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Abstract

This paper compares the efficacy of different load value predic-
tion and dependence prediction mechanisms on super-scalar, out-
of-order processors. We consider two load value prediction meth-
ods and two dependence prediction methods. We also compare the
effect of two recovery mechanisms.

Our conclusions are that dependence predictors are very cost
effective, greatly increasing performance. By comparison, current
value predictors add little performance above that of dependence
predictors; in fact, value predictors hurt performance when using
a “re-fetch” recovery mechanism. The experimental comparisons
are done using a cycle-level simulator, and we use that simulator to
explain the results.

1 Introduction

mine the address that is being requested, check for possible data
dependences and issue the operation for that memory address. The
processor must insure that all data dependence constraints are met;
this is usually enforced by not executing a load instruction until the
memory addresses used by all prior store instructions are known.

A speculative processor can mask the latency of these opera-
tions by speculating on the outcome of various decisions. Load
value prediction [10] speculates on the final outcome of a memory
load, allowing subsequent operations to continue immediately. De-
pendence prediction allows the processor to speculate on the out-
come of memory data dependences, allowing memory loads to is-
sue before the addresses of outstanding stores are known. Load
value prediction and dependence prediction serve similar ends —
allowing operations dependent on the load data to issue earlier, in-
creasing the instruction level parallelism. Dependence prediction
allows subsequent instructions to start earlier because the load op-
eration can execute when the memory address is known; there is no
need to wait for pending stores to resolve their addresses. Like
dependence prediction, value prediction can eliminate the delay
caused by address resolution, but it can also eliminate the delay
of accessing memory.

With both methods, all load operations must actually execute
to insure that the speculative operations were predicted correctly.
Both value prediction and dependence prediction use a recovery
mechanism to correct the processor state when a prediction is
shown to be incorrect. Dependence and value prediction can slow
program execution if they make poor predictions because instruc-
tions may be re-executed several times.

There has been considerable investigation into value predic-
tion [10, 19, 4, 15]. Most of these studies compare value predic-

Issue # PC Insn Addr Value

1 0x100 ST X 10
2 0x100 ST X 10
3 0x100 ST Y 30
4 0x200 ST X 40
5 0x300 ST Z 50
6 0x400 1D X

7 0x500 Ib W

Figure 1: Sample program execution highlighting the problems be-
ing solved by value and dependence prediction

tors by their accuracy and coverage. Lipasti er al [10] uses a per-
formance model to compare the instructions per cycle (IPC) of a
processor using value prediction to one without value prediction;
however, the simulated processor did not use dependence predic-
tion.

In this paper, we compare value and dependence prediction us-
ing a super-scalar, out-of-order performance model. Our conclu--
sions are that dependence prediction is at more effective than value
prediction for current processors. We believe value prediction is
considerably more difficult to implement efficiently than depen-
dence prediction, and large improvements in value predictor per-
formance will be required to justify the cost of value prediction.

In the next section, we describe dependence prediction and
value prediction using concrete examples and describe common
implementations. Following that, we describe the simulation model
we use and the assumptions we make in our experimental design.
We then describe the results of our experiments.

2 Background and Related Work

We will use the simple example in Figure 1 to highlight the prob-
lems that dependence and value prediction are trying to solve. In
this figure, we show the execution of seven instructions. Each in-
struction has an “issue number”, which defines the issue order of
the instructions. Each issued instruction has an associated program
counter address — issue numbers 1-3 were generated by the same in-
struction in the program. Likewise, each instruction has an associ-
ated address and value that can only be determined during program



execution.

Using conventional memory ordering semantics, load instruc-
tions must load the most recent value generated by all previous
store instructions. A load is dependent on a store if both instruc-
tions reference the data memory address and there are no interven-
ing stores to the same location. For example, the load of “X” at
issue six should result in the value stored by issue four. The load of
issue “W” is not dependent on any instructions shown in this exam-
ple. Issue four is not dependent on issues 1 or 2 since those results
are older than the more recent issue 4.

Although instructions issue in a specific order, we assume they
may execute in a different order. The microarchitecture is re-
sponsible for insuring the execution order obeys all data depen-
dence relations. Store instructions can be reordered by the use of a
“store buffer” — when a store instruction is issued, it is allocated a
store buffer entry. When the store executes, it writes the resulting
operand to that store buffer entry; when (or if) the store is retired,
the entry is actually written to memory. This means load instruc-
tions have access to the store results of all previous non-committed
stores via the store buffer.

2.1 Dependence Prediction

Since instructions can execute out-of-order, a load instruction may
have resolved the address for that load before the address for all
stores is known. This means the load must wait to determine if there
is an outstanding memory dependence that should be observed. In
a conservative dependence model, load instructions can not exe-
cute until the addresses are known for all previously issued store
instructions. In practice, most load instructions do not depend on
previous, unresolved store instructions, and this conservative model
greatly reduces the possible IPC.

In a speculative dependence model, a load is assumed to have
no dependences on unresolved stores. Using this model, load in-
structions would issue and access the cache (or store buffer) as soon
as possible. However, the load must check the address of each out-
standing store as it is resolved, and then trap and replay the load
instruction if a conflict is detected. For example, assume the in-
struction execution order for our example is 2, 6, 4. The store at
issue 2 is executed and the value is written to the store buffer. The
load at issue 6 is executed, and the value from issue 2 is used by
subsequent instructions. Finally, the store at issue 4 executes. All
load instructions following issue 4 are checked to see if the store
address matches their load address; if so, that load instruction, and
any instruction using the value from that load, must be re-executed.
A more sophisticated mechanism could compare both the address
being generated and the value being stored. If the load actually
loaded the correct value (from the wrong store instruction), there is
no need to trap and replay the store.

The mechanism we described is a fully, or naive, speculative de-
pendence model. Various mechanisms, described later, have been
proposed that attempt to predict the dependence relationships and
issue loads only if it’s unlikely that they depend on unresolved store
instructions.

2.2 Load Value Prediction

Load value prediction (LVP) attempts to further reduce the delay
encountered by loads by predicting the value of the load instruc-
tion. Instructions dependent on that load can thus execute immedi-
ately, before the load address is resolved or the cache is accessed.
As with dependence prediction, the processor must still perform the
actual load operation and must supply a mechanism to trap and re-
play program execution following a mispredicted load value. If the

value of the load matches the predicted value, execution continue
unabated; otherwise, the processor traps execution.

2.3 Trap Mechanisms

There are two mechanisms to replay load instructions. The first,
which we call re-fetch, behaves much like a branch misprediction
- all instructions including and following the conflicting load in-
struction are discarded, program state is backed up to that load in-
struction and execution is resumed. The refetched instruction will
now use the value from the correct store. This policy is wasteful
of fetch and execution bandwidth because it may discard the re-
sults of many executed instructions that are not dependent on the
incorrectly speculated load instruction. Alternatively, the proces-
sor may use a re-execute policy. In this policy, the load instruction
and any instruction dependent on that load are simply marked as
“not executed” and are re-executed. The instruction window is not
cleared, and instructions that do not depend on the load need not be
re-executed.

Note that all load instructions must eventually execute, even
with a perfect load dependence or LVP predictor. Dependence pre-
diction and LVP improve the program ILP by allowing the load
to execute earlier; it does not reduce the number of memory ac-
cesses. With dependence prediction, instructions dependent on the
load still can not execute until the address for the load is resolved
and the cache access is finished. With value prediction, those in-
structions can execute immediately.

Dependence prediction requires that the processor record mem-
ory addresses and has a fast mechanism to compare addresses
against pending loads and stores when addresses are computed.
This will typically involve an associative search (i.e., CAMs) in
the load-store buffer. A processor using LVP must check the value
being used. A processor using LVP and conservative dependence
prediction may not need the expensive CAM’s used by dependence
prediction. A processor using LVP and dependence prediction
would need both mechanisms.

3 Hardware Mechanisms

Several papers have proposed different memory dependence pre-
diction or recovery mechanisms [6, 3, 16, 12, 2, 8]. Memory renam-
ing [18] and memory streamlining [13] attempt to predict store-load
pairs that have memory data dependencies. However, these mecha-
nisms further reduce the memory delay by forwarding results from
the store operation to the consuming load and in certain cases can
reduce memory accesses. Likewise, there has been considerable
work on value prediction [10, 10, 19, 4] including load value pre-
diction.

We chose to focus on two dependence prediction mechanisms
and two load value prediction mechanisms. We implemented the
Load Wait Table (LWT) [8] because it has been implemented in a
current, aggressive out-of-order system. We also implemented the
Store Sets (§S) mechanism [2] because its performance is so close
to perfect that it seems unlikely that a better dependence predic-
tion mechanism is possible. We do not consider mechanisms such
as memory renaming or streamlining in this paper. We also im-
plemented the last value predictor (LV) [10] and the stride value
predictor (Stride) [4]. We chose the LV predictor because it was
the first value predictor proposed and most papers compare their
results to that predictor and it may be possible to extrapolate the
results of this study to other studies. We implemented the stride
predictor because it uses twice the state state but has a noticeable
improvement over the simpler LV predictor.
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Figure 2: Diagram showing conceptual operation of the store sets
mechanism

Tyson et al [18] compare trap mechanisms that refetch or re-
execute instructions upon detecting mis-speculations, but in the
context of memory renaming. Most other papers appear to assume
a refetch mechanism. We implement both techniques and compare
their effectiveness. We assume that the re-execution mechanism
can locate all instructions that depend directly or indirectly on a
mis-speculated instruction in a single cycle. This is done using a
check-and-propagate circuit that starts with a bitmask represent-
ing the mis-speculated register. All instructions compare against
the current bitmask and, if they depend on any register set within
the bitmask, assert the bit corresponding to their output register.
This circuit is similar to the arbitration logic that appears in many
processors, but it’s probably unrealistic to assume that it could be
performed in a single cycle on a processor with a very large instruc-
tion window. Thus, our results for processors using a re-execution
mechanism are optimistic.

3.1 Load-Wait Tables (LWT)

The DEC Alpha 21264 processor [8] uses load-wait tables to con-
trol speculative dependence prediction. The LWT is a table of one-
bit registers indexed by the program counter at instruction fetch.
Initially, load instructions are executed speculatively. If a load in-
struction causes a trap, the bit corresponding to that load in the
LWT is set. The LWT values are used in the decode phase; if the
value in the table is set and the instruction is a load, it is assumed
that the load instruction will cause a trap and it is not issued spec-
ulatively. The LWT is periodically cleared; this ages the entries
in the LWT as the processor moves between programs or regions
within a program and reduces the number of false dependences en-
countered by the program. Our implementation of the LWT mecha-
nism attempts to follow the implementation described in [8]. Since
that paper did not mention the period when the LWT is cleared, we
tried a number of variants. In our final implementation of the LWT
mechanism, we augmented each LWT entry with an 8-bit count-
down counter that was set to 255 when the LWT entry was set and
is decremented each cycle. When the counter reached zero, the
LWT entry was cleared. This had better performance than clearing
the entire table after a fixed period.

The LWT exercises a coarse-grained control over the memory
references. Consider the sample code fragment in Figure 1. If the
LWT corresponding to address “0x400” is set, the instruction at is-
sue 6 will wait for all store instructions (issue 1-5) to complete. No
distinction is made about what store instruction causes the memory
dependence.

3.2 Store Sets (SS)

Store sets [2] can be viewed as an extension of the LWT that tries to
determine the loads and stores that tend to cause dependence viola-
tions. All load and store instructions index a store set identification
table (SSIT), shown schematically in Figure 2. This is a table that
(logically) assigns each load or store to one of a number of “sets”
of related loads and stores. Initially, all entries are set to indicate
there is no dependence, allowing speculative dependence predic-
tion to occur. When a load dependence is mis-predicted, the store
instruction determines the index using the address of the conflict-
ing load. If the SSIT entry for that store has already been allocated
a store set identifier, then the SSIT entry corresponding to the load
is set to the same identifier. Otherwise, a new identifier is allocated
and assigned to both entries in the SSIT.

The SSIT is accessed to determine the store set for operations
as memory operations are decoded. Load instructions are then de-
pendent only on preceding store instructions within the same store
set. Figure 2 illustrates the SSIT following execution of the code
fragment in Figure 1, assuming that issue six had executed prior to
issue four. In subsequent executions, the load at address address
“0x400” will be allowed to execute ahead of store instructions at
address “0x100”, bur not ahead of store instructions from address
“0x200”.

In practice, store sets arc a little more complicated, but the
implementation is fairly simple. The SSIT is essentially a direct-
mapped table of store-set identifiers, represented as an n-bit num-
ber. Identifiers are computed using a hash of the load address, in-
troducing another opportunity for false dependences. Stores can
belong to multiple store-sets using a heuristic described in [2], and
stores within a store set must execute in issue order. The size of
the table (i.e., the number of entries in the SSIT) is independent of
the number of store sets. In practice, 4092 entries holding one of
128 possible store sets provides very good performance [2] at the
expense of 28Kbits of storage.

The implementation presented in [2] is slightly more compli-
cated than necessary because the authors were attempting to use
direct-mapped data structures, rather than associative structures,
wherever possible. This opens the possibility that multiple (unre-
lated) stores can appear to belong to same store set, causing those
stores to execute in order. Some of these constraints were imposed
by the instruction issue window model assumed by the authors.
There are a number of ways to reset the information in the SSIT;
the method proposed in [2] simply clears the SSIT periodically.

We implemented essentially the same mechanism; however, our
processor model uses a load-store queue to avoid write-after-write
hazards and we did not include the restriction that stores within
the store set execute in program order. In our implementation,
we used a 1024-entry SSIT. Dependent load instructions recorded
the program counter address of the store causing that dependence,
and each store could belong to two different store sets. We found
little performance difference between our implementation and the
implementation proposed in [2], and each of the different imple-
mentations would be appropriate for different microarchitectures.
Despite these minor differences, comparisons between the perfor-
mance of our implementation and the one proposed in [2] shows
that both have similar behavior when compared to a “perfect” mem-
ory dependence predictor.

3.3 Last Value Predictor (LV)

A simple scheme for predicting load values is simply to store the
value produced by a load instruction when it is executed, and pre-
dict that value the next time that load instruction is seen. This is the
approach used in [10]. Our implementation uses a untagged table of



values indexed by the address of load instructions. Associated with
each entry in the table is a 2-bit history counter that indicates the
predictability of that value based on its recent dynamic behavior.
A prediction is made only if the same value resulted from the two
most recent executions of the load instruction (or loads mapping to
the same line in the table). If a different value is seen, it replaces
the old value in the entry corresponding to the load address, and
resets the history counter to zero.

3.4 Stride Value Predictor (Stride)

We use a stride predictor as described in [19]. It seeks to exploit the
repetitive nature of the change in data values produces by succes-
sive executions of a load instruction. The stride predictor consists
of a table indexed by load instruction addresses. Each entry in the
table contains a tag, a last value, a last stride, and a history counter
to indicate how many times the current stride value was produced
by the most recent execution(s) of the load instruction that maps to
the entry.

A prediction is made if the same stride is seen at least twice
consecutively. If the prediction fails, a new stride is computed and
the history counter is set to 1. If a new load instruction is assigned
to the table entry, then the history counter resets to zero. It is ad-
vanced to 1 when that load instruction is executed the next time;
and the new value and the stride (the difference between the new
and the old values) are written into the entry.

4 Experimental Methodology and System Configuration

We use a detailed pipeline-level execution-driven architecture sim-
ulator to model an out-of-order speculative superscalar processor
similar to the DEC Alpha 21264 processor [8]. The simulator was
constructed using the AINT [14] execution-driven simulation en-
vironment and models the true behavior of the micro-architecture
including execution of instructions along speculative paths such as
those following a mispredicted branch, dependence prediction or
value prediction.

We used the SPEC95 benchmark suite to evaluate the perfor-
mance of the simulated architectures. The programs were com-
piled using the ~05 ~-g3 optimization flags and statically linked
using the native compilers. Under Digital Unix, statically linking
the binary enables a link-time optimization that unifies the differ-
ent global object tables (GOT), considerably reducing procedure
calling overhead and the number of run-time constants loaded by
the programs [17]. The ref data sets were used for all applications
except compress, for which we used an input size smaller than
ref but larger than train'. We plotted the cache locality and branch
predictability of the programs to determine “interesting” regions
of execution. We then used a “fast execution” mode to skip the
program initialization and then simulate the beginning of the inter-
esting region. Table 1 shows the number of instructions skipped
for each program; we skipped between 200 million and 2 billion
instructions. We then switched to detailed microarchitectural simu-
lations and measured 200 million instructions for each of the SPEC
95 benchmark programs. v

We simulate a speculative out-of-order superscalar processor
as shown in figure 3. The fetch unit fetches up to two consecutive
cache blocks from the instruction cache each cycle. Other studies,
such as [2], assume the processor can fetch non-consecutive blocks
in the instruction cache, including the target of taken branches.

'With the ref input size, one complete iteration of compress takes approximately
2 billion Alpha instructions. We used a smaller input size to be able to practically
simulate one complete iteration within a reasonable amount of time

Application Jinstructions (millions)] Loads Load Miss § Branch Mispred.
Skipped Exec’d (millions) Rate (%) Rate (%)
compress 200 200 35.64 16.05 8.29
gcc 200 200] 45.02] 6.15] 6.1
go 200 200} 48.26) 0.17 16.62,
lipeg 200 200 33.83 5.75) 10.61
li 200 200 48.59 18.98) 4.3
ma88ksim 300 200} 41.58] 0.13 3.98]
pert 700 200 55.37| 0.12 2.84]
vortex 200 200 45.78 0.69) 1.52
applu 200 200 45.86] 23.01 1.28
apsi 200 200f 52.10) 11.85] 1.69
lipppp 200 200 62.92] 0.01 4.43)
hydro2d 200 200f 47.12] 47.16 0.26
mgrid 200 200 86.81 12.03] 1.59
su2cor 2,000 200 36.35] 33.71 13.26)
swim 200, 2008 . 5440 25.31 0.26)
tomcatv 2,000 200 48.72] 30.02 0.58
turb3d 100 200 45.70 1.09 2.53
waves 1,200 200 51.68] 18,10} 0.56

Table 1: Applications simulated, including the number of instruc-
tions skipped and measured. The “loads” column shows the num-
ber of loads in the portion of the application that was measured.
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Figure 3: Baseline architecture model with an in-order front-end,
out-of-order execution phase and in-order commit

Type Latency (cycles)
Integer multiply 8-14
Int conditional move 2
Other int & logical 1
Floating point Multiply 4
FP Divide 16
Other FP 4
L1 DCache read 1
L2 load-to-use 12
Memory load-to-use 80

Table 2: Latencies of instruction execution and memory references



This results in a higher TPC than what we achieve. Instructions are
placed in the fetch queue until the first branch that is predicted to
be taken is encountered or there are no more instructions available.
We use a combining branch predictor as described by McFarling
[11], consisting of a bimodal predictor indexed by branch address
and a gshare predictor indexed by the branch address and global
history. The meta-predictor is indexed by the branch address.

The issue logic closely models that of the Alpha 21264, with the
addition of a central instruction window. Instructions are decoded
and entered into a in-order instruction buffer. The decode-rename
unit determines the data dependencies between instructions. The
selection logic selects instructions to execute when their inputs are
ready. Instructions stay in the instruction buffer until they are ready
to commit and instructions are committed in program-order. We
used the central window mechanism in order to compare the effect
of “re-fetch” and “re-execute” recovery mechanisms. The stages in
the execution of a typical instruction are shown in figure 3. Mem-
ory instructions (loads and stores) have extra stages for performing
the cache reference, in addition to the execution stage that com-
putes the effective address of the memory reference. The execution
latencies of the instructions are similar to those of the DEC Alpha
21264 processor, and are listed in table 2.

We examine the impact of the store-load dependence policy on
an 8-way superscalar with a 512-entry instruction window. The
processor can fetch eight instructions per cycle and complete 18 in-
structions from the ten integer units and eight floating point units.
The processor has [128kB 4-way associative level-1 instruction and
data caches and an 8MB 4-way associative level-2 unified cache.
The branch predictor uses 8192 entries for the bimodal, gshare and
meta predictors, taking 6kBytes of state. The parameters chosen
for the issue-width and cache sizes are roughly twice those on the
Alpha 21264. We assume the memory system can support 16 con-
current memory operations; we model the delay for all memory
operations and bank contention, but do not model bus contention.

5 Analysis of Simulation Results

There are a number of questions we hoped to answer by this study.
We address each in turn. Throughout this section, we will repeat
data in various tables; for example, the results for conservative de-
pendence prediction will appear in each table. We do this to sim-
plify the comparison of a particular mechanism where appropriate,
and to avoid cluttering the tables. We simulated both the re-fetch
and the re-execute policies. Despite the assertions of other stud-
ies [18], we agree with Chrysos et al [2] that it is unlikely that a pro-
cessor would meet timing goals if it used the large central window
that is needed for a simple implementation of the re-execute mecha-
nism. As we’ll see, if we only examined the re-execute mechanism,
we would draw incorrect conclusions about the efficacy of certain
mechanisms.

5.1 Potential for Dependence Prediction

We wanted to determine the relative potential of dependence and
value prediction, assuming we could build a “perfect” dependence
or value predictor. Figure 4 shows the IPC for four processor con-
figurations. In the first configuration, labeled “conservative”, loads
must wait for all priors stores before executing. This is the baseline
architecture against which we compare all other configurations in
this paper; since the dependence prediction was only recently posed
as a problem for out-of-order architectures [12], we assume most
other simulators assume conservative memory dependences. The
remaining columns are self explanatory, except for the last column
— that column shows the performance when perfect dependence,

value and branch prediction are used. In this model, the processor
wastes no effort on speculative work and is primarily limited by the
instruction fetch and memory subsystem.

Perfect dependence prediction significantly improves perfor-
mance (with an average speedup of 54% on the SPECint and 106%
on the SPECfp) and perfect value prediction improves that further
(115% on SPECint, 136% on SPECfp). The combination of per-
fect value and dependence prediction appears to offer little benefit;
this makes sense since perfect value prediction would subsume per-
fect dependence prediction — not only do you know the outcome of
the dependence decision, you also know the vaiue. As we’ll see,
the combination of practical dependence and value predictors does
offer improvement over either in isolation. Lastly, the develop-
ment of a perfect dependence and load value predictor would not
remove the need for improvements in branch prediction for integer
programs.

The results comparing perfect predictors are fairly much as one
would expect, but they serve to confirm that our simulator infras-
tructure is configured such that there is a sufficient memory delay
that value prediction should be able to evince some performance
benefit over dependence prediction.

5.2 Performance of Depéndence Predictors

Table 3 compares the performance of the different dependence pre-
dictors. All but the first two columns are self-descriptive. The col-
umn marked “conservative” uses no dependence prediction and the
column marked “naive” uses naive value prediction, i.e. we assume
there is no dependence for any load and they are issued as soon as
their addresses resolve.

Any of the speculative dependence prediction techniques per-
form better than conservative speculation across both fetch policies.
The different fetch policies introduce overheads only when depen-
dence mispredictions occur: thus, the perfect and conservative de-
pendence predictors have the same performance for the re-fetch and
re-execute policies, since neither causes any mispredictions. Con-
firming the results of [2], store sets is the best realizable depen-
dence predictor and is so close to perfect dependence prediction
that it’s unlikely that future work in pure dependence prediction is
warranted.

All the dependence mechanisms perform better with the re-
execute policy; this is expected since the re-execute policy basi-
cally lowers the cost of a dependence misprediction and only has a
minor effect on the accuracy of the dependence predictor.

The results in Table 3 also confirm the design decision of the
load-wait tables that were developed for the 21264 which uses a
re-fetch policy [8]. Table 3(a) shows that the load-wait predictor
has better performance than naive speculation for refetch, but Ta-
ble 3(b) shows that the naive speculation outperforms the load-wait
mechanism. The load-wait mechanism tends to be conservative,
introducing false memory dependences thereby reducing the avail-
able parallelism but also reducing the number of replay traps. The
naive mechanism has no false dependences, but encounters more
traps. Since the cost of recovery in the re-execute policy is so low,
the naive mechanism has better performance.

Table 4 shows why dependence prediction improves the pro-
gram IPC, using the conservative and store-sets mechanisms as
counter points. For each mechanism, we show the cumulative num-
ber of cycles needed for each phase in the lifetime of a load in-
struction: waiting until the address is known, waiting until memory
dependences are resolved and waiting for the value to be returned
from memory. With the conservative mechanism, the largest frac-
tion of time is spent waiting for dependences to resolve. Computing
the address and accessing the cache are fairly quick by comparison.
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Figure 4: Comparison between the IPC of a processor using different combinations of a perfect dependence predictor, a perfect value

predictor and a perfect branch predictor

With store-sets, a large fraction of the loads do not wait for the de-
pendence, and can rapidly access the cache. More importantly, it
also appears that unflagged loads tend to hit in the L1 cache, while
flagged instructions have a longer average memory access time for
the SPECint programs.

We also implemented two different prediction confirmation
mechanisms to determine if they affected performance. In our base-
line simulator, we declared a dependence misprediction if a specu-
lated load later matches the address of an unresolved store and the
value that was stored was different from the value that was loaded.
We call this an address-and-contents confirmation. The alternative
is an address-only confirmation. The address-and-contents con-
firmation should result in fewer dependence mispredictions than
the address-only confirmation. We used the address-and-contents
throughout our paper because that mechanism is needed when com-
bining dependence and value prediction. We found that the results
shown in this paper hold for either mechanism. As expected, the
address-and-contents mechanism results in a higher IPC, but those
improvements were consistent across all the dependence predic-
tors. Although the address-and-contents improves the IPC, it would
probably exacerbate timing constraints in a processor implementa-
tion since more comparators are needed.

5.3 Performance of Practical Load-Value Predictors

Table 5 compares the performance of the different value predictors.
This table also shows the baseline conservative dependence model
and the best speculative dependence model for comparison. The
results confirm that the stride value predictor out-performs the last
value predictor by a small amount; this makes sense since the stride
predictor is a generalization of LV. What is surprising is that all of

the realistic value predictors perform worse than the realistic store
sets dependence predictor when using the re-fetch recovery policy.
This is not the case when using the re-execute mechanism. Again,
based on assumptions of how easy it is to implement re-fetch vs. re-
execute, this indicates that considerable work needs to be invested
in value prediction before it is viable for realistic architectures.

Earlier studies, particularly [9], showed a performance im-
provement for realistic value prediction, including the LV predictor
we simulated. We conjecture that their baseline architecture used
conservative dependence prediction; indeed, the LV predictor has
a = 16% performance improvement over the conservative model.
However, LV or Stride value predictors appear to incur so many
traps that simply using a dependence predictor would be a better
choice for processors with a re-fetch policy. For a processor with
re-execute, the practical value predictors offer roughly the same
performance as a good dependence predictor. The LV predictor
uses 8KBytes of state (1024 entries of 8 bytes each), and the Stride
predictor uses =~ 16KBytes (1024 entries of 8 bytes for value and 8
bytes for stride values). By comparison, the Store Set configuration
recommended in {2] uses ~3-4KBytes of storage.

Table 6 shows the time, in processor cycles, between a value
prediction and when the value is actually used. It also shows the
time until the true value is known, either confirming or refuting the
value prediction. For most applications, there is a small difference
between these times. This confirms the results of [5], where is was
observed that value prediction has a hard time improving the pro-
gram execution because there is little time between when the values
are produced and they are consumed. This time is influenced by a
number of factors, including the compiler scheduling algorithm and
memory bandwidth. For some applications, such as tomcatv, the
values are known before the predicted value can be used and value




Cons-| Naive| Load | Store| Perfect Cons-| Naive| Load | Store| Perfect
vative] Dep. | Wait| Sets | Dep. Pred. ‘ vative| Dep. | Wait | Sets | Dep. Pred.
compres 1.42) 1.58] 1.63] 2.13 2.16 compres 142y 2.15f 2.14] 2.13 2.16
gcc 175 1.97] 1.98] 2.12 2.14 gcc 1.75] 2.09f 2.08] 2.14 2.14
go 1.78] 1.98] 1.99] 2.10 2.11 go 1.78] 2.10] 2.10] 2.11 2.11
iipeg 1.55] 2.08] 2.12] 3.82 4.30 iipeg 1.55] 4.18] 3.62] 3.82 4.30
li 1.58] 2.09] 2.03] 2.04 2.08 li 1.58] 2.02] 2.03] 2.05 2.08
m88ksim 1.31] 2.71] 2.71} 2.62 2.63 ma88ksim 1.31] 2.74] 1.71} 2.63 2.63
perl 1.78] 1.95] 1,98} 2.78 2.84 perl 1.78] 2.59] 2.63] 2.83 2.84
vortex 3.50] 3.27| 3.28] 4.45 4.48 vortex 3.50fF 3.62] 3.63] 4.46 4.48
INT AVG] 1.69] 2.11] 2.13] 2.55 2.60 INT AVG| 1.69} 251] 2.33] 2.57 2.60
Cons-| Naive] Load| Store| Perfect Cons-| Naive| Load | Store|] Perfect
vative| Dep. | Wait | Sets | Dep. Pred. vative] Dep. | Wait | Sets | Dep. Pred
applu 0.94] 2.38] 2.40] 2.59 2.91 applu 0.94] 2.94] 2.86] 2.66 2.91
apsi 1.62] 2.80] 2.76] 3.06 3.07 apsi 1.62} 3.05] 2.98] 3.06 3.07
foppp 1.86] 3.34] 3.31} 4.33 4.33 foppp 1.86] 4.30] 4.18] 4.33 4.33
hydro2d 1.39] 2.15] 2.15f 2.30 2.32 hydro2d 1.39] 2.32] 2.26] 2.30 2.32
mgrid 2.06] 3.87] 3.87] 3.88 3.88 mgrid 2.06] 3.88] 3.88] 3.88 3.88
su2cor 1.23] 2.10] 2.02] 2.45 2.45 su2cor 1.23] 2.41] 2.19] 2.45 2.45
swim 1.13] 2.45] 2.45) 2.45 2.45 swim 1.13] 2.45] 245} 2.45 2.45
tomcatv 0.71] 1.28f 1.28] 1.24 1.26 tomcatv 0.71}) 1.32] 1.28] 1.24 1.26
turb3d 2.32} 3.10] 3.10] 4.02 4.10 turb3d 2.32] 3.80] 3.89] 4.02 4.10
waveb 1.08] 2.26] 2.34] 2.67 2.67 waveb 1.08f 2.68] 2.50| 2.67 2.67
FP AVG 1.27] 2.36] 2.36] 2.58 2.62 FP AVG 1.27| 2.63] 2.55] 2.58 2.62

(a) Performance with re-fetch

(b) Performance with re-execute

Table 3: Performance of different dependence predictors with two recovery mechanisms

prediction has no benefit.

We conducted another experiment to see how sensitive value
predictors are to the time when the table is updated. In one con-
figuration, the processor updated the LV (or stride) tables when an
instruction executes, but before we know if that instruction will ac-
tually commit. In the second configuration, we updated the table
when the instructions actually commit. These configurations have
virtually identical performance. We conjecture that this occurs be-
cause allocating at execute introduces spurious entries into the LV
table due to speculative execution, but it also updates the results in
a more timely fashion so that subsequent loads can see the most
recently predicted value. Similarly, allocate at commit eliminates
spurious entries, but it also reduces the opportunities for loads to
update the table to benefit subsequent loads.

5.4 Combining Dependence Prediction and Load-Value Pre-
dictors

Finally, we compare the benefits of value and dependence predic-
tion. In this configuration, we combine the store sets and the stride
predictors. When a load is issued, we determine if we can predict
the value and determine if we should immediately issue the load.
The load instruction can only cause a single replay trap — eventu-
ally the load completes and we verify the value or a store causes
a dependence trap and forwards the value to the load at the same

time.?

Table 7 compares this configuration to the previous best depen-
dence and value predictors. The performance of the refetch model
is hurt by the addition of the value predictor and the performance of
the re-execute model is helped by a small amount. Again, the poor
accuracy of existing value predictors appears to be the culprit.

6 Conclusions

We have conducted a preliminary study comparing the benefits of
load dependence prediction and value prediction. As with all simu-
lation studies, this study is limited in that it address a small portion
of a large parameter space. However, we believe we have chosen a
processor configuration that would be feasible by 2001 or 2002.

Our conclusions vary depending on the credibility of various
implementation factors. We believe that it it unlikely that proces-
sors will be able to implement an efficient re-execute mechanism,
and that re-fetch is a more likely recovery mechanism. Given this,
it seems unlikely that current value predictors will improve perfor-
mance sufficiently to warrant their inciusion in an implementation.
On the other hand, dependence predictors should be included in
any processor implementation (or, for that matter, processor simu-
lation).

“This is a slight simplification. In any speculative configuration in this study,
Ioads can receive several dependence traps due to cascading dependences within the
program.



Conservative Dependence Store-Sets Dependence Predictor
All Loads Unflagged Loads Flagﬂed Loads

Addr. |Dep. |Mem. Ref Addr. |Dep. |Mem. Ref JAddr. |Dep. |Mem. Ref

Res. |Res. |[Compl. Res. |Res. [Compl. Res. |Res. [Compl.
compres | 18.38] 36.63 60.34f 11.60f - 13.50fF 5.71] 12.90 17.09%
gce 8.46] 17.14 23.43) 5.100 - 6.70] 2.86] 13.00 16.80]
go 6.78] 6.91 14.16] 5.23] - 6.34f 4.92| 1.22 7.12
ijpeg 47.25] 150.71 155.60§ 10.40} - 13.50] 2.89] 50.40 54 .31
li 8.98] 25.81 28.17§ 4.31 - 5.950 4.20 1.62 6.46
m88ksim | 3.31}112.74 106.12§ 2.85 - 3.88) 3.47] 2.69 6.44
per! 8.49] 28.02 29.59) 4.58] - 5.650 2.90] 3.51 6.13
vortex 17.36] 46.73 48.97) 4.30f - 5.52fF 2.39] 2.31 5.18}
INT AVG § 14.88] 53.09 58.30] 6.05{ - 7.63] 3.67| 10.96 14.94

Conservative Dependence Store-Sets Dependence Predictor

All Loads Unfiagged Loads Flagged Loads

Addr. |[Dep. |Mem. Ref Addr. |Dep. |Mem. Ref JAddr. [Dep. |Mem. Ref

Res. |Res. [Compl. Res. |Res. {Compl. Res. jRes. |Compl.
applu 51.841 248.72 249,53 4.11 - 35.33] 4.92] 18.50 26.58
apsi 48.36] 190.63 189.36] 3.29] - 6.38] 2.53| 64.60 61.87
foppp 8.02] 188.29 188.09} 2.65] - 3.68] 2.24} 11.50 13.47|
hydro2d J 13.66] 192.62 196.10] 4.04] - 33.53] 3.06] 65.80 62.14
mgrid 3.09] 206.74 209.62f 2.49) - 29.16f 2.91] 10.20 11.24
su2cor 33.01] 137.28 139.84] 5.51| - ~ 17.70] 4.40] 12.50 13.494
swim 2.04] 254,94 254,95 2.07) - 4496} - - -
tomcatv 2.01§238.24 246.473 2.00f - | 33.85fF 2.00} 254.00 254.904
turb3d 56.85] 120.39 124.08f 2.64] - 4.46) 3.15] 26.20 27.30}
waves 44,321 170.64 170.49] 3.08] - 14.00] 3.19] 22.20 24.13}
FP AVG | 26.32] 194.85 196.85] 3.19 - 22,31} 2.74] 48.45 49.41

Table 4: Cycles spent in each phase of the lifetime of a load instruction for different dependence constraints. For the Store Sets model,
“flagged” loads are those that are thought to have dependences, while “unflagged” loads are though to not have dependences. The program

swim has no significant number of flagged dependences.

We feel that this work underlines two interesting research di-
rections. First, it would be very useful to find a scalable, imple-
mentable way to build a re-execute recovery mechanism. Indeed,
this would probably contribute more to processor performance than
adding a better value predictor to a processor with a re-fetch recov-
ery mechanism. Second, it is clear that there is considerable “head-
room” in value prediction, but that accurate comparisons of value
predictors needs to include measures of accuracy and coverage and
information from performance models. Simple metrics such as ac-
curacy and coverage do not capture the temporal dynamics of value
prediction that influence the final performance.
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Last Value Stride Last Value Stride
Spec to| Specto ]Specto| Specto Specto| Specto [Specto| Specto

Use [Resolution] Use |Resolution Use |Resolution] Use |Resolution
compress 4.23 4.95 1.73 4.31 compress 5.12 5.62 2.11 4.83%
gcc 1.85 4.72 1.85 4.66] gcc 2.05 5.24 2.07 5.15)
go 1.48 4.25 1.46 4.15) go 1.58 4.47 1.54 4.37
iipeg 3.35 4.76 3.20 4.70] ijpeg 5.95 7.70 5.562 8.01
l 1.41 453  1.38 4.42] l 1.50 539 147 5.18
m88ksim 1.12 3.38)  1.15 3.40} m88ksim 1.12 3.41 1.15 3.43)
perl 1.47 3.70]  1.46 3.67} perl 1.56 3.94 1.52 3.89§
vortex 1.46 3.84 1.46 3.79} vortex 1.52 4.15 1.50 4.04
INT AVG 2.05 4.27 1.71 4.14) INT AVG 2.55 499 2.1 4.86

Last Value Stride Last Value Stride
Spec to| Specto [Specto| Specto Spec to| Specto |Specto| Specto

Use |Resolution] Use |Resolution Use |Resolution] Use |Resolution
applu 3.95 22.00} 3.96 22.08} |applu 4.43 21.408 4.44 21.44]
apsi 1.90 3.68] 175 3.63] apsi 2.08 391 199 3.81
fpppp 1.78 342] 1.74 3.46 fpppp 1.93 3.63] 1.86 3.63]
hydro2d 4.23 31.00] 4.14 30.54 hydro2d 4.67 33.40] 464 33.11)
mgrid 15.70 95.10] 15.63 92.63 mgrid 15.70 95.30] 15.68 92.86]
su2cor 5.14 9.84 422 9.66 su2cor 6.10 11.30] 5.76 11.60]
swim 6.44 2710 5.40 21.92 swim 12.50 45.70]  12.62 43.79§
tomcaty 7.53 3.99] 326 6.13 tomcatv 20.90 34.30] 558 30.76
turb3d 1.99 3.88]  2.00 3.80} turb3d 2.16 4200 214 4.07
waves 1.74 513  1.74 5.04 waveb 2.66 7.97 2.62 7.61
FP AVG 5.04 20.51] 4.38 19.89] FP AVG 7.31 26.11 5,73 25.27

(a) Performance with re-fetch

‘(b) Performance with re-execute

Table 6: Time, in cycles, until the value derived from a value predictor is used and the time until the true value is known.

Cons-| Store| Last | Stride ] Store Sets| Perfect Data Cons-| Store| Last | Stride ] Store Sets| Perfect Data
vative| Sets | Value & Stride & Value vative| Sets | Value & Stride & Value
compres 1.42] 2.13] 154 1.56 1.76 3.73 compres 1.42] 2.13] 218 2.21 2.19 3.73]
gce 1.75] 2.12] 1.82 1.85 1.95 2.86] gcc 1.75) 2.14] 2.08] 2.10 2.14 2.86
go 1.78] 2.10f 1.80 1.84 1.91 3.27 go 1.78f 2.11} 2.06] 2.07 2.08 3.27
iipeg 1.55| 3.82] 2.00 1.95 3.03 4.90 iipeg 1.55] 3.82] 4.22} 4.23 3.88 4.90
li 1.58] 2.04] 1.97 1.91 2.02 3.54 li 1.58] 2.05] 2.21 2.22] 2.28 3.54
m88ksim 1.31] 2.62| 2591 257 2.59 3.02 ma88ksim 1.31] 2.63] 2.76] 2.76 2.77 3.02
perl 1.78] 2.78] 1.80 1.86 2.24 4.07 perl 1.78] 2.83] 259 259 2.71 4.07
voriex 3.50] 4.45) 2.76] 3.11 3.63 4.78 vortex 3.50] 4.46] 3.50] 3.71 4.17 4.78
INT AVG|] 1.69] 2.55 1.Qﬂ 2.00 2.26 3.64 INT AVG] 1.69 2.57] 2.54] 2.57| 2.61 3.64
Cons-| Store| Last | Stride | Store Sets| Perfect Data Cons-| Store| Last | Stride | Store Sets| Perfect Data
vative| Sets | Value & Stride & Value vative| Sets | Value & Stride & Vaiue
applu 0.94] 2.59] 2.27] 2.27 2.74 2.99 applu 0.94f 2.66] 2.94] 294 2.69 2.99
apsi 1.62] 3.08] 2.72] 2.68 2.88 4.70 apsi 1.62) 3.06] 3.06f 3.06 3.06 4.70
foppp 1.86| 4.33] 321 327 4,17 4.45 fpppp 1.86] 4.33] 4.30] 4.31 4.34 4.45
hydro2d 1.39] 2.30] 2.14] 2.15 2.28 2.37 hydro2d 1.39F 2.30] 2.35] 2.32 2.31 2.37
mgrid 2.06] 3.88] 3.89] 3.87 3.88 3.91 mgrid 2.06) 3.88] 3.89] 3.89 3.89 3.91
su2cor 1.23] 2.45) 2.11 2.10 2.41 2.70 su2cor 1.23] 2.45] 242 241 2.45 2.70
swim 1.13f 2.45] 2.25] 2.07 2.07 2.34 swim 1.13} 2.45] 2.45] 245 2.45 2.34
tomcatv 0.71] 1.24] 1.28 1.22 1.18 2.12] tomcatv 071y 1.24] 1.32] 1.32 1.24 2.12
turb3d 2.32] 4.02f 3.071 3.10 3.93 418 turb3d 2321 4.02] 384 384 3.98 4.18
waves 1.08f 2.67) 224§ 2.22 2.60 2.71 waves 1.08] 2.67f 2.68} 2.68 2.70 2.71
FP AVG 1.27) 2.58] 2.32] 2.28 2.48 3.01 FP AVG 1.27} 2.58] 2.64] 2.63 2.59 3.01

(a) Performance with re-fetch

Table 7: Performance of combined value and dependence predictors with two recovery mechanisms

(b) Performance with re-execute



