveSheet.OnEntry = "UpdateCells"

C.2

171

Guiding Knowledge:

OnEntry can be set for the Application or a Worksheet
we don’t know which is best; ActiveSheet is where the scrollbars are
(alternatively, Application may be the easiest to figure out)

the OnEntry property needs to be set up initially

SetUpThermometers does all the rest of the setting up,
including setting up the OnAction properties

statement ordering is unimportant
conceptually, it seems natural to set up the On... properties last

since the procedure called when a cell is entered can update either cell,
UpdateCells seems like a reasonable name

Obstacles:
this should be ok given practice with setting .OnAction properties
but it’s still weird enough that it might be error-prone
some possibility of setting .OnEntry to the wrong procedure,
especially since only a body for UpdateCells exists

Step 59:

write a header and Sub UpdateCells and End Sub
around the body written two steps above

Guiding Knowledge:
framework is identical to the framework for the other Update... procedures

Obstacles:
none

Step 60:

’

conclude that program is complete

Guiding Knowledge:
the OnEntry property will be set to a procedure (UpdateCells)
(that will update one cell when the other changes)
changing the other scrollbar-cell pair when a cell is edited
was the last bit of functionality that the program needed

Obstacles:
knowing that program is complete might require a mental and visual check

Final Temperature Conversion Example in Excel Visual Basic

’ SetUpThermometers

3

Sub SetUpThermometers()

ActiveSheet.ScrollBars.Add(74, 2, 15, 649).Select
With Selection

.Value = 32
.Min = 0
.Max = 100

.SmallChange = 1

.LargeChange = 10

.LinkedCell = "A30"

.Display3DShading = True

.OnAction = "UpdateCelsiusCell"
End With
ActiveSheet.ScrollBars.Add(131, 2, 15, 648).Select
With Selection

.Value = 0
Min = 0
.Max = 100

.SmallChange = 1
.LargeChange = 10
.LinkedCell = "C30"
.Display3DShading = True
.OnAction = "UpdateFahrenheitCell"
End With
ActiveSheet.OnEntry = "UpdateCells"

End Sub

s

H

>

H

UpdateCelsiusCell

Sub UpdateCelsiusCell()

Cells(30, 3) = 5/ 9 * (Cells(30, 1) - 32)

172

End Sub
3

H

’ UpdateFahrenheitCell
3
Sub UpdateFahrenheitCell()
Cells(30, 1) = 9 / 5 % Cells(30, 3) + 32
End Sub

s
2
? UpdateCells
3
Sub UpdateCells ()
If Application.Caller = Cells(30, 1) Then
UpdateCelsiusCell
Else
If Application.Caller = Cells(30, 3) Then
UpdateFahrenheitCell
End If
End If
End Sub

Appendix D

Line-Fitting Walkthrough in Excel Visual Basic

A screen image of the final line-fitting example in Excel with Visual Basic appears in

figure 3.2.

D.1 Line-Fitting Walkthrough in Microsoft Excel Visual Basic

Step 1:
list the x and y coordinates in A5:A14 and B5:B14 respectively

put headers "x" and "y" in A4 and B4 respectively

Guiding Knowledge:
spreadsheet cells display data and allow it to be edited

spreadsheet cells also are accessible to formulae
first two columns are a reasonable location
first few rows may be needed for headers
everything can be moved later if need be

Obstacles:
spreadsheet is natural place to store data
HU might not know that cells can be linked to objects
and thus might think that cells won’t be useful

Step 2:
decide to store inlier/outlier status as a column of TRUE/FALSE cells

in column C

Guiding Knowledge:
cells can contain Boolean values
data in the spreadsheet can be used
easily and effectively by spreadsheet functions
less conveniently (but nevertheless effectively) by Visual Basic procedures

Obstacles:
this step and the next few have to occur all together

Step 3:
put TRUE in each of the cells C5:C14

Guiding Knowledge:
initially, all points are inliers
TRUE and FALSE are the Boolean values in Microsoft Excel

Obstacles:
trivial given step 2

Step 4:
decide to compute (and "store") the inliers using =IF(<inlier?>,coord,"")

Guiding Knowledge:
this formula will leave the cell blank if the point is an outlier

Obstacles:
the HU simply has to have this insight
and to know that the slope/intercept/correlation formula
will span successfully over blank cells

(the chart range won’t!)

174

Step 5:
place the formula =IF(C5,A5,"") in D5
and the formula =IF(C5,B5,"") in E5
and copy them down to D6:E14

Guiding Knowledge:
these formulas implement step 5
formulas can be copied to ranges, and will keep relative references

Obstacles:
this is standard spreadsheet manipulation
the formulas are a little unusual -- see step 4
Step 6:

place the formula =SLOPE(E5:E14,D5:D14) in C17
and the formula =INTERCEPT(E5:E14,D5:D14) in Ci8
and the formula =CORRELATION(E5:E14,D5:D14) in C19
and put the labels "Slope:", "Intercept:", and "Correlation:"
in A17, A18, and A19 respectively
define the names 'slope" and "intercept" to be C17 and C18 respectively

Guiding Knowledge:
the slope and intercept are needed to calculate the fitted line
the correlation needs to be displayed per the problem statement
Excel provides functions for all three
the functions take Y’s first, then X’s
labels are always a good idea (sort of imitation naming)
defining names is useful when formulas get complicated
the bounding box formulas are complicatec

Obstacles:
confusing Y’s and X’s
failing to define names (need arises in step 10)

Step 7:
change C6 to FALSE to see if cell blanking and formulas work (they do)

Guiding Knowledge:
it’s a good idea to check that ideas work as expected

Obstacles:
none

Step 8:
decide to put the plot to the right of the data

Guiding Knowledge:
the plot is important, and so should be near the top
the plot goes with the data, and should be near it

Obstacles:
none

Step 9:
put 0, 0, 100, 100 (the x1, y1, x2, y2 coordinates for the bounding box)
in G21:J21 (under the space for the plot)
put the label "Bounding Box:" in A21
define names "xmin", "ymin", "xmax', "ymax" for G21, H21, I21, J21 respectively

Guiding Knowledge:
the bounding box is needed to calculate the fitted line
from the slope and intercept
labels are good (see step 6)
names are really useful sometimes (see step 6)

Obstacles:
this is all straightforward spreadsheet use
except defining names, which is a more sophisticated feature
(but all the name-defining is for the sake of the computation,
not the interaction)

Step 10:
place the formulas =xmin, =slope*xmin+intercept, =xmax, =slope*xmax+intercept
in G22:J22

put the label "Vertical Intercepts:'" in A22
define names “"x_1", "y_ 2", "x_ 2", "y_2" for G22, H22, 122, J22

Guiding Knowledge:

175

these formulas calculate the vertical intercepts of the line
labels are good (see step 6)
the names are needed for the next set of formulas

Obstacles:
the names are internal and thus somewhat arbitrary
(these formulas are part of the computation and thus are assumed given)

Step 11:
place the formulas
=IF (AND(ymin<=y_1,y_1<=ymax),x_1,IF (ymin>y_1, (ymin-intercept)/slope,
(ymax-intercept)/slope))
=IF (AND(ymin<=y_1,y_1<=ymax),y_1,IF (ymin>y_1,ymin,ymax))
=IF(AND(ymin<=y_2,y_2<=ymax),x_2,IF(ymin>y_2,(ymin-intercept)/slope,
’ (ymax-intercept)/slope))
=IF (AND(ymin<=y_2,y_2<=ymax),y_2,IF (ymin>y_2,ymin,ymax))
in G23:J23
put the label "Fitted Line:" in A23

Guiding Knowledge:
these are the (hideous) formulas for clipping a line
from a bounding box and vertical intercepts
labels are good (see step 6)

Obstacles:
(these formulas are part of the computation and thus are assumed given)

Step 12:
infer that none of the components provided by Visual Basic are appropriate

Guiding Knowledge:

the available components are
label, edit box, group box, button, check box, option button,
list box, drop-down box,
combination list-edit box, combination drop-down edit box
scrollbar, spinner

only the button comes close
buttons are square, have text labels, and each has its own macro

Obstacles:
aside from the usual difficulty of determining an absence of functionality
this should be no problem

Step 13:
conclude that graphics with linked behavior is the way to go

Guiding Knowledge:
none of the standard components are appropriate
Excel provides facilities for linking graphics to macros

Obstacles:
the HU must know this to proceed
this is one of the major appeals and selling points of Visual Basic

Step 14:
decide to have a Visual Basic procedure draw the graphics

Guiding Knowledge: .
Visual Basic functionality must be reestablished when a document is opened
spreadsheet additions or changes may change Visual Basic references
having all of the functionality originating in one place
is conceptually easier
allows easy recreation of the solution
avoids possibly ambiguous connections with the spreadsheet and graphics

Obstacles:
recognizing the potential complications ahead of time is tricky
perhaps less so for a veteran programmer, mistrustful of direct manipulation
using Visual Basic to create and set up OnAction calls is easier
because the newly drawn graphic is also the selection

Step 15:
decide to record a macro to use as a starting point for the Visual Basic procedure

Guiding Knowledge:
drawing the graphics by direct manipulation is easy
recording a macro is easy
figuring out how to use the language with the macro as an example
is drastically easier than figuring it out from scratch

176

Obstacles:
the HU must know about macro recording and editing macros
this is pretty central to Visual Basic

Step 16:
turn on macro recording by
selecting Record New Macro... from the Record Macro submenu of the Tools menu

clicking OK in the dialog box

Guiding Knowledge:
this is how to turn on macro recording

Obstacles:
ok -- basic Mac interface knowledge
must know where to find command

Step 17:
draw a solid rectangle for the background of the plot
as a square above the bounding box calculation
and to the right of the data
leave it white

Guiding Knowledge:
the plot will look better and be easier to distinguish if it has a background
a solid rectangle is needed
white is an appropriate color

Obstacles:
the HU might choose the outline rectangle first
the HU might choose drawing the dots first
drawing the rectangle afterward will cover them
in any case, the main issue is that the macro will be more complicated
and the main remedy will be to re-record it with the correct actions only

Step 18:
draw a solid oval for the dot (as a small circle)
pull down the color palette and select blue
pull down the color palette and select yellow

Guiding Knowledge:
the dots need to be plotted
blue is a’'good color
they’ll all be plotted the same way except for coordinates
the dots will be changed to yellow, so set them to yellow also

Obstacles:
should be no problem
HU probably won’t draw outlined circles
see also step 17 obstacles
EXCEPT that the HU really can’t be expected to anticipate
needing to know how to change dots to yellow at this early stage
(the author just assumed it would be .SomeProperty = "yellow")
(see obstacles to steps 23 and 24 for more on this)
but it simplifies the walkthrough without loss of insight into the process

Step 19:
drawv a line (for the fitted line)
pull down the color palette and select red

Guiding Knowledge:
the fitted line will need to be drawn
red is a good color

Obstacles:
no problem, see also step 17 obstacles

Step 20:
turn off macro recording
by selecting Stop Recording on the Record Macro submenu of the Tools menu
or by clicking the Stop (black square) button on the floating toolbar

Guiding Knowledge:
this is how to turn off macro recording
turning off macro recording avoids unnecessary recorded clutter
attaching actions to the graphic objects might be too complicated for now

Obstacles:
remembering to turn off macro recording is tricky

actually turning it off should be easy
failing to turn it off means extra stuff at the end of the macro

Step 21:
look at the macro by (scrolling the tabs and) selecting the (new) Module 1 tab

Guiding Knowledge:
a new macro is stored in a Module (possibly newly created)
clicking the tab of a sheet or module displays it in the window
scrolling the line of tabs may be necessary to see all tabs

Obstacles:
should be ok for an Excel 5 user
one who hasn’t used macros could fail to notice new module
alternative: select Macro... from the Tools menu, select Macroi, click Edit

The macro is:

Sub Macrol()
ActiveSheet.Rectangles.Add (449, 27, 402, 369).Select
Selection.Interior.ColorIndex = 2
ActiveSheet.0vals.Add(797, 54, 16, 14).Select
Selection.Interior.ColorIndex = 2
Selection.Interior.ColorIndex = 5
Selection.Interior.ColorIndex = 6
ActiveSheet.Lines.Add (483, 346, 808, 78).Select
Selection.Border.ColorIndex = 3

End Sub

Step 22:
infer that the .Add lines create the rectangle, oval, and line

Guiding Knowledge:
a rectangle, circle, and oval were drawn while the macro was running
’Add’ suggests creation (although not as well as ’Create’ or ’Draw’ would)
the lines contain ’Rectangles’, ’Ovals’, or ’Lines’ respectively
the other lines do not suggest creating anything, nor do they suggest shapes

Obstacles:
this seems reasonable
although (as partially noted), ’Add’ doesn’t suggest drawing very well
and the plural (Rectangles, etc) is potentially confusing
since there are no rectangles, etc before these commands execute
and there’s only one of each afterwards
we’re also ignoring the .Select for now (see step 24)

Step 23:
infer that the Selection...ColorIndex lines set the color of the selection
from some sort of table

Guiding Knowledge:
’Selection’ and ’Color’ are part of the statement
there’s no other object named in the statement
the value is a number and the name includes ’Index’
which suggests a table
(rather than setting the color directly)

Obstacles:
this notation also seems a bit removed from the user’s model
what’s the point of indexing the color
(why can’t the macro just set the color?)
the HU might also wonder why the rectangle’s color is set
and why the oval’s color is set twice
we’re assuming that the HU ignores the Interior and Border parts

Step 24:
infer that the .Select in the .Add lines selects the newly created object

Guiding Knowledge:
each object was selected immediately after it was drawn
the .ColorIndex line immediately following each object changes it
but refers to the selection

Obstacles:
the .ColorIndex lines make this step a lot less obvious
than analogous .Color lines would
the .Select specifies an action (selection)

177

178

on a newly created object (rectangle, oval, line)
which could be hard to infer smoothly from the syntax

Step 25:
conclude that the macro recorded the direct-manipulation actions as:
the .Add statements created their respective objects
the .Select parts of those statements selected the objects
the Selection...ColorIndex statements set the colors

Guiding Knowledge:
the order of the statements and their apparent function
match the order and behavior of the direct-manipulation actions performed

Obstacles:
this should be ok given previous steps

Step 26:
infer that, in the statement creating the oval, the four numbers are
X, ¥, width, height

Guiding Knowledge:
the x and y distances match the distance of the oval from left and top edges
width and height are about the same and are small
x (likewise width) almost always comes before y (likewise height)

Obstacles:
the HU must successfully guess that the y coordinates increase downwards
the HU might assume x1,y1,x2,y2 in spite of the above knowledge

Step 27:
infer that the statement creating the square also uses x,y,width,height

Guiding Knowledge:
the oval used it, so probably the square does, too
the square’s second two numbers are about the same size

Obstacles:
assuming step 26 goes ok, this one should, too

Step 28:
infer that the statement creating the line uses x1,y1,x2,y2

Guiding Knowledge:
the second two numbers are a factor of ten apart
and are reasonable coordinates for the second endpoint of the line
and are NOT a reasonable width and height for its bounding box
thinking of a line in terms of width and height is unusual

Obstacles:
in this case, there’s a choice of incongruities
inconsistent notation between solid shapes and lines
or counterintuitive use of "width" and "height" for a line

Step 29:
decide that the square drawn by the procedure should be 100 by 100

Guiding Knowledge:
the data fall nicely in the range 0..100 on both axes

Obstacles:
this is an important graphics choice

Step 30:
decide to place the square at (450,30)

Guiding Knowledge:
the direct-manipulation-drawn square was at (449,27)
round numbers are easier

Obstacles: .
this should be no problem and is not critical anyway
it does touch on the origin issue
(using Range().Left seems to complicated for this walkthrough)
although it may be more robust)

Step 31:
edit the .Rectangles.Add line to read
ActiveSheet.Rectangles.Add (450, 30, 100, 100).Select

179

Guiding Knowledge:
the edited statement will draw a side-100 square at (450,30)

Obstacles:
should be ok given steps 29 and 30

Step 32:
add ’End Sub’ after the .ColorIndex line after the .Rectangles.Add line
and change the name of the macro from Macrol to DrawBorderRectangle

Guiding Knowledge:
we don’t know how we’re going to draw the ovals yet
and the line must be redrawn repeatedly and thus must be in a separate macro

Obstacles:
this seems reasonable
but dividing functionality into procedures
can be hard to do well

The DrawBorderRectangle macro/procedure is thus:

Sub DrawBorderRectangle ()
ActiveSheet.Rectangles.Add(450, 30, 100, 100).Select
Selection.Interior.ColorIndex = 2

End Sub

Step 33:
recognize that some sort of iteration (For ... To ... Next)
will be needed to plot the points

Guiding Knowledge:
imperative languages have iteration constructs
most have a For-like iteration construct
the points could be plotted by individual statements
but that would tie the code to the number of points (bad design)

Obstacles:
this is a crucial step, and one of the most programming-esque
partly because there is no help whatsoever available from macro recording

Step 34:
recognize that the iteration construct must have access to the number of points

Guiding Knowledge:
a fixed iteration needs an upper bound
the iteration must happen as many times as there are points

Obstacles:
this is also important, but probably not problematic

Step 35:
decide to calculate the number of points with the COUNT spreadsheet function

Guiding Knowledge:
the COUNT function returns the number of numeric cells in a range
Visual Basic will need to get this value somehow
but the alternative is to get ALL of the values somehow, then count them

Obstacles:
knowing to use the spreadsheet whenever possible is an important simplifier
the definition of '"numeric" above is somewhat complicated
but we ignore that here

Step 36:
put the formula =COUNT(A5:A14) into cell D1
put the label "Number of Points:" into cell Al

Guiding Knowledge:
COUNT(AB:A14) counts the number of points
we’re not worrying about points with only one coordinate present
we’re not worrying about making formula work when points are added
labels are good

Obstacles:
this should be no problem
anticipating the potential ways it could break
is a whole ’nother area of spreadsheet use and analysis

180

Step 37:
decide to use Cells(1,4).Value in Visual Basic for the COUNT result in D1

Guiding Knowledge:
Cells(1,4) is the way to refer to D1 in Visual Basic
row 1 is the 1, column D is the 4
the "coordinates" are (row,column), not (x,y)
the .Value property is necessary to obtain the value of the cell

Obstacles:
there’s a lot here that simply has to be learned
and the only way to do so is through the (very good on-line) documentation
(no macro recordings will show this)
having the cell coordinates be (row,column) is inconsistent with both
the (x,y) graphics coordinates
the Al-style cell notation

Step 38:
write Sub PlotPoints()
write End Sub on the next line

Guiding Knowledge:
this is the way to begin a macro/procedure
PlotPoints is an appropriate name
since plotting the points is a self-contained activity
putting it in a macro/procedure of its own makes sense for good organization

Obstacles:
the HU might not yet decide at this point to create a procedure
or might just write this code and stick it in a bigger procedure

Step 39:
write For PointNumber = 1 To Cells(1,4).Value
(between the Sub and End Sub lines)
and write Next PointNumber on the next line
(indented appropriately -- possibly by the editor?)

Guiding Knowledge:
this is how the For ... To ... Next iteration construct is laid out
PointNumber is a good name for the point to be plotted
running the iteration from 1 to the number of points seems simplest
Cells(1,4).Value refers to the number of points

Obstacles:
the HU must know that the For ... To ... Next construct exists
the HU must know that the For ... To ... Next construct is the best to use here
the HU must know how to use the For ... To ... Next iteration construct

(see also step 33)

Step 40:
copy the next three lines (.0Ovals.Add and both Selection...ColorIndex lines)
from the remnants of Macrol
and put them between the For line and the Next line

Guiding Knowledge:
these lines draw an oval on the screen and color it blue
the iteration needs to draw a blue oval for each point coordinates
editing a macro is faster and easier than writing from scratch

Obstacles:
the HU might just look at the lines and think about changing them
(but not copy them)

Step 41:
decide that the first Selection...ColorIndex line is unnecessary and delete it

Guiding Knowledge:
each Selection...ColorIndex line changes the color of the oval
the second line destroys the changes made by the first line
so the first line has no effect on the final outcome and can be deleted
the second and third Selection...ColorIndex lines
correspond to setting the color to blue and yellow respectively

Obstacles:
this is reasoning about imperative programs
which can sometimes be problematic
and in any case, must be learned
expecting the HU to know that the last two lines correspond to her/his actions

181

is a little farfetched
but expanding this out into several steps
does not add any new insights to the walkthrough

The PlotPoints macro now looks like:

Sub PlotPoints()

For PointNumber = 1 To Cells(1,4).Value
ActiveSheet.Ovals.Add(797, 54, 16, 14).Select
Selection.Interior.ColorIndex = 5
Selection.Interior.ColorIndex = 6

Next PointNumber

End Sub

Step 42:
replace the two Selection.Interior.ColorIndex lines with
If Cells(PointNumber + 4, 3).Value Then
Selection.Interior.ColorIndex = 5
Else
Selection.Interior.ColorIndex = 6
End If

Guiding Knowledge:
the macro needs to plot different colors based on the status of the point
the If...Then...Else picks a color depending on the status
Cells(PointNumber + 4, 3).Value is TRUE if the point is an inlier
and FALSE if the point is an outlier
5 and 6 are the indices of blue and yellow

Obstacles:
this is a bit much for one step
but it’s quite straightforward
the only new bits are using an If...Then...Else
which is somewhat analogous to IF formula in the spreadsheet
and using a Boolean value as a branch condition
which was also done in spreadsheet formulas (see step 5)

The PlotPoints macro now looks like:

Sub PlotPoints()
For PointNumber = 1 To Cells(1,4).Value
ActiveSheet.Ovals.Add (797, 54, 16, 14).Select
If Cells(PointNumber + 4, 3).Value Then
Selection.Interior.ColorIndex = 5
Else
Selection.Interior.ColorIndex = 6
End If
Next PointNumber
End Sub

Step 43:
decide that the points should have width and height 10
and change the third and fourth numbers in the .0vals.Add line to 10

Guiding Knowledge:
the oval drawn by the macro is 16x14
the square background is smaller, so the points should be, too
10 is a nice round number

Obstacles:
none, really
15x15 would probably still be ok

Step 44:
recognize that Cells(row,col).Value
can be used to refer to the coordinates needed to plot the point
(for suitable values of row and col)

Guiding Knowledge:
Cells(1,4).Value was used to get the number of points from D$
the coordinates are in other cells (A5:B14, to be precise)

Obstacles:
this shouldn’t be a problem; the conceptual work is already done

182

Step 45:
recognize that the row of each x- and y-coordinate
is the number of the point plus 4

Guiding Knowledge:
the points start in AB:B6 and are listed there and in subsequent rows
the point numbers start with 1

5 -1=4
the last point (number 10) is in A14:B14
14 - 10 = 4

Obstacles:

the HU must be able to see this to make the iteration happen

Step 46:
conclude that the correct references are
Cells(PointNumber + 4, 1).Value for the x-coordinate
Cells (PointNumber + 4, 2).Value for the y-coordinate

Guiding Knowledge:
the x-coordinate is in column A
column A is numbered 1
the y-coordinate is in column B
column B is numbered 2

Obstacles:
this should be trivial compared with step 45

Step 4T7:
replace the first two numbers of in the .0vals.Add line
with Cells(PointNumber + 4, 1).Value
and Cells(PointNumber + 4, 2).Value

Guiding Knowledge:
these are the correct references for the current point number

Obstacles:
this should be straightforward
previous steps are working towards it

Step 48:
recognize that to plot the points with the y-axis increasing upwards
the y-coordinate must be subtracted from 100
and replace Cells(PointNumber + 4, 2).Value
with 100 - Cells(PointNumber + 4, 2).Value
in the .Ovals.Add line

Guiding Knowledge:
the y-coordinates increase downwards (see step 26)
subracting the y-coordinate from 100 :
will reverse the axis
and put the origin at the lower left corner

Obstacles:
the HU must know that the y-axis points down (see step 26)
(possibly by running the macro and observing the results)
the HU must know how to change that
not just negating, but also adding 100
(see also step 49)

Step 49:
recognize that the points will appear in the upper left corner of the screen
not in the square drawn by DrawBorderRectangle
and that the coordinates of the upper left corner of the square
must be added to the coordinates in the .Ovals.Add line
and thus
replace Cells(PointNumber + 4, 1).Value
with Cells(PointNumber + 4, 1).Value + 450
and replace 100 - Cells(PointNumber + 4, 2).Value
with 100 - Cells(PointNumber + 4, 2).Value + 30
or actually, 130 - Cells(PointNumber + 4, 2).Value

Guiding Knowledge:
the rectangle’s upper left corner is (450,30)
the correct x-coordinate for each oval is the old coordinate + 450
the correct y-coordinate for each oval is the old coordinate + 30
100 + 30 = 130

Obstacles:

the HU must recognize the need for an offset
(possibly by running the macro and observing the results)
the HU must know to add the upper left cormer
(not the lower left cornmer, that’s taken care of by the 100 in step 48)
the HU must recognize that the 100 - y expression
is in terms of the upper left corner (step 48)
the HU must know to add x to x and y to y

The PlotPoints macro now looks like:

Sub PlotPoints()
For PointNumber = 1 To Cells(1,4).Value
ActiveSheet.Ovals.Add(Cells(PointNumber + 4, 1).Value + 450, _
130 - Cells(PointNumber + 4, 2).Value, _
10,
10) .Select
If Cells(PointNumber + 4, 3).Value Then
Selection.Interior.ColorIndex = 5
Else
Selection.Interior.ColorIndex = 6
End If
Next PointNumber
End Sub

(the _ is the line-continuation character (used here for readability),
but the HU doesn’t need to know about it or use it)

Step 50:
decide to write the macro that draws the line next
and write Sub DrawFittedLine() before
and End Sub after
the remaining scrap from Macrol

Guiding Knowledge:
the remaining two lines of Macroil
draw a line on the screen and set its color to red

Obstacles:
none, really, but see steps 38 and 40

The DrawFittedLine macro now looks like:

Sub DrawFittedLine()
ActiveSheet.Lines.Add (483, 346, 808, 78).Select
Selection.Border.ColorIndex = 3

End Sub

Step 51:
recognize that the endpoints of the fitted line
are referred to by Visual Basic as
Cells (23, 7).Value (= x1)
Cells (23, 8).Value (= y1)
Cells (23, 9).Value (= x2)
Cells (23, 10).Value (= y2)

Guiding Knowledge:
the endpoints are in (23, H23, I23, J23

which are referred to by Cells(23,7), Cells(23,8), Cells(23,9), Cells(23,10)

Obstacles:
this should be straightforward given steps 37 and 46
(even though the indices are larger)

Step 52:
recognize that the line needs to be offset in the same way as the points
minus half the width of the points
and replace the .Lines.Add line with
ActiveSheet.Lines.Add(Cells(23, 7).Value + 455, _
136 - Cells(23, 8).Value, _
Cells (23, 9).Value + 455, _
135 - Cells(23, 10).Value).Select

Guiding Knowledge:
the .Lines.Add line takes the values x1, y1, x2, y2 in that order
the cells G23:J23 hold those values in that order

183

184

450 is the y offset for the left edge of the points, and they are 10 wide,
so 465 is the correct x offset for the line

130 is the y offset for the top edge of the points, and they are 10 wide,
so 135 is the correct y offset for the line

the '+ 455’ needs to be put after both x-coordinates

the ’135 -’ needs to be put before both y-coordinates

Obstacles:
the HU could easily miss the need to compensate for the points
being anchored by top and left instead of center
and knowing which way to offset and how much
can be tricky
but this relates more to the graphics than the programming
and so is noted, but not pursued deeply, here
there are a few chances for typographical errors
like leaving off the .Select
or forgetting to offset x2 and y2
(since with the points, the widths and heights were unchanged)
(the _ for line continuation are here for readability)
(we aren’t concerned about the HU learning or not learning them)

The DrawFittedLine macro now looks like:

Sub DrawFittedLine()
ActiveSheet.Lines.Add(Cells (23, 7).Value + 450, _
130 - Cells(23, 8).Value, _
Cells (23, 9).Value + 450, _
130 - Cells(23, 10).Value).Select
Selection.Border.ColorIndex = 3
End Sub

Step 53:
write a CreatePlot macro as follows:

Sub CreatePlot()
DrawBorderRectangle
PlotPoints
DrawFittedLine

End Sub

Guiding Knowledge:
drawing the rectangle, plotting the points, and drawing the line
must all happen in that order
writing a macro makes one macro that will do all of those things
parameterless macros are called by other macros without using ()

Obstacles:
the HU might not know not to use ()
but the syntax editor would catch it
(although the message "Expected: expression" is minimally helpful)
it’s reasonable for the HU to make a procedure here

Step 54:
infer that somehow a macro must be assigned
either to each dot
or to the plot as a whole
and that the macro should (when a dot is clicked)
change the color of the dot
and change the status in the corresponding cell of the status column

Guiding Knowledge:
when a dot is clicked
it should change both color and status
a macro will do this
but it must be assigned somehow to the dot or to the plot
macros can be assigned to objects in Visual Basic

Obstacles:
this seems ok; no obvious pitfalls

Step 55:
infer that, before looking into assigning a macro,
a macro must be written

Guiding Knowledge:
Tools...Assign Macro... allows selection of an existing macro
the macro to toggle the color and status hasn’t been written

185

Obstacles:
this is reasonable
attempting to assign the macro before it exists will lead to this step anyway

Step 56:
deciding that the macro will do two things
figure out which cell corresponds to the oval that is clicked
changing the status of the cell and the color of the oval

Guiding Knowledge:

the macro must have some means of indicating which oval was clicked
(else we are sunk before we begin)

there must be some way of determining the corresponding cell
(else ditto)

once the cell and the oval are both known,
then the purpose of the macro can be carried out
(changing the cell status and dot color)

Obstacles:
at this point (and in fact also at the last step)
it’s quite challenging to know how to proceed
because several important pieces of information are needed
* that macros are parameterless
* that graphic objects are indexed by integers in the order of creation
* that these indices are obtained by a pair of special function calls
(not by simply being passed as parameters to the assigned macro)
or, more bluntly,
+ you don’t know how to get the index
+ you don’t know what it is or how to use it
and, additionally, you don’t really know where to start to find this out
finally, all of these things need to be known or learned together to proceed
interestingly, the online help mentions the ability
to add an argument to a macro (via the "Assign Macro To Object..." dialog box)
but there is only an "Assign Macro..." dialog box
that doesn’t support adding an argument

Step 57:
decide to use Application.Evaluate(Application.Caller).Index
to find out the index (in order of creation) of the clicked oval

Guiding Knowledge: .
assigned macros are parameterless
(the online help to the contrary notwithstanding)
the Application.Caller property
stores the non-Visual Basic caller of Visual Basic
which, for graphic objects, is a string such as "Oval 2"
the Application.Evaluate method
converts Microsoft Excel names into values or objects
for graphic objects, Evaluate takes a name and returns a graphic object
the .Index property of graphic objects
contains the index of the graphic object in the collection of similar objects
so SomeQval.Index contains the index of SomeOval
in the collection of all Ovals
(they are indexed by order of creation)

Obstacles:
see obstacles for step 56
this is not one, but three pieces of knowledge
ranging from mildly obscure (.Index) to quite obscure (.Caller, .Evaluate)
they expose the user to unnecessary system detail (MS Excel names)
they don’t even come close to attempting a coherent language design
it is far from obvious how anything other than
scouring the documentation
being told how by another user
already knowing how to do this
would lead the HU to this solution
it’s tricky enough learning that assigned macros take no parameters
the HU has nothing to tell her/him that the .Index is in order of creation

Step 58:
begin writing the TogglePoint macro:

Sub TogglePoint()

Index0fClickedDot = Application.Evaluate(Application.Caller).Index
End Sub

Guiding Knowledge:
Sub TogglePoint() ... End Sub is the frame for a macro

186

Index0fClickedDot = Application.Evaluate(Application.Caller).Index
sets the variable Index0fClickedDot to the index of the clicked dot
(which is what Application.Evaluate(Application.Caller).Index returns)

Obstacles:
this is a simple application of the result of step 57

Step 59:
infer that Index0fClickedDot is completely analogous
to PointNumber in PlotPoints
and in particular, that they both index the dots by order of creation
and the rows in increasing row number
so that Index0fClickedDot can index the rows in the same way that PointNumber did

Guiding Knowledge:
PointNumber indexed the points by row
PlotPoints created the dots in the same order as the rows
Index0fClickedDot indexes the dots by order of creation

Obstacles:
this is not obvious
but forturnately, it works
the sensible HU would check this inference out carefully
(perhaps with the completed program)

Step 60:
infer that Cells{Index0fClickedDot + 4, 3).Value
is the status of the clicked dot

Guiding Knowledge:
Cells (PointNumber + 4, 3).Value was the status of the point in PlotPoints

Obstacles:
this seems reasonable (although not trivial) given step 59

Step 61:
write (in analogy to part of PlotPoints) after the Application.Evaluate line
If Cells(Index(fClickedDot + 4, 3).Value Then
Selection.Interior.ColorIndex = 5
Else
Selection.Interior.ColorIndex = 6
End If

Guiding Knowledge:
PlotPoints set the color of the dot based on the status of the point
using exactly these lines (with PointNumber rather than Index0fClickedDot)
Index0fClickedDot is the analog of PointNumber here
5 and 6 are the color indices of blue and yellow respectively
5 corresponds to True (inlier)
6 corresponds to False (outlier)

Obstacles:
this seems pretty reasonable
the HU is performing an identical task with virtually identical code
however, there is a risk that the HU might forget step 62 altogether

Step 62:
add Cells(Index0fClickedDot + 4, 3).Value = False
just before the Selection.Interior.ColorIndex = 5 line
add Cells(Index0fClickedDot + 4, 3).Value = True
just before the Selection.Interior.ColorIndex = 6 line
interchange the 5 and 6 in the Selection.Interior.ColorIndex lines

Guiding Knowledge:

not only does the dot color need to be toggled
but so does the status as stored in column C

the status is stored as a Boolean (TRUE or FALSE)

in the first pair of lines, the status is True (inlier)
and thus must be set to False (outlier)
and the color must be set to yellow (the outlier color)

in the second pair of lines the status is False (outlier)
and thus must be set to True (inlier)
and the color must be set to blue (the inlier color)

Obstacles:
not inverting correctly is a risk here
the HU must know about setting Boolean values
using Boolean ’not’ on the Cell value might make more sense
(but this is simpler from a constructive standpoint

187

actually, adding Cells(Index0fClickedDot + 4, 3).Value = _
Not (Cells(Index0fClickedDot + 4, 3).Value)
before the whole If...Then...Else bit is the smallest change
(but we’re not going back and changing it now -- it’s not important enough)
(see also step 61 obstacles)

The TogglePoint macro now looks like:

Sub TogglePoint ()

Index0fClickedDot = Application.Evaluate(Application.Caller).Index

If Cells(Index0fClickedDot + 4, 3).Value Then
Cells(Index0fClickedDot + 4, 3).Value = False
Selection.Interior.ColorIndex = 5

Else
Cells(Index0fClickedDot + 4, 3).Value = True
Selection.Interior.ColorIndex = 6

End If

End Sub

Step 63:
decide to use macro recording to find out
how to assign the TogglePoint macro to the plot or dots
and turn on macro recording as described in step 16

Guiding Knowledge:
macro recording is an efficient way to capture Visual Basic statements
that duplicate what can be done using the interface
there is an Assign Macro ... menu option on the Tools menu
(see also step 16)

Obstacles:
this seems pretty straightforward
knowing about the Assign Macro menu makes a significant difference here

Step 64:
select the oval drawn in step 18

Guiding Knowledge:
an object must be selected before a macro can be assigned to it

Obstacles:
the HU might forget to do this
if so, the Assign Macro menu item will be grayed out
we’re avoiding the issue of needing to use Cmd-click
to select an object that already has a macro assigned to it

Step 65:
from the Tools menu, select Assign Macro...
in the dialog box, double-click on TogglePoint

Guiding Knowledge:
the Assign Macro... menu option
is on the Tools menu
and assigns a macro to the selected object

Obstacles:
this shouldn’t be a problem

Step 66:
turn off macro recording as described in step 20

Guiding Knowledge:
(see step 20)

Obstacles:
(see step 20)

Step 67:
look at the macro as in step 21

Guiding Knowledge:
(see step 21)

Obstacles:
(see step 21)

188

The macro is:

Sub Macro2()
ActiveSheet.Drawinglbjects("Oval 2").Select

Selection.OnAction = "TogglePoint"
End Sub

Step 68:
infer that the ActiveSheet line selects the oval

Guiding Knowledge:
the ActiveSheet line ends in .Select
in the first macro, the lines ending in .Select selected object (see step 24)

Obstacles:
the HU might think further understanding of this line is required
but it isn’t (see step 70)
the use of "Oval 2" in the generated code
seems like gratuitous exposure of Microsoft Excel names

Step 69:
infer that the Selection.OnAction line
assigns the TogglePoint macro to the oval

Guiding Knowledge:
the macro was assigned by direct manipulation
assigning the macro was the second of the two actions
and this line is the second of the two lines
the name "TogglePoint" is on the right side of the =
the object was selected, and the left side begins with Selection.
the other line very clearly doesn’t assign the macro

Obstacles:
this seems pretty clear, even if .OnAction is completely new

Step 70:
infer that the ActiveSheet line does not need to be used
and that the
Selection.OnAction = "TogglePoint"
line can be used as is

Guiding Knowledge:
the PlotPoints macro selects each point as it is created
and so the Selection.OnAction line will assign the macro to that point

Obstacles:
this involves a bit of insight into the Selection idea
it also involves some of the knowledge from step 71

Step 71:
infer that TogglePoint
doesn’t take any arguments
can’t get any from being assigned to the oval
doesn’t need any

Guiding Knowledge:
TogglePoint is written with no arguments
the macro assignment shown in Macro2 doesn’t indicate arguments
(and in fact, none are possible)
TogglePoint uses Application.Evaluate(Application.Caller).Index
to find out which object was clicked on

Obstacles:
this step is a little subtle

but since none of the macros written in the walkthrough have arguments
the HU might well not take this step at all
(although she/he might wonder why macro definitions ended in *()’!)

Step 72:
insert the Selection.Oniction = "TogglePoint" line
after the End If
and before the Next PointNumber
lines in PlotPoints

Guiding Knowledge:

’Selection’ was just used in previous lines (and thus should be defined)
the TogglePoint macro needs to be assigned to every dot

189

the TogglePoint macro will work for every dot
the TogglePoint macro must not be assigned in the If statement
because it would be assigned only to points of one status

Obstacles:
it doesn’t matter where this line goes so long as it’s
in the For statement
and outside the If statement
the tricky part is knowing
that the TogglePoint macro will work for every dot

The PlotPoints macro now looks like:

Sub PlotPoints()
For PointNumber = 1 To Cells(1,4).Value
ActiveSheet.Ovals.Add(Cells (PointNumber + 4, 1).Value + 450, _
130 - Cells(PointNumber + 4, 2).Value, _
10,
10) .Select
If Cells(PointNumber + 4, 3).Value Then
Selection.Interior.ColorIndex = 5
Else
Selection.Interior.ColorIndex = 6
End If
Selection.OnAction = "TogglePoint"
Next PointNumber
End Sub

Step 73:
learn that Application.OnCalculate is the way to have the line redrawn
each time a point is clicked

Guiding Knowledge:
Application.OnCalculate can be set to a macro (which could be DrawFittedLine)
and then that macro will run each time the spreadsheet recalculates
the spreadsheet will recalculate each time a point is clicked
because the status cell will change, and it is referenced by a formula

Obstacles:
the HU must find out about .OnCalculate
it is analogous to .OnAction
but there is no other help in finding it
or even for knowing it exists
because this is an application, the functionality provided is harder to infer

Step 74:
add Application.OnCalculate = "DrawFittedLine"
as the last line of the CreatePlot() macro

Guiding Knowledge:
the CreatePlot() macro is the "main" program
and thus is the correct place to assign DrawFittedLine
as the recalculation macro

Obstacles:
this seems pretty reasonable
the line could also go in PlotPoints (outside of the For loop)
or in DrawBorderRectangle
or even in DrawFittedLine, which makes little sense

The CreatePlot macro now looks like:

Sub CreatePlot()

DrawBorderRectangle

PlotPoints

DrawFittedLine

Application.OnCalculate = "DrawFittedLine"
End Sub

Step 75:
recognize that when the line is redrawn, the old one must be deleted
and add an ActiveSheet.Lines.Delete line
before the ActiveSheet.Lines.Add line
in DrawFittedLine

190

Guiding Knowledge:
if the line isn’t deleted, the display will show a confusing clutter of lines
modifying the line in XLVB means changing its width and height
and its left and top extremities
which is trickier than changing its endpoints
ActiveSheet.Lines.Delete deletes all lines
and, importantly, doesn’t complain if there aren’t any
which means that the initial special case doesn’t need to be handled
obviously, deleting before adding avoids deleting the new line

Obstacles:
recognizing the need for deletion is relatively easy (run the program)
knowing that the resizing the line is messy is a little hard
and the resizing-by-ltwh model is cumbersome for lines
the existence of ActiveSheet.Lines.Delete
is guessable from ActiveSheet.Lines.Add
knowing that it deletes all lines and not just some is a little trickier
knowing that it doesn’t complain if there are no lines is more tricky
(the HU would probably have to test it out)

D.2 Final Line-Fitting Example in Excel Visual Basic

bl

> DrawBorderRectangle Macro
3
Sub DrawBorderRectangle()
4 ActiveSheet.Rectangles.Add (210, 13, 208, 195).Select
ActiveSheet.Rectangles.Add(Range ("G17") .Left, _
Range ("G17") .Top - 200, _ 200
200) .Select
With Selection
With .Interior
. .Color = RGB(255, 255, 255)
End With
.Placement = xlMove
.PrintObject = True
End With
End Sub

i

> TransformX Function
3
Function TransformX(x)
TransformX = 2 * x + Range("G17") .Left
End Function
)

> TransformY Function
3
Function TransformY(y)
TransformY = Range("G17") . Top - 2 * y
End Function

>

> TogglePoint Procedure
3
Sub TogglePoint()
i = Application.Evaluate(Application.Caller).Index
If Cells(i + 4, 3).Value Then
ActiveSheet.Ovals(i).Interior.Color = RGB(255, 255, 0)
Cells(i + 4, 3).Value = False
Else
ActiveSheet.Ovals(i).Interior.Color = RGB(O, 0, 255)
Cells(i + 4, 3).Value = True
End If
End Sub

H

> PlotPoints Procedure
b
Sub PlotPoints()
r=25
For i = 1 To Cells(l, 4).Value
ActiveSheet.0Ovals.Add(TransformX(Cells(i + 4, 1).Value) - r, _
TransformY(Cells(i + 4, 2).Value) - r, _ 2 xr, _
2 x r).Select
With Selection
.OnAction = "TogglePoint"
With .Interior
If Cells(i + 4, 3).Value Then

191

.Color = RGB(O, 0, 255)
Else
.Color = RGB(255, 255, 0)
End If
End With
.Placement = xlMove
.PrintObject = True
End With
Next i
End Sub

’

> DrawLine Procedure
2
Sub DrawFittedLine ()
x1 = TransformX(Cells(23, 7).Value)
y1 = TransformY(Cells(23, 8).Value)
x2 = TransformX(Cells(23, 9).Value)
y2 = TransformY(Cells(23, 10).Value)
ActiveSheet.Lines.Delete ’so that this procedure can be used for redrawing
ActiveSheet.Lines.Add(x1, y1, x2, y2).Select
With Selection
With .Border
.Color = RGB(255, 0, 0) N
End With
.Placement = xlMove
.PrintObject = True
End With
End Sub

3

? CreatePlot Procedure
2
Sub CreatePlot()
DrawBorderRectangle
PlotPoints
DrawFittedLine
DisplayGraphicsData ’will trigger Drawline again; it’s ok and unavoidable
Application.OnCalculate = "DrawFittedLine"
End Sub

3

’ DisplayGraphicsData Procedure
3
Sub DisplayGraphicsData()
Cells(30, 1) = "Dbject"
Cells(30, 2) = "Left"
Cells (30, 3) = "Top"
Cells (30, 4) = "Width"
Cells(30, 5) = "Height"

Cells(31, 1) = "Rectangle"

Cells(31, 2) = ActiveSheet.Rectangles(l).Left
Cells(31, 3) = ActiveSheet.Rectangles(1).Top
Cells(31, 4) = ActiveSheet.Rectangles(l).Width
Cells(31, b) = ActiveSheet.Rectangles(1).Height

Cells(32, 1) = "Line"

Cells(32, 2) = ActiveSheet.Lines(1).Left
Cells (32, 3) = ActiveSheet.Lines(1).Top
Cells(32, 4) = ActiveSheet.Lines(1).Width
Cells(32, 5) = ActiveSheet.Lines(1).Height

For i = 1 To ActiveSheet.0vals.Count
Cells(32 + i, 1) = "Oval " & i

Cells(32 + i, 2) = ActiveSheet.Ovals(i).Left

Cells(32 + i, 3) = ActiveSheet.Ovals(i).Top

Cells(32 + i, 4) = ActiveSheet.Ovals(i).Width

Cells(32 + i, 5) = ActiveSheet.Ovals(i).Height
Next i

End Sub
b

’ DeleteGraphics Procedure

3

Sub DeleteGraphics()
ActiveSheet.Lines.Delete
ActiveSheet.0Ovals.Delete
ActiveSheet.Rectangles.Delete

End Sub

192

Appendix E

Temperature Conversion Walkthrough in Esquisse

A screen image of the final temperature conversion example in Esquisse appears in figure
4.6.

Temperature Conversion Walkthrough in Esquisse
(1) Click on filled rectangle radio button.

e The palette offers lines and filled and outline squares, circles, rectangles, and el-
lipses. The HU wants to draw a thermometer; a narrow rectangle is a reasonable
choice.

e (A line is also a reasonable choice. Lines are harder to draw vertically, and extract-
ing the height from a line would be a bit harder.)
(2) Click on red color button.
e The palette offers a selection of colors. No problems here.

(3) Drag out a narrow rectangle in the left side of the work area.

e No problem here, either; this requires only basic drawing-package knowledge.

o (The lack of automatic refresh in Haggis can sometimes present a small potential
confusion about the size of the rectangle.)

(4) Click on the Expressions button.

e Here, the HU must understand the difference between the Text and Expression
buttons (“modes”). (In the former, character strings can be typed; in the latter,
the cell is valid only if the contents are an evaluable to a Gofer value). “Expressions”
is not the best name for that mode (but I don’t know what’s better).

e Another potential stumbling block is that the HU might not create all of the cells
before starting to edit some of them. The risk is that she/he might refer in a
formula to a not-yet-created cell, and thus the formula will not be valid. (In the
current version of Esquisse, cells can not be renamed from the generated defaults,
and so this obvious drawback lessens the risk.)

(5) Click under the red rectangle (a text cursor appears) and type 212.
e This seems ok given experience with graphics packages.

(6) Click on filled rectangle radio button again.

194

(12)

e See step 1.

Click on the blue color button.
e No problem here. See also step 2.

Drag out a narrow rectangle next to the first one.
e No problem here. See also step 3.

Click on the Expressions button again.

e The HU might notice that the mode has changed to Interact. It’s not necessary for

her/him to understand why, but it’s good for her/him to know that it’s intentional.
Also, the automatic switching to the Interact cursor (pointing hand) could be
confusing.

Click under the blue rectangle (a text cursor appears) and type 100.
e This seems ok given experience with graphics packages.

Decide that the next step is to edit each rectangle cell to (a) make dragging change the
height of the rectangle, (b) link the rectangles to their respective numeric cells, and (¢)
link the numeric cells with formulae.

e The HU must know that the rectangles are the “interfaces” to cells, must understand

that cells hold values, display and event functions, and formulae. To know to change
the value, the HU must know that the default value for the rectangle is ((x,y),(w,h),
not simply the height. To know to change the event function, the HU must know
that it must be consistent with the value. The HU must also know that formulae
are used to specify constraints between cells.

Click on the Select mode button.

e Here, the HU must understand the mode buttons, especially the distinction be-

tween Select (used for select objects to edit, raise, lower, etc., that is, to manip-
ulate outside of the cell framework) and Interact (used for interacting with the
cell framework, with the interaction specified by the cell event functions and cell
formulae).

This is an important and not clearly avoidable distinction. However, the interface
might provide better support for understanding and choosing between these two
modes.

(The Draw and Type modes aren’t so critical, because clicking on the drawing panel
or font panel automatically changes the mode to Draw or Type, respectively.)

(Note also that in most drawing packages, the default mode is Select; it is also the
default mode right after drawing or typing, so the user really doesn’t need to think
about modes explicitly. In Esquisse, having two seemingly similar (and explicit)
modes is confusing.)

(13) Click on the red rectangle.

e This is pretty standard graphics-package behavior.

(14) Click on the Edit button.

195

e This also seems ok as an action. See step 11 for the knowledge required to choose
to edit the cell (rectangle).

(15) In the event function, realize or infer that in MouseDrag _ dx dy, the dx and dy are
the relative x and y distances that the mouse was dragged.

e The HU might have this knowledge from explanation or experience, or she/he might
infer it from MouseDrag and the mnemonic names dx and dy. Also, the HU might
have dragged an Esquisse object with the mouse pointer. In any case, this step is
critical to understanding 16.

(16) In the Ok part of the TwoFacedObject in the MouseDrag case of the event function,
change ((x+dx, y+dy), (w,h)) to ((x,y), (w,h+dy)).

e The HU must understand that she/he wants the height h to be “changed” by the
event function, and that it should change by the vertical relative distance dy.

e This is one of the more subtle changes, because the HU must convert the event
function from moving an object to resizing it (in the vertical dimension only; in
practical terms, this means combining the height h with the vertical displacement

dy).

(17) Change the argument to show in the TwoFacedObject part of the MouseDrag case in
the same fashion, from ((x+dx, y+dy), (w,h)) to ((x,y), (w,h+dy)).

e Here, the HU must understand that the first and third elements of a TwoFacedOb-
ject are “value” (evaluated) and textual (unevaluated) versions of the same entity,
and thus must be kept in agreement. The HU must also know about show.

(18) Leaving the editor for the red rectangle open, click on the number 212 (in Select mode)
and click the Edit button.

e This should be ok given prior experience in steps 13, 14.
(19) Notice that the name of this cell is expression_2.

e This unlikely to be problematic; the HU is needs the name to use in step 23. The
HU can open the editor again if she/he forgets the name or forgets to look at the
name.

(20) In Formula 1 Source Cells, type rectangle_1.
o The the red bar cell is named rectangle_1 (the HU knows this from its editor).
(21) In Formula 1 Formula, type snd.snd.

e This number cell should have the same value as the height of the red rectangle cell.
The height of the red rectangle is the second component of the second pair, hence
snd.snd. This should be all in a day’s work for a functional programmer.

(22) Click Close to close the editor for the number cell under the red rectangle
e This should be ok given basic interface experience.
(23) In the editor for the red rectangle, in Formula 1 Source Cells, type expression_2.

e The the red bar cell is named rectangle_1 (the HU knows this from its editor).

(27)

(28)

(29)

(32)

In Formula 1 Formula, type \ h -> ((65,291),(9,h)).

e The rectangle’s height should be the same as the value of the number cell. The
origin (65,291) and width 9 are constants. This should be ok for a functional
programiner.

Click Close to close the editor for the red rectangle.
¢ This should be ok given basic interface experience.

Edit the numeric cell and drag the rectangle to test the linking of the rectangle and
number.

¢ This should be ok given basic graphical interface experience.

Edit the blue rectangle and its numeric cell as in steps 13 to 26, with the follow-
ing differences in detail: for expression_2 read expression_4, for rectangle_1 read
rectangle_3, and in step 24, use \ h -> ((128,289),((10,h).

e These steps should pose no additional challenges.

Reopen the editor for the numeric cell under the red rectangle, and in Formula 2 Source
Cells, type expression_4.

e The HU must recall (or confirm) that the numeric cell under the blue rectangle
is named expression_4. The HU must also know that the source cells are the
arguments to the formula function, and that their names must be entered into the
Source Cells box.

In Formula 2 Function, type \ ¢ -> round ((9.0/5.0)*(fromInteger c)) + 32.

e This is the formula for converting Celsius temperatures to Fahrenheit; since the
numeric cell under the red rectangle holds the Fahrenheit temperature (and the
height of the red rectangle), the formula must convert from Celsius to Fahrenheit.
(The formula does require an awareness of the distinction between floating-point
and integer numeric classes in Haskell.)

Click Close to close the editor for the number cell under the red rectangle
e This should be ok given basic interface experience.

Reopen the editor for the numeric cell under the blue rectangle, and in Formula 2 Source
Cells, type expression_2.

e See step The HU must recall (or confirm) that the numeric cell under the red
rectangle is named expression_2. The HU must also know that the source cells
are the arguments to the formula function, and that their names must be entered
into the Source Cells box.

In Formula 2 Function, type \ £ -> round ((5.0/9.0)*(fromInteger (£-32)))

e This is the formula for converting Fahrenheit temperatures to Celsius; since the
numeric cell under the blue rectangle holds the Celsius temperature, the formula
must convert from Fahrenheit to Celsius. (Again, the type classes of Haskell come
into play.)

Click Close to close the editor for the number cell under the blue rectangle.

197

e This should be ok given basic interface experience.

(34) Test the example by dragging the red and blue thermometer bars, and by typing into
the numeric cells.

198

Appendix F

Line-Fitting Walkthrough in Esquisse

A screen image of the final line-fitting example in Esquisse appears in figure 4.6.

Line-Fitting Walkthrough in Esquisse

(1)

(2)

(6)

Click on filled circle radio button, and on the blue color button.

e The palette offers filled circles, which seem appropriate for drawing the points.
(Squares are a somewhat less likely possibility; using them would be at most slightly
more challenging.)

Draw a small circle in the work area.

e This should be ok given basic drawing package knowledge. (The lack of automatic
refresh in Haggis can be a little confusing.)

Recall that the points will be either inliers or outliers, and decide to store that status
in the cell’s value (as a Bool).

e The problem statement specifies that the points change color when clicked, and that
the line will be fitted to the inliers {in blue; the outliers will be in yellow). Since
the points must be two different colors, it seems natural to store the inlier /outlier
status in the point cells.

Click on the Select mode button, then the circle, then the Edit button.

e See the Temperature Conversion walkthrough for a discussion of the issues sur-
rounding the Select button. Clicking the circle and the Edit button should be ok
given basic interface knowledge.

In the editor, notice that the value is ((93,157),5). Recall (or infer) that this is
((x,y),r) — the center and radius of the circle. Also, notice that the name of the cell is
circle_1.

e The HU needs to understand that the displayed circle is a representation of the cell
value. The HU needs to know or to infer that the value of a circle cell drawn with
the interface is ((x,y),r). The HU will also need to know the name of the cell for
use in the formula of the point list cell 23, but she/he can open the editor again
if necessary. [The best solution would be to be able to specify formula sources by
direct manipulation.

Decide to add the Boolean value to the cell as the second element of a pair, with the
existing value as the first element.

200

(7)

(10)

(12)

(13)

e This solution leaves the point unaltered, which is least disruptive if the point is
used in other computations. (References to the point need only be prefixed by
fst).

Change the cell value to (((90,96),5),True).

e (90,96) is the first pair in the data series. A radius of 5 seems reasonable.

e The HU should have no problem editing the value given that she/he understands
it. Understanding that it is a pair (whose left element is a pair) is helpful but
probably not necessary.

¢ [An interesting unanticipated shortcoming of Esquisse is the lack of aggregate op-
erations on cells. In this case, the HU might be greatly aided by the opportunity to
apply (map (\ p -> (p,True))) to a list of the ten circles (of course, the display
and event functions would have to change accordingly). Another example more
closely aligned with Haggis: (map (circleCellOfRadius 5) listOfPairs).]

In the Ok case of the display function, replace ((x,y),r) with (((x,y,),r),b).

o This case must match (i.e., have the same type as) the (Ok version of the) argument
of the display function, and the argument of the display function is the cell value.

Change Just blue to if b then Just blue else Just yellow.

¢ Just blue specifies the color of the circle. The Boolean value of True for b indicates
that the point should be blue, while a value of False for b indicates that the point
should be yellow.

Change the Ok case of the event function from ((x,y),r) with (((x,y,),r),b).

e Asin step 8, this argument to the event function must be the same type as the cell
value.

Change the Ok case in the MouseDrag case from ((x+dx,y+dy),r) to (((x+dx,y+dy)~
,T),b).

e The event function returns a TwoFacedObject whose first and third elements are
“value” (evaluated) and textual (unevaluated) versions of the same entity, and thus
must be kept consistent. The Ok case returns the value, which must have the same
type as the cell value.

In the same way, change the argument to show in the MouseDrag case from ((x+dx, -
y+dy) ,r) to (((x+dx,y+dy),r),b).

e The show expression returns the textual form of the value, and it must be kept
consistent, too. [Note: there is no enforcement of this, and so the value and textual
versions could get out of sync.]

Notice the “unresolved top-level overloading” error. Infer from the type signature pre-
sented in the error message (and possibly from the program text itself) that the types
of r and b are the one that can’t be figured out, and that show is where the overloading
issue is occurring.

201

e This is a rather subtle issue, even (I think, anyway) for functional programmers.
Gofer’s message (passed on by Esquisse) provides the context Text (((Int,Int),-
_171),_164). The context Text indicates that show is where the overloading needs
to be resolved, because show is a (heavily) overloaded function in the Text class —
but the HU needs to know that (or at least guess that Text and the function show
that returns text strings are related). Although show is a common function, this
error might not crop up much for many functional programmers [this is a guess, of
course].

¢ To identify r and b as the unresolved variables, the HU must pattern-match the
expression against (((x,y),r),b) and guess that _171 and _164 are unresolved
type variables that correspond to r and b. The pattern-matching is a reasonable ex-
pectation of a functional programmer, but the type variable names (while common
in error messages) are unnecessarily obscure

e [Also, Esquisse’s presentation is messy, because it doesn’t resize the picture when
the error message is added (and also because it just dumps Gofer’s message in there
verbatim).]

(14) Decide to continue with the modifications to the event function and resolve the over-
loading later, if necessary.

e To make this choice, the HU must know that overloading is a property of the
function as a whole, and thus the error need not be addressed until the function is
fully written. [I think that this is a reasonable choice for a functional programmer
to make, but I’'m not sure just how reasonable.]

(15) Add a new case under case eventType as follows:

MouseButton Down _ ->
TwoFacedObject
0k (((x,y),r), not b))
NoCursor

[show (((x,y),r), not b)]

e The HU needs the event function to change the color of the point and toggle its
status when a mouse press occurs. The event that is reported when a mouse click
occurs is MouseButton Down followed by the button number. There is no case in
the event function for a mouse press, so one must be added. The case must return
a TwoFacedObject (see steps 11 and 12), whose value and textual representation
should be consistent and of the same type as the cell value. Toggling the Boolean
value in the point changes both the status of the point and its color. The Boolean
function not “toggles” the Boolean value.

(16) Notice the “unresolved top-level overloading” error again. Infer that the type of r is still
unresolved with respect to show.

e See step 13. In this case the context is Text (((Int,Int),_254),Bool) — the
case added in step 15 resolved the type of b, but r is still unresolved.

(17) In the show expression, replace r with (r::Int).

e The HU must know that (a) type annotations can be provided to variables, (b)
that providing such an annotation will resolve the overloading problem, and (c)
that r is an Int. Of these, (c) should be no problem, but (a) and (b) are relatively
unusual (as is the overloading problem itself). [Unresolved overloading is more of
a problem in Gofer than Haskell. Would this error occur in (for example) Hugs?)

202

(18)

(21)

(22)

(24)

(25)

Repeat steps 1 through 17 nine more times (changing each value to a different member
of the data series), until ten points are placed in the work area.

o Repeating this procedure should be unchallenging (except for the tedium of editing;
a Copy feature would make a big difference).

Recognize that the individual cell values need to be combined somehow into a list.

e The fittedLineAndCorrelation function needs a list of the points in order to compute
the fitted line and the correlation. All that exists now is a scattering of individual
cells, with their individual values.

Decide to create a cell containing a list of the individual values. Decide to use an
expression cell.

o Cells can hold arbitrary data structures, including lists. [There really should be
better support for aggregations of cell values, either via container cells or in some
other fashion.] An expression cell is the simplest way to create a cell containing an
arbitrary value. See the Temperature Conversion Walkthrough for a discussion of
the issues surrounding Text and Expression cell creation modes.

Click on the Expressions button, and on the black color button.

e See the Temperature Conversion walkthrough for a discussion of the issues sur-
rounding the Text and Expression buttons.

Click to the right of the points (a text cursor appears). Click Select, the text cursor,
and then Edit. Notice that the name of the cell is expression_11.

e Creating the empty expression cell and opening the editor should be ok. To refer
to the list of points in the fitted-line-and-correlation formula, the HU must know
its name. [Here, in particular, renaming would be a helpful feature.]

In the editor, in Formula 1 Source Cells, type circle_1 circle_2 circle_3 circle_4
circle_b circle_6 circle_7 circle_8 circle_9 circle_10.

e The formula needs to create a list of cell values from the values of the point cells.
The Source Cells box lists the source cells for the formula. This step should be ok
provided that the HU understands this knowledge about source cells. This step is
where the names the HU saw in (repeated) step 5 are used.

In the editor, in Formula 1 Function, type \ cl c2 c3 c4 c5 c6 c7 c8 c9 cl10 ->
[c1,c2,c3,c4,c5,c6,c7,c8,c9,c10].

e This lambda expression creates a list from its (ten) objects.

o Here, another problem can crop up. If the HU mistypes the list, the type of the
function might be inferred prematurely. This is normally not a problem, but in
this case the desired type of the functionisa -> a ->a ->a ->a ->a -> a
->a ->a ->a -> [a]. A typo, for instance, 10 for c10 in the list, could result
in the type becoming specialized to Int -> Int -> Int -> Int -> Int -> Int
-> Int -> Int -> Int -> Int -> [Int]. Since the base type of the point cells
is not Int but (((Int,Int),Int),Bool), this will cause a formula error.

Close the editor for the list expression cell.

e This should be ok given interface experience.

(26)

(28)

(29)

(31)

(33)

(35)

203

Infer that result of the fittedLineAndCorrelation function needs to be split into two cells
somehow.

o The fittedLineAndCorrelation function returns a pair consisting of the fitted line
and the correlation. The line needs to be displayed graphically, the correlation
textually, which suggests two cells.

Decide to use an expression cell to store the line and correlation as a pair, and to use
separate cells connected by formulae to display the line and correlation.

e An expression cell is the simplest cell that contains an arbitrary value (compare
step 20).

Click on the Expressions button, then click to the right of the points and above the
point list expression cell.

o See step 21.

Recall that the fittedLineAndCorrelation function needs not only the list of points, but
also the clipping rectangle ((x1,y1),(x2,y2)).

e The HU might not think of this before starting to enter the formula, but doing so
now simplifies the walkthrough without loss of information.

Decide to draw the clipping rectangle in the work area.

o The clipping rectangle could be just typed in to the formula, which would probably
be faster, but it can be moved (but not (by default) resized) if drawn in the work
area. Also, drawing the clipping rectangle will help frame the points (and line).

Click on the square outline button, and on the black color button, and draw a square
around the points.

e This should be ok given basic interface and graphics package experience. The HU
might also choose a rectangle.

Click the Select button, click on the square, click the Edit button, read the name of the
square cell (square_14), and click the Close button to close the editor.

e To refer to the clipping rectangle in a formula, the HU must know its name, which
she/he can find out by opening the editor. [This is clunky; as mentioned in step 5,
specifying source cells by direct manipulation would be smoother.]

Click on the empty fitted-line-and-correlation cell (that is, the text cursor above the list
of points), and click the Edit button.

e This should be ok given basic interface and graphics package experience.
In the Formula 1 Source Cells box, type expression_11 square_14.

e The HU must understand that the Source Cells box must contain the names of the
cells whose values will be the arguments to the formula function. The list of points
and the clipping rectangle are the two cells to whose values the fittedLineAndCor-
relation function will be applied.

In the Formula 1 Function box, type this expression:

204

\ listO0fPoints ((x,y),s) ->

fittedLineAndCorrelation

(map (fst.fst)
(filter snd list0fPoints))
((x,y), (x+s,y+s))
where
fittedLineAndCorrelation theCoordinateList
theClippingWindow =
(((round x1, round yi),
(round x2, round y2)),

correlation)
where
((x1, y1), (x2, y2)) =
clipToRectangle

(slope, intercept)
(\ ((a,b), (c,d)) ->
((fromIntegral a, fromIntegral b),
(fromIntegral c, fromIntegral d)))
theClippingWindow)
(slope, intercept, correlation) =
slopelnterceptAndCorrelation $
zip (map (fromIntegral . fst)
theCoordinateList)
(map (fromIntegral . snd)
theCoordinateList)
slopelnterceptAndCorrelation ::
[(Float, Float)] -> (Float, Float, Float)
slopeInterceptAndCorrelation xys =
(slope, intercept, correlation)
where
intercept =
(sum ys) / (fromIntegral n)
- slope * (sum xs) / (fromIntegral n)
slope = sxy / sxx
correlation = sxy / sqrt (sxx * syy)
SXX =
sum (map square xs)
- (square (sum xs)) / (fromIntegral n)
syy =
sum (map square ys)
- (square (sum ys)) / (fromIntegral n)
Sxy =
sum (zipWith (%) xs ys)
- (sum xs) * (sum ys) / (fromIntegral n)
square n = n * n
(xs, ys) = unzip xys
n = length xys

clipToRectangle :: (Float, Float)
-> ((Float, Float),
(Float, Float))
-> ((Float, Float),
(Float, Float))

205

-- line is (slope,intercept)

-- rectangle is ((left,bottom),(right,top))
-~ returned line segment is

-- ((x1,y1),(x2,y2)) with y1 <= y2

clipToRectangle
(slope, intercept)
((left, bottom), (right, top))
{- given that y1 <= y2 -}
| y1 > top {- no line -}
= (0.0, 0.0), (0.0, 0.0))
| y1 < bottom && y2 < bottom {- no line -}
= ((0.0, 0.0), (0.0, 0.0))
| y1 < bottom && y2 > top {- both -}
= (((bottom - intercept) / slope,
bottom),
((top - intercept) / slope,
top))
| y1 < bottom {- y1 only -}
= (((bottom - intercept) / slope,
bottom),
(x2,
y2))
| y2 > top {- y2 only -}
= ((x1,
vy,
((top - intercept) / slope,
top))
| otherwise {- neither -}
= ((x1, y1), (x2, y2))

where (x1, y1, x2, y2)
| slope >= 0
= (left,
slope * left + intercept,
right,
slope * right + intercept)
| otherwise
= (right,
slope * right + intercept,
left,
slope * left + intercept)

e The fittedLineAndCorrelation function calculates the fitted line and the correlation from
the list of data points and the clipping rectangle. This seems ok for the HU given that
the HU must have this level of understanding of the computation to want to write this
example in the first place. Since the value of square_14 is the lower-left corner and
the side length, and the clipping rectangle passed to fittedLineAndCorrelation must be
the lower-left and upper-right corners, the upper-right corner must be calculated. The
HU might miss this, but it’s easy to fix (in the worst case, the formula will show a type
error, and can be reedited).

e Typing the formula in should be ok, although the editor will not, in fact, expand to hold
it all; and if it did, it would extend off the screen. [So Esquisse needs a more practical

206

way to support the entry of large computations (if Haggis offered multiline text entry,
that would help). Supporting X-selection pasting, input of files into cell fields (such as
the formula function field), and supporting importing from / linking with Haskell files
would all be useful.|

If the fittedLineAndCorrelation function were built in or linked in, the formula would
instead be simply ‘

\ listOfPoints ((x,y),s) ->
fittedLineAndCorrelation (map (fst.fst)
(filter snd
1list0fPoints))
((x,y), (x+s,y+s))

Notice that the name of the cell is expression_13.

e This seems ok given interface experience.

- Close the editor window by clicking on the Close button.

o This seems ok given interface experience.

Now draw the line cell by clicking on the line button, clicking on the red color button,
and drawing the line over the points.

e This seems ok from the standpoint of graphics package/interface experience. The
HU might have a little trouble remembering what step is next.

Open the editor for the line cell by clicking on the Select button, clicking on the line,
and clicking on the Edit button.

e This seems ok given interface experience and répeated practice in this example.
In the Formula 1 Source Cells box, type expression_13.

e The Source Cells box contains the cell names to whose values the formula will be
applied. Extracting the fitted line endpoints from the pair containing the fitted line
and the correlation requires a function. This all seems ok given the HU’s knowledge
of simple functional programming.

In the Formula 1 Function box, type fst.

e The fitted line endpoints are the first element of the pair that is the value of the
expression_13 cell. The £st function returns the first element of the pair to which
it is applied.

Close the editor by clicking on the Close button.
e This seems ok given interface experience.

Now create a cell to hold the correlation by clicking on the Expression button, and
clicking above the points (a text cursor appears).

¢ This seems ok given interface experience and practice during this example.

Open the editor for the correlation cell by clicking on the Select button, clicking on the
line, and clicking on the Edit button.

207

e This seems ok given interface experience and repeated practice in this example.
(10) In the Formula 1 Source Cells box, type expression_13.

e The Source Cells box contains the cell names to whose values the formula will be
applied. Extracting the correlation from the pair containing the fitted line and
the correlation requires a function. This all seems ok given the HU’s knowledge of
simple functional programming.

(11) In the Formula 1 Function box, type snd.

o The correlation is the second element of the pair that is the value of the expression_13
cell. The snd function returns the second element of the pair to which it is applied.

(12) Close the editor by clicking on the Close button.
e This seems ok given interface experience.
(13) Test the example by clicking on the points and seeing the line and correlation change.

e The problem here is that the redrawn line’s bounding box ends up covering the
points, so to click on the points, the HU must first select the line, click the Back
button, then click the Interact button. (It’s also necessary to do this to the clip
rectangle, if it ends up in front.) Worse, (a) deselecting a graphic object also
moves it to the front (because the picture is recreated), so objects to be kept in the
back must be intentionally (and counterintuitively) left selected; (b) each formula
evaluation redraws the line and sticks it in front of the points again.

