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Abstract

Load instructions occasionally incur very long latencies.
These long latencies also delay the execution of all the
dependent instructions, which can significantly affect
system performance. Load value prediction alleviates
this problem by allowing the CPU to speculatively con-
tinue processing without having to wait for the slow
memory access to complete.

Current load value predictors can only correctly pre-
dict about 40 to 70 percent of the dynamically fetched
load values. Confidence estimators are employed to esti-
mate how likely a prediction is to be correct and to keep
the predictor from making a (probably incorrect) pre-
diction if the confidence is below a preset threshold.

In this paper we present a novel confidence estimator
that works based on prediction outcome histories. Profiles
are used to identify high-confidence history patterns.
Our confidence estimator is able to trade off coverage
for accuracy and vice-versa with previously unseen
flexibility and reaches an average prediction accuracy
over SPECint95 of as high as 99.4%. A detailed pipeline-
level simulation shows that a simple last value predictor
combined with our confidence estimator outperforms
other predictors by more than 50% when a re-fetch mis-
prediction recovery mechanism is used. Furthermore,
our predictor is the only predictor that yields a genuine
speedup for all eight SPECint95 programs.

1. Introduction

Due to their occasional long latency, load instructions
have a significant impact on system performance. If the
gap between CPU and memory speed continues to
widen, this latency will become even longer. Since loads
are not only among the slowest but also among the most

frequently executed instructions of current high-per-
formance microprocessors [LCB+98], improving their
execution speed should significantly improve the overall
performance of the processor.

Fortunately, load values are not random but often
follow certain patterns, which makes them predictable
[LWS96]. For instance, many load instructions tend to
fetch the same values repeatedly. About half of all the
load instructions of the SPECint95 benchmark suite re-
trieve the same value that they did the previous time
they were executed. This behavior, which has been
demonstrated explicitly on a number of architectures, is
referred to as value locality [LWS96, Gab96].

Empirically, papers have shown that the results of
most instructions are predictable [Gab96, LiSh96,
SaSm97a). However, of all the frequently occurring, re-
sult-generating instructions, load instructions are the
most predictable [LiSh96] and incur by far the longest
latencies. Since only about every fifth executed instruc-
tion is a load, predicting only load values requires sig-
nificantly fewer predictions and leaves more time to up-
date the predictor. As a consequence, smaller and sim-
pler predictors can be used. We therefore believe that
predicting only load values may well be more cost ef-
fective than predicting the result of every instruction.

Context-based load value predictors try to exploit the
value locality present in programs. We termed the sim-
plest such predictor Basic LVP (last value predictor). It
always predicts the previously loaded value.

To reduce the number of mispredictions, context-
based predictors normally contain both a value predictor
and a confidence estimator (CE) to decide whether or not
to make a prediction. All previously proposed predic-
tors and our own contain these two parts in some form.
The CE only allows predictions to take place if the confi-
dence that the prediction will be correct is high. This is
essential because sometimes the value predictor does



not contain the necessary information to make a correct
prediction. In such a case, it is better not to make a pre-
diction because incorrect predictions incur a cycle pen-
alty (for undoing the speculation) which making no pre-
diction does not.

CEs are similar to branch predictors because both
have to make binary decisions (predictable or not-pre-
dictable and branch taken or not-taken, respectively).
Therefore, we chose to investigate whether some of the
ideas that improved branch predictors could also be
used to improve load value predictors.

One very successful idea in branch prediction, which
is also applicable to load value prediction, is keeping a
small history recording the most recent prediction out-
comes (success or failure) [SCAP97]. The intuition is
that the past prediction behavior tends to be very in-
dicative of what will happen next. For example, if an
instruction was successfully predicted the last few times,
there is a good chance that the next prediction will be
successful, too. Hence, the prediction-outcome history, as
we call it, represents a measure of confidence.

If load values are predicted quickly and correctly, the
CPU can start processing the dependent instructions
without having to wait for the memory access to com-
plete, which potentially results in a significant perform-
ance increase. Of course it is only known whether a
prediction was correct once the true value has been re-
trieved from the memory, which can take many cycles.
Speculative execution allows the CPU to continue execu-
tion with a predicted value before the prediction out-
come is known [SmSo095]. Because branch prediction
requires a similar mechanism, most modern microproc-
essors already contain the required hardware to perform
this kind of speculation [Gab96].

Unfortunately, branch misprediction recovery hard-
ware causes all the instructions that follow a misspecu-
lated instruction to be purged and re-fetched. This is a
very costly operation and makes a high prediction accu-
racy paramount. Unlike branches, which invalidate the
entire execution path when mispredicted, mispredicted
loads only invalidate the instructions that depend on the
loaded value. In fact, even the dependent instructions
per se are correct, they just need to be re-executed with
the correct input value(s). Consequently, a better recov-
ery mechanism for load misspeculation would only re-
execute the instructions that depend on the mispre-
dicted load value. Such a recovery policy is less suscep-
tible to mispredictions and favors a higher coverage, but
may be prohibitively hard to implement.

We devised a load value predictor with a prediction
outcome history-based confidence estimator that per-

forms very well. Profiles are used to program the pre-
dictor with the history patterns that should trigger a
prediction. The predicted value is always the value that
was previously loaded by the same load instruction.
Our predictor reaches an average speedup over
SPECint95 of 15.8% with a re-execute policy and 13.1%
with a re-fetch recovery policy. It is able to attain a
speedup for all the SPECint95 programs, even with the
much simpler re-fetch mechanism. All the other predic-
tors we looked at actually slow down four or more of
the eight benchmark programs when re-fetch is em-
ployed, as our pipeline-level simulations revealed. Sec-
tion 6.2 provides more detailed results.

We also investigated using saturating counters in-
stead of profiling to identify the history patterns that
should trigger a prediction [BuZo98], hoping that the
adaptivity of the counters would result in better per-
formance. Surprisingly, the profile-based approach pre-
sented in this paper outperforms the dynamic counter-
based approach for more than half the benchmark pro-
grams and yields higher accuracies and a much broader
range of possible accuracy-coverage pairs. Furthermore,
the profile-based predictor requires less hardware, is
simpler in its design (and therefore potentially faster),
and requires only one-level predictor updates.

The remainder of this paper is organized as follows:
Section 2 introduces the predictor architecture and no-
menclature. Section 3 presents related work. Section 4
illustrates the use of prediction outcome histories and
introduces our predictor. Section 5 explains the meth-
ods used. Section 6 presents the results. Section 7 con-
cludes the paper with a summary.

2. Predictor Architecture

Figure 2.1 shows the components of a confidence-based
load value predictor. The largest element is an array
(cache) of 27 lines for storing the confidence information
and the previously fetched values. Clearly, this cache
has to be very fast or there would be no performance
advantage over accessing the conventional memory.
The hashing hardware generates an n-bit index out of
the load instruction’s address (and possibly other proc-
essor state information). Finally, the decision logic
computes whether a prediction should be made based
on the confidence information.

All the predictors in this paper use PC div 4 mod 2” as
a hash-function. The div 4 eliminates the two least sig-
nificant bits which are always zero since the processor
we use requires instructions to be word aligned. Better



hash-functions probably exist. However, an investiga-
tion thereof is beyond the scope of this paper.

When a prediction needs to be made, the hash-func-
tion computes an index to select one of the cache lines.
The value stored in the selected line becomes the pre-
dicted value. If there are multiple values, a selector first
has to determine which value to use. Finally, the deci-
sion logic decides whether a prediction should be at-
tempted with this value.

Once the outcome of a prediction is known, the cor-
responding confidence information field is updated to
reflect the new outcome, and the true load value is
stored in the cache line that was used for making the
prediction.

We propose keeping prediction outcome histories as
confidence information. Which history patterns should
trigger a prediction and which ones should not is deter-
mined by profile runs (see Section 4.1), and the decision
logic is preprogrammed accordingly.

Generic Predictor with Confidence Estimator

instruction conf. previous
address info. value(s)
n-bitJ’ S
- o 2" cache lines

index

Figure 2.1: The components of a load value predictor with
a confidence estimator (shaded).

3. Related Work

In this section we try to give a complete overview over
the current load value prediction literature.

Early Work: Two independent research efforts
[LWS96, Gab96] first recognized that load instructions
exhibit value locality and concluded that there is poten-
tial for prediction.

Lipasti et al. [LWS96] investigated why load values

are often predictable and how predictable the different
kinds of load instructions are. While all types of loads
exhibit significant value predictability, it turns out that
address loads have slightly better value locality than
data loads, instruction address loads hold an edge over
data address loads, and integer data values are more
predictable than floating-point data values.

In a follow-up paper, Lipasti and Shen [LiSh96]
broaden their scope to predicting all resuit generating
instructions and show how value prediction can be used
to exceed the existing ILP. They found that using a
value predictor delivers three to four times more
speedup than doubling the data cache (same hardware
increase) and they argue that a value predictor is un-
likely to have an adverse effect on processor cycle time,
whereas doubling the data-cache size probably would.
Furthermore, they note that loads are the most predict-
able frequently executed instructions.

Gabbay's dissertation proposal [Gab96] deals mostly
with general value prediction and how to boost the in-
struction level parallelism (ILP) beyond the data-flow
limit, but he also studies load value prediction by itself.

Load Value Predictors: Lipasti et al. [LWS96] de-
scribe a last value predictor (predicts the last seen load
value) to exploit the existing load value locality. Their
predictor utilizes 2-bit saturating up/down counters to
classify loads as unpredictable, predictable, or constant.
In Section 6.2, we will compare our predictor with a
predictor similar to theirs.

Gabbay [Gab96] proposes four predictor schemes: a
tagged last value predictor, a tagged stride predictor, a
register-file predictor, and a sign-exponent-fraction pre-
dictor. We compare our predictor to the tagged last
value predictor in Section 6.2. However, we refrain
from comparing our predictor with the register-file and
the SEF predictor because the former performs ex-
tremely poorly and the latter can only be used for float-
ing-point loads. We also exclude the stride predictor
from our comparison, since load values exhibit virtually
no stride behavior (constant offset between the values),
as Gabbay points out.

Wang and Franklin [WaFr97] are the first to propose
a two-level prediction scheme and the first to make pre-
dictions based on the last four distinct values rather than
based on just the last value. Their predictor has the
highest prediction accuracy of all the predictors in the
literature. Nevertheless, our predictor significantly out-
performs theirs when a re-fetch misprediction policy is
used (see Section 6.2). Wang and Franklin also pro-
posed a hybrid predictor. We feel that it is premature at
this point to hybridize predictors before the individual



components have been thoroughly studied and opti-
mized.

Sazeides and Smith [SaSm97a] perform a theo-
retical limit study of the predictability of data values.
They investigate the performance of three models: last
value, stride, and finite context. Their finite context
predictor predicts the next value based on a finite num-
ber of preceding values by counting the occurrences of a
particular value immediately following a certain pattern
of values. In a follow-up paper [SaSm97b], Sazeides
and Smith design an implementable two-level value
predictor based on the finite context method. They
found that their predictor outperforms other, simpler
predictors only when large tables are used. Since the ta-
ble size required for good performance is considerably
larger than the roughly 20 kilobytes we allow each pre-
dictor in this study, we do not include a finite context
method predictor in our comparison.

Profiling: Gabbay and Mendelson [GaMe97a] ex-
plore the possibility of using program profiling to en-
hance the efficiency of value prediction. They use pro-
filing to insert opcode directives, which allow them to
allocate only highly predictable values. Manual fine-
tuning of the user supplied threshold value allows them
to outperform their hardware-only predictor in almost
all cases. They found that different input sets make no
significant difference, i.e., that train runs correlate to test
runs.

Calder et al. [CFE97] examine the invariance found
from profiling instruction values and propose a new
type of profiling called convergent profiling, which is
much faster than conventional profiling. Their meas-
urements reveal that a significant number of instructions
(including loads) generate one value with high prob-
ability. They found that the invariance of load values is
crucial for the prediction of other types of instructions
(by propagation). They also found that the invariance is
quite predictable even across different sets of inputs.

We also use profiling. However, the novelty of our
approach is that we do not profile actual load values but
instead we profile the success-rate of a last value pre-
dictor with respect to its recent prediction behavior (see
Section 4). The result is then used to configure our con-
fidence estimator rather than to modify an executable.
Once the confidence estimator is configured, no further
profiling is required.

As mentioned in the introduction, we also investi-
gated using saturating counters instead of profiling
[BuZo98]. While the average speedup of our dynamic
predictor is slightly higher than the speedup of the pro-
file-based predictor, the profile-based predictor is sim-

pler and yields better speedups for more than half of the
individual benchmark programs.

Dependence Prediction: In their next paper
[LiSh97], Lipasti and Shen add dependence prediction
to their predictor and switch to predicting source oper-
and values rather than instruction results, since this de-
couples dependence detection from value-speculative
instruction dispatch.

Reinman and Calder [ReCa98] also examine depend-
ence prediction and conclude that, due to its small
hardware requirement, it should be added to new proc-
essors first even though value prediction provides the
larger performance improvement. Furthermore, they
found that both address prediction and memory re-
naming are inferior to dependence and value prediction.

In another paper [RCT+98], Reinman et al. propose a
software-guided approach for identifying dependencies
between store and load instructions and devise an ar-
chitecture to communicate these dependencies to the
hardware. Like other profile based approaches, their
approach requires changes to the ISA.

Other Related Work: Rychlink et al. [RFKS98] ad-
dress the problem of useless predictions. They intro-
duce a simple hardware mechanism that inhibits pre-
dictions that were never used (because the true value
became available before the predicted value was
needed) from updating the predictor, which results in
improved performance due to reduced pollution.

In their next paper [GaMe97b], Gabbay and Mendel-
son show that the instruction fetch bandwidth has a sig-
nificant impact on the efficiency of value prediction.
They found that value prediction (of one-cycle latency
instructions) only makes sense if producer and con-
sumer instructions are fetched during the same cycle.
Hence, general value prediction is more effective with
high-bandwidth instruction fetch mechanisms. They
argue that current processors can effectively exploit less
than half of the correct value predictions, since the aver-
age true data-dependence distance is greater than to-
day’s fetch-bandwidth (four). This is why we restrict
ourselves to predicting only load values, which requires
significantly smaller and simpler predictors while still
reaping most of the potential.

Gonzalez and Gonzalez [GoGo98] found that the
benefit of data value prediction increases significantly as
the instruction window grows, indicating that value
prediction will most likely play an important role in fu-
ture processors. Furthermore, they observed an almost
linear correlation between the predictor’s accuracy and
the resulting performance improvement. Our results in
Section 6.2.1 show that our predictor yields much higher



accuracies than other predictors from the literature.
These higher accuracies do indeed result in significantly
higher speedups with a re-fetch architecture.

Fu et al. [FJLC98] propose a hardware and software-
based approach to value speculation that leverages ad-
vantages of both hardware schemes for value prediction
and compiler schemes for exposing instruction level
parallelism. They propose adding new instructions to
load values from the predictor and to update the pre-
dictor. We currently only look at transparent prediction
schemes, that is, predictors that do not require changes
to the instruction set architecture.

A more detailed study about predictability by Sazei-
des and Smith [SaSm98] illustrates that most of the pre-
dictability originates in the program control structure
and immediate values, which explains the often ob-
served independence of program input. Another inter-
esting result of their work is that over half of the mis-
predicted branches actually have predictable input val-
ues, implying that a side effect of value prediction
should be improved branch prediction accuracy. Gon-
zalez and Gonzalez [GoGo98] did indeed observe such
an improvement in their study.

Confidence Estimation: Jacobsen et al. [JRS96] and
Grunwald et al. [GKMP98] introduce confidence estima-
tion to the domain of branch prediction and multi-path
execution to decide whether to make a prediction. We
adopt their metrics for load value prediction (Section
5.2). While their goals are similar to ours, the ap-
proaches for branch confidence estimation and load
value prediction differ. In particular, their confidence
estimator (a two-bit saturating up/down counter, which
is what Lipasti et al. [LWS96] use} does not yield very
good results when applied to load value prediction (as
we show in Section 6.2).

Branch Prediction: In the area of branch prediction,
a significant amount of related work exists, Lee and
Smith [LeSm84] keep a history of recent branch direc-
tions for every conditional branch and systematically
analyze every possible pattern.

Yeh and Patt [YePa92, YePa93] and Pan, So, and
Rahmeh [PSR92] describe sets of two-level branch pre-
dictors and invent a taxonomy to distinguish between
them. We adopt one of their designs for use as confi-
dence estimators in our load value predictor.

Sechrest, Lee, and Mudge [SLM95] refine some of
Yeh and Patt’s two-level predictors by investigating and
describing how to program the static predictor compo-
nents. They distinguish between profile-based and al-
gorithmic approaches.

Sprangle et al. [SCAP97] describe a technique called

agree prediction, which reduces the chance that items
mapped to the same predictor slot will interfere nega-
tively. They achieve this by recording whether the pre-
vious branch predictions were a success or failure in-
stead of whether the branches were taken or not.

Summary: In this study, we only consider load
value predictors that require about 20 kilobytes of state
information since we believe that larger predictors can-
not be added to CPUs in the near future. Predictors that
do not perform well with this table size are excluded.

We also do not believe that microprocessor manu-
facturers are willing to change their instruction set ar-
chitecture just to accommodate load value prediction,
which is why we currently only investigate transparent
prediction schemes. This is also why we exclude pro-
file-based approaches that require extra bits in the op-
code for our study. ,

Furthermore, we feel that it is premature to think
about hybrid predictors. Instead, we try to evaluate and
improve the individual components first.

The novelty of our predictor is that it uses prediction
outcome histories for confidence estimation, an idea
from the branch prediction literature. Unlike all other
profile-based approaches, we do not profile actual load
values and do not need to modify binaries.

4. Using Prediction-Outcome Histories

Just like with branch prediction [SCAP97], we found
histories that record the recent prediction successes and
failures to be a very successful idea in the domain of
load value prediction as well. In fact, we found predic-
tion outcome histories to be better suited for load value
prediction than other approaches like saturating count-
ers because they scale better, they allow accuracy-cover-
age pairs to be chosen at a finer granularity, and they
yield much higher accuracies.

If such histories are to be used as a measure of con-
fidence, it is necessary to know which ones are
(normally) followed by a successful prediction and
which ones are not. Heuristics and algorithms to do this
exist in the branch prediction literature. For example,
Sechrest et al. [SLM95] describe a scheme that tries to
identify repeating patterns of branch outcomes. If no
pattern can be detected, a simple population count is
used. They call this scheme (algo). As an alternative,
Sechrest et al. suggest running a set of programs and re-
cording their behavior. They call this profile-based ap-
proach (comp). We use (comp) for our predictor since it
performs considerably better and is much more flexible



than (algo).

To better explain how (comp) works, we present
Table 4.1. It shows the output of a 4-bit history run
based on SPECint95 behavior. The second row of the
table, for example, states that a failure, failure, failure, suc-
cess history (denoted by 0001) is followed by a successful
last value prediction 26.9% of the time. In this history,
success denotes the outcome of the most recent predic-
tion. Of all the encountered histories, 2.7% were 0001.

The table shows the average over all the benchmarks
and is for illustration purposes only. The results pre-
sented in the subsequent sections were generated using
cross-validation (see Section 5.3).

" SPECINtI5 Last Value Predictability |
history prediclabi'l'ity occurrence
6.9
269
19.1

Table 4.1: Predictability and occurrence split up by history
pattern. The predictability signifies the percentage of last
value predictable loads following the given 4-bit predic-
tion outcome histories. The occurrence denotes the per-
centage of the time the respective history was encountered.

Note that it is not necessary to make a prediction fol-
lowing every history with a greater than 50% probability
of resulting in a correct prediction. Rather, the predict-
able/not-predictable threshold can be set anywhere.
The optimal setting strongly depends on the character-
istics of the CPU on which the prediction is going to be
made. .

If only a small cost is associated with making a mis-
prediction (e.g., as is the case with a re-execute archi-
tecture), it is probably wiser to predict a larger number
of load values, albeit also a somewhat larger number of
incorrect ones. If, on the other hand, the misprediction
penalty is high and should therefore be avoided (e.g., as
is the case with a re-fetch architecture), it makes more

sense not to predict quite as many loads but to be con-
fident that the ones that are predicted will be correct.

If we want to be highly confident that a prediction is
correct, say 96.6% confident, the decision logic would
only allow predictions for histories whose predictability
is greater than or equal to 96.6%, i.e., only for history
1111 based on the data in Table 4.1. This threshold
would result in 38.3% of all loads being predicted (of
which 96.6% would be correct for our benchmark suite).

As the example illustrates, four history bits are
enough to reach an average accuracy in the high nine-
ties, which other proposed predictors cannot reach.
With longer histories, our approach yields even higher
accuracies and better coverage.

4.1 The SSg(comp) Last Value Predictor

Based on these encouraging results, we designed a load
value predictor that consists of a last value predictor
(LVP) and a prediction outcome history-based confidence es-
timator. The histories are stored in the confidence in-
formation field of the cache-lines (see Figure 2.1). Since
our confidence estimator is similar to Yeh and Patt’s SSg
branch predictor [YePa93], programmed with Sechrest
et al’s (comp) approach, we call our predictor SSg(comp)
LVP.

Predictions are performed as described in Section 2,
that is, predictions are made if the prediction outcome
history of the current load instruction is one of the histo-
ries the profile information indicated should be followed
by a prediction. Once the outcome of a prediction is
known, a new bit is shifted into the history of the corre-
sponding cache line and the oldest bit is shifted out
(lost). If the true load value is equal to the value in the
cache, a one is shifted in, otherwise a zero is shifted in.
Then the value in the cache is replaced by the true value.

We decided to use a direct-mapped cache since we
empirically observed few conflicts with moderate cache
sizes. While this might be an artifact of our benchmarks,
even much larger programs will not create significantly
more conflicts as long as the size of their active working
set of load instructions does not exceed the capacity of
the cache.

Note that, unlike instruction and data caches, predic-
tor caches do not have to be right all the time. Hence,
neither tag nor valid bits are a requirement. We decided
to omit both since having them only results in an almost
immeasurable increase in accuracy, which we believe
does not justify the extra hardware.

Note that our predictor requires no content ad-



dressable memory and that all the operations can be
performed using at most two table lookups. This is
similar to current branch predictors and should there-
fore not affect the cycle time [YePa92].

SSg Predictor

instruction outcome
address history  last value
n-bit
{bits(2..n+1)}— 2" cache lines
index
s-bit history -+ I 84-bit value
2%-bit ROM

Figure 4.1: The components of the SSg last value predictor.
The SS5g confidence estimator is shaded.

The only external input to our predictor is the PC of the
load instruction. Since the PC of every instruction is
available from the first stage on, predictions can be
made in any pipeline stage. Also, the prediction
mechanism works autonomously and can therefore be
run in parallel with any other activity that might be go-
ing on in the CPU. Since the predicted value is only
needed at the beginning of the execute stage, the pre-
dictions could even be superpipelined (take more than
one cycle) over the fetch and decode stages.

With this architecture, only one prediction can be
made per cycle. If more than one prediction per cycle is
necessary, the prediction hardware would have to be
duplicated, which would allow multiple independent
predictions to be performed in parallel. Naturally, all
the predictors would have to be updated together.

Updating takes another cycle during which the pre-
dictor is busy and no prediction can be made. As Table
5.2 shows, only about every fifth instruction is a load so
it is likely that there would be cycles available during
which the predictor can be updated.

Another possible scenario, however, is that a next

prediction needs to be made before the previous one has

. been updated. This outcome only poses a problem if

both predictions go to the same cache line (or the same
counter) and is only likely to happen in tight loops
where the same load instruction is executed repeatedly
with few intervening instructions.

We can think of two possible remedies. Either the
cache lines could be marked as “in use” and further pre-
dictions will stall until the lines have been updated, or
further predictions could be made with the old infor-
mation. We leave the investigation of the performance
impact of these two schemes to future work. Neverthe-
less, we believe that the latter will perform much better
since we found that loads very infrequently change be-
havior from being predictable to not being predictable
or vice-versa. In fact, about half of all executed loads
belong to load instructions that are 295% last-value pre-
dictable or 295% not predictable, Furthermore, we
measured a geometric mean of about 65 load instruc-
tions between any two loads that go to the same cache
line, indicating that in almost all cases the required
cache line is up-to-date.

We believe that the proposed predictor is likely to
be easily integrated into any CPU that already supports
speculative execution without causing a bottleneck. The
predictor works with any instruction set and requires no
changes to the instruction set architecture, such as add-
ing bits to the op-code [GaMe97a].

5. Methodology

All our measurements are performed on the DEC Alpha
AXP architecture [DEC92]. To perform a thorough de-
sign-space evaluation, we instrumented the benchmarks
using the ATOM tool-kit [EuSr94, SrEu94]. This al-
lowed us to efficiently simulate the proposed predictor
in software and to identify good configurations, the
most promising of which were then fed to our pipeline-
level simulator for more detailed evaluation.

To obtain actual speedup results, we use the AINT
simulator [Pai96] with its out-of-order back-end, which
is configured to emulate a processor similar to the DEC
Alpha 21264 [KMW$8]. In particular, the simulated 4-
way superscalar CPU has a 128-entry instruction win-
dow, a 32-entry load/store buffer, four integer and two
floating point units, a 64kB 2-way set associative L1 in-
struction-cache, a 64kB 2-way set associative L1 data-
cache, a 4MB unified direct-mapped L2 cache, a 4096-
entry BTB, and a 2048-line gshare-bimodal hybrid
branch predictor. The modeled latencies are given in



Table 5.1. Operating system calls are executed but not
simulated. Loads can only execute when all prior store
addresses are known.

Instruction Type Latency
integer muiltiply 8-14
conditional move 2
other int and logical 1
floating point multiply 4
floating point divide 16
other floating point 4
L1 load-to-use 1
L2 load-to-use 12
Memory load-to-use 80

Table 5.1: Functional unit and memory latencies (in cycles)
of our simulator.

5.1 Benchmarks

We use the eight integer programs of the SPEC95 bench-
mark suite [SPEC95] for our measurements. These pro-
grams are well understood, non-synthetic, and com-
pute-intensive, which is ideal for processor performance
measurements. They are also quite representative of
desktop application code, as Lee et al. found [LCB+98].
Table 5.2 gives relevant information about the
SPECint95 programs.

The suite includes two sets of inputs for every pro-
gram and allows two levels of optimization. To acquire
as many load value samples as possible we use the
larger ref-inputs. Furthermore, we ran the more opti-
mized peak-versions of the programs (compiled using
DEC GEM-CC with -migrate -stdl -O5 -ifo -g3 -
non_shared). The binaries are statically linked, which
enables the linker to perform additional optimizations
that considerably reduce the number of run-time con-
stants that are loaded during execution. For ATOM
simulations, all programs are run to completion. The
result is approximately 87.8 billion executed load in-
structions. Note that the few floating point load instruc-
tions contained in the binaries are also measured, that
loads to the zero-registers are ignored, and that load
immediate instructions are not taken into account since
they do not access the memory and therefore do not
need to be predicted.

For the speedup measurements, we executed the
benchmark programs for 300 million instructions on our
simulator after having skipped over the initialization
code in “fast execution” mode. This fast-forwarding is
very important because the initialization part of pro-

grams is not representative of the general program be-
havior [ReCa98]. The rightmost column of Table 5.2
shows the number of instructions that were skipped.
GCC is completely executed (334 million instructions).

An interesting point to note is the uniformly high
percentage of load instructions executed by the pro-
grams. About every fifth instruction is a load. This is in
spite of the high optimization level and good register
allocation.

Another interesting point is the relatively small num-
ber of load sites that contribute most of the executed
load instructions. For example, less than 5% of the load
sites make for 90% of the executed loads. Only 43% of
the load sites are executed at all.

In these benchmarks, an average of 52.3% of the load
instructions fetch the same value that they did the previ-
ous time they were executed and 69.5% fetch a value
that is identical to one of the last four distinct values
fetched.

Information about the SPECint95 Benchmark Suite
total executed load load sites that account for skipped|

program load instructiog_s sites | Q50 Q90 Q99 Q100 }inst (M)
compress| 10,537 M (17.5%) | 3,961 17 58 81 690 6,000
gce 80M (23.9%)1 72,941} 870 5,380 14,135 34,345 0
go 8,764 M (24.4%){ 16,239 204 1,708 4,221 12,334 12,000

iipeg 7,41M (17.2%) | 13,886| 42 187 423 3.456| 1,000
li 17,792M (26.7%)| 6,694| 42 138 312  1,932| 4,000
masksim | 14,849M (17.9%)| 8800 52 216 456 2,677| 1,000
per! 6,207M (31.1%)| 21,342] 44 169 227 3586| 1,000
vortex | 22,471 M (23.5%)| 32,194 57 585 3,305 16,651| 5,000
average | 10,080 M_(21.8%) | 22,007 | 166 1,055 2,805 9,450

Table 5.2: The number of load instructions contained in the
binaries (load sites) and executed by the individual pro-
grams (in millions ‘M) of the SPECint95 benchmark suite
when using the ref-inputs. The numbers in parentheses
denote the percentage of all executed instructions that are
loads. The quantile columns show the number of load
sites that contribute the given percentage (e.g., Q50 = 50%)
of executed loads. The rightmost column shows the num-
ber of instructions (in millions) that are skipped before
starting the detailed pipeline-level simulation.

5.2 Metrics for Load Value Predictors

The ultimate metric for comparing load value predictors
is of course the speedup attained by incorporating them
into a CPU. Unfortunately, speedups are dependent on
the architectural features of the underlying CPU. Con-
sequently, non-implementation specific metrics are also
important.

A value predictor with a confidence estimator can pro-
duce four prediction outcomes: correct prediction, incor-



rect prediction, correct non-prediction (no prediction
was made, and the guessed value would not have been
correct), and incorrect non-prediction (no prediction

was attempted even though the guessed value would -

have been correct). We denote the number of times each
of the four cases is encountered by PCORR, PINCORR,
NPCORR, and NPINCORR, respectively. To make the four
numbers independent of the total number of executed
load instructions, they are normalized such that their
values sum to one.

Normalization: Pcorr + Pincorr + NPcorr + NPincorr = 1

Unfortunately, the four numbers by themselves do not
represent adequate metrics for comparing predictors.
For example, it is not clear if predictor A is superior to
predictor B if predictor A has both a higher PCORR and a
higher PINCORR than predictor B. Instead, we use stan-
dard metrics for confidence estimation, which have re-
cently been adapted to and used in the domain of
branch prediction and multi-path execution [JRS96,
GKMP98]. To our knowledge, we are the first to use
these standard metrics in the domain of load value pre-
diction. They are all higher-is-better metrics.

¢ Potential: Por = Pcorr + NPINCORR

Pcorr
¢ Accuracy: Acc=——
Pcorr + PINCORR

Pcorr Pcorr

o C : Cov= =
overage ov Pcorr + NPINCORR Por

The POT represents the fraction of all load values that
are predictable, which is a property of the value pre-
dictor alone and is independent of the confidence esti-
mator. However, if the potential is low, even a perfect
confidence estimator is unable to make many correct
predictions.

The ACC represents the probability that an attempted
prediction is correct, and the COV represents the fraction
of predictable values identified as such. Together they
describe the quality of the confidence estimator. The ac-
curacy is the more important metric, though, since a
high accuracy translates into many correct predictions
{which save cycles) and few incorrect predictions (which
cost cycles), whereas a high coverage merely translates
into better utilization of the existing potential. Never-
theless, a high coverage is still desired.

Note that Acc, Cov, and POT fully determine PCORR,
PINCORR, NPCORR, and NPINCORR given that they are
normalized.

5.3 Cross-Validation

Cross-validation is a technique incorporated to exclude
self-prediction. It is used throughout this paper (where
applicable) and works as follows: one program is re-
moved from the benchmark suite, the behavior of the
remaining programs is measured to configure the pre-
diction hardware, and then the program that was re-
moved is run on this hardware. This process is repeated
for every program in the suite. Thus, the performance
of all the programs is evaluated using only knowledge
about other programs.

6. Results

The following subsections list the results: Section 6.1
evaluates the performance of our SSg(comp) confidence
estimator. In Section 6.2 we compare our predictor to a
number of predictors from the literature. To better ex-
plore the space of parameters we only show averages
over the eight benchmarks and not the individual pro-
grams. Note that, for improved readability, several fig-
ures in these subsections are not zero based.

6.1 SSg(comp) Confidence Estimator Results

All the results for the SSg(comp) confidence estimator
are generated using cross-validation (Section 5.3). Be-
fore every run, all cache entries are set to zero.

Figure 6.1 shows the attainable accuracy-coverage
pairs for different cache sizes when ten-bit histories are
used. The numbers are averages over the eight
SPECint95 programs. Values closer to the upper right
corner are better. ' :

Each curve was generated by varying the thresh-
old. Each point in the lines corresponds to a threshold
setting, starting at 98% (from the right) and decreasing
in 2% steps.

The broad range in both dimensions is quite appar-
ent and, hardly surprising, the larger the predictor the
better its performance. As expected, there is a trade-off
between the accuracy and the coverage. Nonetheless,
baoth the performance of the CE and the delivered po-
tential saturate at about 4096 entries. Apparently, a



4096-entry cache is big enough for our benchmarks and
~ has a performance that is close to the performance of an
infinite cache. This was to be expected based on the
quantile numbers from Table 5.2

Cross-Validation Results for Differsnt Predictor Sizes (10-bit Histories)

100 g —
3 g0 ~cr 128 entries (34.4%)
§ 75 i 256 ontries (39.9%)
38 70 ~o512 entries (44.9%)
o= 1024 eniries (48.0%)
& ~o 2048 eniries (49.8%)
80 - 4096 entries (51.1%)
55 ~o-8192 entries (51.7%)
50 ¢
50 55 60 65 70 75 80 85 9% 95 100
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Figure 6.1: Accuracy-coverage pairs for different cache
sizes and 10-bit histories. Each dot corresponds to a
threshold (in 2% increments). The numbers in parentheses
denote the potential delivered by the respective load value
predictor.

Cross-Validation Results for Different History Sizes {1024 Entries, 48.0% Potential)

o2 bits
i~ 4 bits
e § bits
w8 bits
~>=10 bits
~-12 bits
~r=14 bits

Coverage
&

50 56 60 65 70 75 80 85 90 95
Accuracy

100

Figure 6.2: Accuracy-coverage pairs for different history
sizes and 1024-entry caches. Each dot corresponds to a
threshold (in 2% increments).

In Figure 6.2, which is similar to Figure 6.1, the cache
size is held constant at 1024 entries and the length of the
histories is varied.

The figure shows that longer histories perform
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better. Saturation sets in at about ten bits. These results
indicate that ten history bits provide most of the predic-
tion potential over a range of thresholds.

Note that we performed a much broader investiga-
tion of the parameter space but cannot include ail the
results due to space limitation. We picked Figure 6.1
and Figure 6.2 because they are quite representative of
the generally observed behavior.

6.2 Predictor Comparison

In this section we compare several load value predictors:
a Basic LVP (without confidence estimator), a Tagged
LVP [Gab96], a Bimodal LVP [LWS96], our SSg(comp)
LVP, an SSg(algo) LVP, and a Last Distinct 4 Values pre-
dictor [WaFr97]. We also look at increasing the data
cache size as an alternative to adding a load value pre-
dictor.

Hardware Cost and Potential of several 2048-entry Predictors
state bits rel. cost | potential

Basic LVP 131072 0.0% | 49.85%
Tagged LVP (19-bit tags) 169984 29.7 % |- 49.85 %
Bimodal LVP (3-bit counters) | 137216 4.7% | 49.85%
SSg LVP (8-bit histories) 147456 125% | 49.85%
SSg LVP (14-bit histories) 159744 21.9% | 49.85%
Last Distinct 4 Values 217600 66.0% | 48.41 %

Table 6.1: Hardware cost in number of state-bits and the
potential of various load value predictors.

To make the comparison between the predictors as fair
as possible, all of them are allowed to hold 2048 values
plus whatever else they require to support that size.
This results in approximately 19 kilobytes of state,
which we find reasonable given that the DEC Alpha
21264 microprocessor incorporates two 64 kilobyte L1
caches on chip [KMW?98]. Table 6.1 shows the hardware
cost of the five predictors in number of state bits and
lists their delivered potential.

The Basic LVP requires the least amount of state in-
formation (i.e., counter, cache, history, tag and valid
bits). Since Alphas are 64-bit machines, every value in
the cache requires 64 bits. Consequently, the Basic LVP

needs 131,072 bits of storage. This is our base case.

The Tagged LVP augments the Basic LVP with a tag
per cache line. If we assume a 4GB address space, the
tags have to be 19 bits long for a 2048-entry cache. This
scheme requires 29.7% more storage than the base case.
Predictions are only made if the tag matches. After each



prediction the value and the tag are updated. Partial
tags would reduce the hardware cost of this scheme, but
not even full tags result in decent performance.

The Bimodal LVP incorporates a 3-bit saturating
up/down counter per line. (McFarling named the cor-
responding branch predictor Bimodal [McF93], hence the
name.) We found 3-bit counters and always updating
the values to work very well. Predictions are only made
if the counter value is greater or equal to a preset
threshold, which can be varied between one and seven.
This scheme requires only 4.7% additional hardware. In
spite of this marginal increase, it performs a great deal
better than the first two schemes, including the more
hardware intensive one.

Our SSg(comp) LVP is 12.5% larger than the base case
when 8-bit histories are used and 21.9% larger with 14-
bit histories. The corresponding SSg(algo) predictors re-
quire the same amount of state.

The Last Distinct 4 Values predictor is rather complex
and stores four distinct values per line, so the cache had
only 512 lines. The bit count for this scheme is 66.0%
over the base case. The pattern of the last six accesses is
used to select a set of 4-bit saturating counters, of which
the highest counter determines which of the four values
to use for the prediction. No prediction is made if the
selected counter is below a preset threshold. The count-
ers saturate at twelve [WaFr97], which limits the possi-
ble threshold values to one through twelve.

6.2.1 Confidence Estimator Comparison

Figure 6.3 and Figure 6.4 show how the confidence es-
timators of different predictors perform with a small
(1024 entries) and a large (8192 entries) configuration,
respectively.

Note that Basic is not visible. Its coverage is 100%
but its accuracy is only about 50% in both cases. The
Tagged and the two SSg(algo) schemes allow no variabil-
ity and are therefore each represented by a single point.

With eight history bits, our CE outperforms all other
CEs except the 14-bit SSg(algo) CE. We take this as evi-
dence that prediction outcome histories are indeed bet-
ter suited for load value prediction than other ap-
proaches, Our 14-bit SSg(comp) CE outperforms all
other CEs. Note how much larger its range of accuracy-
coverage pairs is in both figures and how much higher
an accuracy it can reach in comparison to the other CEs,

All the predictors benefit from an increase in size.
However, our measurements with infinite cache-sizes
show that the 8192-entry results are close to the limit for
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all predictors and that our predictor maintains its supe-
riority with one exception. For accuracies under 92%,
LD4VP slightly surpasses SSg(comp) in the infinite case.

LD4VP benefits the most from going from 1024 en-
tries to 8192 entries. That is because LD4VP stores four
values per cache line, which results in four times fewer
cache lines and consequently more aliasing, particularly
with the smaller configuration.

Confidence Estimator Comparison (1024 Entries)
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s ™1
8
g s ——
8 ~o=~S5Sg(comp) 8-bit histories
70 + ~o §8g(comp) 14-bit histories
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65 + - Bimodal 3-bit counters
« Tagged
60 + = SSg(algo) 8-bit histories
55 = SS8g(algo) 14-bit histories
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Figure 6.3: Accuracy-coverage pairs of several confidence
estimators with 1024-entry caches. The dots correspond to
various thresholds.
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Figure 6.4: Accuracy-coverage pairs of several confidence
estimators with 8192-entry caches. The dots correspond to
various thresholds.



6.2.2 Speedup Results

Figure 6.5 shows the speedups we measured using a de-
tailed pipeline-level simulation of a microprocessor
similar to the DEC Alpha 21264 (see Section 4). The dis-
played results are average speedups over SPECint95.

The results are given for both a re-fetch and a re-exe-
cute misprediction recovery policy. For predictors that
allow multiple threshold values, the result of the con-
figuration with the best average speedup is listed. The
thresholds that yield the highest average speedup are
seven (out of seven) for the Bimodal LVP using re-fetch
and five using re-execute, 86% for SSg(comp) with re-
fetch, 65% for SSg(comp) with re-execute, and twelve
(out of twelve) for LD4VP both for re-fetch and re-exe-
cute.

Average Speedup over SPECint95
20

[re-fetch

re-sxecute

Speedup (%)
o

Bimodal LVP |

SSgalgo) LVP

Predictor

Figure 6.5: Average speedups of the eight SPECint95 pro-
grams on a DEC Alpha 21264-like processor (the cut-off
negative re-fetch speedup percentages are -35.5% for Basic
and -32.2% for Tagged).

Bimodal LVP, SSg(algo) LVP, and LD4VP perform quite
well with a re-execute policy. SSg(comp) LVP outper-
forms the first two and almost reaches the performance
of the significantly more complex and hardware inten-
sive LD4VP. Given the CE-results from the previous
section, we have to attribute LD4VFP's superior perform-
ance to the fact that it keeps four values per line rather
than having four times as many lines holding just one
value. ‘

With the much simpler re-fetch mechanism, which
most of today’s CPUs already contain and therefore the
more likely recovery mechanism in the near future, our
SSg(comp) LVP outperforms all the other predictors by
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at least 50%. In looking at more detailed results, we
note that all the predictors but ours actually slow down
at least half the benchmark programs, often signifi-
cantly. Only our predictor is capable of delivering a
genuine speedup for all the programs.

Using re-fetch, our confidence estimator makes a
prediction following about 150 history patterns. In the
re-execute case, about 2500 history patterns cause a pre-
diction (out of 16384). It is not feasible to look for this
large a number of patterns using comparators. Rather,
one would probably use the history pattern as an index
into a preprogrammed 1 bit by 2#history-bits read only
memory (ROM) that returns a one for those histories
that should trigger a prediction and a zero otherwise.
The ROM effectively represents a second level of indi-
rection. Performing two table lookups per cycle should
be feasible since current branch predictors also comprise
two levels [KMW98].

The rightmost column in Figure 6.5 denotes the
speedup resulting from doubling the simulated proces-
sor's L1 data-cache from 64 kilobytes to 128 kilobytes.
Despite this hardware increase of 564,224 state-bits, the
resulting speedup is very small. Some of the predictors
outperform the doubled cache tenfold while requiring
only a fourth of the hardware.

Doubling the L1 data-cache reduces its load miss-
rate from 2.5% to 1.2%. Obviously, there is not much
potential for improvement left. We can only conclude
that above a certain cache size, it makes more sense to
add a load value predictor than to further increase the
cache size.

An interesting point to note is the uniformity of the

" cross-validation results, as is depicted in Figure 6.6. The

figure shows that all the profiles yield about the same
result (within a few percent), meaning that the predic-

tion-causing history patterns are most likely quite uni-

versal and not very dependent on the programs.

The optimal threshold value seems to be rather inde-
pendent on the programs as well, as the following ex-
periment illustrates. Instead of maximizing the average
speedup, we also tried maximizing every program indi-
vidually, i.e., we identified the best threshold for every
program and then averaged the speedups. For re-fetch,
this improved the average speedup by 7.8% (from 13.1%
to 14.1%), and for re-execute by 8.4% (from 15.8% to
17.2%). These small improvements indicate that the
threshold that maximized the average speedup is close
to the thresholds that maximize the individual pro-
grams.

The optimal threshold value is, on the other hand,
quite dependent on the characteristics of the underlying



CPU. For example, when changing the misprediction
recovery mechanism from re-fetch to re-execute, the op-
timal threshold drops from 86% to 65%.

These results, in combination with the relatively poor
performance of SSg(algo), suggest that profiling is very
important for finding the best threshold value, i.e., for
identifying which history patterns should be followed
by a prediction. However, once this has been done for a
given type of CPU, the SSg(comp) predictor’s decision
logic can be programmed once and for all, rendering
further profile runs superfluous.

Non-Equal Predictions due to Cross-Validation
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Figure 6.6: Average percentage of dissimilar prediction
outcomes when using profile-based prediction. The
weighted percentages are weighted by the relative occur-
rence of the non-equal history patterns.

7. Summary and Conclusions

In this paper we describe a novel confidence estimator
for load value predictors. It uses histories of the recent
prediction outcomes to decide whether or not to attempt
a prediction. Profile information is utilized to determine
which history patterns should cause a prediction. Based
on the high invariability of our measurements of
SPECint95, finding high-confidence history patterns can
be done once and need not be repeated every time the
predictor is to be used.

Our confidence estimator {(CE) reaches much higher
accuracies than tag and saturating-counter-based CEs,
and, combined with a simple last value predictor, it sig-
nificantly outperforms previously proposed predictors
with a re-fetch and almost reaches the performance of
the best predictor that we are aware of with a re-execute
misprediction recovery policy.
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The contributions of this paper include:

e We propose using prediction outcome histories as a
measure of confidence for load value prediction.

¢ We propose making a strict distinction between the
confidence estimator and the actual value predictor.

» We provide standard metrics to measure the perform-
ance of the confidence estimator and the value predictor
separately as well as in combination.

We conclude that prediction outcome histories are
very well suited for the domain of load value prediction
and outperform other approaches, including considera-
bly more complex ones. When a re-fetch misprediction
recovery mechanism is used, which all processors that
support branch prediction already incorporate, our pre-
dictor outperforms other predictors from the literature
by a factor of over 1.5 and yields an average speedup of
13.1% on SPECint35. We believe that the simplicity and -
the relative low hardware cost combined with its supe-
rior performance make our predictor a prime candidate
for integration into next generation CPUs.
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