Modeling and Analyzing Timed
Changes within Workflow Systems

Clarence Ellis
Karim Keddara
Jacques Wainer

CU-CS-869-98

jUniversity of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS

EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND

DO NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED
‘ IN THE ACKNOWLEDGMENTS SECTION.

Modeling and Analyzing Timed Changes
within Workflow Systems

Clarence Ellis' and Karim Keddara! and Jacques Wainer?

! University of Colorado, CTRG Labs, Dept of Computer Science,
Boulder CO 80309-0430, USA
2 University of Campinas, Dept of Computer Science, Campinas Brazil

Abstract. Workflow Management Systems[26] are networked computer systems which enable the spec-
ification, analysis, coordination, and enactment of organizational procedures. Although some of these
workflow management systems (we abbreviate to workflow systems) have been successful, many have
failed to improve organizational processes. One reason for this failure is the dynamically changing
nature of organizations and work which is not well supported by workflow systems.

In a previous paper[9], the authors defined notions of dynamic change in workflow systems by utiliz-
ing Petri net models. Some types of workflow change are safe, non-disruptive, and can be performed
anytime. Other changes disturb ongoing transactions, and cause problems if they are attempted in a
dynamic fashion. That previous paper also presented various definitions of dynamic change correctness.
In this paper, we define the timed flow nets as a way to accommodate time issues into the design of work-
flow systems and the analysis of their static structural changes. We also expand upon the issue of “safe”
structural transformations which preserve the soundness property[20]. This paper introduces another
new Petri net based model, the Timed Adaptive Flow Nets model, that is suitable to address dynamic
structural timed changes within workflow systems. This model generalizes the notions of SCOC[9] and
Extended SCOCI13].

This work is part of an ongoing research effort of the Collaboration Technology Research Group (CTRG)
at the University of Colorado. Previous CTRG work introduced the many dimensions of workflow that
can change, including process change, change of roles and actors, application data change, organizational
structure change, and change of social structures. In this paper, we focus on process changes.

Table of Contents

1 Modeling Workflow Procedures e 3
1.1 Timed Flow Nets o o o o e e e e e e e e e 3
1.2 The Semantics of Timed Flow Nets o oo 5
1.3 Sound flow mets e e e 9
2 Process Structural Changes: The Static Model 11
2.1 Timed Flow Nets Replacements o 0o v ittt i ittt e e 11
2.2 Seriality and Segment Iteration 14
2.3 Static Model Properties o o o i e e e e e e 21
2.4 Sound Transformations o e e 23
3 Process Structural Changes: The Dynamic Model, 25
3.1 Timed Adaptive Flow Nets 25
3.2 Semantics of Timed Adaptive Flow Nets. 28
33 CaseStudy 29
4 Related Work e e e 33
5 Conclusions and Summaryt e e e e 33
6 Mathematical Notations e 34

List of Figures

1 A version OrderProc; of the order processing procedure. 37
2 Tlustration of the event firing semantics. R 38
3 Timer modeling and activity duration modeling. 39
4 flow;: the converse of (8) does not hold. flow,: soundness does not carry from the untimed
structure of a timed flow net. L 40
5 Change;: Sequentialization of billing and shipping; Order Procy; models the new version. . . 41
6 The seriability property doeshold oo 42
7 The seriability property doesnot hold.o oo 43
8 Tlustration of the segment iteration. 44
9 Tllustration of the sound flow transformations. oo 45
10 Dynamic change modeling is based on flow jumpers. 46
11 DIBp;: A first version of the Desert Inn workflow procedure 47
12 DIBps: An enhanced version of the Desert Inn workflow procedure 48
13 Implementation of The Desert Inn migration policy 49

1 Modeling Workflow Procedures

We assume the reader to have a basic understanding of the Petri net models, their firing semantics and
some of their basic properties including boundedness, safeness, liveness (the reader is referred to [17, 15]
otherwise.)

Many Petri-net based workflow models have been introduced in the literature[7, 8], but only few of them
deal with time issues. Meeting commitments and deadlines have been identified as a key requirement in
organization business models to achieve customer retention and expansion. Therefore, there is an urgent
need to accommodate the temporal behavior of workflow systems. This situation has been acknowledged
but not addressed by the workflow management coalition[26]. On the other hand, many efforts have and are
being put in place to address the issue in many other areas; including real time systems, communication
protocols, process planning, work-force management systems etc...

In a previous work[9] workflow procedures are modeled by the so-called flow nets, this modeling is carried out
as follows: activities that define the procedure are represented by transitions. Each transition has a label,
a set of input places to mark the beginning of the modeled activity, and a set of output places to mark
the end of the activity. The workflow procedure also specifies the order in which its activities ought to be
carried out; activities may be mandatory or optional, they may be executed in sequence or in parallel. This
partial ordering is modeled in the net by the so-called flow relation. Each flow net has a single entry place to
reflect the start of the modeled procedure and a single exit place to mark the end of the modeled procedure.
Furthermore, each element of the flow net is in a path which links the entry place to the exit place.

1.1 Timed Flow Nets

Different ways of accommodating time in Petri net models have been proposed by many researchers. These
different proposals were influenced by the specific application domains, however there seem to be a commonly
shared concern not to modify the basic behavior of the untimed model (parallelism and non determinism.)
These proposals may vary in their choice of the components (i.e. places or transitions or flow) to be timed.
For instance, timing is associated with places in [18], with transitions in [16, 14, 6, 27, 10, 2, 3], and with
the flow relation in [22, 5]. They may also differ on how timing information is modeled. It may be fixed as
in [16, 18], a time interval as in [14, 27, 18, 22, 5], randomly distributed as in [2, 3], or arbitrarily continuous
as in [10].

Without claiming the superiority of any particular proposal with respect to others, we adopt a timed transi-
tion approach which uses time intervals. Our choice is pragmatic and is driven by our concern to use a model
which is in the middle of the complexity spectrum. It is well known that the modeling power of timed place
Petri nets is equivalent to the limited modeling power of timed transition Petri nets with fixed durations.
Although the analysis of Stochastic Petri Nets is possible under certain somewhat severe conditions, the
behavior of these nets is better analyzed under simulation. This does not mean that timed transition Petri
nets do not resist any kind of analysis. On the contrary, analysis is possible only if the timed net is bounded
(this property, in general undecidable, carries over from the underlying untimed net)[6] and this is the best
result known to date (at least to us.) Luckily, boundedness is in general a well accepted requirement for

workfiow models. In our model, each transition will be associated with a firing delay interval.

Definition 1. A timed net is a system, net = (pSet, tSet, f Rel,lab, delay), which consists of:

— disjoint, finite and non empty sets pSet of places and tSet of transitions.

— the flow relation fRel C (pSet x tSet) |J (tSet x pSet) which is such that

domain(fRel) |Jrange(fRel) = tSet x pSet.
Vt € tSet, Jp € pSet (p,t) € fRel

— the labelling function lab : tSet — AN
— delay : tSet — T, the delay interval function.

Moreover, Nets denotes the class of all timed nets.

Note. For z € pSet|JtSet, « is called an element of net. The set of elements of net is denoted Elem(net).
The output set of an element xz, denoted out,,.,(z), is the set {y | (z,y) € fRel}. The input set of =, denoted
inp _.(x),is the set {y | (y,z) € fRel}. These notions are extended to sets in the usual manner. The subscript
net will be dropped whenever it is clear from the context.

A path from x to y in net is a non empty sequence path = ...z, such that:
[Vi: 1,...,n—1, z; e@(ﬂ';i_*_l)] & [z=21 &y =z]

Path(z,y,net) will be used to denote the class of all paths from z to y in net. Note here that Path(z, z, net)

is always a non empty set.

For t € tSet, if delay(t) = [0] then ¢t is said to be an instantaneous transition. If label(t) = A, then t is said
to be silent. If all the transition are instantaneous, then net is said to be untimed.

Definition 2. A timed flow net is a system, flow = (net; sin, Sout), which consists of:
— net € Nets, the underlying timed net of flow, denoted flow®, which is such that
Vz € Elem(net), Path(sin,z,net) # 0 & Path(z, sout, net) # 0. (1)
— 8;n € pSet is the entry place, and s,y € pSet is the exit place which are such that
inp(sin) = 0 & out(sour) = 0. (2)
Moreover, F'Nets denotes the class of all timed flow nets.

Note. Condition (1) states that every element is in a path linking the entry to the exit place. Condition (2)
states that the entry place has no incoming edges and that the exit place has no outgoing edges. Note here
that the entry and the exit places are necessarily unique.

The interface of flow, denoted inter face(flow), is the set {Sin, Sout }- Any place p ¢ inter face(flow), is said
to be internal. PInterior (flow) denotes the set of all internal places and Interior (flow) = Elem(flow) —
inter face(flow).

Example 1. Consider an office procedure for order processing within a typical electronics company. When
a customer requests by mail, or in person, an electronic part, this is the beginning of a job. An order form
is filled out by the clerical staff (order_entry activity).) The order form is routed in parallel to the finance
department for customer credit check (credit-check activity,) and to the inventory department for inventory
check (inventory_check activity.) The finance agent files a customer credit report with the collection agency,
records its findings in the order form and sends the order form to the sales department. The inventory agent
checks the availability of the goods, and files a report to be sent along with the order form to the sales
department. After evaluating the reports (evaluation activity,) the order is either rejected and a rejection

letter (notify_reject activity) is sent to the customer, or the order is submitted to the sales manager for
approval (approval activity.) Once the order is approved, it is routed in parallel to the shipping and the billiflg
departments. The shipping department will actually cause the parts to be sent to the customer (shipping
activity;) the billing department will see that the customer is sent a bill, and that it is paid (billing activity.)
Finally, a log with a description of the order processing is created by the system (archiving activity.)

Figure 1 depicts a version of this order processing procedure model by the timed flow net OrderProc;.
The order_entry activity is modeled by the transition t,.. The credit_check activity is modeled by t...
The inventory.-check is modeled by t;.. The evaluation activity is modeled by te,. The approval activity is
modeled by t,p. The shipping activity is modeled by t,5. The billing activity is modeled by #3;. The archiving
activity is modeled by t,.. The notify_reject activity is modeled by t,,. t; and t3 are used to model the
parallel fork construct. 2 and t4 are used for the parallel join construct. For the sake of simplicity, the time
information associated with an activity reflects the total execution time (i.e. from the time a work unit
arrives to the desktop of an actor, to the time its is completed.) This simplistic view is used for illustration

purposes only.

1.2 The Semantics of Timed Flow Nets

The question as to how to deal with marking extension has also given rise to at least two proposals. The
original one [14, 6] extends the (untimed) marking with a set of dynamic firing intervals. The new one [22,
5, 10, 11] tends to lean toward the Colored Petri net approach[12]; a timed token contains time information
(a time-stamp and/or a time interval) which in general is related to the creation/availability of the token.

Definition 3. Let net € Nets.

e A timed token over net is a system, tk = {loc, av_time), which consists of:

— loc € pSet, the location of tk.
— av_time € QT, the availability timestamp of tk.

Moreover, Tks (net) denotes the class of all timed tokens over net.
o A marking of net is a distribution m C T'ks (net) ..

e Mark(net) denotes the class of all markings of net

Note. These notions carry over to timed flow nets through their underlying timed nets. For flow € FNets
and m € Mark(flow), if m consists of a single token residing in s;,, then m is said to be an initial marking
of flow. Likewise, if m consists of a single token residing in soy, then m is said to be a terminal marking
of flow. 1oy (resp. 1 f10w) denotes the class of all initial (resp. terminal) markings of flow. The subscript
flow will be dropped whenever it is clear from the context. 1* denotes the initial marking whose only token

has a timestamp 0.

For P C pSet, m|, denotes the marking m' obtained from m by removing all tokens not located in P.
Furthermore, if m' = m, then m is said to be a P-marking and if additionally every place in P has a single
token under m, then m is said to be a simple P-marking. PMark(P) denotes the class of all P-markings
and PSMark(P) denotes the class of all simple P-markings.

A transition fires by consuming one token from each of its input places, and produces one token in each of

its output places after a delay has elapsed, this delay is relative and prescribed by the firing delay interval of

the transition. Tokens are consumed in order of their availability timestamps. In other words, if more than
one token resides in the input place of a transition, then a token with the smallest availability timestamp is
consumed first. '

In our model, this is represented by events. An event description includes a transition to be fired, along
with its enabling time and its firing delay The enabling time of an event is the maximum availability time
associated with the consumed tokens. Thus, the event with the smallest enabling time fires first (FIFOQ.) If
more than one event is enabled, then the choice is non deterministic. An event fires (i.e. consumes tokens) at
time z iff no consumed token has a timestamp greater than z. Thus, the firing time of an event is greater or
equal to its enabling time. For the sake of simplicity, we assume that the firing time and the enabling time

of an event coincide (eager firing).

Example 2. Consider the marked timed net depicted in figure 2. Place p; has 1 token tk; with a time-stamp
of 2, place ps has two tokens tky with a time-stamp of 1 and tks with a time-stamp of 4, p;3 has 1 token
tks with a time-stamp of 3. The transition ¢; is enabled at 2 because the only two tokens it would consume
at this point are tk; and tks (and not tks because tks has a smaller time-stamp.) and 2 is the maximal
time-stamp of the consumed tokens. The transition ¢, is enabled at 3 because the only two tokens it would
consume are tky and tks. Thus, o fires first, and produces one token tks in ps with a time-stamp of 5.25;
any time-stamp between 2 + 3 = 5 and 2 + 4 = 6 is valid. Under the new reached marking, the transition
t, is enabled at 4 (note here that it has changed). t3 consumes the tokens tks and tks and produces a token
tke in ps with a time-stamp of 5.75; any tirrie—stamp between 4 +1 =5 and 4 + 2 = 6 is valid. Then t3 fires
at 5.75; tks and tke are consumed and a token is produced in pg with a time-stamp of 7.

Despite its simplicity, the model is very expressive and allows for a range of time interpretations including

activity durations and timeouts as illustrated next.

Example 3. Consider the case of a workflow procedure specification within a parts factory which reads as
follows: Any part which is not processed by the mold_part activity one hour after it has entered the system,
has to be recycled. There are many other situations which require some timer modeling capabilities. A version
of this workflow procedure is depicted in figure 3. Here, we have extended our model with priorities (we will
discuss how our model can accommodate such an extension.) Assume that a part enters the system at 9:20.
The part is checked by the part_check activity in 10 mn. Then, a timer is set to expire at 10:30 through
the firing of the transition set_timer. The firing of the transition timer_expired signals the expiration of the
timer. If a token arrives at ps before or at 10:20, the transitions timer_ok and timer_expired are set to fire
at 10:20. Since stop_ok has a higher priority, it will fire (hence disabling timer_expired) and the activity
part_mold is initiated at exactly 10:30. If the token arrives at p, after 10:30, say at 10:35, then timer_expired
fires at 10:20; the token in ps is consumed and at the same time a token is produced in p3. The part will not
be processed by mold_part; instead it is recycled through the activity part.recycle at 10:35.

Example 4. To model activities with durations, we use the construction shown in figure 3. The immediate
transition t reflects the initiation of the activity ¢. A token in peye. means that the activity is in progress.
The completion of the activity is modeled by the firing of the transition .

Definition 4. Let net € Nets.
e An event over net is a system, evt = (tr, en_time, fr.delay), which consists of:

— tr € tSet, the underlying transition of evt.

— en_time € QF, the enabling time of evt.
— frtime € QT the firing delay of evt, which is such that fr_delay € delay(tr).

e The completion time of evt, denoted cpl_time(evt), is en_time + fr_delay.

e FEuts (net) denotes the class of all events over net.

Note. Let w € (Euts (net))*, w is a valid sequence iff

V1 <4 < lgth(w), w;.en_time < w;+1.en_time

For w € V Seq (net), the start time of w, denoted start (w), is w[l].en-time. The end time of w, denoted
end (w), is the the maximal completion time of its events. The time length of w, denoted time_lgth(w), is
end (w) — start (w). The lifetime of w, denoted life (w), is the time interval For T' C tSet, project(w,T'),
denotes the valid sequence of net obtained by removing all the events evt such that evt.tr ¢ T. These
notions are lifted to the level of activity names. Thus, for w € V.Seq (net), label(w) denotes the sequence
obtained from w by applying the labeling functions to the underlying transitions after erasing all events
whose underlying transitions are silent.

Sometime, we will be interested in the sequence of transition firings. In our terminology this is referred to
as a trace. Thus, for w € V Seq(net), the trace of w, denoted trace(w), is the sequence obtained from w
by forgetting about the enabling times and firing delays of w. A sequence w' € tSet* is a (m, m')-trace iff
there exists an (m, m')-firing sequence w such that trace(w) = w'. T'race(net,m,m’) will be used to denote
the language of (m'm')-traces of flow. label(w') will be used to denote the sequence obtained from w' by

considering the labeling of wfi]’s.

Definition 5. Let net € Nets, let m € Mark(net) and let evt € Evts (net).

e evt is enabled under m in net, written m [[evt),,,, iff
dtkin, € PSMark(inp(evt.tr)), thi, C m. (3)

e evt is time enabled under m in net, written m [evt),,.,, iff the following conditions hold:

m)

evt.en_time = max {tk.av_time | tk € tkin}

Vtk' € m, Vik € thip, (4)
loc(tk') = loc(tk) = av_time(tk) < av_time(tk')

Veuvt' € Evts (net),

m [[evt'),,., = evt.en_time < evt'.en_time

In this case, the firing of evt under m in net leads to the marking m/, written m [evt), ., m', where

m' = (m — tkin) U {{p, cpltime(evt)) |p € out(evt.tr)} (5)

o 5C Mark(net) x Evts (net)* x Mark(net) denotes the event firing relation associated with net and is

given by:
(m,w,m") €% iff m = m! & w = A or the following condition is true:
Im" € Mark(net), Jevt € Evts (net),
[w =w' e evt & (m,w',m") e &m” levt) . m’}

Condition(3) state that an event is enabled if there are enough tokens to be consumed by the underlying
transition. Conditions(4) state that an event fires as soon as it is enabled, that the tokens are consumed in
order of their availability timestamps, that events with the smallest enabling time fire first. Condition (5)
states that tokens are produced after the firing delay has elapsed.

Extensions. (Priorities, Generalized Time Model) Our timed flow net model can be extended in many
ways; including the use of

1. priorities to resolve time conflicts between enabled events. That is to say that when two simultaneously
enabled events are “racing” to consume the same token, the one with higher priority is time enabled.
This extra time enabling condition is expressed as follows: ’

Enableddmevt'net
Vevt' € Evts (net), | evt.entime = evt'.entime | = evt.tr.priority < evt'.tr.priority (6)
inp(evt.tr) () inp(evt'.tr) # 0
2. a random time distribution or a generalized time expression to compute an event’s firing delay.
Because this computation is hidden from our firing semantics, such extensions can be accommodated

without any difficulty.

As this work progresses, we will examine the ramifications of such model extensions on our results. Occa-

_ sionally, we will use priorities in our illustrated examples

Note. We will write m [w),,,, m' instead of (m,w, m’) €22 net will be dropped from all notations whenever
it is clear from the context. The sequence w is called a (m,m')-firing sequence. Fire(net,m,m') denotes the

class of all (m,m')-firing sequences of net.

. These notions carry over to timed flow nets through their underlying timed nets. For a timed flow net, flow,
an ezecution is a firing sequence which starts at an initial marking. A schedule is an execution which ends at a
terminal marking. Ezec(flow) (resp. Sched(flow)) denotes the language of all executions (resp. schedules.)
of flow.

The execution proceeds by processing what is commonly known as a job. Each job has a name which uniquely
identifies the job at any given time, a flow which identifies the workflow procedure which is operating upon
the job. It also has a history of the event firings which have so-far taken place as part of the execution of
the job. In the sequel, we assume that jobs do not interfere with each other. This assumption is carried out

using the so-called copy rule.

Definition 6. Let flow € FNets. A job over flow is a system, job = (name, state;y, statec,, hist), which

consists of:

|

name € JN, the name of the job.

statein € Loy, the initial state of the job.

state., € Mark(flow), the current state of the job.

hist € Fire(flow, state;,, statenow), the history of the job.

|

|

Jobs(flow) denotes the class of all jobs over flow.

Example 5. Consider the timed flow net OrderProc; introduced in example 1 (see figure 1) and the job
Jones which enters the system at 8:00 a.m. the initial state is mo = {tkin = (pin,8:00)}.

At 8:00, the job is submitted to the order_entry activity ¢, for processing, the processing takes about 3mn.
This is modeled by the firing of the the event oe = (t,,8:00,00:03) under mg. This firing leads to the
marking m; where m; = {tk1 = (p1,8:03)}.

At 8:03, the job is routed in parallel to the credit_check activity t.. and to the tnventory_check activity
tic. In our model, this is reflected by the firing of the event rte = (¢1,8:03,00:00) under m;. Here, we
assume that the routing is instantaneous (i.e. the routing delay is 0.) The firing leads to the marking
mg = {tky = (p2,8:03) ,tks = (p3, 8:03)}.

At 8:03, the activities t., and t;, are initiated. .. is completed 8mn after it is initiated, whereas t;. is
done in 5mn. In our model, this corresponds to the firing under ms of the events cc = (tee,8:03,00:8)
and ic = (t,8:03,00:05). These events firings can be recorded in any order. Thus, we may have either
w1 = ic.cc or wy = cc.ic. If one is interested in resolving ordering ambiguity using the completion times
of event firings, then w; is more appropriate. Assuming that this is the case, the marking reached after
completion of ic is m3 = {tks,tks = (p5,8:08)}, and the marking reached after the completion of cc is
my = {tks = (p4,8:11) ,tks}.

At 8:11 (i.e. after completion of cc and ic), tky and tks are consolidated, then the job is submitted to
the evaluation activity t., for processing. This is modeled by the firing of the event mrg = (t2,8:11,0).
Here, we assume that the join or consolidation action is instantaneous. This firing leads to the marking
ms = {tke = (ps, 8:11)}.

At 8:11, the evaluation process starts and takes about 4mn. This is modeled by the firing of the event
ev = (tey,8:11,00:04) under ms. This firing leads to the marking mg = {tk7 = (pr,8:15)}. The order is
rejected because not all parts ordered by the customer are in stock.

At 8:15, the system generates a customized rejection letter and a notification letter is sent to the customer.
This is modeled by the firing of the event nr = (t,,8:15,00:03) under mg which leads to the marking
my = {tkis = (p13,8:18)} (assuming that the process takes 3mn.)

At 8:18, the archiving activity t,, is initiated; the order log is created and stored in the archives. This is
modeled by the firing of the event ar = (t,,,8:18,00:02) under my which leads to the terminal marking
Mout = {thout = (Pout, 8:20)} (assuming that it takes about 2mn.)

At 8:20, the case Jones is completed and exits the system. The sequence sched = oe.rte.ic.cc.mrg.ev.nr.ar
is a schedule, its life time li fe (sched) = [8:00,8:20], and its trace is

trace(sched) = order_entry.inventory_check.credit_check.eval .noti fy_reject.archive.

1.3 Sound flow nets

In [20], Van der Aalst introduces workflow nets and the notion of sound workflow nets. The author shows
that the soundness property is decidable by linking it to the boundedness and liveness of the net obtained
by adding a transition which links the entry to the exit place.

Definition 7. Let flow be a timed flow net.

flow is sound iff the following conditions hold:

Vm € Reach(flow,1*), Reach(flow,m) N1 # 0. .
Vt € tSet,Im € Reach(flow,1%),Jevt € Evts (flow) (7)
m[evt) & evt.tr =t

SF Nets denotes the class of all sound timed flow nets.

The first condition in (7), referred to as the proper termination condition, ensures that each execution of
flow will end in a a terminal state. The second condition ensures that flow has no dead transitions.

Note. For flow € FNets, flow* is denotes the marked timed net obtained from flow by adding a silent,
immediate transition which connects the exit place of flow to it input place, and whose marking coincide
with 135,

Unfortunately, soundness is undecidable. Indeed, proper termination and absence of dead transitions are
linked to reachability analysis, and as we have previously mentioned timed flow nets resist in general any
kind of reachability analysis.

Furthermore, the linkage to boundedness and liveness properties, as established by Van der Aalst, is broken.
Formally,

Proposition 1. Let flow € FNets. The following property holds:
flow € SFNets = flow* is live and bounded. (8)

The converse of (8) does not in general hold. To see that, consider the timed flow net, flow;, depicted in
figure 4. Clearly, flow; is not sound; there is a schedule whose underlying trace is t1t2t3t4tste which leads
to the marking under which both the exit place s,,+ and the place p are both marked. On the other hand,
flowt is live and 1-safe. To see the safeness, note that the only place which may not be 1-safe is p (consider
the untimed structure). However, note that the first iteration of flows will result in both p,, and p marked,
and that at the end of the nth iteration, one of the following things may occur:

1. if p is not initially marked, then it will be marked with 1 token.
2. if p is initially marked, then the token is either flushed (tstg) or kept (tgt1o or t1tatstatrtsts).

The soundness property does not carry over to timed flow nets from their underlying (untimed) flow nets. To
see that consider the timed flow net flows depicted in figure 4. Clearly, the underlying (untimed) flow net is
sound, but the timed version is not. After firing ¢1, (p1,p2) becomes a sort of home marking and (p4, ps) is
not reachable. However, the soundness property is decidable on timed flow nets whose underlying untimed

flow nets are bounded. This requirement is generally acceptable.

10

2 Process Structural Changes: The Static Model

We adapt the model of change from [9] to accommodate the temporal nature of timed flow nets and to
analyze the change correctness on a job basis. Like in the previous work, we shall focus on a special type of
workflow procedure change; namely the structural change. Structural means that the change is made to the
structure of the procedure (as opposed to the data-value). A change is either dynamic or static with respect
to a job; dynamic means that the change is applied while the job is in progress, otherwise if the change is
applied before the job starts executing or after its completion, then the change is static. Another classification
could be made based on the scope of the change; if the change is applicable to a specific set of jobs (i.e.
execution instances,) then the change is referred to as an instance change, otherwise it is said to be a class
change. Examples of instance changes include exceptions. Re-engineering plans are in general considered as
instance changes before the cut-off or roll-out date is reached and class changes onward. Critical changes

such as fixing hard bugs or related to mission critical systems are considered as class changes.

2.1 Timed Flow Nets Replacements

In a nutshell, our model of structural change is driven by a well-defined discipline which makes its analysis
more manageable. This discipline is articulated around the selection of the change regions and is based upon

the principle of change locality.

The old change region, denoted oldRegion, contains all the activities of the old timed flow net, referred
to herein as the old net and denoted oldNet, which are involved in the change (e.g. deleted, reorganized
etc...). This means that when selecting the old region, places connected to these activities as well as the
connecting edges are made part of the old region. The new change region, denoted newRegion, embodies
the alterations that the old region undergoes as a result of the change. In order to make the analysis of
the change more manageable, The scope of the change should be as much as possible limited to the change
regions; this requirement is referred to as the the principle of change locality. In other words, the selection of
the old change region minimizes its interaction with its context. This interaction is structurally maintained
solely by the interface of the old region, and is reduced to tokens exchange; the context supplies tokens
to the old region for consumption (through its input place) and consumes the tokens produced by the old
change region in its output place. The old change region is said to be a closed subnet of the old net, written
closed(oldRegion, oldNet).

Definition 8. A replacement pair is a system § = (oldRegion,newRegion) which consists of two timed
flow nets oldRegion, the old change region of §, and newRegion, the new change region of §, which are such

that)
oldRegion.s;, = newRegion.s;,
oldRegion.s,ut = newRegion.soyut (9
Elem(oldRegion) () Elem(newRegion) = inter face(old Region)

ReplPairs denotes the class of all replacement pairs.

Condition (9) states that the old and the new region have the same entry and the same exit places. Further-
more, these are the only shared elements.

Definition 9. Let net;,nety; € Nets.
— net; and nety are disjoint, written disjoint(net,, nets), iff

Elem(nety) ﬂ Elem(nets) = 0.

11

- net; is a subnet of nety, written subnet(net;,nets), iff

pS’et1 g pSetz & tSet1 g iSEtQ
fRel1 = fRCIQ n [(pSet1 X tSetl) U(tSet1 X pSetl)]
laby = labg,LtSet1

delay, = dela.sz,tSet1
Definition 10. Let flow € FNets and let net € Nets such that
subnet(flow, net)

flow is a closed in net, written closed(flow, net), iff

Vz € Interior (flow) [Mnet (z) Uo_utnet (z) C Elem(flow)]
In this case, the context of flow in net, denoted ctzi(flow,net), is the timed net net’ defined as follows:

pSet’ = (pSetner — pSetfion) | inter face(flow)
tSet' = tSetnes — tSet fron

fRel' = fRel((pSet' x tSet' | JtSet' x pSet’)
lab' = labnetitm,
delay’ = delaypnerd

tSet!
After the change regions are selected properly, the replacement may take .place, resulting in a new flow,
referred to as the new net and denoted newNet. The new net is obtained from the old net by:

1. plugging the new change region into the old net by using the shared interface as sockets.
2. removing all the internal elements of the old change region from the resulting flow net.

In order to formalize this rewriting mechanism, we will define a few net operations. The disjoint sum of two
nets is the net obtained by putting them side by side. The fusion of two places removes one place and has
the other place inherit the connections of the removed place. Formally,

Definition 11. Let net;, nety be disjoint nets.

The disjoint sum of net; and nets, denoted net; @ nets, is the net, net’, defined as follows:

pSet = pSet; |JpSets

tSet = tSet, | tSets
fRel = fRel; | fRels
label = labely | Jlabel,
delay = delay; | delays

Definition 12. Let net € Nets and let p # ¢ € pSet.

The (p, g)-fusion of net, denoted 6, 4(net), is the timed net net' obtained as follows:

pSet’ = pSet — {q}
tSet' = tSet
fRel' = (fRel [(pSet' x tSet'|JtSet' x pSet'))

U ({p} x out(q)) U (inp(g) x {p})
label’ = label

delay' = delay

Note. This notion is expanded to the case where p = ¢ through the equality 6, ,(net) = net. It is also lifted
to an arbitrary finite sequence o of pairs as follows:

fx(net) = net
O (net) = 04, (0 (net))

12

Definition 13. Let net € Nets. Let § € ReplPairs.

- 0 is applicable to net, written net ~, iff the following conditions holds:

closed(oldRegion, net)
Elem(newRegion) (| Elem(ctzt(oldRegion, oldNet)) = inter face(newRegion)

— In this case, the application of § to net leads to the timed net net' defined as follows:
net' = 6,/ (o, (newRegion) & ctxt(oldRegion, net)) (10)

where _
o = {(newRegion.s;n,p), (newRegion.syut, q)}

o' = (newRegion.s;,,p) e (newRegion.s,us, q)
p,q ¢ Elem(newRegion) | J Elem(net)

This will be denoted net ~5 net’. The system rep = (net, §, net') is a replacement step

Note. We will write oldNet ~»5 to say that § is applicable to oldNet, and oldNet ~+; newNet to say
that the timed flow net, newNet, is obtained from the timed flow net, oldNet, by applying the replacement ,
mechanism as previously outlined. The tuple repl = (oldNet, §, newNet) will be referred to as a replacement
step. Repl Pairs will denote the class of all replacement pairs. The formal definitions are given in the appendix.

Example6. In the case of our order processing procedure, it has been decided to initiate billing and A
shipping in sequence, instead of concurrently as it was previously done. Moreover, this change should not
affect the completion times previously reached. The general consensus was to speed up these two activities
by acquiring high end systems. The old and new change regions as well as the old and the new nets are
depicted in figure 5.

The introduction of the replacement mechanism leads to the natural question as to how it affects the semantics
and the properties of a flow net. For the case of untimed flow nets, this issue has been settled in [9, 20]. In
what follows, we extend these results for the soundness and other properties including time, schedule and

trace approzimations, which are introduced next.

Definition 14. Let flow;, flow; € F'Nets.

¢ flow; is a time approximation of flows, written flow, C,,, .. flows, iff the following condition holds:
Vw: € Sched(flow), Fwy € Sched(flows), life(flow:) = life(flows).

e flow; is a schedule approximation of flows, written flow;, C,,,., flows, iff the following condition

holds:
Yw; € Sched(flow), 3w, € Sched(flows),

life(flowy) = life(flows) & label(w:) = label(w,).
flows, iff the following condition holds:

e flow; is a trace approximation of flows, written flow; C

Vw; € Sched(flow;), Jws € Sched(flows),
life(flow:) = life(flows) & trace(label(w:)) = trace(label(ws)).

Trace

In order to carry out our work, we need to define some auxiliary notions, namely the augmentation, separation.

Note. In the remaining of this section,we make the following assumption:

Vflow € FN@tS, pflowypflowytflowvtﬂow é _E_l_@(flO’lU) (11)

Let flow € FNets, aug(flow) is the flow net obtained from flow by:

13

1. renaming s;, into Pfiow and Syt N0 Dfjoy.

2. adding an immediate silent transition ¢ flow With s;,, as the only input place and Pflow as the only output
place. - -

3. adding an immediate silent transition i—fm with Pfiow as the only input place and s, as the only output

place.

Note here that the construction preserves the interface. If closed(flow, flow') for some flow' € FNets, then

sep(flow, flow') is the flow net obtained from flow' by replacing flow with aug(flow).

The notion of augmentation will be extended to our replacement mechanism as follows:

if 6 = (oldRegion, newRegion) is a replacement pair, then aug(d) = (w(oldRegz’on),gy_g_(newRegion)).
Ifrepl = (oldNet,d, newNet), then aug(repl) = <§£Q(oldRegion, oldNet), aug(6), sep(newRegion, newNet)).

2.2 Seriality and Segment Iteration
Definition 15. Let flows, flows € FNets such that:
closed(flow, flows) & flow;, € SFNets.
flow; is serial in flows, writ;cen serial(flowy, flow2), iff the following condition holds:

Vm € Reach(flows,1"), Yw € Trace(flowy,1*,m'), project(w, A) € Suf fiz((t 10w, Fiow)*) ~ (12)

where flowy = sep(flows, flows) & A = {tﬂowl,tﬂowl }

Condition 12 precludes any token from entering flow; while it is in progress. In the definition above, we
have resorted to the use of sep(flowy, flows) for two reasons. First, for ease of formulation; note here that
tfiow, (resp. triow,) reflects the situation where a token enters (resp. exits from) flow;. Second, to deal with
%ﬁ;;eculiar case where flow; has a schedule which consists of a single event.

Example 7. Consider the sound flow net flow; for i = 1...4 depicted in figure 6. flows = aug(flowy),
flowy = sep(flows, flows) and cpl_time(flows) = [0,2]. Let winiy = (t1,0,0) (t2,0,4) (¢3,0, 1) and let my the
marking of flows such that 1* [wini;) m4. Clearly, mq4 has two tokens which reside in p3; namely tk; = (ps, 1)
and tky = (ps,4). The time separating the arrivals of these tokens to p3 is 3 and thus, greater than the
maximal completion time of flows. Moreover, this property holds for all markings m, € Reach(flows,1*).

This means that serial(flow;, flows) holds.

Next, consider the sound flow nets flows, flows and flow; depicted in figure 7. flows = aug(flows),
flowr = sep(flows, flows) and cpl_time(flows) = [4,7]. Let

Weont = <tflo'w5a 1, 0> <t47 1, 3) (tIOa 1, 1> <t117 2, 3) <tflow574> 0> and W = Wingt Weont.
Clearly, w € Fire(flows, myg, my) where my = {(p4,4) , <pfzow5,4> ,{P12,5), (p7,4)}. Moreover,

project(w, A) =t piows triows € Suf fix((tfiows -Efiows)*), where A = {tflows,tflows} .

Thus, w violates the seriality condition. Intuitively, this means that 2 executions of flows are in progress at

the same time.

14

Our first results examine the relationship between a flow net and its separation. In a nutshell, the first

result states that the separation of a flow net, flows, through a sound closed subnet, flow;, “preserves”

the semantics of flows . This means that notions such as boundedness, liveness, soundness, and the diverse

approzimation notions can be investigated in either flow nets. Formally,

Proposition 2. Let flow;, flows € FNets such that:

closed(flows, flows) & flow, € SFNets,
let flow] = aug(flow:) and let flow) = @(ﬂowl,ﬂo’wﬂ.
The following properties hold:

Vmsy, € Reach(flow),1*), 3ms € Reach(flows,1*), my = h(mb)

Vmsy € Reach(flows,1%), 3m} € Reach(flows,1*), ma = h(mb) & m2¢{pin} =mh|

{pin}
where h : Tks (flowh) — Tks (flows) is defined as follows:

tk if tk.loc ¢ {pﬂoun s Dlow; }

(pinﬂ_) 2f tk = <pflowla7'>

(poutv7-> Zf tk = <pflow1;T>

Din = flow1.8in & Pour = flowy.sout

h(tk) =

Proof. Let Teigr = ctat(flows, flows).tSet and let Ty = flow;.tSet.
Proof of 13.
By induction on w}, we prove that the following property holds:

Vmj € Reach(flow),1*), Yw) € Fire(flow},1*,m})
3ms € Reach(flows,1%), ma = h(my). (Q1)

e base case: wh = A.
Take my = m} = 1*. Clearly, Q; is satisfied by m}, w) and m}. End of the case.

s induction hypothesis: Assume that @1 is satisfied by m}, wh and ma.

o induction: Let evt, € Evts (flow}) such that m), [evth) m's. We will consider the following two cases:
2 © LULS 2 2 2 g

(13)
(14)

1. th = tfiows OF th = Lfi0u, . From the induction hypothesis, we have my = h(m/5). Thus, Q; is also met

by m's, wh.evthy and my.

2. th # tfiow, and th # Tsiou, . Then from the induction hypothesis, we have mq [evth) My & T2 = h(m/s)

for some marking 7, of flowy. Thus, Q1 is met by m/y, wh.evth and Tig.

Proof of 14.
By induction on ws, we prove that the following property holds:

Vmy € Reach(flows,1*), Ywy € Fire(flows,1*,my)

I} € Reach(flows, 1), my = h(m}) &mab, =mh] (@)

{pin}
e base case: wy = A.
Take mgy = m4 = 1*. Clearly, @2 is satisfied by mj, w} and mb. End of the case.

e induction hypothesis: Assume that ()s is satisfied by mq, wo and mj.

o induction: Let evty € Euts (flows) such that mo [evte) e & evty = (to, en_times, fr_delay,) . We will

consider the following cases:

15

1. pin € inp flow, (t2). In other words, flow; is consuming a token. Let evt’ = <tflow1 ,en_times, 0>. Clearly,

mb [evt'.evty) m’y for some m’y, and from the induction hypothesis,

Mo = h(-ﬁ’t—/-z) & Tl = ng

{p’:"} N {Pin}.

Thus, @, is satisfied by s, wy.evis and Fffz.

2. pout € out(ts). In other words, the context is consuming a token, say tk, from poy;.

(a) if tk € mb, then mi, [evts) m'y for some m’y, and from the induction hypothesis,

M = h(my) Kby =l)

Thus, Q, is satisfied by s, wo.evty and m/y.

(b) if tk ¢ mj, then there exists a token tk' € mj such that h(tk') = tk & tk'.loc = Pfiow,. In other words,
we have to pull the token from Bfiow,. Let evt’ = (110, , en-times,0). Clearly, mj [evt'.evty) m's for
some m/y, and from the induction hypothesis,

My = h(m's) & m2¢{m} = Wzl{m}'
Thus, Q- is satisfied by s, ws.evty and m/y. QED
Proposition 3. Let flowy, flows € FNets such that:
closed(flowy, flows) & flow, € SF Nets,
let flow; = aug(flow:) and let flows, = sep(flows, flows).

The following properties hold:

1. flowy € SENets < flow), € SFNets.
2. flowg ~,.,. . flow,.
3. flows ~_,., flow,.

4. flowg >~ ... flows.
Proof. Direct consequence of proposition 2
The next result establishes a relationship between seriality and I1-safeness for untimed flow nets.

Proposition 4. Let flow, flowy € FNets such that:

closed(flowy, flows)
flow, € SENets.
Vt € flows.tSet, delay(t) = [0].

The following property holds:
serial(flows, flows) < pin is 1-safe in (flows; 1)

where pin, = flowy.Sip.

16

Proof. Let flow| = g_y_g(flowl) and let flow; = sep(flows, flow,).

o if-part: Assume that py, is not 1-safe in (flows; 1*). By using the equality (14) of proposition 2, we can see
that ps is not 1-safe in (flow};1*). Thus, there exists a marking m} € Reach(flow),1*) with two tokens
each of which is of the form (p;,, 0) (Note here that because flow, is untimed, both tokens have a time-stamp
of 0). This mean that m), [evt.evt) where evt = <M ,0, O>. In other words, tfi4y, can fire twice. Clearly,
this is a violation of the seriality condition (12). Henceforth, serial(flows, flouWoes not hold.

e only-if part: Assume that serial(flow:, flows) does not hold. Then, there exists mj € Reach(flow},1*)

)

there exists wy € Trace(flows,1*,m5), such that the seriablity condition (12) is violated. Without loss of
generality, we may assume that the violation occurs for the first time under m}. This means that under m,
Pflow; has one token, say tk', and that one execution of flow; is already in progress. Note here that tk' is
Mnden’c of the execution in progress (because flow; is sound.) Let m’s be the marking at which this
execution has started. Since flow) is untimed, we can freeze the execution of flow; and wait for the arrival
of tk'. Thus, pi, is not 1-safe in (flow),1*), and consequently p;, is not 1-safe in (flows,1*) (by using (14)
from proposition 2.) QED.

To better understand the effect of a structural change on the execution of a procedure, we use the following

illustration:

Example 8. Consider the change depicted in figure 8. The sequence

<t1»07 0) <t2a0a4> <t3a0’ 1) (ﬁO)
SChednew - (tlﬁa 1) 0> <t173 17 1) <t18> 1: 1> (tl()’ 1a 1) <t11, Qv 3) <t19a 2: 0> (61)
<t153 47 1> <t8a 45 1) <t147 5; 0> <t97 5; 2) <t12’ 7) 0) (t13a 77 0) (52)
is a schedule of newNet.
The schedule, sched,e,, consists of three valid sequences; namely By, /1 and B2. While §p is in progress,
newRegion is inactive. f2 and (3 start the moment newRegion becomes active. These are segments which
spawn over newRegion, and since gerial(newRegion, newNet) holds, 8; and B2 do not overlap. Thus, sched

can be viewed as a segment iteration. These remarks can be generalized; any schedule of oldNet can be
viewed as a segment iteration over newRegion. This applies as well to schedules during which do not involve
newRegion (0 iterations.)

The segment (1 (resp. 2) can be decomposed into two independent sequences u; and vy (resp us and vs)
which reflect the behavior of newRegion and the behavior of its context in newNet; where:

3 (t10,1,1) (t11,2,3) (v)}5 {<t8,4,1)(t14,5,0) (t9,5,2) (t12,7,0) (t13,7,0) (vz)
"\ (t16,1,0) (tr7, 1, 1) (tis, 1, 1) (t10,2,0) (u1) f 2 | (t15,4,1) (uz)

To transpose schedpey into a schedule of oldNet, we will proceed one segment at a time. Consider the
(ts,1,0) (tz,1,1) (@) life(u)) = _j_(ﬁ) 2]
{(6,4, 1) (t,5,0) () [4000 DA\ Tpe (uy) = Tife (@) = [4,5]

First, we substitute Uy for uy in F1. Next, we substitute uy for up in B;. Finally, we combine the resulting

following schedules of oldRegion:

(L,
[4

sequences with §y. Note that _51 and 32 are segments over oldRegion. The sequence

<t17070> <t2a0’4) <t3’0’ 1) (§0)
schedoiq = (t6,1,0) (t7,1,1) (10, 1,1) (%11, 2,3) (81)
<t61 4, 1) <t87 4, 1) <t7a 3, 0) <t14y 9, O) <t9a 9, 2> <t127 7, 0> <t13a 7, 0) (/62)

is a schedule of oldNet. Furthermore, life (woa) = life (Wnew).

17

This substitution mechanism can be used in any structural change as long as the change fulfills the following
conditions:

1. oldRegion and newRegion are sound.

2. newRegion C oldRegion.

Time

3. serial(oldRegion,oldNet).

In this case, any schedule of sched,e,, of newNet can be transposed into a schedule of sched,q of oldNet
by segment substitution as outlined above. This will be denoted as woig ~s Wnew-

Can this be generalized to any firing sequence Wy, of newNet which starts at the initial marking? Based
on the following case analysis, the answer is in general affirmative.

If wpeyw IS & segment iteration over newRegion, then we can use the previous segment substitution.
Otherwise, Wpew can be written as wpew = a.f where « is a segment iteration over newRegion and 3
is a partial segment over newRegion. Partial entails that 3 spawns 1 execution of newRegion which is in
progress still (i.e. not yet completed.) In our terminology, wne. is said to be a partial segment iteration over
newRegion. Wney can in general be transposed into a sequence wyq = @B where a ~+5 @ and f is a partial
segment over oldRegion which preserves the contextual behavior of § (i.e. the event firings of wye, in the
context are untouched.) This assertion fails if oldRegion consists of a single transition because 3 needs to be
a segment. Therefore, we will consider the augmented change for which which the in so-far analysis stands.
Further evidence will show that augmenting a change will preserve the context event firings as well as its

reachable markings.

Definition 16. Let flowll, flows € FNets such that:
closed(flow, flows) & flow; € SFNets,

and let w € Fire{flows, m,m') for some m,m’ € Mark(flows).

e w is a flow;-segment iff the following condition holds:

v = project(w, flow1) € Sched(flow) & w[l] = v[1]. (15)

Moreover, Seg(flow, flows) denotes the language of all flow;-segments of flow,.

e w is a flow;-partial segment iff the following condition holds:
v = project(w, flowy) € (Ezec(flow;) — Sched(flow:)) & w[1] = v[1]. (16)

Moreover, PSeg(flow, flows) denotes the language of all flow;-partial segments of flows.
e w is a flow;-segment iteration iff the following conditions hold:

mel
5 V1 <i < n,B; € Seg(flows, flows) (17)
ﬂ())"'aﬁna ﬁog_fVSeq(flowl) &

n # 0= B, € Seg(flows, flows)

Moreover, Seglter(floiul, flows) denotes the language of all flow;-segment iterations of flows.

18

e w is a flowi-partial segment iteration iff the following conditions hold:
Ja € Seglter(flows, flows), 38 € PSeg(flown, flows), w = af (18)

Moreover, PSeglter(flow;, flows) denotes the language of all flow;-partial segment iterations of flows.

Note. Note here that the decompositions as described by (17) and (18) are unique because of the ex-
tra condition w(l] = v[1]. Iter(flow:, flowy) = Seglter(flow, flows)|J PSeglter(flows, flows). For w €
Seglter(flows, flows), for 0 < i < n, B; is referred to as the it"* flow,-iteration of w and is denoted
iter(flowr,w)[i]. n is called the flow;-iteration degree of w and is denoted iter_deg(flow;,w). These no-
tions are extended to any w = a.8 € PSeglter(flow, flows) as follows:

iter_deg(flow;,w) = iter _deg(flow;,a) + 1
. . [iter(flowy,a)[i] if 0 < < iter_deg(flow,w)
iter(flows, w)li] = {,B if i = iter_deg(flowy,w)

Definition 17. Let repl be a replacement step such that
oldRegion,newRegion € SF Nets,
let w; € VSeq(oldNet) and let wy € V Seq (newNet) such that:
project(wy, Tetat) = project(ws, Teiat), where Teies = ctat(oldRegion, oldNet).tSet,

o If w; € Seg(oldRegion,oldNet) and wy € Seg(newRegion,newNet), then w; is a é-transposition of ws,
written wy ~+s wa, iff the following conditions hold:

life(u1) =life(us) (19)

e If wy € PSeg(oldRegion,oldNet) and ws € PSeg(newRegion,newNet), then w, is a -transposition of
we, Written wy ~g w2, iff the following conditions hold:

Ju; € VSeq (oldRegion),3s; € Sched*(flow),
Jus € VSeq (newRegion),3s2 € Sched” (flows)

Uy =S8
Uy = So (20)
e(

o If wy € Iter(oldRegion,oldNet) and wy € Iter(newRegion,newNet), then wy is a d-transposition of

w1, Written wyq ~*§ Wnew, iff the following conditions hold:

iter_deg(oldRegion,w;) = iter_deg(newRegion, ws)
iter(oldRegion, w:)[0] = iter(newRegion, ws)[0]
V1 < i < iter-deg(oldRegion,w;),

tter(oldRegion, w)[i] ~s iter(new Region, ws)[i]

(21)

where Torqa = oldRegion.tSet & Tpe = newRegion.tSet
uy = project(wy, Toiq) & ug = project(ws, Tnew)

Note. Note here that as a consequenée of (21), wy and wy are either segment iteration or partial segment

iteration.

The next results states that the transposition operation preserves the life time of a sequence. Formally,

19

Lemmal. Let repl be a replacement step such that:
oldRegion, newRegion € SF Nets,
let wy € Seg(oldRegion,oldNet) and let wy € Seg(newRegion, newNet).
w1~ wp = life(wr) = life (ws)
Proof. The proof proceeds by induction on n = iter_deg(oldRegion,w:) = iter.deg(newRegion,w,).
e Base case: n = 0. Since iter(oldRegion,w)[0] = iter(newRegion, w2)[0], the property holds.
e Induction hypothesis: assume that the property holds for all w; and wy such that n < m.
Let w1 = wi.a, wy = w).B2 such that:
iter deg(oldRegion,w)) = iter_deg(newRegion,w)) = m + 1
Wy ~s Wh
B1 € Seg(oldRegion,oldNet)
B2 € Seg(newRegion,newNet).

The following property holds by definition:
a1~ ag & wi ~s wh.

From the induction hypothesis, we have life (w}) = li

(w3) .

e
From the definition of segment replacement, we have life (a1) = life (o).

Therefore, life (wy) = life (w2). QED. T

The next result relates the seriality and the segment iteration properties. In essence, it states that seriality

of sound flow net is equivalent to its iteration. Formally,

Lemma2. Let flowy, flows € FNets such that:
closed(flow, flows) & flow; € SFNets.
serial(flowy, flows) iff the following condition holds:

 Ezec(flows) C Iter(flow), flows). (22)

where flow) = aug(flow,) & flows = sep(flowy, flows).
Proof. Note here that (22) & (12).

Extensions. (Priorities, Generalized Time Model)

1. An extension of the model through priorities requires that all the input transitions of a closed sound
subnet flow; to have the same priority, say z € IN. Otherwise, flow; would have a dead (input)
transition. By setting the priority of 7,4, to z, propositions [2,3,4], and lemmas [1, 2] hold.

2. These results hold regardless of the wments firing delays are computed.

20

2.3 Static Model Properties

The following result examines in more detail the effect that a structural change has on the semantics of a flow
net. It tells us that whenever its conditions are met by a change, 1- the behavior of its context is preserved
and 2- any ezecution of the new net can be transposed into an ezecution of the old net. This means, that
properties such as the different approximation properties and the seriality property introduced earlier are
preserved by the change.

Proposition 5. Let repl be a replacement step such that the following conditions holds:

oldRegion,newRegion € SF Nets
sertal(oldRegion, oldNet)
newRegion C oldRegion.

Time
The following property holds:
(Q1) wa € Iter(newRegion', newNet')

ny | W1~ Wa. (23)
(QQ) Fuy € 'Em{OldNet), [mlicmt = mz‘l’cmt'

Ywy € Ezec(newNet")

where repl’ = aug(repl) & Ctat = ctxt(repl) & 1* [wr) my & 1% [we) ma

Proof. The proof is carried out by induction on ws.
e base case: wy = A. In this case wy = w; and m; = mq = 1* satisfy Q; and Q-.
o induction hypothesis: Assume that Q; and Qs are met by wy, my, we and ma.

e induction: Let evis € EnewNet' such that:
my [evty) g & evty = (to, en_times, fr_delays,) .
First case: to € Ctxt.tSet; in other words, evts is a context event.

Since m; and mgy are context equivalent (by the induction hypothesis), evt is enabled under m; (but not
necessarily time enabled), thus m; [[evt;) holds. We shall consider the following two (sub-)cases:

1. evty is time enabled under m;. Thus, there exists a marking 7, such that ms [evts) 771 . In this case, @
and ()2 are met by w;.evty, iy; we.evt; and 7y,

2. evty is not time enabled under m;. This necessarily, implies that all events which are time enabled
under m; are local to oldRegion'. Thus, oldRegion’ is active under m;, which necessarily implies that
newRegion' is also active under my. This is a consequence of w; ~s ws of the induction hypothesis.
Therefore, w; and wy are partial segment iterations.

wy can be written as w; = ;.01 and wy can be written as ws = ay.32, where:

ay € Seglter(oldRegion’,oldNet')| [as € Seglter(newRegion',newNet')| [ai ~s as
B1 € PSeg(oldRegion', oldNet') B2 € PSeg(newRegion' ,newNet') B~ Bol(¥)

Let uy = project(B1,T1) and let ug = project(Ba,Ts). From (*), the following property holds:

u1.U; = 81
Un.TUg = 8o

life (s1) = life s2)
Let k be such that s;1[k — 1].entime < en_times < s1[k].en_time, and let 8] be such that

Ju; € VSeq (oldRegion),3s1 € Sched(flowy),
Ju, € VSeq(newRegion),3s, € Sched(flows)

project(By, Tetat) = project(B, Teint) & project(By,T1) = s1[1]... sy[k].

21

By construction, 8] ~+s B2 holds. Thus, the sequence wj = .01, the marking mj such that 1* [w}) m/,
wy and my satisfy the conditions @1 and Q2. Moreover, mj [evty) holds. We are back to the previous
case.

Second case: ta = tpewRegion’; IN Other words, newRegion' is activated under ms.

wy and wy are necessarily segment iterations. Thus, m; = msg, and consequently newRegion' can also be
activated under m,. Let evt; = <toldReg¢on:,en_timeg,0>. Then, m; [evt;) 771 holds for some marking ;.
From newRegion L, .. oldRegion, we can conclude that evt; ~»4 evty. Thus, we.evty, s, wy.evty, My
meet ;1 and Q2. Case Closed.

Third case: ts = tnewRegion’; i other words, newRegion' produces a token.

w; and ws are both partial segment iterations, and therefore they can be decomposed as outlined in the first
case. Thus, m; [G;) 7y for some marking 77, . Moreover, wy.evts, T, evty. Uy, M, satisfy Q; and Q».

Fourth case: t2 € newRegion.tSet; in other words evts is a local event of oldRegion.

wy and wy are both partial segment iterations, and therefore they can be decomposed as outlined in the
first case. Since newRegion' is also sound, the execution us.evts can be prolonged into a schedule s} of
newRegion'. This, means that there exists a schedule s; of oldRegion’ such that life(s}) = life(s}). The
idea here is to undo all the event firings of w1 in wy, to replace them by event firings from s} and to make
sure that the context is not disturbed by these operations.

Let k be such that sj[k — 1] < < s}[k] where:
T = min {evt.en_time | my [evt) & evt.tr € Tetgt},

and let 8{ be such that
project(By, Tetat) = project(B, Teiat) & project(By,T1) = si[1]. .. s\[k].

By construction, 3] ~»s B2 holds. Thus, the sequence w; = ai.07, the marking m{ such that 1* [w])m],
wq.evty and o satisfy the conditions @1 and Q2. QED

Theorem 1. Let repl = (oldNet,d, newNet) be a replacement such that:

oldRegion, newRegion € SFNets
serial(oldRegion, newRegion)
newRegion C oldRegion

Time

The following properties hold:

serial(newRegion,newNet).
newNet T, . oldNet.
oldRegion = newNet Cg,, , oldNet.

newRegion T, .,
oldNet € SFNets & oldRegion C newRegion = newNet € SFNets.

Bt o~

Time

Proof. Let repl’ = aug(repl), let Ctxt = ctat(repl), let Tetar = Ctat.tSet and let Pryyy = Ctat.pSet.

The properties 1, 2 and 3 are direct consequences of proposition 5. By using proposition 3, it is clear that
we only need to prove that newNet' is sound starting from the premise that oldNet' is sound.

e First, we prove that newNet' does not have a dead transition. Let ¢ be a transition of newNet. Consider
the following cases:

22

1. t € Teyat; where Toggy = ctat(repl).tSet.
— There exists a marking m1 € Reach(oldNet',1*), there exists an execution w; € Ezec(oldNet'),
there exists an event evt; of oldNet' such that:

evtydr =t & 1* [wy) m) [evty) my.

— Since oldRegion C,,,,, newRegion, the results from proposition 5 can be applied to the replacement

step repl” = aug(repl)~'. Thus, there exists a marking my € Reach(newNet' ,1%), there exists
wy € Fire(1*,ma,), such that: '

myd =mal & w2 ~rpeprr Wy €V .
Pctmt

Petat

This implies that evt; is an element of ws. In other words, ¢ is not dead in newNet'.
2. t € newRegion'.tSet.
— Since oldNet' is sound, there exists m; € Reach(oldNet',1*) under which a token tk is about to

be consumed by oldRegion’. This implies that under m1, oldRegion’ is not active. In other words,

my =mil,

ctzt

— Since oldRegion T, ., newRegion, the results from proposition 5 can be applied to the replacement
step repl" = aug(repl)~'. Thus, m; € Reach(newNet,1*). Hence, tk is allowed in newRegion'.

Since newRegion' is also sound, there exists s; € Ezec(newRegion') that start (sy) = tk.av_time
and the last element of s, is of the form (¢, 7). In other words, ¢ is locally “not dead” in newRegion'.
All the event firings of s; take place in newNet' starting from m;. These event firings are separated
by context event firings. Thus, ¢ is not dead in newNet'.

e Next, we prove that newNet' has the well termination property. Let my € Reach(newNet' ,17).

Consider the following cases:
(a) ma =mal, o in other words, newRegion' is not active. Thus, my € Reach(oldNet',1*). From the

soundness of oldNet', we have that a terminal marking m), is reachable from my in oldNet'. This
means that the same m) is reachable from my in newNet'.

(b) mg # mal, ; in other words, newRegion' is active. Note here that it is always possible to flush
the tokens out of oldRegion'. Thus, there exists a marking m4 € Reach(newNet' my), such that

my =mjy - We are back to the first case.
ctet

Extensions. (Priorities, Generalized Time Model)

1. Proposition 5 and theorem 1 hold in a model extended with priorities, if we add the requirement that
the input transitions of oldRegion and the input transitions of newRegion to have the same priority.
2. These results hold regardless of the way events firing delays are computed.

2.4 Sound Transformations

Next, we enumerate some transformations which preserve the soundness property. The reader is referred to
figure 9 for illustration. These reversible transformations have been introduced and investigated by Van der

Aalst in [20] for (untimed) workflow nets.

— T1 division: An activity ¢ is divided into two consecutive activities ¢; and té which are such that

delay(t,) ® delay(tz) = delay(t).

23

T2 specialization: An activity ¢ is replaced by two conditional activities ¢; and t» which are such that

delay(t,) U delay(ts) € T
delay(t1) | fdelay(t) = delay(t).

— T3 : An activity ¢ is replaced by two parallel activities ¢; ¢, which are such that
delay(t1) ® delay(ts) = delay(t).

— T4 : An immediate activity ¢; is replaced by the iteration of an immediate activity ¢2.

|

T5 ezpansion an activity ¢ is replaced by a sound flow net flow such that:

cpl_time(flow) = delay(t).
Other rules such as sequentialization, parallelization and swapping can be derived from the previous ones.
Proposition 6. The reversible transformations T1-T5 perserve soundness and time approzimation.

Proof. Note here that any replacement step repl which makes use of these transformations verify the condi-
tions of theorem 1. The result follows from the property 3 of the very same theorem.

24

3 Process Structural Changes: The Dynamic Model

The introduction of a structural change into a workflow procedure, if not carefully managed, may be
error-prone, and could lead to inefficiencies or system breakdowns. There is a large myriad of issues to be
addressed within the context of change management (these issues will be discussed in a forthcoming work;) -

including:

scoping: The issue here is to devise strategies to determine the jobs of the procedure which are affected by
the change.

Scoping refers to the ability to identify the jobs which may be affected by the change.

In some situations, it may be desirable to scope in the jobs which have already completed (e.g. recalling
defected parts.) In other situations, it may be necessary to scope out the running jobs which have already
gone through a specific change, state or what have you (e.g. irreconcilable changes, or the change is harmful
after the state is reached.) Traditionally, only the running jobs have been considered by the different models
proposed in the literature, and the tradition lives on with this work. The scope of a change consists of all
the jobs which may be affected by the change.

migration: In order for the change to take place, the in-scope jobs need to go through & migration phase.
Migration refers to the ability to define how the in-scope jobs evolve.

Previously, in [9] the authors have considered the following migration policies:

Resubmit: all the job’s work units are canceled first, then the job is resubmitted to the new procedure
for processing. This policy, generally safe, may be recommended to fix hard bugs or to conform to hard
regulations. In some cases, it may not be cost effective; hours of work and almost finished jobs are lost.

Wait : The change does not proceed until the job reaches a safe state. This solution may not be feasible; it
may take some time before the system reaches the sought state. It is also inadequate to deal with punctual
changes such as exceptions.

Transfer: Work units associated with the job are transfered to the new procedure. The transfer may affect
all or some of the work units. The work units not affected by the transfer continue their progression in the
old net as if the change never took place. The transfer can also be optimized to ensure safeness. It is based
upon the principle of change locality; the units of work evolving outside of the old change region remain
unchanged in the new procedure. The work units bordering the old change region are moved to the interface
of the new region. Some of the work units progressing inside of the old change region are moved to the new
change region, others terminate their progression in the old change region and are moved to the new region
when they reach the exit place. Additionally, the connection to the old change region’s entry place is severed
s0 as not to allow in any new work unit. In [9]; the authors have introduced the Synthetic Cut-Over Change
(SCOC) to reflect the situation where no work unit can be safely transfered from the old change region.
Heuristics have also been devised to determine cases where SCOC is a safe solution. The work has been
expanded in an in-progress work [13] through the Fxtended Synthetic Cut-Over Change (E-SCOC) which
reflects the case where the token transfer is partial.

3.1 Timed Adaptive Flow Nets

The transfer policy has a couple of shotcomings; (1) its restraining nature, in the sense that non-transfered

tokens are “captive” within the old region; the only way out is the exit place of the old change region (2) its

25

lack of activity cancellation support. An improvement is to provide support for progessive transfer (instead
of an abrupt one). Tokens are maintained in the old net, but can jump into the new net using jumpers. A
jumper is a high-level box which has a non empty set of inlets, a (possibly empty set) of outlets and a set
up time stamp. The inlets (resp. outlets, are connecting points in the old (resp. new) net, the set up time
stamp reflects the time at which a jumper is set up. A jumper is functionally similar to a silent instantaneous
transition. It can be classified according to its configuration as follows:

1. A mover is a jumper with at least one outlet. It is can be used to move a job’s work units from one
procedure to another.
2. An annealer is a jumper with no outlets. It is used, typically, to flush a job’s work units.

Definition 18. Let net;,nety € Nets.
A (net1,nety)-jumper is a system, jr = (inLet, outLet, up_time), which consists of:

— inLet C net;.pSet, the (non empty) set of inlets of jr.
— outLet C nety.pSet, the set of outlets of jr, which are such that inLet () outLet = .
— up_time € QF, the set up time of jr.

Moreover, Jumpers(nety, nets) denotes the class of all (net1, nets)-jumpers.

Extensions. Our model of jumpers can be easily extended to accommodate jumpers with delays, labels,
priorities, etc... For instance, on can define the priority of a jumper to be higher than the priority to any
activity to support a must-jump semantics. Note here that if net; and nety coincide (which by the way is
not prevented by the definition), then a jumper can be used to modify the execution within a net. Thus, the
jumpers model includes support for redo, undo and goto.

Example9. Consider the change in the order processing procedure introduced in example 6. For this
particular change, it has been decided to apply a common migration policy to all running jobs. This policy
calls for an expeditive migration (see figure 10.) which states that:

1. every order which has just came out of the approval should be sent to the new billing activity (jumper
jmps.)

2. every order which has been routed to billing and shipping should be sent to the new billing activity
(jumper jmps.)

3. every order which has been billed but not shipped should be sent to the new shipping activity (jumper
jmpio.)

The setup time of all these ju'mpers is 8:30 a.m.

After the jumpers are set up, the execution of the job resumes in a timed adaptive flow net. Each timed
adaptive flow net has a sequence of versions and a set of jumpers. Each version is a timed flow net which
represents a version of the procedure which results from a previously carried out structural change. Although
Token jumping is restricted from a one version to its successor, this restriction is not essential to the model.
The last element in the sequence (i.e. the last version) is referred to as the root. Formally,

Definition19. A timed adaptive net is a system, net = (verSeq, jSet), which consists of:

. — a non empty sequence, verSeq, of timed nets, referred to as versions.
— a finite set, jSet C Jumpers, of jumpers

26

which are such that

Vjr € jSet, 31 <i < n, jr € Jumpers(verSeq[i], verSeq[i + 1])
V1<i<mn, Vjry,jre € (jSet() Jumpers(verSeq[i],verSeq[i + 1)), jri.up_time = jry.up_time

where n = lgth(versions)
Moreover, ANets denotes the class of all timed adaptive nets.

A timed adaptive flow net is a timed adaptive net, flow, which is such that
flow.verSeq € AFlowNets™.

Moreover, AFlowNets denotes the class of all timed adaptive flow nets.

Note. The last version of net is referred to as the root of net, and will be denoted root(net). The notion of
element carries over to to timed adaptive nets through their sequence of versions. The versioning associated
with net, is the function, version,,., : Elem(net) | jSet — IN, defined as follows:

Vz € Elem(net), version,.,(z) =i <& x € verSeqli].
Vir € jSet, version,.,(jr) =1 & jr € Jumpers(verSeq[i], verSeq[i + 1]).

Extensions. A possible extension is to relax the linear ordering of versions into a partial ordering. This,
will allow not only branched, instead of linear, versioning, but also a change to be carried out on any
early version. In this case, versions can be labeled as 1.0, 1.1 etc...based on their topological ordering, and
any maximal version (w.r.t. partial order) can be considered as a root. We will sketch later how the dynamic
change model can easily accommodate these extensions.

Example 10. Figure 10 shows a timed adaptive flow net, AOrder, for the order processing procedure.

AOrder has two versions, Order Proc:, and OrderProcy (only one change has been carried out thus far.)

In the context of this work, the dynamic structural model is defined in terms of dynamic change instance.
The instance description includes the replacement step (to describe the structural change,) the jumpers set
up, the old and the new nets and the change enabling time (to reflect the time at which the change instance
is enacted.) Formally,

Definition 20. A dynamic replacement instance is a system, inst = (oldNet,newNet, §, jSet), which
consists of:

-0 € ReplPai*f*s, the replacement pair of inst.
— jSet € Jumpers, the jumpers set up of inst.
— oldNet € ANets, the old net of inst.
newNet € ANets, the new net of inst.

en_time € QT, the enabling time of inst.

which are such that
oldRoot ~5 newRoot

jranLet C oldRoot
Vijr € jSet, | jr.outLet C newRoot
jr.uptime = en_time

(24)

where oldRoot = root(oldNet), newRoot = root(newNet).

Moreover, DynChgs denotes the class of all dynamic change instances.

27

Note. Conditions(24) ensure that (1) the change is carried out on the last version of a timed adaptive net,
(2) token jumpings occur from the last version to the new version and (3) the jumpers are set up the moment
the change instance is enabled.

For net € ANets, DynChgs(net) = {chg € DynChgs|chg.oldNet = net}.

To support branched changes or versioning, the above definition should be changed by allowing oldRoot €
root(oldNet).

All the management policies, described earlier, can be modeled through jumpers. The SCOC can be imple-
mented by setting context tokens movers. Additionally, the E-SCOC uses extra movers to move tokens from
within the old change region inside of the new change region. The Wait policy setting up jumpers from a the
old net’s safe state to a safe state in the new net. The resubmit policy can be implemented using annealer
to flush all work units but one that is moved to the entry of the new procedure.

3.2 Semantics of Timed Adaptive Flow Nets.

In the absence of a rigorous semantics, timed adaptive flow nets are with no foundation. In what follows,
we propose to treat transition firings, token jumps, and dynamic changes as events, that occur as a timed
adaptive flow net evolves structurally and stately. The result is a uniform, eager firing, and FIFO semantics
which in addition supports change composition. To formalize this semantics, we need to adopt the following
conventional notations:

Note. The notions of marking carries over to timed adaptive nets through their versions. For flow €
AFlowNets, the entry place of the first version of flow will be also considered as the entry place of flow,
the notion of initial marking carries over to flow through its first version. The exit place of the root of flow
will be considered as the exit place of flow, and thus the notion of terminal marking will carry over to flow
through its last version.

Note. For net € _AN_ets’ and jr € net.jSet, jr will be considered as a silent instantaneous transition, ¢,
whose input set is jr.inLet, and whose output set is jr.outLet. Thus a tokens jump in net, is a special event
of net® (the timed net obtained from net by assimilating jumpers to transitions.) What is special about a
tokens jump is that it can occur only after the jumper is set up. Fortunately, this can be easily accommodated
by adding the following condition to the conditions 4 of definition 5:

jruptime < evt.entime if evt.tr = t;, for some jr € jSet. (25)

An element of Evts (net) = DynChgs(net) | J(Evts (net®)) will be referred to as an event of net.
By considering a jumper as a transition, the reader can see that the jumpers extensions discussed earlier

can, indeed, be easily incorporated into our model.

First, we include the dynamic change model in the semantics as follows:

Definition 21. Let mnet = (net;m) be a marked timed adaptive net, and let chg € DynChgsnet.
chg is time enabled in mnet, written mnet [chg), iff

Ytk € m, m.en_time < chg.en_time.
net = chg.oldNet

In this case, the time enabling of chg in mnet leads to the marked timed adaptive net, mnet' = (net'; m'},

written mnet [chg) mnet', where (net’ = chg.newNet & m =m').

28

Second, tokens jumps and events firings within a version are included in the semantics as follows:

Definition 22. Let mnet = (net;m) be a marked timed adaptive net, and let evt € Evts (net®).

evt is time enabled in mnet, written mnet [evt), iff m [evt), .e-

In this case, the time enabling of evt in mnet, leads to the marked timed adaptive net mnet' = (net';m'),
written mnet [evt) mnet', where:

net' = net & m [evt),, .o M’

Note. As usual, we will consider the transitive closure of the “time enabling” relation. Thus, for mnet =
(net,m) and mnet' = (net’;m’) marked timed adaptive flow nets, and w € Evts (net'), such that mnet [w) mnet’,
w is called an adaptive event sequence leading from mnet to mnet'. AFire(mnet, mnet') denotes the language

of all such adaptive firing sequences, this language will be denoted AFire(net,m,m') if net = net'. Note

~ here the information completness nature of an adaptive firing sequence; in the sense that it gives a full
account of (1) the activity firings, (2) the structural changes, and (3) for each enabled change, its start time
(i.e. when the first jump to the new net occurs) and its end time (i.e. when all previous versions are inactive.)
The forgetful operator & allows us to forget about the structural changes, thus w® is the sequence obtained
from w by erasing the dynamic change instances. All the notions introduced for flow nets will expand to
adaptive flow nets. The job model remains essentially the same (except for the history).

Definition 23. Let flow € AFlowNets.

A job over flow is a system, job = (name, state;y, state.,, hist), which consists of:

|

name € JN, the names of the job.

|

statein € Loy verseqp): the initial state of the job.
— state., € Mark(flow), the current state of the job.
hist € AFire(flow, state;y, state.r), the history of the job.

|

3.3 Case Study

The initial story...

For our case study, we have chosen a business process within a fictitious hotel chain called The Desert Inn
(the initial story has been inspired from the running example of Bichler et al. [28].) This process handles
many of the hotel activities including reservation, billing, check in and check out. The business model of The
Desert Inn is based on service differentiation; there are two kinds of customers, namely Highly Important
Customers (HIC)s and Very Important Customers (VIC)s (usually, everybody gets a high designation.)

In a typical situation, a customer, either in person (or through a travel agent,) makes a reservation by calling
the toll-free number 1-800-DESERT-IN of the hotel reception desk. A host greets the customer, collects the
necessary information, and processes the customer request while the caller is waiting. The request is either
rejected or confirmed. In the latter case, a confirmation number is issued to the customer. In some cases, the
requests are processed off-line during the next business day.

A customer may at any time cancel a reservation; the Desert Inn waives the cancellation fee for HICs, but
usually charges VICs the equivalent of one night stay. In the latter case, a bill is sent to the customer, a
2-week payment due reminder is set up and if a payment is not received within the 2-month delay, the case
is handed over to the collection agency for legal actions.

29

A VIC pays the bill before checking out, whereas a HIC pays after receiving the bill.
The initial version of this process, referred to as DIbp,, is depicted in figure 11.

When a customer call is routed to a live agent, it is the beginning of a case. The live agent greets the
customer and collects the necessary information (activity Greet.Customer), and flags the case as either HIC
or VIC. In the former case, the request is processed while the customer is on line and a confirmation number
is issued to the customer (activity Online_Proc.) Here, we assume that a HIC case is very seldom rejected. In
the latter case, the request is put in the queue of pending requests to be processed during the next business
day (activity Batch_Proc.) A pending request is either rejected (activity Reject,) and the case terminates, or
confirmed and a confirmation letter is fax-ed to the customer (activity Confirm.)

When a customer (with a confirmed reservation) is about to check in, the state of his case is either {ps,p12}
(if he/she is a HIC,) or {ps,ps} (if he/she is a VIC.) In the former case, the customer checks in (activity
Check_In), gets his bill and pays for it (activity Bill & Pay), checks out (activity Check_-Out,) then the case is
archived (activity Archive.) In the latter case, The customer checks in and checks out, then he/she is billed
(activity Bill.Customer,) and when the customer pays his/her bill (activity Pay_Bill,) the case is archived.

The cancellation of a reservation proceeds by firing Cancel_Res, followed by the firing of either Waive_Fee
(for a HIC) or Charge_Fee (for a VIC.)

And the troubles begin...

On one hand, a wave of reservation requests, reservation losses and cancellations hits The Desert Inn.
The staff is overwhelmed by the volume of telephone calls they have to deal with, causing considerable
confirmation delays and missed business opportunities. Dissatisfied customers and travel agencies cancel
their reservations and refuse to pay the cancellation fee. On the other hand, a serious bug in the billing

system raises some concerns among the IT department of the hotel.
The solution...

To respond, the management staff decides to take the following measures:

— Deploying a series of upgraded systems including EZ_Bill for billing, EZ_Pay for payment processing,
EZ_Res for reservation online processing, EZ_In for speedier check in, FZ_Out for smooth check out, and
EZ_Cancel to deal with the cancellation process. EZ_Res is a secured online fully automated reservation
system with enhanced voice coaching capabilities.

— All VIC reservation requests are to be handled by EZ_Res.

— Every VIC must pay a deposit, the equivalent of one night stay, in advance (i.e. prior to check in.)
This transaction is conducted on-line by the EZ_Res system. A confirmation message (with a reservation
number and a credit card approval number,) or a rejection message, is either voice-read (if the customer
remains on line,) or fax-ed (if the customer chooses so.)

— A pro-rated cancellation refund policy is applied to all canceled reservations.

~ Unless an advance delay notification is received by the reception staff, the latest guaranteed check in
time is 3.00 p.m.

— A highly trained team of agents, The Desert Inn Club team, is dedicated to handle the HICs.

— The collection agency is excused.

— Every customer pays his/her hotel bill before he/she can proceed to check out.

— A new discounted plan, The Desert Inn Passport (DIP), with some restrictions including 6-week advanced

booking-and-payment and 72-hour advanced-cancellation restrictions, is to be introduced within 6 weeks.

30

All new cases are to be handled in accordance with these measures. The new version of this process, referred
to as DIbpe, is depicted in figure 12. The automated activity EZ_Greet greets the customer, prompts and
collects some preliminary information. The DI_Club activity models the processing of a HIC case by a member
of The Desert Inn Club team. The No_Show activity is fired when a customer fails to check in before 3.00
p.m.

Not so fast, what about the current cases?...

These measures are critical and therefore effective immediately. The migration policy is as follows:

1. Send a policy change notification letter, by fax, to all VICs wih a pending request. The letter should
bring their attention to pay a deposit within 24 hours, otherwise their requests will be rejected. To deal
with the expected wave of responses, a light version of EZ_Res, Express.Res, is deployed.

2. Send a similar letter to all confirmed VICs who have not yet checked in. The letter accords a delay of one
week. The expected call volume will be handled by a temporary automated activity called Pay_Deposit.

3. All confirmed and not yet checked in HICs will be sent to The Desert Inn Club team for processing.

4. All checked in customers who have not yet checked out should be billed correctly. Two temporary
activities, Correct_Bill and Correct_Payment are available.

5. Waive the cancellation fee for all currently canceled customers.

6. Do not apply the pay-before-you-leave policy to the currently checked in HICs.

The implementation...

In order to comply with the migration policy, we will use macros. A macro is a jumper with an associated
sound timed flow net (or activity,) referred to as its bridge. The execution of a macro proceeds as follows:

. a token is selected from each inlet using a FIFO policy.
. the selected tokens are fused.

1

2

3. the resulting token is injected into the bridge.

4. the bridge is executed (by virtue of the soundness, the termination is guaranteed.)
5

. the produced token is split into several tokens, one of which is deposited into each outlet (if the macro
has no outlets, then the produced token vanishes.)

Macros are very powerful; they can be used to implement corrective measures, ad-hoc migration, and even

negotiation (this latter point will be discussed in length in a forthcoming paper.)

Note. All the macros and jumpers discussed below are depicted in figure 13.

e The first measure is implemented through the macro macroy; the activity Set_Reminder is used to set up
a timer; the firing of the activity timer_ezpired signals the expiration of the timer.

e The second measure is implemented through macros.
e The third measure is implemented through jmp;.

e The fourth measure is implemented on a case basis as follows:

"jmpe moves the VIC cases which have not been billed to the EZ_Bill activity in the new version.
macros handles the VICs who have already payed their bills, but have not yet checked out.
macros handles the HICs who have not yet been billed.

macros handles the HICs who have already been billed, but have not yet paid.

B W oo =

31

5. macrog handles the HICs who have already paid their bills

e The fifth measure is implemented through jmps to waive the cancellation fee for VICs, and jmp, to waive

the cancellation fee for HICs.

e No special arrangement is necessary to implement the sixth measure. The migration will take place after

the customer checks out (see macroy.)

32

4 Related Work

Recently, the problem of workflow structural change has been the focus of numerous work efforts, but none
of these efforts consider the time issues. Thus, our comparison will be done with respect to the untimed
adaptive flow nets.

In [4], the authors introduce a class of high level Petri nets, called reconfigurable nets, which dynamically
modify their own structure. As far as dynamic change is concerned, the reconfigurable nets can be used to
emulate synthetic cut over changes but fails in general to emulate jumpers. The reason is that the model
does not allow the creation nor the disappearance of tokens, but only token movements. On the other hand,
reconfigurable nets are better suitable than hybrid flow nets to support multiple modes of operation.

In [1], the authors are independently adopting a methodology similar to flow jumpers. Their dynamic cor-
rectness revolves around the notion of safe state w.r.t. a change. According to their model, a dynamic change
occurs only if the state reached by a job (in the old procedure) is safe w.r.t. the change. To comply with this
requirement, they propose linear jumpers as means to “force” a job into a safe state (in the old procedure.)
There seems to be at least one fundamental difference in our respective approaches. Their model accommo-
dates retroactive changes, in the sense that in some cases, getting to a safe state may require undoing some
of the activities which have taken place. This gives rise to the not so trivial issue of the undo semantics.

In [25], the issue of workflow flexibility is addressed. The authors introduce ad-hoc zborkﬂows based on process
templates. These process templates are considered as reference models. They also give a set of static struc-
tural transformations which may be used to build safe and successfully terminating workflow nets starting
from a library of basic process templates which enjoy these properties. ‘
In [24], the authors define process equivalence based on delay bisimilarity. Similarity between cases (i.e.
jobs) is conserved by considering them as extensions or reductions of the same ancestor. In the event that
a change results in a process extension, the change can be applied dynamically without delay to a running
job. However, no mention is made if the change results in a process reduction.

5 Conclusions and Summary

Dynamic structural change to office procedures is a pervasive unsolved problem within workflow environ-
ments. This paper has introduced the timed flow nets as a way of accommodating time issues into the design
of workflow systems and the analysis of their static changes. It has also expanded on the issue of “safe” static
transformations which preserve the soundness properties.

This work has also briefly presented a new Petri-net based model, namely the timed hybrid flow nets, that
is especially suitable to address workflow dynamic changes . In a companion technical report to this paper,
we formally define timed hybrid flow nets, their semantics and their application to the problems of dynamic
change. We also expand upon the results from [9], state and establish results concerning the dynamic change

composition and iteration.

The issue of dynamic change correctness is currently under investigation in a broader context than in [9, 20].
This effort is concerned with the design and implementation of SL-DEWS, a specification language for
the dynamic evolution of workflow systems. We hope that by the time of the 1998 Petri net conference in
Portugal, we will have interesting results to report on SL-DEWS.

Acknowledgements We wish to thank the anonymous referees for their helpful comments which helped to
improve the quality of this work and for pointing out some related references. -

33

6 Mathematical Notations

In the course of this work, we make use of the following mathematical notations:

o AN denotes a finite alphabet of activity names. A\ € AN, will be used to denote the silent action. JN
denotes a finite alphabet of job names.

e Q7 denotes the set of positive rational numbers (including 0) to which we adjoin the infinity element,
denoted oo. Unless explicitly mentioned otherwise, Q" will be used as the time domain of our model. T
denotes the time interval domain each element of which is an interval over Q" of the form [a, b] (i.e. a closed
interval) or [a, o[(i.e. a semi-open interval) where a,b € Q. We will use [a] as a shorthand notation for
the singleton [a,a]. The addition over positive rational numbers is extended by taking the convention that
a+00=o00+a= o0 and 0o+ 0o = co. The order relation on positive rational numbers is extended as well
by taking oo as the maximal element of Q*. For 2 and y in T, = and y are overlapping iff z(y is not a
singleton. z ® y is the time interval whose lower bound is the maximum of the lower bounds of z and y, and
whose upper bound is the maximum of the uppers bound of = and y. @ y is the time interval obtained by
taking the sum of the bounds.

e For a finite set A, (A)ars denotes the class of multi-sets over A, equipped with usual operators |J,] and

e For a finite alphabet A, A* denotes the language of all strings (or equivalently ordered sequences) over A.
A denotes the empty word. For w,w' € A*, ww' denote the concatenation of w and w', Igth(w) denotes the
length of w, (with lgth(\) =0.) If w # X and 1 < i < lgth(w), w[i] denotes the ith element of w. A sequence
u is a suffix of a sequence w if w = uv for some sequence v. Suf fiz(w) denotes the set of suffixes of w. This
notion is extended to a language. Thus, for L € A*, Suf fiz(L) denotes the language of all suffixes of all
elements of L.

e Let A, B, C and D be finite sets. Let f : A — B be a function (not necessarily total) from A to B.
domain(f) denotes the domain of f and range(f) denotes the range of f. For A" C A, f| denotes the
restriction of f over A'. f is said to be injective iff no two (distinct) elements of A map to the same element
of B, in this case f~! denotes the inverse function of f. f is said to be surjective iff range(f) = B. Ida
denotes the identity function over A. For g : B — C, go f denotes the composition of g and f. If C and B
are disjoint and h : C — D, then f|Jh denotes the (disjoint) union of f and g.

e For u = (z,y) € A x B, z is denoted 71 (u) and y is denoted m(u). This notation is extended to tuples of
arbitrary length using ... 7, (as appropriate.)

34

References

1. A. Agostini, F. De Michelis. “Simple workflow models” In Proceedings of WFM98: Workflow Management: Net-
Based Concepts, Models, Techniques and Tools, PN98, Lisbon, Portugal.

2. M. Ajmone Marsna, G. Balbo, A. Bobbio, C. Chiola, G. Conte, A. Cumani. “On Petri Nets with Stochastic
Timing” In Proc. of the International Workshop on Timed Petri Nets, Torino, 1985, IEEE Computer Society
Press.

3. M. Ajmone Marsna, G. Balbo, G. Conte. “A Class of Generalized Stochastic Petri Petri Nets for the Performance
Evaluation of Multiprocessor Systems” ACM Transactions on Computer Systems, 2 (1984).

4. E. Badouel, J. Oliver. “Reconfigurable Nets, a Class of High Level Petri Nets Supporting Dynmaic Changes”
In Proceedings of WFM98: Workflow Management: Net-Based Concepts, Models, Techniques and Tools, PN98,
Lisbon, Portugal.

5. G. Berthelot, H. Boucheneb. “ Occurence Graphs For Interval Timed Coloured Nets” Application and Theory of
Petri Nets 1994, Lecture Notes in Computer Science, volume 815, Springer-Verlag, 1994.

6. B. Berthomieu, M. Diaz. “ Modeling and verification of time depenedent systems using time Petri nets” IEEE
Transactions on Software Engineering, vol. 17, No 3, March 1991.

7. G. De Michelis, and Ellis, C.A. Computer Supported Cooperative Work and Petri Nets. Third Advanced Course
on Petri Nets, Dagstuhl Castle, Germany (1996). Springer Verlag Lecture Notes in Computer Science.

8. C. A. Ellis and Nutt, G.J. "Modeling and Enactment of Workflow Systems”. In M. Ajmone Marsan, editor,
Application and Theory of Petri Nets 1993, volume 691 of Lecture Notes in Computer Science, pages 1-16. Springer-
Verlag, Berlin, 1993.

9. C.A. Ellis, Keddara, K and Rozenberg, G. ”Dynamic Change within Workflow Systems”. Proceedings of the
Conference on organizational Computing systems, ACM Press, New York (1995) 10-21.

10. C. Guezzi, D. Mandrioli, S. Morasca, P. Mauro. “A general way to put time into Petri nets” In Proc. of the Fifth
International Workshop on Software Specification, Vol. 14-3 of ACM SIGSOFT Engineering Notes, Pittsburg,
Pennsylvania, USA, 1989.

11. C. Guezzi, S. Morasca, M. Pezze. “Validating Timing Requirements for TB Net Specifications” The Journal of
Systems and Software, vo. 27, No 7, November 1994.

12. K. Jensen. “Coloured Petri Nets: Basic concepts, Analysis Methods and Practical use. volume 1: Basic Concepts”.
EATCS Monographs on Theoretical Computer Science, Springer-Verlag 1992.

13. K. Keddara. “On the Dynamic Evolution of Workflow Systems” Ph.D. Thesis in preparation.

14. P. Merlin, D.J. Farber. “Recoverability of communication protocols”. IEEE Transactions on Communications,
24, 1976.

15. T. Murata. “Petri nets: properties, analysis, and applications. Proceedings of the IEEE 77(4), 1989.

16. C. Ramchandani “Analysis of Asynchroneous Concurrent Systems by Timed Petri Nets” Project MAC, TR 120,
MIT, 1974

17. W. Reisig. “Petri Nets”. Springger 1985.

18. J. Sifakis. “Use of Petri Nets for Performance Evaluation”. Measuring, Modeling and Evaluating Computer
Systems, H. Beilnerand E. Gelenbe editors, North Holland, 1977

19. H. Saastamoinen ”On the Handling of Exceptions in Information Systems” University of Jyvaskyla PhD Disser-
tation, Nov. 1995.

20. W.M.P. van der Aalst. ”Verification of Workflow Nets”. In P. Azema and G. Balbo, editors, Application and
Theory of Petri Nets 1997,volume 1248 of Lecture Notes in Computer Science, pages 407-426. Springer-Verlag,
Berlin, 1997.

21. W.M.P. van der Aalst. ”Finding Erros in the Design of a Workflow Process”. In Proceedings of WFM98: Workflow
Management: Net-Based Concepts, Models, Techniques and Tools, PN98, Lisbon, Portugal.

29. W.M.P. van der Aalst.” Interval Timed Colored Petri Nets and their Analysis”. Application and Theory of Petri
Nets 1993, 14th International Conference, Chicago, Illinois, USA, LNCS 691, Springer-Verlag.

23. R. Vlak. ”Self-Modifying Nets, a Natural Extension of Petri Nets”. Proceedings of Icalp’78, Lecture Notes in
Computer Science vol.62 (1978) 464-476.

24. M. Voorhoeve, W.M.P. Van der Aalst. “Conservative Adaption of Workflow” In M. Wolf and U. Reimer, edi-
tors, Proceedings of the International Conference on Practical Aspects of Knowledge Management (PAKM’96),
Workshop on Adaptive Workflow, Basel, Switzerland, 1996

25. M. Voorhoeve, W.M.P. Van der Aalst. “Ad-hoc Workflow: Problems and Solutions” In R. Wagner, editor, Pro-
ceedings of the 8th DEXA Conference on Database and Expert Systems Applications, Toulouse, France, 1997.

35

26. WFMC. Workflow Management Coalition Terminology and Glossary (WFMC-TC-1011) Technical Report, Work-

flow Management Coalition, Brussels, 1996.
97. 'W. Zuberek. “Timed Petri nets and preliminary performance evaluation”. In Proc. 7th Annual Symposium on

Computer Architecture, La Baule, France, 1980.
28. P. Bichler, G.. Preuner, M. Schrefl. “Workflow Transparency”. In Proc on the Intl'l Conf. on Advanced Information

Systems (CAiSE 97).

36

credit_check
[:05:10]

Y
order_entry t I
[:02:05] “ Ps
inventory_check
[:03:06]
o)
t o~ .
ic Ps approval ?valluat/on
[:05:15] [:03:12)

Pg

Ps

¥
)pm

——

shipping | billing i, | notity_reject

[:03:10] (:03:08] [:02:05]

Py 5 P2

archiving
[:02:05])

pDUt

Fig. 1. A version OrderProc, of the order processing procedure.

37

p1 p2 p3
(9g)
N
t,[3.4] t,[1,2]
J [
P P, Firing t, at 2

Py

t,[3,4]

Firing t, at 5.75

Fig. 2. Ilustration of the event firing semantics.

38

check_part

[:55] [:30,1:00]
| —
set_timer process_part
Timer modeling v
Py C) Pe CD‘
[:01} [:00]
[oI e 0OF -
timer_expired timer_ok [:05,:10]
recycle_part

mold_part
| E——
[:15,:30]

[:00]

exit_part

R

Activity duration modeling

L]

oo)

txy]

Fig. 3. Timer modeling and activity duration modeling.

39

flow,
3] 1]
pm pOUt
£.[0]
1 1] 1] (0]
p

4O 0]
vy
0]

t,,[0]

T

S ‘

Fig. 4. flow:: the converse of (8) does not hold. flows: soundness does not carry from the untimed structure of &
timed flow net.

40

credit_check

:05:10
: :) OrderProc,
())
order_entry S L)
[:02:05) Pa o Py
1
O [:00]
te ~ t, inventory_check
' P [:03:06]
)
t N i—
P2 * Ps approval evaluation
[:05:15] [:03:12]
¢ 5 P,
newRegion U ap
PO
billing
[:01:02]
| I—
tsh
Pg C>
[md—"
t, notify_reject
[:02:05]
oldRegion ——
. shipping
Pe ¥ | [:02:03]
1
t3 | [:00]
CD Py C} P1o

t, | archiving

[:02:05}
[1 [bT} *:
shipping illing
b [:03:10] i [:03:08] Pout

C) Py 65 Pr2

4 [:00]

o
°
e

T

Fig. 5. Change:: Sequentialization of billing and shipping; Order Proc; models the new version

41

Py
14,5

Fig. 6. The seriability property does hold

42

Tiow, [0]

t,[0]

Py P2
410,11

t,0,1]

t,(2,3]

pﬂow 5

flow g [0]

Fig. 7. The seriabilif:y property does not hold.

43

oldnet

newNet
oo e

Fig. 8. Ilustration of the segment iteration.

44

Fig. 9. Illustration of the sound flow transformations.

45

Pin

order_entry
[:02:05]

[:02:05]

order_entry

——3

P Py P, O p
credit_check
credit_check inventory_check [:05:10] inventory_check
ot te L]
[:05:10] [:03:06] [:03:08]
Py Ps Py O s
evaluation N evaluation
(:03:12] ov [:03:12]
['ggﬂrg;/al t approval
e b [:05:15]
notify_reject
[:02:05] tor
| — N billing
Pe bi [:01:02] notify_reject
[:02:05]
billing { . . shipping
[:03:05] [:02:05]
Py L
t, O shipping
[:02:083]
Pz C\‘
{ archiving O archiving
ar [:02:05] ar [:02:05}
pOU[p(luf O
Jumper | jmp,, | jmp, | jmp, | Jmps | Jmp, | imps | Jmpg | Jmp, | impg | mPe 1impy, | Jmpy, | JMP,,
Type myr | mvr | mvr | mvr {mve imyr | myve | mvr | mvrmvemve mvr | mvr
Priority |1 1 1 1 1 1 1 1 1 1 1 1 1
Inlets |p, [P, |Pr |Ps |Ps {Ps |Ps |P; |Ps |Po.Pio|Pis:Pro Prs | Pou
Outlets |p, |p, [P, [Py |Ps |Ps |Ps |Pr |Ps [Ps [Ps Prs | Pou

Fig. 10. Dynamic change modeling is based on flow jumpers.

46

Greet_Customer
| mm—

vic Batch_Proc Evaluate Reject

UHO[HHTH

O

Online_Proc
Confirm
e ME—
Check_In Bill & Pay Check_Out
o |- | & ﬂ
p;\/ U 4 'U
Pay Bill
Bill_Guest 5
P1o
0 UArchive
12 Waive_Fee
ﬂ e "
U b | Pos ¥

Cancel_Res Charge_Fee

Fig. 11. DIBp:: A first version of the Desert Inn workflow procedure

47

EZ_ Greet vic

Reject

Prepaid
y

Regular

EZ Bill EZ Out

: p

5

No_Show

e
EZ Cancel
Il ;
'U . Fp,, EZAch

Fig.12. DIBpy: An enhanced version of the Desert Inn workflow procedure

48

flow, flow,

Send_Fax

vSet_Reminder Correct_Bill

Set_Reminder

Correct_Payment |
Pay_Deposit v Timer_Expired || .

Express_Res Timer_Expired

flow
flow, 5 flow,

EZ Bill Correct_Bill HIC

EZ Pay EZ Pay

orrect_Bill
vIiC

O

Correct_Payment
rgrect.ray

Macro | macro, | macro, | macro, | macro, | macro, | macro,

Bridge |flow, |flow, |flow, |flow, | flow; | flow,

Priority |7 1 1 1 1 1
inlets | p, Ps:Ps |P7sPs |Pizi Py |PgsPro | PgiPyy
Outlets | p, Py Py Py Py P

Jumper | jmp,, |jmp, |jmp, |jmp, |imp, |imp,,

Type mvr mvr mvr mvr mvr mvr

Priority | 1 1 1 1 1 1

Inlets Pin Ps.Piz| Ps.Ps | Pas Pig | Przs Pig | Pout

Outlets |p, |p, P, [Py Pout

Fig. 13. Implementation of The Desert Inn migration policy

49

