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Abstract

Due to their occasional very long latency, load instruc-
tions are among the slowest instructions of current high-
performance microprocessors. Unfortunately, their long
latency also delays the execution of all the dependent
instructions, which can significantly affect system per-
formance. Load value prediction alleviates this problem
by allowing the CPU to speculatively continue process-
ing without having to wait for the slow memory access
to complete.

Today’s load value predictors can only correctly pre-
dict about 40 to 70 percent of the load instructions. Con-
fidence estimators are employed to estimate how likely a
- prediction is to be correct and to keep the predictor from
making a (probably incorrect) prediction if the confi-
dence is below a preset threshold.

Despite its simplicity, the adaptive prediction outcome
history-based confidence estimator we present in this
paper outperforms other proposed mechanisms and
reaches average prediction accuracies over SPECint95 in
excess of 99%, even with small predictor sizes.

A detailed pipeline-level simulation shows that a
load value predictor equipped with our confidence es-
timator not only outperforms other predictors by more
than 65% when a re-fetch misprediction recovery policy
is used, but is also the only predictor that yields a
genuine speedup for all eight SPECint95 programs.

1. Introduction

Due to their occasional long latency, load instructions
have a significant impact on system performance. If the
gap between CPU and memory speed continues to
widen, the load latency will become even longer. Since
loads are also among the most frequently executed in-

structions [LCB+98], improving their execution speed
should significantly improve the overall performance of
the processor.

Most load instructions tend to fetch the same values
repeatedly. For example, about half of all the load in-
structions of SPECint95 retrieve the same value that
they did the previous time they were executed. This be-
havior is referred to as value locality [LWS96, Gab96].

Context-based load value predictors try to exploit the
value locality. For instance, a very simple predictor
could always predict the previously loaded value. We
named this scheme Basic LVP (last value predictor). To
reduce the number of mispredictions, load value predic-
tors normally consist of two main parts: a value predictor
that predicts a value based on previously loaded values
and a confidence estimator (CE), which decides whether
or not to make a prediction using the predicted value.
All previously proposed predictors and our own contain
these two parts in some form. Nevertheless, to our
knowledge, we are among the first to use this nomen-
clature. The CE only allows predictions to take place if
the confidence that the prediction will be correct is high.
This is important because sometimes the value predictor
does not contain the right information to make a correct
prediction. In such a case, it is better not to make a pre-
diction because incorrect predictions slow down the
processor more than making no prediction at all.

Most CEs allow some variability in setting the confi-
dence level above which predictions will be attempted.
Setting this threshold to a higher level increases the
probability that the attempted predictions will be correct
(higher accuracy) but at the same time results in more
missed opportunities for making correct predictions
(lower coverage).

CEs are similar to branch predictors because both
have to make binary decisions (predict or don’t-predict
and branch taken or not-taken, respectively). One very



successful idea in branch prediction, which is also appli-
cable to load value prediction, is keeping a small history
recording the most recent prediction outcome (success
or failure) [SCAP97]. The intuition is that the past pre-
diction behavior tends to be very indicative of what will
happen next. For example, if a prediction was success-
ful the last few times, there is a good chance that it will
be successful again. Hence, the prediction-outcome his-
tory, as we termed it, represents a measure of confi-
dence. ‘ '

If load values are predicted quickly and correctly, the
CPU can process the dependent instructions without
having to wait for the memory access to complete,
which potentially results in a significant performance
increase. Of course it is only known whether a predic-
tion was correct once the true value has been retrieved
from memory, which can take many cycles. Speculative
execution allows the CPU to continue execution with a
predicted value before the prediction outcome is known
[SmS095]. Because branch prediction requires a similar
mechanism, most modern CPUs already contain the
necessary hardware to perform this kind of speculation
[Gab96].

However, using branch misprediction recovery hard-
ware for load value mispredictions causes all the in-
structions that follow a misspeculated instruction to be
purged and re-fetched. This is a very costly operation
and makes a high prediction accuracy paramount.

Unlike branches, which invalidate the whole execu-
tion path if mispredicted, mispredicted loads only in-
validate the instructions that depend on the loaded
value. In fact, even the dependent instructions per se
are correct, they just have to be re-executed with the cor-
rect input value(s). Consequently, a better recovery
mechanism for load misspeculation would only re-exe-
cute the instructions that depend on the mispredicted
load value. Such a recovery policy is less susceptible to
mispredictions and favors a higher coverage, but may
be prohibitively hard to implement [GrPa98].

In this paper we present our load value predictor
which uses a prediction outcome history-based confi-
dence estimator. Such histories retain which of the last s
predictions were correct and which were not. Saturat-
ing up/down counters are utilized to continuously ad-
just which history patterns should cause a prediction
and which ones should not. Predictions are only made
if the counter value that is associated with the current
history pattern is above a preset threshold. The pre-
dicted value is always the value that was previously
loaded by the same load instruction.

Our predictor reaches an average speedup over

s

SPECint95 of 16.0% with a re-execute and 14.1% with a
re-fetch recovery policy. It is able to attain a speedup
for all the SPECint95 programs, even when the much
simpler re-fetch mechanism is employed. All the other
predictors we looked at slow down at least four of the
eight benchmark programs with a re-fetch policy, as our
pipeline-level simulations show. Section 6.2 provides
more detailed results.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the predictor components. Section 3
presents related work. Section 4 illustrates how to use
prediction outcome histories for confidence estimation.
Section 5 explains the methods used. Section 6 presents
the results. Section 7 concludes the paper with a sum-
mary.

2. Predictor Architecture

Figure 2.1 shows the elements of a confidence-based
load value predictor. The largest component is an array
(cache) of 27 lines for retaining confidence information
and previously fetched values. The hashing hardware is
used to generate an n-bit index out of the load instruc-
tion’s address (and possibly other processor state infor-
mation). Finally, the decision logic computes whether a
prediction should be made based on the confidence in-
formation.

Generic Predictor with Confidence Estimator

instruction conf.
address info.

previous
value(s)

2" cache lines
index )

~ 64-bit value

Figure 2.1: The components of a load value predictor with
a confidence estimator (shaded).



All the predictors in this paper use PC div 4 mod 2" as a
hash-function!.  Better hash-functions probably exist.
However, an investigation thereof is beyond the scope
of this paper.

When a prediction needs to be made, the hash-func-
tion computes an index to select a cache line. The value
stored in the selected line (or one of the stored values if
there are multiple) becomes the predicted value, and the
decision logic decides whether a prediction should be
attempted with this value.

Once the outcome of a prediction is known, the cor-
responding confidence information field is updated to
reflect the outcome, and the value in the cache line that
was used for making the prediction is replaced by the
true load value.

We propose keeping prediction outcome histories as
a measure of confidence. Our decision logic contains
saturating counters, one per history pattern, to count the
number of times each pattern has recently been followed
by a successful prediction. Predictions are only allowed
for those histories whose count is currently above a pre-
set threshold.

3. Related Work

Lipasti et al. [LWS96] describe an untagged last value
predictor (which predicts the previously fetched load
value) to exploit the existing load value locality. Their
predictor utilizes saturating up/down counters as confi-
dence estimators. In Section 6.2, we compare our pre
dictor to this one. ‘
Gabbay'’s dissertation proposal [Gab96] introduces a
tagged last value predictor and a tagged stride predictor
(which predicts the previously fetched load value plus
an offset). Both predictors use the tags as confidence
estimators. Load instructions, as opposed to other types
of instructions, exhibit virtually no stride behavior
[Gab96]. Therefore, we exclude the stride predictor
from our comparison since we feel that the extra hard-
ware to store the strides is not cost effective. ‘
Wang and Franklin [WaFr97] are the first to propose
a multi-value predictor. It saves the last four distinct
load values per line and uses the pattern of the last six
accesses as index into an array of saturating up/down
counters for confidence estimation. It has the highest
prediction accuracy of all the predictors currently in the
literature. Nevertheless, our predictor considerably out-

! The div 4 eliminates the two least significant bits which are always
zero since the processor we use requires instructions to be aligned.

performs theirs when a re-fetch misprediction recovery
policy is used, as the comparison in Section 6.2 shows.

Sazeides and Smith describe a context-based two
level value predictor [SaSm97]. Given the current on-
chip L1 cache sizes, we find the amount of hardware
their predictor requires to perform well unreasonably
large. Hence we do not include this predictor in our
comparison.

In the area of branch prediction, a significant amount
of related work exists. Lee and Smith [LeSm84] propose
keeping a history of recent branch directions and sys-
tematically analyze every possible history pattern.

Yeh and Patt [YePa92, YePa93] describe sets of two-
level branch predictors and invent a taxonomy to distin-
guish between them. We adopt one of their designs for
use as a confidence estimator in our load value predictor
(Section 4.1). A

Sprangle et al. [SCAP97] describe a technique called
agree prediction, which records whether the previous
branch predictions were a success or a failure rather
than whether the branches were taken or not. We use
the same approach in our predictor.

The most directly related work in the area of branch
prediction is recent work by Jacobsen et al. [JRS96] and
Grunwald et al. [GKMP98] on branch confidence esti-
mation. This work explores the same issue we do, i.e.,
whether to predict or not, in the context of branches.

4. Using Prediction-Outcome Histories

In addition to tags and saturating counters, the branch
prediction literature also describes histories that record
the recent prediction successes and failures as a very
successful idea [SCAP97]. We found this to be true in
the domain of load value prediction as well. In fact, pre-
diction outcome histories (as we call them) significantly
outperform tags and saturating counters, as Section 6.1
illustrates.

To better explain how such histories can be used as a
measure of confidence, we present Table 4.1, which
shows the output of a 4-bit history run based on
SPECint95 behavior. For instance, the second row of the
table states that a failure, failure, failure, success history
(denoted by 0001) is followed by a successful last value
prediction 26.9% of the time. In this history, success de-
notes the outcome of the most recent prediction. Of all
the encountered histories, 2.7% were 0001.

Note that it is not necessary to make a prediction fol-
lowing every history with a greater than 50% probability
of resulting in a correct prediction. Rather, the optimal



setting depends on the characteristics of the CPU the
prediction is going to be made on.

If a small cost is associated with making a mispredic-
tion (re-execute), it is probably wiser to predict a larger
number of load values, albeit also a larger number of
incorrect ones. If, on the other hand, undoing specula-
tive operations takes a long time and should therefore
be avoided (re-fetch), it makes more sense not to predict
quite as many loads but to be confident that the ones
that are predicted will most likely be correct.

SPECINIO5 Last Value Predictability ]
history  predictability occurance
0000 6.9 32.2
06001 269 27
0010 19.1 2.9
0011 499 16
0100 343 2.9
0101 336 19
0110 4.9 13
o141 59.4 2.2
1000 24.2 2.7
4po1 463 1.8
1010 66.8 19
1011 661 1.9
1100 53.1 1.6
1ot 57.2 19
1110 52.3 22
111 956 383

Table 4.1: Average predictability and occurrence split up
by history pattern. The predictability signifies the percent-
age of last value predictable loads following the given
prediction outcome histories. The occurrence denotes how
often the respective history pattern was encountered.

Initially, we built a predictor that is preprogrammed
with the history patterns that should cause a prediction
using tables like Table 4.1 [BuZo98]. For example, if we
want such a predictor to be highly confident that its pre-
dictions are correct, say 96.6% confident, it would be
programmed to only allow predictions for histories that
have a predictability of greater than or equal to 96.6%,
that is, only for history 1111 in our example. This
threshold would result in 38.3% of all loads being pre-
dicted (of which 96.6% would be correct for our bench-
mark suite). With longer histories, even higher accura-
cies and more correct predictions can be attained.

While this predictor already outperforms other pre-
dictors [BuZo98], it cannot adapt to changing program
behavior. To remedy this shortcoming, we decided to
augment the predictor with saturating counters, which
dynamically decide which histories should cause a pre-
diction. It is the resulting load value predictor that we
present in this paper.

4.1 The SAg Last Value Predictor

Our adaptive load value predictor consists of a last
value predictor (LVP) and a prediction outcome history-
based confidence estimator. The histories are stored in
the confidence information field of the cache-lines (see
Figure 4.1). Since our confidence estimator is similar to
Yeh and Patt's SAg branch predictor [YePa93], we call
our predictor SAg LVP.

Predictions are performed as described in Section 2,
i.e., a prediction is made if the value of the counter asso-
ciated with the current load instruction’s prediction out-
come history is above the preset threshold. Once the
outcome of a prediction is known, the corresponding
saturating counter is incremented if the prediction was
correct, otherwise it is decremented. Then a new bit is
shifted into the prediction outcome history of the se-
lected cache line and the oldest bit is shifted out (lost). If
the true value is equal to the value in the cache, a one is
shifted in, otherwise a zero is shifted in. Finally, the
value in the cache is replaced by the true value.

We also tried only replacing the value in the cache if
the confidence is low, but we found always replacing to
work best in all cases.

SAg Predictor
instruction outcome
address histo last value
n-bitj»
bits(2..n+1) |- 2" cache lines
index
s-bit history -~ 64-bit value
array of
2° t-bit - predicted value
saturating
up/down
counters
Lo} > th?  predict/don't predict
t-bits 1-bit

Figure 4.1: The components of our SAg last value predictor.
The SAg confidence estimator is shaded.

We decided to use a direct-mapped cache since we em-
pirically observed few conflicts with moderate cache
sizes. While this might be an artifact of our benchmarks,



even much larger programs will not create significantly
more conflicts as long as their active working set of load
instructions does not exceed the capacity of the cache.

Note that, unlike instruction and data caches, predic-
tor caches do not have to be right all the time. Hence,
neither tag nor valid bits are a requirement. We decided
to omit both since having them would only result in an
almost immeasurable increase in accuracy, which we
believe does not justify the extra hardware.

The array of counters effectively represents a second
level of indirection. However, performing two table
lookups per cycle should be feasible since current
branch predictors also comprise two levels.

5. Methodology

All our measurements are performed on the DEC Alpha
AXP architecture [DEC92]. To obtain the actual load
values, we instrumented the binaries using the ATOM
tool-kit [EuSr94, SrEu94], which allows us to elegantly
simulate the proposed predictor in software and to eas-
ily change its parameters. ~While such an approach is
very flexible and relatively fast, it does not capture op-
erating system code and other applications that might
be running at the same time.

For our detailed pipeline-level simulations we use
the Superscalar back-end of AINT [Pai96]. It is config-
ured to emulate a processor similar to the DEC Alpha
21264 [KMW?98]. In particular, the simulated CPU has a
128-entry instruction window, four integer and two
floating point units, a fetch and issue bandwidth of four,
a 64kB 2-way set associative L1 instruction-cache, a
64kB 2-way set associative L1 data-cache, a 4MB unified
direct-mapped L2 cache, and a 4096-entry BTB. Other-
wise, the modeled CPU is identical to the one described
in [GrPa98].

5.1 Benchmarks

We use the eight integer programs of the SPEC95 bench-
mark suite [SPEC95] for our measurements. These pro-
grams are well understood, non-synthetic, and com-
pute-intensive, which is ideal for processor performance
measurements. They are also quite representative of
desktop application code, as Lee et al. found [LCB+98].
Table 5.1 gives relevant information about the
SPECint95 programs.

We use the larger ref-inputs and the more optimized
peak-versions of the programs (compiled using DEC

GEM-CC with -migrate -stdl -O5 -ifo -g3 -non_shared).
The binaries are statically linked. This enables the linker
to perform additional optimizations, which considerably
reduce the number of run-time constants that are loaded
during execution. These optimizations include most of
the optimizations that OM [StWa93] performs. All pro-
grams are run to completion. The result is approxi-
mately 87.8 billion executed load instructions per
ATOM-simulation. Note that the few floating point
load instructions contained in the binaries are also
measured, that loads to the zero-registers are ignored
since they do not yield a result, and that load immediate
instructions are not taken into account since they do not
access the memory and therefore do not need to be pre-
dicted.

Information about the SPECInt95 Benchmark Suite
total executed load load sites that account for skipped|

program load instructions sites | Q50 Q90 Q89  Q100{inst (M)
compress| 10,537 M (17.5%)| 3,961 17 58 81 6901 6,000
gce 80M (23.9%)| 72,941 | 870 5,380 14,135 34,345 0
go 8,764 M (24.4%)| 16,239 | 204 1,708 4,221 12,334 12,000

lipeg 7,141 M (17.2%) | 13,886 42 187 423 3,456 1,000
li 17,792 M (26.7%) | 6,694| 42 138 312 1,932| 4,000
m88ksim | 14,849 M (17.9%)| 8,800 52 216 456 2,6771 1,000
peri 6,207 M (31.1%) | 21,342 44 169 227 3,586 1,000
vortex 22,471 M (23.5%) | 32,194 57 585 3,305 16,651 5,000
average | 10,980 M (21.8%){ 22,007 ] 166 1,055 2,895 9,459

Table 5.1: The number of load instructions contained in the
binaries (load sites) and executed by the individual pro-
grams (in millions) of the SPECint35 benchmark suite
when using the ref-inputs. The numbers in parentheses
denote the percentage of all executed instructions that are
loads. The quantile columns show the number of load
sites that contribute the given percentage (e.g., Q50 = 50%)
of executed loads. The rightmost column shows the num-
ber of instructions (in millions) that are skipped before
starting the detailed pipeline-level simulation.

An interesting point to note is the uniformly high per-
centage of load instructions executed by the programs.
About every fifth instruction is a load. This is in spite of
the high optimization level and good register allocation.

Another interesting point is the relatively small num-
ber of load sites that contribute most of the executed
load instructions. For example, less than 5% of the load
sites make for 90% of the executed loads. Only 43% of
the load sites are executed at all.

In these benchmarks, an average of 52.3% of the load
instructions fetch the same value that they did the previ-
ous time they were executed and 69.5% fetch a value
that is identical to one of the last four distinct values
fetched.



For the speedup measurements, we executed the
benchmark programs on our simulator for 300 million
instructions after having skipped over the initialization
code in “fast execution” mode. gcc is executed to com-
pletion (334 million instructions). Table 5.1 shows the
number of instructions that we skipped. The numbers
were determined by investigating where the last value
predictability becomes representative for the rest of the
program.

5.2 Metrics for Load Value Predictors

The ultimate metric for comparing load value predictors
is of course the speedup attained by incorporating a
given predictor into a CPU. Unfortunately, speedups
are dependent on the architectural features of the un-
derlying CPU. Consequently, non-implementation spe-
cific metrics are also important.

A value predictor with a confidence estimator can pro-
duce four prediction outcomes: correct prediction, incor-
rect prediction, correct non-prediction, and incorrect
non-prediction. We denote the number of times each of
the four cases is encountered by PCORR, PINCORR,
NPCORR, and NPINCORR, respectively. To make the four
numbers independent of the total number of executed
load instructions, they are normalized such that their
values sum to one.

Normalization: PCORR + PINCORR + NPCORR + NPINCORR = 1

Unfortunately, the four numbers by themselves do not
represent adequate metrics for comparing predictors.
For example, it is not clear if predictor A is superior to
predictor B if predictor A has both a higher PCORR and a
higher PINCORR than predictor B. Instead, we use stan-
dard metrics for confidence estimation, which have re-
cently been adapted to and used in the domain of
branch prediction and multi-path execution [JRS96,
GKMP398]. To our knowledge, we are the first to use
these standard metrics in the domain of load value pre-
diction. They are all higher-is-better metrics.

s Potential: Por = Pcorr + NPINCORR

Pcorr

e Accuracy: Acc=
y Pcorr + PiNcorr

Pcorr Pcorr

Pcorr + NPNCORR ~ Por

e Coverage: Cov=

The POT represents the fraction of predictable values,
which is a property of the value predictor alone and is
independent of the confidence estimator. However, if
the potential is low, even a perfect confidence estimator
is unable to make many correct predictions.

The AcC represents the probability that a prediction
is correct. The CoV represents the fraction of predict-
able values identified as such. Together they describe
the quality of the confidence estimator. The accuracy is
the more important metric, though, since a high accu-
racy translates into many correct predictions (which
save cycles) and few incorrect predictions (which cost
cycles), whereas a high coverage translates into better
utilization of the existing potential.

Note that Acc, Cov, and PoT fully determine PCORR,
PINCORR, NPCORR, and NPINCORR given that they are
normalized. ‘

6. Results

The following subsections list the results: Section 4.1
presents our predictor. Section 6.1 evaluates its per-
formance. In Section 6.2 we compare our predictor to a
number of predictors from the literature.

Note that, for improved readability, several figures
in these subsections are not zero based.

6.1 SAg Confidence Estimator Results

Figure 6.1 shows the accuracy-coverage pairs that our
SAg confidence estimator can attain (by varying the
threshold between one and 15) for different cache sizes
when ten-bit histories and four-bit counters are used.
The numbers are averages over the eight SPECint95
programs. Values closer to the upper right corner are
better. Before every run, all cache entries are set to zero.

Hardly surprising, larger predictors perform better.
However, it is also visible that both the performance of
the CE and the delivered potential start saturating above
about 2048 entries.

Figure 6.2 is similar to the previous figure except
now the cache size is held constant at 2048 entries and
the length of the histories is varied. Again, longer histo-
ries perform better. Saturation sets in at about ten bits.

Note that we performed a much broader investiga-
tion of the parameter space but cannot include all the
results. We picked Figure 6.1 and Figure 6.2 because
they are quite representative of the generally observed
behavior.



Both fewer and more than four bits per counter re-
sults in decreased CE performance. Apparently, 4-bit
counters provide the best hysteresis.

SAg CE-Results for Different Predictor Sizes (10-bit Histories, 4-bit Counters)
100

95 +

90 4 R

i
85 | | <128 entries (34.4%)

~u-256 entries (39.9%)
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~c=~2048 entries (49.9%)
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e
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| ——8192 entries (51.7%)
70 + - + } -
70 75 80 85 90 95 100
Accuracy
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Figure 6.1: Accuracy-coverage pairs for different cache
sizes, ten-bit histories, and four-bit counters. Each dot cor-
responds to a threshold (one through 15). The numbers in
parentheses denote the potential of the respective load
value predictor.

SAg CE-Resuilts for Different History Sizes {2048 Entries, 4-bit Counters)
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—o—2 bits
= 4 bits
o~ 6 bits
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~a=~ 10 bits
w12 bits
75 + ~o~14 bits
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Coverage

70

70 75 80 85 20 95 100
Accuracy

Figure 6.2: Accuracy-coverage pairs for different history
sizes, 2048-entry caches, and four-bit counters. - Each dot
corresponds to a threshold (one through 15).

6.2 Predictor Comparison

This section compares several load value predictors: a
Basic LVP (without confidence estimator), a Tagged LVP
[Gab96], a Bimodal LVP [LWS96], our SSg LVP [BuZ098],

a Last Distinct 4 Values predictor [WaFr97], and the SAg
LVP. We also look at increasing the data cache size as
an alternative to adding a load value predictor.

To make the comparison between the predictors as
fair as possible, all are allowed space to hold 2048 values
plus whatever else they require to support this size.
This results in approximately 19 kilobytes of state,
which we find reasonable given that the DEC Alpha
21264 processor incorporates two 64 kilobyte L1 caches
on chip [KMW38]. :

Table 6.1 shows the hardware cost of the six predic-
tors in number of state bits and lists their potential.

Hardware Cost and Potential of several 2048-entry Predictors

state bits  rel. cost | potential
Basic LVP 131072 0.0% | 49.85%
Tagged LVP (19-bit tags) 169984 29.7 % | 49.85%
Bimodal LVP (3-bit counters) | 137216 4.7% | 49.85%
Last Distinct 4 Values 217600 66.0% | 48.41%
SSg LVP (10-bit histories) 151552 15.6 % | 49.85%
SAg LVP (10 hbits, 4 cbits) 155648 18.8 % | 49.85%

Table 6.1: Hardware cost in number of state-bits and the
potential of various load value predictors. The relative
cost denotes the cost above Basic LVP, i.e., the cost of the
confidence estimator.

The Basic LVP requires the smallest number of state bits
(sum of counter, cache, history, tag, and valid bits).
Since Alphas are 64-bit machines, every value in the
cache counts as 64 bits. Consequently, the Basic LVP re-
quires 131,072 bits of storage. This is our base case.

The Tagged LVP augments the Basic LVP with a tag
per cache line. If we assume a 4GB address space, the
tags have to be 19 bits long for a 2048-entry cache. This
scheme requires 29.7% more storage than the base case.
Predictions are only made if the tag matches and after
each prediction the value and the tag are updated.

The Bimodal LVP incorporates a 3-bit saturating
up/down counter per line. McFarling named this
scheme Bimodal [McF93]. We found 3-bit counters and
always updating the values to work the best. Predic-
tions are only made if the counter value is greater or
equal to a preset threshold, which can be varied be-
tween one and seven. This scheme requires only 4.7%
additional hardware. In spite of this marginal increase,
it performs a great deal better than the first two
schemes, including the more hardware intensive one.

The Last Distinct 4 Values predictor is rather complex
and stores the last four distinct load values per line, so
the cache had only 512 lines. The bit count for this
scheme is 66.0% over the base case. It incorporates 4-bit



saturating up/down counters as part of the confidence
estimator. The counters saturate at twelve [WaFr97],
which limits the possible threshold values to one
through twelve.

The SSg LVP is 15.6% larger than the base case when
10-bit histories are used. The 10-bit SAg LVP is slightly
larger due to the additional 1024 4-bit counters. It re-
quires 18.8% more hardware than the base case. The
counters allow threshold values between one and 15.

6.2.1 Confidence Estimator Comparison

Figure 6.3 and Figure 6.4 show how the confidence es-
timators of different predictors perform with a small
(1024 entries) and a large (8192 entries) configuration,
respectively. Note that Basic and Tagged are not visible.
Their coverage is about 100%, but their accuracy is only
about 50%.

Confidence Estimator Comparison (1024 Entries)
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Figure 6.3: Accuracy-coverage pairs of several confidence
estimators with 1024-entry caches. The dots correspond to
various thresholds.

SAg and SAgrz are identical except that the counter val-
ues are reset to zero (rz) with the SAgrz upon a mispre-
diction rather than being decremented by one.

With ten history bits, our CEs outperform all other
CEs. We take this as evidence that prediction outcome
histories are indeed better suited for load value predic-
tion than other approaches.

All the predictors benefit from an increase in size.
However, measurements with infinite cache-sizes show
that the 8192-entry results are near the limit for all pre-
dictors and that our predictor maintains its superiority.

Confidence Estimator Comparison (8192 Entries)
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Figure 6.4: Accuracy-coverage pairs of several confidence
estimators with 8192-entry caches. The dots correspond to
various thresholds.

LD4VP benefits the most from going from 1024 entries
to 8192 entries. This is because LD4VP stores four val-
ues per cache line, which results in four times fewer
cache lines and consequently more aliasing, in particular
with the smaller 1024-entry configuration.

6.2.2 Speedup Results

Figure 6.5 shows the speedups we measured using a de-
tailed pipeline simulation of a microprocessor similar to
the DEC Alpha 21264 (see Section 5). The displayed re-
sults are average speedups over SPECint95.

The results are given for both a re-fetch and a re-exe-
cute misprediction recovery policy. For predictors that
allow multiple threshold values, the result of the con-
figuration with the best average speedup is listed (and
thus represent simulation results of over one hundred
configurations). The thresholds that yield the highest
average speedup are seven (out of seven) for the Bimodal
LVP using re-fetch and five using re-execute, 86% for
SSg with re-fetch and 65% with re-execute [BuZo98],
and twelve (out of twelve) for LD4VP both for re-fetch
and re-execute.

Even though SAg outperforms SAgrz (Figure 6.3 and
Figure 6.4), it does not reach the high accuracies that are
necessary when a re-fetch policy is utilized. Conse-
quently, we use the SAgrz LVP with re-fetch and the
SAg LVP with re-execute. The thresholds that yield the
highest average speedup are eleven (out of 15) for the
SAg LVP and 15 (out of 15) for the SAgrz LVP.
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Figure 6.5: Average speedups of the eight SPECint95 pro-
grams on a DEC Alpha 21264-like processor (the cut-off
negative re-fetch speedup percentages are -35.5% for Basic,
and -32.2% for Tagged).

With a re-execute policy, Bimodal LVP and LD4VP per-

form quite well. The SAg LVP outperforms Bimodal and
almost reaches the performance of the significantly more
complex and hardware intensive LD4VP. Given the CE-
results from the previous section, we have to attribute
LD4VP's superior performance to the fact that it retains
four values per line rather than having four times as
many lines holding just one value.

With the simpler re-fetch mechanism, our SAg LVP
outperforms all the other predictors by at least 65% (not
counting the SSg LVP). Most of today’s CPUs already
contain re-fetch hardware, which makes re-fetch the
more likely recovery mechanism in the near future. De-
spite the positive average speedups of some of the pre-
dictors, they all actually slow down at least half of the
benchmark programs when re-fetch is utilized.

Figure 6.6 illustrates this. Only our predictor is able
to deliver a genuine speedup for all the benchmarks.

The rightmost column in Figure 6.5 denotes the
speedup resulting from doubling the simulated proces-
sor's L1 data-cache. Despite this hardware increase of
564,224 state-bits, the resulting speedup is very small.
Some of the predictors outperform the doubled cache
tenfold, while requiring only one fourth of the hard-
ware.

Doubling the L1 data-cache reduces its load miss-
rate from 2.5% to 1.2%. Obviously, there is not much
potential for improvement left. We can only conclude
that above a certain cache size, it makes more sense to
add a load value predictor than to further increase the
cache size.

Speedup of Individual SPECInt95 Programs with a Re-fetch Policy
30

25

20 @Bimodal LVP
oLD4vP
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15

Program

Figure 6.6: Speedup results of the individual programs
that yield the best average speedup when a re-fetch mis-
prediction recovery mechanism is used. The percentages
for m88ksim are 75.0%, 68.7%, and 78.3% for Bimodal LVP,
LD4VP, and SAgrz LVP, respectively.

7. Summary and Conclusions

In this paper we describe a novel confidence estimator
for load value predictors. It uses histories of the recent
prediction outcomes to decide whether or not to attempt
a prediction. Saturating counters are used to adaptively
determine which history patterns should cause a pre-
diction. :

Our confidence estimator (CE) reaches much higher
accuracies than tag and saturating-counter-based CEs,
and, combined with a simple last value predictor, it sig-
nificantly outperforms previously proposed predictors
when a re-fetch misprediction recovery policy is used
and almost reaches the performance of the best predic-
tor that we are aware of with a re-execute policy.

We conclude that prediction outcome histories are
very well suited for the domain of load value prediction
and outperform other approaches, including considera-
bly more complex ones. With a re-fetch misprediction
recovery mechanism, which all processors that support
branch prediction already incorporate, our predictor
outperforms other predictors from the literature by at
least 65% and yields an average speedup of 14.1% over
SPECint95. We believe that the simplicity and the rela-
tive low hardware cost combined with its superior per-
formance make our predictor a prime candidate for inte-
gration into next generation CPUs.
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