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Intelligent data analysis often requires one to extract meaningful conclu-
sions about a complicated system using data from a single sensor. If the system
is linear, a wealth of well-established, powerful time-series analysis techniques
is available to the analyst. If it is not, the problem is much harder and one
must resort to nonlinear dynamics theory in order to infer useful information
from the data. IDA problems are often complicated by a simultaneous over-
abundance and lack of data: reams of information about the voltage output of
a power substation, for instance, but no data about other important quantities,
such as the temperatures inside the transformers. Data-mining techniques|[14]
provide some useful ways to deal successfully with the sheer volume of in-
formation that constitutes one part of this problem. The second part of the
problem is much harder. If the target system is highly complex — say, an
electromechanical device whose dynamics is governed by three metal blocks,
two springs, a pulley, several magnets, and a battery — but only one of its im-
portant properties (e.g., the position of one of the masses) is sensor-accessible,
the data analysis procedure would appear to be fundamentally limited. Delay-
coordinate embedding, a technique developed by the dynamics community, is
a way to get around this problem; it lets one reconstruct the internal dynam-
ics of a complicated nonlinear system from a single time series. That is, one
can often use delay-coordinate embedding to infer useful information about
internal (and unmeasurable) transformer temperatures using only their out-
put voltages. The reconstruction produced by delay-coordinate embedding is
not, of course, completely equivalent to the internal dynamics in all situations,



or embedding would amount to a general solution to control theory’s observer
problem: how to identify all of the internal state variables of a system and infer
their values from the signals that can be observed. However, a single-sensor
reconstruction, if done right, can still be extremely useful because its results
are guaranteed to be topologically (i.e., qualitatively) identical to the internal
dynamics. This means that conclusions drawn about the reconstructed dy-
namics are also true of the internal dynamics of the system inside the black
box.

If the system under examination is linear, the analysis is comparatively
straightforward and the tools — the topic of section 1 of this chapter — are
well developed. One can characterize the data using statistics (mean, stan-
dard deviation, etc.), fit curves to them (functional approximation), and plot
various kinds of graphs to aid one’s understanding of the behavior. If a more-
detailed analysis is required, one typically represents the system in an input
+ transfer function — output manner, using any of a wide variety of time- or
frequency-domain models. This kind of formalism admits a large collection of
powerful reasoning techniques, such as superposition and the notion of trans-
forming back and forth between the time and frequency domains. The latter
is particularly useful, as many signal processing operations are much easier in
one domain than the other (e.g., manipulation of differential equations, which
is trivial in the frequency domain and difficult in the time domain).

Nonlinear systems pose a special challenge to intelligent data analysis; their
mathematics is vastly harder and many standard time-series analysis tech-
niques simply do not apply. Chaotic systems, for instance, exhibit broad-band
behavior, which makes many traditional signal processing operations useless.
One cannot decompose problems in the standard “input + transfer function —
output” manner, nor can one simply low-pass filter the data to remove noise,
as the high-frequency components are essential elements of the signal. The
concept of a discrete set of spectral components does not make sense in many
nonlinear problems, so using transforms to move between time and frequency
domains — a standard technique that lets one transform differential equations
into algebraic ones and vice versa, making the former much easier to work with
—- does not work. For these and related reasons, nonlinear dynamicists eschew
most forms of spectral analysis. Because they are soundly based in nonlinear
dynamics theory and rest firmly on the formal definition of invariants, how-
ever, the analysis methods described in section 2 of this chapter do not suffer
from the kinds of limitations that apply to traditional linear analysis methods.



Delay-coordinate embedding, where past values of a signal are used to
reconstruct its dynamics, is particularly important for intelligent data analysis
because fully observable systems are rare in engineering practice; as a rule,
many — often, most — of a system’s state variables either are physically
inaccessible or cannot be measured with available sensors. Worse yet, the true
state variables may not be known to the user; temperature, for instance, can
play an important and often unanticipated role in the behavior of an electronic
circuit. Embedding, the topic of section 3 of this chapter, is a partial solution
to this problem; it not only yields useful information about the behavior of the
unmeasured variables, but also gives some indication of how many independent
state variables actually exist inside the black box.

The objective of this chapter is to cover a representative sampling of the
time-series analysis techniques that have been developed by the nonlinear dy-
namics community over the past decade, with a specific emphasis on how
those techniques would be useful in IDA applications. Other communities, of
course, have developed different approaches to nonlinear time-series analysis.
One of the more famous is Tukey’s “exploratory data analysis,” a sleuthing
approach that emphasizes (and supports) visual examination over blind, brute-
force digestion of data into statistics and regression curves[47]. Some of the
more-recent developments in this field attempt to aid — or even augment —
the analyst’s abilities in unconventional ways, ranging from 3D virtual-reality
displays to haptics (representing the data as a touch pattern, which has been
proposed for reading mammograms[29]) or data sonification. By way of back-
ground, section 1 quickly reviews some of the traditional methods that apply
to linear systems. Section 2 covers the bare essentials of dynamical systems
theory and practice; these are the basis of the general theory of dynamics that
applies to any system, linear or nonlinear. If all of the important properties of
the target system can be identified and measured and the data are basically
noise-free, these techniques, alone, can provide a very good solution to many
nonlinear data-analysis problems. If there are fewer sensors than state vari-
ables, however, one must call upon the methods described in section 3 in order
to reconstruct the dynamics before one can apply the section 2 methods. Noise
is a much more difficult problem. There exist techniques that “filter” nonlin-
ear time-series data, turning the nonlinearity to advantage and reducing the
noise by a exponentially large factor[13], but the mathematics of this is well
beyond the scope of this discussion. This chapter continues with two extended
examples that demonstrate both the analysis methods of section 2 and the
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Figure 1: The “input + transfer function — output” framework of traditional
signal processing. Top: time domain. Bottom: frequency domain.

delay-coordinate reconstruction techniques of section 3, and concludes with
some discussion of the utility of these methods in intelligent data analysis.

1 Linear Systems Analysis

The basic framework of traditional signal analysis[40] is schematized in figure 1;
in it, an input signal is applied to a system to yield an output. One can describe
this process in the time domain, using the impulse response h(t) to model the
system, or in the frequency domain, using the frequency response transfer
function H(s). The impulse response of a system is its transient response
to a quick kick (z(tg) = 1; z(t) = 0Vt # 1o); the frequency response H(s)
describes, for all s, what the system does to a sinusoidal input of frequency
s. H(s) is a complex function; it is most frequently written (and plotted)
in magnitude (|H(s)|) and angle (LH(s)) form, but sometimes appears as

Re{H(s)} and Im{H(s)}.

Decomposing a problem in this “input + transfer function — output” man-
ner is very useful; it allows one to apply powerful reasoning techniques like



superposition'. The problem with figure 1 is that systems can react very
differently to different inputs at different times — that is, h(¢) and H(s)
may depend on the magnitude of z, or they may have time-dependent co-
efficients. Either situation negates almost all of the advantages of both of
the input/transfer function/output paradigms shown in the figure. Nonlin-
earity (the former case) and nonstationarity (the latter) are treated later in
this chapter; in the remainder of this section, we assume linearity and time
invariance.

The top paradigm in figure 1 is easier to think about, but the bottom is
mathematically much easier to work with. In particular, deriving y(¢) from
z(t) and h(t) involves a convolution:

J(t) = (i) xh(t)
+00
:/ z(T)h(t — 7)dT

-0

whereas the frequency-domain calculation only requires multiplication:
Y(s) = X(s)H(s)

The frequency domain has a variety of other powerful features. The spectrum
is easy to interpret; the peaks of |H(s)| correspond to the natural frequen-
cies (“modes”) of the system and hence, loosely speaking, to the number of
degrees of freedom. Differential equations become algebraic equations when
transformed into the frequency domain, and signal separation is a trivial opera-
tion. Because of these advantages, engineers are trained to transform problems
into the frequency domain, perform any required manipulations (e.g., filter-
ing) in that domain, and then reverse-transform the results back into the time
domain.

Traditional analysis methods characterize a linear system by describing
h(t) or H(s). Depending on the demands of the application, this description
— the “model” — can range from the highly abstract to the very detailed:

1. descriptive models: e.g., the sentence “as water flows out of a bathtub,
the level in the tub decreases”

2. numerical models: a table of the water level in the tub versus time

YIf the inputs z; and x5 produce the outputs y; and v, respectlvely, then the input
21 + xo will produce Yy + yo.



3. graphical models: the same information, but in graphical form
4. statistical models: the mean and standard deviation of the water level
5. functional models: a least-squares fit of a line to the water level data

6. analytic models: an equation, algebraic or differential, that relates out-
flow and water level

The simplicity of the first item on the list is deceptive. Qualitative models
like this are quite powerful — indeed, they are the basis for most human
reasoning about the physical world. A circuit designer, for instance, reasons
about the gain-bandwidth tradeoff of a circuit, and understands the system
in terms of a balance between these two quantities (“if the gain goes up, the
bandwidth (and hence the speed) goes down...”). Many traditional analysis
methods are also based on qualitative models. One can, for instance, compute
~ the location of the natural frequencies of a system from the ring frequency and
decay time of its impulse response h(t) or the shape of its frequency response
H (s); the latter also lets one compute the speed (rise time) and stability (gain
or phase margin) of the system. Step and ramp response — how the system
reacts to inputs of the form

z(t)=0 t<0
z(t)y=1 t>0
and
z(t)=0 t<0
z(t)=t t>0
respectively — also yield useful data analysis results; see [38] for details.

Though qualitative models are very powerful, they are also very difficult to
represent and work with explicitly; doing so effectively is the focus of the
qualitative reasoning/qualitative physics community[49].

As noted and discussed by many authors (e.g., [46]), tables of numbers
are much more useful to humans when they are presented in graphical form.
For this reason, numerical models (item 2) are rarely used, and many IDA
researchers, among others, have devoted much effort to finding and codifying
systematic methods for portraying a data set and highlighting its important
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features. Another way to make numbers more useful is to digest them into sta-
tistical values[50] like means, medians, and standard deviations, or to use the
methods of functional approximation (e.g., chapter 10 of [17]) and regression
to fit some kind of curve to the data.

Sometimes, none of these abstractions and approximations is adequate for
the task at hand and one must use an analytic model. Again, these come in
many flavors, ranging from algebraic expressions to partial differential equa-
tions. One of the simplest ways to use an algebraic equation to describe a
system’s behavior is to model its output (or next state) as a weighted sum of
its previous states. That is, if one has measured a series of values {z;(¢)} of
some system state variable x;, one predicts its output using the equation:

y(t) = me(t —1) (1)

The technical task in fitting such an L**-order moving average (MA) model to
a data set involves choosing the window size L and finding appropriate values
for the b;. A weighted average of the last L values is a simple smoothing
operation, so this equation describes a low-pass filter. The impulse response
of such a filter is described by the coefficients b;: as I goes from 0 to L, the
impulse first “hits” bg, then b;, and so on. Because this response dies out after
L timesteps, equation (1) is a member of the class of finite impulse response

(FIR) filters.

Autoregressive (AR) models are similar to MA models, but they are de-
signed to account for feedback:

M
V1) = 3 anylt=m) + 2.0 )

Because of the feedback loop, the output can continue indefinitely even if the
input z; is zero, and so this type of model is called an infinite impulse response
(IIR) filter. The dependence of y(¢) on previous values of y also complicates
the process of finding coefficients a,, that fit the model to a data set; see,
e.g., [5] for more details.

The obvious next step is to combine MA and AR models:
L M
y(t) =D bt =)+ 3 any(t—m) (3)
[=0 m=0
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This “ARMA” model is both more general and more difficult to work with than
its predecessors; one must choose L and M intelligently and use z-transform
methods to find the coefficients (again, see [5] for this methodology). Despite
these difficulties, ARMA models and their close relatives (e.g., ARIMA mod-
els) have “dominated all areas of time-series analysis and discrete-time signal
processing for more than half a century”[48].

Models like those in the ARMA family capture the input/output behav-
ior of a system in some set of test cases. For some tasks, such as controller
design, an input/output model is inadequate and one really needs a model of
that internal dynamics: a differential equation that accounts for the system’s
dependence on present and previous states. Differential equations capture a
system’s physics in a general way, but they are much more difficult to work
with than the algebraic models described above. They are also much more dif-
ficult to construct; reverse-engineering the governing ODEs of a system from
observations of its behavior — that is, solutions of those ODEs — is a non-
trivial task (indeed, it amounts to inverting Runge-Kutta!). This procedure,
which is known as system identification in the control-theory literature, is fairly
straightforward if the system involved is linear; the textbook approach[27] is to
choose a generic ODE system 7= BZ, fast-Fourier-transform the sensor data,
and use the characteristics of the resulting impulse response to determine the
coefficients of the matrix B. The natural frequencies, which appear as spikes
on the impulse response, yield the system’s eigenvalues; the off-diagonal ele-
ments can be determined via a residual analysis of the mode shapes between
those spikes.

A linear, time-invariant system can be described quite nicely by these kinds
of models, but nonstationarity or nonlinearity can throw a large wrench in the
works. The standard textbook approach[8] to nonstationary data analysis in-
volves special techniques that recognize the exact form of the nonstationarity
(e.g., linear trend) and various machinations that transform the time series
into stationary form, at which point one can use ARMA methods. Nonlinear-
ity is not so easy to get around. It can be shown, for instance, that ARMA
coefficients and the power spectrum (i.e., Fourier coefficients) contain the same
information. Two very different nonlinear systems, however, may have almost
indistinguishable spectra, so methods in the ARMA family break down in these
cases®. Spectral similarity of dissimilar systems also has important implica-

?One can construct a patchwork of local-linear ARMA models[44] in situations like this,
but such tactics contribute little to global system analysis and understanding.



tions for signal separation. In linear systems, it is often safe to assume (and
easy to recognize) that the “important” parts of the signal are lower down
on the frequency scale and easily separable from the noise (which is assumed
to be high frequency), and it is easy to implement digital filters that remove
components of a signal above a specified cutoff frequency[34]. In nonlinear
systems, as described in more detail in the following section, the important
parts of the signal often cover the entire spectrum, making signal separation
a difficult proposition. Nonlinearity is even more of a hurdle in system iden-
tification: constructing dynamic models of linear systems is nontrivial, but
human practitioners consider nonlinear system identification to be a “black
art,” and automating the process[6] is quite difficult.

2 Nonlinear Dynamics Basics

A dynamical system is something whose behavior evolves with time: binary
stars, transistor radios, predator-prey populations, differential equations, the
air stream past the cowl of a jet engine, and myriad other examples of interest
to scientists and engineers in general and intelligent data analysts in particu-
lar. The bulk of an engineering or science education and the vast majority of
the data analysis methods in current use, some of which are outlined in the
previous section, are focused on linear systems, like a mass on a spring: sys-
tems whose governing equations do not include power terms, transcendental
functions, etc. Most natural and man-made systems, however, are nonlinear.
The behavior of nonlinear systems is far richer than that of linear systems,
which makes them both much more difficult and much more interesting to
analyze.

The state variables of a dynamical system are the fundamental quantities
needed to describe it fully — angular position € and velocity w = 8 for a
pendulum, for instance, or capacitor voltages and inductor currents in an
electronic circuit. The number n of state variables is known as the dimension
of the system; a pendulum is a two-dimensional system, while a three-capacitor
circuit has three dimensions. Simple systems like this that have a finite number
of state variables can be described by ordinary differential equation (ODE)
models like

B(1) = — (1) (4)

m



for a mass m on a spring, where z is the displacement from the equilibrium
position and £ is the spring constant, or

0(t) = —mgsin 0(t) (5)

for a pendulum of mass m moving under the influence of gravity ¢g. Equa-
tion (4) is linear and equation (5), because of the sin term, is not; in both
systems, n = 2. If the number of state variables in the system is infinite —
e.g., a moving fluid, whose physics is influenced by the pressure, temperature
and velocity at every point — the system is called spatiotemporally extended,
and one must use partial differential equation (PDE) models[12] to describe it
properly. In this chapter, we will confine our attention to finite-dimensional
dynamical systems that admit ODE models. Because the universe is by and
large nonlinear, we will concentrate on methods that are general and powerful
enough to handle all dynamical systems — not just linear ones. Finally, since
most natural and man-made systems are not only nonlinear but also dissipa-
tive — that is, they lose some energy to processes like friction — we will not
cover the methods of conservative or Hamiltonian dynamics[3, 33].

Much of traditional systems analysis, as described in the previous section,
focuses on time-series or frequency-domain data. The nonlinear dynamics
community, in contrast, relies primarily upon the state-space representation,
plotting the behavior on the n-dimensional space ( R") whose axes are the state
variables. In this representation, the damped oscillation of a mass bouncing
on a spring (shown at the top of figure 2) manifests not as a pair of decaying
sinusoidal time-domain signals, as shown in the middle plot on the figure, but
rather as a spiral, as shown in the bottom plot. State-space trajectories like
this — system behavior (i.e., ODE solutions) for particular initial conditions —
only implicitly contain time information; as a result, they make the geometry
of the equilibrium behavior easy to recognize and analyze.

Dissipative dynamical systems have attractors: invariant state-space struc-
tures that remain after transients have died out. A useful way to think about
this is to envision the “flow” of the dynamics causing the state to evolve
towards a “low point” in the state-space landscape (cf., a raindrop running
downhill into an ocean). There are four different kinds of attractors:

e fixed or equilibrium points (cf., the state-space plot at the bottom of
Figure 1)

e periodic orbits (a.k.a. limit cycles)
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Figure 2: A simple harmonic oscillator (a) undergoing a damped oscillation to
a fixed point: (b) time-domain representation (c) state-space representation.
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e quasiperiodic attractors

e chaotic or “strange” attractors

Fixed points — states from which the system does not move — can be stable
or unstable. In the former case, perturbations will die out; in the latter, they
will grow. A commonplace example of a stable fixed point is a marble at rest
in the bottom of a bowl; the same marble balanced precariously on the rim
of that bowl is at an unstable fixed point. Limit cycles are signals that are
periodic in the time domain and closed curves in state space; an everyday
example is the behavior of a healthy® human heart. Quasiperiodic orbits and
chaotic attractors are less familiar and harder to analyze, but no less com-
mon or interesting. The latter, in particular, are fascinating. They have a
fixed, complicated, and highly characteristic geometry, much like an eddy in a
stream, and yet nearby trajectories on a chaotic attractor move apart exponen-
tially fast with time, much as two nearby wood chips will take very different
paths through the same eddy. Trajectories cover chaotic attractors densely,
visiting every point to within arbitrary ¢, and yet they never quite repeat ex-
actly. These properties translate to the very complex, almost-random, and yet
highly structured behavior that has intrigued scientists and engineers for the
last twenty years or so. Further discussion of chaotic systems, complete with
a variety of examples, appears in section 4.

Attractor type is an important nonlinear data analysis feature, and there
are a variety of ways for computer algorithms to recognize it automatically
from state-space data. One standard geometric classification approach is cell
dynamics[23], wherein one divides the state space into uniform boxes. In Fig-
ure 3, for example, the limit cycle trajectory — a sequence of two-vectors of
floating-point numbers measured by. a finite-precision sensor — can be repre-
sented as the cell sequence

[-(1,0)(2,0)(3,0)(4,0)(4,1)(5,1)(5,2)(4,2)(3,2)(3,3)(4,3)(4,4)..]

Because multiple trajectory points are mapped into each cell, this discretized
representation of the dynamics is significantly more compact than the original
series of floating-point numbers and therefore much easier to work with. This
is particularly important when complex systems are involved, as the number of

30ne of the heart’s pathological behaviors, termed ventricular fibrillation, is actually a
chaotic behavior.
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Figure 3: Identifying a limit cycle using simple cell mapping

cells in the grid grows exponentially with the number of dimensions?. Though
the approximate nature of this representation does abstract away much de-
tailed information about the dynamics, it preserves many of its important
invariant properties; see [20] or [31] for more details. This point is critical to
the utility of the method; it means that conclusions drawn from the discretized
trajectory are also true of the real trajectory — for example, a repeating se-
quence of cells in the former, as in Figure 3, implies that the R” dynamics is
on a limit cycle.

Much as a bowl can have several low spots or a mountain range can include
many drainages, nonlinear systems can have multiple attractors of different
types. Each attractor lies in a unique basin of attraction (all the points in
the bowl or mountain range from which a marble or raindrop will end up at
that attractor), and those basins partition® the state space. A linear system,
on the other hand, can have only one fixed point, and its basin — if it is
stable — is all of R"™. Dissipation, the notion of transient behavior that dies
out, and the requirement that attractors are proper subsets of their basins
are fundamentally linked. Dynamicists think about basin/attractor dynamics
using the state-space contraction metaphor: initial conditions anywhere inside
the boundary of a basin of attraction will converge to the associated attractor,

4The example of Figure 3 is two-dimensional, but the cell dynamics formalism generalizes
easily to arbitrary dimension.

5This is a slight abuse of the technical term “partition;” nonattracting sets — which
have no basins of attraction — can exist in dynamical systems, and basins technically do
not include their boundaries.
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so one envisions a volume of initial conditions spread out across the basin,
all eventually converging to the attractor. (Conservative systems — those in
which energy is conserved — preserve state-space volumes and do not have
attractors.) Basins are very important for nonlinear data analysis. Attractors
in neighboring basins can be quite different, and so small differences in initial
‘conditions matter; a raindrop a millimeter away from a sharp mountain ridge
will take a radically different path if a light breeze comes up. This can be a
useful way to approach the analysis of a system that appears to have several
behavior modes. Basin boundaries can be computed using the grid-based
techniques described in the previous paragraph, as well as a variety of other
approaches; see [18] or section 10.3.3 of [36] for more details.

The fixed nature of an attractor of a dynamical system is critically im-
portant to the approach to intelligent data analysis that is outlined in this
chapter; it implies that the dynamical invariants of such attractors — their
immutable mathematical properties — do not depend on how these attractors
are viewed®, and therefore that analysis techniques that measure those invari-
ants should yield the same results in the face of transformations like coordinate
changes, for instance. Stability is such an invariant: a stable fixed point should
not become unstable if one recalibrates a sensor. Topological dimension is an-
other: a fixed point should not appear as a limit cycle when viewed from
another angle. The nonlinear dynamics literature defines dozens of other dy-
namical invariants and proposes hundreds of algorithms for computing them;
see [2] for a readable and comprehensive introduction. The two most com-
mon invariants in this list are the Lyapunov exponent A, which measures how
fast neighboring trajectories diverge, and the family of fractal dimensions, so
named because they can take on non-integer values, which measure how much
of R" a trajectory actually occupies.

The Lyapunov exponent is defined as:
.1
A= lim - ln fmy(t)] (6)

where the m;(t) are the eigenvalues of the variational system (the matrix-
valued linear differential equation that governs the growth of a small variation
in the initial condition; see appendix B of [36] for details). A n-dimensional
system has n As, cach measuring the expansion rate, in one “direction,” of the

Swithin some limits, of course
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distance between two neighboring trajectories. X is the nonlinear generaliza-
tion of the real part of an eigenvalue; a positive A implies exponential growth
of a perturbation along the unstable manifold, the nonlinear-systems gener-
alization of the eigenvector associated with a positive-real-part eigenvalue. A
negative A implies exponential shrinkage of the perturbation along the stable
manifold that is the analog of the stable eigenvector. A system that has all
negative As in some region is said to be “stable in the sense of Lyapunov,”
and its trajectories relax to some proper subset of that region (the attractor).
A system with all positive As is unstable in all directions. A zero A implies
less-than-exponential growth, which generally takes place along the attractor.
State-space contraction, part of the formal definition of dissipation, requires
that ¥); < 0 in any dissipative system.

The point of retooling the definition of dimension to allow for non-integer
values is to be able to accurately characterize objects that are “between” two
topological dimensions. A Cantor set, for example, contains an infinite num-
ber of zero-dimensional objects (points) but their topological dimension is still
zero. Fractal dimensions capture this property; for a middle-third removed
Cantor set, for example, the capacity dimension is 0.63. This invariant is
used commonly by the nonlinear dynamics community because many (not all)
chaotic attractors have fractal state-space structure — that is, their attractors
have non-integer values of the fractal dimension. The most-common algorithm
for computing any fractal dimension of a set A, loosely described, is to dis-
cretize state space into e-boxes, count the number of boxes” occupied by A,
and let € — 0:

. log(N(A,e
d. = lim { “f5a7s" @)

where N (A, ¢€) is the number of closed balls of radius € > 0 needed to cover A.
(Strictly speaking, one doesn’t just count the boxes, but rather accumulates
the value of some measure on each boxes; see the discussion of equation (8)
in section 3.2.) In reality, floating-point arithmetic and computational com-
plexity place obvious limits on the ¢ — 0 part of equation (7); in practice, one
repeats the dimension calculation for a range of es and finds the power-law
asymptote in the middle of the log-log plot of dimension versus e.

Dynamical invariants like A and d. can be used to classify attractors. In a
n-dimensional system, there are n Lyapunov exponents A; and

“Hence the term “box-counting dimension.”
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e A stable fixed point has n negative As (since perturbations in any direc-
tion will die out) and a fractal dimension of zero

e An attracting limit cycle has one zero A and n — 1 negative As (since
perturbations off the attractor will die out, and a perturbation along the
orbit remains constant) and a fractal dimension of one

o A chaotic attractor has one zero A (along the attractor), at least one
positive A and — generally but not always — a non-integer fractal di-
mension. The positive A reflects chaos’s hallmark “sensitive dependence
on initial conditions:” the system’s tendency to force neighboring tra-
jectories apart.

Nonlinear analysis tools that target attractor type, basin geometry, dy-
namical invariants, etc. are harder to implement than the kinds of techniques
that one can apply to a linear system, and their implications are generally less
wide-ranging. If the system under consideration is linear, data analysis is rel-
atively easy and one can make more (and more-powerful) inferences from the
results. Where nonlinear systems are concerned, however, traditional meth-
ods often do not apply; in these problems, time-series analysis is much harder
and the conclusions one can draw from the results are limited in range. This
stems from the inherent mathematical difficulties of the domain, and is essen-
tially unavoidable. If one is faced with a nonlinear problem, one must use the
more difficult (and perhaps unfamiliar) methods covered in this chapter. The
reader who is interested in delving deeper into this field should consult any of
the dozens of good nonlinear dynamics books that are currently in print. An
excellent overall starting point is [42], the basic mathematics is covered par-
ticularly well in [22], a comprehensive collection of algorithms appears in [36],
and an entertaining popular overview may be found in [41].

3 Delay-Coordinate Embedding

Given a time series from a sensor on a single state variable z; in a n-dimensional
dynamical system, delay-coordinate embedding lets one reconstruct a useful
version of the internal dynamics® of that system. If the embedding is performed
correctly, the theorems involved guarantee that the reconstructed dynamics is

8That is, the state-space trajectory {Z(t)}, where & = {2, 22,...2,}
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topologically (i.e., qualitatively) identical to the true dynamics of the system,
and therefore that the dynamical invariants are also identical. This is an
extremely powerful correspondence; it implies that conclusions drawn from
the embedded or reconstruction-space dynamics are also true of the real —
unmeasured — dynamics. This implies, for example, that one can reconstruct
the dynamics of the earth’s weather simply by setting a thermometer on a
windowsill.

There are, of course, some important caveats. Among other things, a cor-
rect embedding requires at least twice as many dimensions as the internal dy-
namics — a requirement that makes reconstruction of the weather thoroughly
impractical, as it is a fluid dynamics system and thus infinite-dimensional.
Moreover, even if the dynamics of the system under examination is simple,
its precise dimension is often very hard to measure and rarely known a priori.
This is the main source of the hard problems of delay-coordinate embedding,
which are discussed in more detail — together with some solutions — in the
following sections.

3.1 Embedding: the basic ideas

Consider a data set comprised of samples z;(t) of a single state variable z; in a
n-dimensional system, measured once every At seconds, such as the example
sensor time series shown in‘table 1. To embed such a data set, one constructs

m-dimensional reconstruction-space vectors R(t) from m time-delayed samples
of the ;(¢), such that

R(t) = (), @t —7), @it —27), ..., @t — (m—1)7)]

fé(t) = [@i(t), x;(t+7), (L +27), ..., z(t+(m—1)7)]

For example, if the time series in table 1 is embedded in two dimensions
(m = 2) with a delay 7 = 0.005, the first few points in the reconstruction-
space trajectory are:

(1.6352 1.6260)
(1.6337 1.6230)
(1.6322 1.6214)
(1.6306 1.6214)
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:cz(t) t .Tl(t) t
1.6352 | 0.000 | 1.6214 | 0.008
1.6337 | 0.001 | 1.6183 | 0.009
1.6322 | 0.002 | 1.6183 | 0.010
1.6306 | 0.003 | 1.6168 | 0.011
1.6276 | 0.004 | 1.6137 | 0.012
1.6260 | 0.005 | 1.6107 | 0.013
1.6230 | 0.006 | 1.6076 | 0.014
1.6214 | 0.007 | 1.6045 | 0.015

Table 1: An example data set: samples of one state variable z;, measured
every At = 0.001 seconds.

(1.6276 1.6183)
(1.6260 1.6183)

It m =5 and 7 = 0.003, the first few points of the trajectory are:

(1.6352 1.6306 1.6230 1.6183 1.6137)
(1.6337 1.6276 1.6214 1.6183 1.6107)
(1.6322 1.6260 1.6214 1.6168 1.6076)
(1.6306 1.6230 1.6183 1.6137 1.6045)

The act of sampling a single system state variable x;(t) is equivalent to
projecting an n-dimensional state-space dynamics down onto a single axis;
the embedding process demonstrated above is akin to “unfolding” or “re-
inflating” such a projection, albeit on different axes: the m delay coordi-
nates x;(t), x;(t — 7), x;(t — 27), etc. instead of the n true state variables
z1(t), 22(t), ..., za(t). The central theorem[43] relating such embeddings to
the true internal dynamics, which is generally attributed to Takens, was proved
in [35] and made practical in [39]; informally, it states that given enough di-
mensions (m) and the right delay (7), the reconstruction-space dynamics and
the true, unobserved state-space dynamics are topologically identical. More
precisely, the reconstruction-space and state-space trajectories are guaranteed
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(a) (b)

Figure 4: A closed curve viewed from (a) the top and (b) the side. The
latter projection is is topologically conjugate to a circle; because of the self-
intersection, the projection in (a) is not.

to be diffeomorphicif m = 2n+1, where n is the true dimension of the system?®.

Diffeomorphisms — transformations that are invertible, differentiable, and
that possess differentiable inverses — preserve topology but not necessarily
geometry; an attractor reconstructed using delay-coordinate embedding may
look very different from the true attractor, but the former can be stretched
and bent into the shape of the latter without “crossing over” itself. The 2n+1
requirement of the theorem is really a brute-force worst-case limit for elimi-
nating projection-induced crossings. The self-intersection point in figure 4(a),
for example, makes the 2D projection of that curve not diffeomorphic to a
circle; viewed from another angle, however, as in part (b), the curve is indeed
smoothly deformable into a circle. 2n + 1 is simply the minimum number of
dimensions required to eliminate all such crossings, so lower-dimension embed-
dings may well be correct. This can, in fact, be exploited in deriving a tighter
and easy-to-compute bound on m that is valid in “almost every” situation[39].

The topological equivalence guaranteed by the Takens theorem is a pow-
erful concept: it lets one draw sensible, justifiable conclusions about the full
dynamics of an n-dimensional system using only the output of a single sensor.
In particular, many properties of the dynamics are preserved by diffeomor-
phisms; if one computes them from a correct embedding, the answer will hold
for the true internal dynamics as well. There are, of course, some important
conditions on the theorem, and the difficulties that they pose are the source
of most of the effort and subtlety in these types of methods. Specifically, in

97 is missing from these requirements because the theoretical conditions upon it are far

less stringent and limiting, as described in the second paragraph of the next section.
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order to embed a data set, one needs m and 7, and neither of these parameters
can be measured or derived from the data set, either directly or indirectly, so
algorithms like those described in the following section rely on numeric and
geometric heuristics to estimate them.

From a qualitative standpoint, embedding is not as outlandish as it might
initially appear. The state variables in a nonlinear system are generally cou-
pled to one another temporally by the dynamics, so using quantities that
resemble forward differences as the axes of a reconstruction space makes some
sense. (Techniques like divided differences can, in theory, be used to derive
velocities from position data; in practice, however, these methods often fail
because the associated arithmetic magnifies sensor error.) One can think of
the z;(t), z;(t — 7), etc., as independent coordinates that are nonlinearly re-
lated to the true state variables. The specifics of that relationship may not be
obvious; the important point is that the form of that relationship ensures that
the reconstructed dynamics fé(t) € R™ is diffeomorphic to the true dynamics

#(t) € R™.

3.2 Finding appropriate embedding parameters

The time-series analysis literature contains scores of methods that use a vari-
ety of heuristics to solve the central problem of delay-coordinate reconstruc-
tion: given a one-dimensional time series from a dynamical system of unknown
dimension, estimate values for the dimension m and delay 7 that will guar-
antee a correct embedding. Many of these algorithms are somewhat ad hoc;
almost all are computationally expensive, highly sensitive to sensor and al-
gorithm parameters, and some produce surprisingly different results, even on
the same data set. See [2] for a recent summary and the FAQ for the news-
group sci.nonlinear[l] for a list of public-domain software implementations
of many of these algorithms. This chapter covers only a few of the most widely
accepted and/or interesting representatives of each class of methods.

The delay 7 governs whether or not the coordinates z(t — j7) are indeed
independent. If 7 is small, the reconstruction-space trajectory will lie very
near the main diagonal. As long as the structure is not infinitely thin, this
type of embedding is theoretically correct; in practice, however, finite-precision
arithmetic on fixed-length (and possibly noisy) trajectories can easily generate
apparent crossings in situations like this. If 7 is too large, on the other hand,
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successive points K(t) and R(t + At), where At is the sampling interval, will
be uncorrelated and the larger spacing of the points in K(t) again interferes
numerically with topological equivalence. Ideally, then, one wants a time win-
dow for 7 that is long enough for the system state to evolve to a visible (with
respect to machine ¢) but not excessive extent.

One way to compute such an estimate is to perform some sort of averaged
autocorrelation of successive points in the time series z;(¢) or in the embedded
trajectory é(t) — e.g., autocorrelation or average mutual information[15] —
as a function of 7. For very small 7, these statistics will be close to 1.0,
since successive reconstruction-space trajectory points are very close to one
another'®, For larger 7, successive points become increasingly uncorrelated.
The first minimum in the distribution is a sensible choice for 7: qualitatively,
it corresponds to the “smallest” 7 for which the dynamics has caused nearby
trajectory points to become somewhat uncorrelated (i.e., new information has
been introduced between samples). This choice was originally proposed[15]
by Fraser; other authors suggest using other features of the autocorrelation
curve to choose good values for 7 (e.g., the first maximum, with the rationale
that these “close returns” correspond to natural periods of the system). Note
that since one can compute average mutual information (AMI) from one- and
two-embeddings (that is, m = 1 and m = 2), this kind of procedure does not
require one to first find a correct value for m.

The Pineda-Sommerer (P-S) algorithm[37], which solves both halves of the
embedding parameter problem at once, is more esoteric and complicated. Its
input is a time series; its outputs are a delay 7 and a variety of different esti-
mates of the dimension m. The procedure has three major steps: it estimates
7 using the mutual information function, uses that estimated value 74 to com-
pute a temporary estimate E of the embedding dimension, and uses £ and 7,
to compute the generalized dimensions D,, members of a parametrized family
of fractal dimensions. Generalized dimensions are defined as
1 log 3=; pf

lim sup
q— ¢—0 log e

D, = (8)
where p; is some measure of the trajectory on box 7. Dy, Dy, and D, are
known, respectively, as the capacity, information, and correlation dimensions.
The actual details of the P-S algorithm are quite involved; we will only give a
qualitative description:

LONote that R(t) = z:(t) if m = 1.
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¢ Construct 1- and 2-embeddings of the data for a range of 7s and compute
the saturation dimension Dj of each; the first minimum in this function
i1s 7p. The D} computation entails:

e Computing the information dimension D; for a range of embedding
dimensions F and identifying the saturation point of this curve,
which occurs at embedding dimension Dj. The D; computation
entails:

e Embedding the data in E-dimensional space, dividing that space
into E-cubes that are € on a side, and computing D; using
equation (8) with ¢ = 1.

P-S incorporates an ingenious complexity-reduction technique in the fractal
dimension calculation: the es (see equation (7)) are chosen to be of the form 2%
for integers k and the data are integerized; this allows most of the mathematical
operations to proceed at the bit level and vastly accelerates the algorithm.

The false near neighbor (FNN) algorithm[28], which takes a 7 and a time
series and produces a lower bound on m, is far simpler than P-S. (As mentioned
above, upper bounds for m are often chosen to be the smallest integer greater
than twice the capacity dimension, Dy, of the data, in accordance with [39].)
FNN is based on the observation that neighboring points may in reality be
projections of points that are very far apart, as shown in Figure 5. The
algorithm starts with m = 1, finds each point’s nearest neighbor, and then
embeds the data with m = 2. If the point separations change abruptly between
the one- and two-embeddings, then the points were false neighbors (like A and
C in the z-projection of Figure 5). The FNN algorithm continues adding
dimensions and re-embedding until an acceptably small'' number of false near
neighbors remains, and returns the last m-value as the estimated dimension.
This algorithm is computationally quite complex; finding the nearest neighbors
of N points requires O(N?) distance calculations and comparisons. This can
be reduced to O(N log N) using a K-D tree implementation[16].

As should be obvious from the content and tone of this introduction, es-
timating 7 and m is algorithmically ad hoc, computationally complex, and
numerically sensitive. For this reason, among others, nonlinear time-series
analysis techniques that do not require embedding are extremely attractive.
Recent evidence[26] suggests that the recurrence plot — a two-dimensional

1 An algorithm that removes all false near neighbors can be unduly sensitive to noise.
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y

Figure 5: The geometric basis of the FNN algorithm. If this curve is projected
onto the z axis, the points A, B, and C appear to be near neighbors, even
though C is quite distant in the 2D view. Differences between one- and two-
embeddings of these data will expose false near neighbors like the [A,C] pair.

representation of a single trajectory wherein the time series spans both ordi-
nate and abscissa and each point (¢, ) on the plane is shaded according to the
distance between the two corresponding trajectory points y; and y; — may
be such a technique. Among their other features, recurrence plots also work
well on nonstationary data; see the following section for an example and more
discussion

4 Examples

In this section, we demonstrate some of the algorithms described in the pre-
vious section using two examples, one simulated and one real.

4.1 The Lorenz system

In the early 1960s[32], Edward Lorenz derived a simple model of the physics
of a fluid that is being heated from below:
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(a) (b) ()

Figure 6: State-space plots of Lorenz system behavior with @ = 10 and b = 8/3:
(a) a stable fixed point for r = 15 (b) a chaotic attractor for r = 45 (c) a
periodic orbit for r = 100.

This 3"¢-order (n = 3) ODE system is a rough approximation of a much more
complex model: the Navier-Stokes PDEs for fluid flow. The state variables
z, y, and z are convective intensity, temperature variation, and the amount
of deviation from linearity in the vertical convection profile, respectively; the
coefficients @ and r are physical parameters of the fluid — the Prandtl and
Rayleigh numbers — and b is the aspect ratio. This set of equations is one
of the most common examples in the nonlinear dynamics literature. At low
r values, its solutions exhibit damped oscillations to simple fixed-point equi-
libria, the first category on the list of attractor types on page 10, as shown
in figure 6(a). For higher r, which translates to a higher heat input, the con-
vection rolls in the modeled fluid persist, in a complicated, highly structured,
and nonperiodic way; see part (b) of figure 6 for an example. This behav-
ior, reported in a 1963 paper entitled “Deterministic Nonperiodic Flow,” led
Lorenz to recognize the classic “sensitive dependence on initial conditions” in
the context of a fixed attractor geometry that is now a well-known hallmark
of chaos. (The term “chaos” was coined twelve years later[30].) If r is raised
further, the convection rolls become periodic — the second category in the list
on page 10. See part (c) of the figure for an example.

The trajectories plotted in figure 6 include complete information about all
three of the state variables. In a real system, this may be an overly optimistic
scenario; while temperature is not hard to measure, the other state variables
are not so easy, so a full state-space picture of the dynamics — information that
is amenable to the techniques of section 2 — may well be unavailable. Using
the theory and techniques described in section 3, however, one can reconstruct
the internal dynamics of this system from a time-series sampling of one of its
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state variables — say, the = coordinate of the chaotic attractor in part (b) of
figure 6, which is plotted in time-domain form in figure 7(a). After embedding
those data in delay coordinates, one can then apply the nonlinear state-space
analysis methods of section 2 to the results.

The first step in the embedding process is to decide upon a delay, 7. The
first minimum in the AMI results shown in figure 7 falls at roughly = = 0.09
seconds'?. Using this 7, the false-near neighbor results (part (b) of figure 7)
suggest an embedding dimension of two or three, depending on one’s inter-
pretation of the heuristic “acceptably small percentage” threshold in the al-
gorithm. The box-counting dimension of this data set levels off at roughly 1.8
for m = 2 and above, as can be seen in part (c) of the figure. Following [39],
this would imply an upper-bound embedding dimension of four.

It can be difficult to keep this menagerie of dimensions straight. In this ex-
ample, the true dimension is known: n = 3. The time series z(t) in figure 7(a)
is a one-dimensional projection of the R? trajectory in figure 6(b) onto the
x axis. In the worst case, the Takens theorem tells us that an accurate re-
construction may require as many as m = 2n + 1 = 7 embedding dimensions
in order to assure topological conjugacy to the true dynamics. Recall that
this is a very pessimistic upper bound; in practice, slightly more opportunis-
tic algorithms like the one proposed in [39] are able to make better bounds
estimates — values for m that are lower than 2n + 1 and, at the same time,
that avoid projection-induced topological inequivalencies between the true and
reconstructed dynamics. In making such estimates, many of these algorithms
make use of the fact that attractors do not occupy all of R™. The fractal
dimension of the ¢ = 10, r = 45, b = 8/3 Lorenz attractor, for instance, is
somewhere between 1 and 2, depending upon which algorithm one uses; the
calculated capacity dimension Dy of the trajectory in figure 6(b), in particular,
is 1.8, implying an upper bound of m = 4. Even this estimate is somewhat pes-
simistic; fractal dimension is a highly digested piece of information: a lumped
parameter that compresses all the geometric information of an attractor into
a single number. Because the FNN algorithm is based upon a more-detailed
examination of the geometry, its results (m = 3, in this case) are a good lower

bound.

Figure 8 shows embeddings of the Lorenz time series of figure 7 with m = 3
and various 7s. Note how this reconstructed attractor starts out as a thin

12The z-axis of the plot is measured in multiples of the sample interval of 0.002 second.
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Figure 7: The z coordinate of the chaotic Lorenz signal from part (b) of
figure 5 and the corresponding embedding parameter analysis. (a) time series
(b) average mutual information (AMI) as a function of the delay 7 (c) false-
near neighbor (IFNN) percentage as a function of embedding dimension m (d)

box-counting dimension (Dg) as a function of m. AMI, FNN and Dy results
courtesy of Joe Iwanski.
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lorenz45 data; tau=0.005, dim=3 lorenz45 data; tau=0.01, dim=3

X X
(t-tau) o (t-tau)

x(t) x(t)
lorenz45 data; tau=0.1, dim=3 lorenz45 data; tau=0.5, dim=3

X X
(t-tau) I (t-tau)

x(t) x(t)

Figure 8: Embeddings of the chaotic Lorenz signal from the previous three
figures with m = 3 and various delays, plotted in 2D projection. The for-
mal requirements of the embedding process — which these attractors meet
— guarantees that they are topologically identical to the true attractor in
figure 5(b). ‘
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band near the main diagonal and “inflates” with increasing 7. The sample
interval in this data set was not much smaller than the 7 returned by the
AMI algorithm, so the “thinnest” reconstruction is fairly wide. Note, too, the
resemblance of these reconstructed attractors to the true state-space trajectory
in figure 6(b) and how that resemblance changes with 7. The whole point of
doing an embedding is that the former can be deformed smoothly into the
latter — even the 7 = 0.5 reconstruction, where the similarity (let alone the
diffeomorphism!) are hard to visualize — and that the dynamical invariants
of true (figure 6(b)) and reconstructed (figure 8) attractors are identical. That
is, a fixed point in the reconstructed dynamics implies that there is a fixed
point in the true dynamics, and so on. As noted before, this is the power of
embedding: one can use nonlinear dynamics analysis techniques on its results -
and safely extend those conclusions to the hidden internal dynamics of the
system under examination.

It would, of course, be ideal if one could avoid all of these embedding
machinations and analyze the scalar time series directly. As mentioned at
the end of section 3, recurrence plots (RPs) are relatively new and potentially
quite powerful nonlinear time-series analysis tools whose results appear to be
independent of embedding dimension in many cases[26]. An RP is a two-
dimensional representation of a single trajectory; the time series is spread out
along both z and y axes of the plot, and each pixel is colored according to
the distance between the corresponding points — that is, if the 117th point
on the trajectory is 14 distance units away from the 9435th point and the
distance range 13-15 corresponds to the color red, the pixel lying at (117,
9435) on the RP will be shaded red. Figure 9 shows a recurrence plot (RP)
of a short segment of the the Lorenz signal in part (a) of figure 7. Different
types of attractors leave clear and suggestive signatures in RPs; it is easy to
recognize a periodic signal, for instance, and chaotic attractors exhibit the type
of intricate patterns that are visible in the figure. Formalized classification of
these signatures, however, is a difficult problem — and a current research topic.
There are well-developed statistical approaches[26, 45], but structural/metric
analysis (e.g., via pattern recognition) is still an open problem[25].

4.2 The driven pendulum

A time-series plot of a data set from an angle sensor on a parametrically forced
pendulum — a solid aluminum arm that rotates freely on a standard bearing,
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Figure 9: Recurrence plots (RPs) of a short segment of the Lorenz data from
part (a) of figure 6. The pixel at ¢, is shaded to reflect the distance between
the ¢th and jth point in the time series. On the unthresholded recurrence plot
(UTRP) on the left, each pixel is coded according to the color bar shown to the
right of the UTRP; in the thresholded RP to the right, pixels are black if the
distance falls within some prescribed threshold corridor and white otherwise.
Results courtesy of Joe Iwanski.
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driven vertically by a motor through a simple linkage — is shown in part (a)
of figure 10. An actuator controls the drive frequency and a sensor (an opti-
cal encoder) measures its angular position. The behavior of this apparently
simple device is really quite complicated and interesting: for low drive fre-
quencies, it has a single stable fixed point, but as the drive frequency is raised,
the attractor undergoes a series of bifurcations. In the sensor data, this man-
ifests as interleaved chaotic and periodic regimes[11]. The driven pendulum is
also interesting from a modeling standpoint; at high resolutions, the backlash
in the bearings invalidates the standard textbook model. Modeling these ef-
fects is critical, for instance, to the accurate deployment of the space shuttle’s
manipulator arm|[24].

The test run plotted in figure 10 was chosen for this example because the
pendulum is oscillating in a chaotic manner, which rules out many traditional
time-series analysis methods. The chaos manifests as seemingly structured,
almost-periodic patterns in the time-series signal: oscillations that are quite
similar but not identical and that almost (but not quite) repeat. Though these -
patterns are highly suggestive, they are very difficult to describe or classify in
the time domain; in a state-space view, however, the characteristic structure
of a chaotic attractor becomes patently obvious. Unfortunately, direct state-
space analysis of this system is impossible. Only angle data are available;
there is no angular velocity sensor and attempts to compute angular velocity
via divided differences from the angle data yield numerically obscured results
because the associated arithmetic magnifies the discretization error in angle
(from the sensor resolution) and time (from timebase variation in the data
channel).

Delay-coordinate embedding, however, produces a clean, easily analyzable
picture of the dynamics that is guaranteed to be diffeomorphic to the system’s
true dynamics. As in the Lorenz example, the embedding procedure begins
with an estimation of 7. AMI results on the chaotic pendulum data set,
shown in part (b) of figure 10, suggest a delay of 0.022 seconds (foughly 11
clicks at a sample interval of 0.002 seconds). FNN results constructed using
this 7 (part (c) of the figure) suggest an embedding dimension of m = 3. The
capacity dimension Dy — part (d) — varies between 1.7 and 2.1, implying an
upper bound of m = 5, following [39].

In the Lorenz example of the previous section, the true dimension n was
known. In the experimental pendulum setup, this is not the case. Presumably,
three of the state variables are the bob angle 8, the angular velocity w, and
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the time'? ¢; if, however, the device is shaking the lab bench or contracting
and expanding with ambient temperature, other forces may come into play
and other state variables may have important roles in the dynamics. The
results described in the previous paragraph, which suggest that the dynamical
behavior of the pendulum is low-dimensional (m = 3 — 5, specifically), imply
that the system is probably not influenced by variables like lab bench position
or temperature. Higher m values from the estimation algorithms would suggest
otherwise.

Figure 11 shows embeddings for various 7s; note how a small 7, as in
the Lorenz example, creates a reconstruction that hugs the main diagonal,
and how that reconstructed attractor unfolds as 7 grows. The pendulum
data were greatly oversampled, so it is possible to create a thinner embedding
than in the Lorenz example, as shown in part (a) of this figure. This is the
type of reconstruction whose topologically conjugacy to the true dynamics
is effectively destroyed by noise and numerical problems; note the apparent
overlap of trajectories and sprinkling of noisy points just outside the true
attractor in the 7 = 0.01 and 7 = 0.02 embeddings.

As before, once one has a successful reconstruction of the dynamics, all
of the analysis tools described in section 2 can be brought to bear upon it,
and their conclusions can be assumed to hold for the system’s full underlying
behavior.

5 Why Nonlinear Dynamics and Embedding
are Useful for Intelligent Data Analysis

One of the more common — and more difficult — problems faced by an engi-
neer or scientist is to analyze the dynamics of a complicated nonlinear system,
given -only measurements of one state variable. The techniques described in
section 3 of this chapter, coupled with the theory covered in section 2, make
significant inroads on this problem, allowing one to draw useful, justifiable,
and sensible conclusions about a nonlinear system from the output of a single
sensor. Specifically, a correct embedding of a data set from a single sensor
on a black-box system is guaranteed to have the same dynamical invariants
as the n-dimensional dynamics of the system inside the black box, and those

13In a driven or nonautonomous system, time is an exogenous variable.
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Figure 11: Embeddings of the pendulum data set from part (a) of figure 9.
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invariants are useful tools for intelligent data analysis. Time-series analysis
tools for linear systems are much easier to understand, implement, and use,
but the universe is by and large nonlinear, so the application range of those
kinds of tools is limited. Filtering out noise, for example, is fairly straight-
forward when one is working with data from a linear system: one simply
transforms the data into the frequency domain uses a low-pass filter. In non-
linear systems, separating signal from noise is problematic, as the former is
often broad band and thus the two are intermingled. (Noise, incidentally, is
infinite-dimensional, so its implications for embedding dimension calculations
are dire; recall the 2n + 1 requirement in the embedding theorems.) There
has been some recent work on nonlinear “filtering” algorithms[19], including
filtered delay-coordinate embedding[39] and an intriguing technique that ex-
ploits the stable and unstable manifold structure of a chaotic attractor to
compress the noise ball. The latter method requires complete knowledge of
the dynamics — the ODEs that govern the system. Since reverse-engineering
ODEs from time-series samples of their solutions is an open problem for non-
linear systems, this filtering approach is hard to put into practice. One can,
however, approximate the ODEs with local-linear models and get some rea-
sonable results; see [13] for more details. In some cases, noise can actually be
turned to advantage; its presence in a time series can allow the modeler to
“explore” more of the state space[7].

One popular technique that may be conspicuous by its absence from this
chapter is the neural net. Neural nets[21], which are essentially nonlinear
regression networks, model the input/output behavior of a system. They are
very good at learning the patterns in a data set, and hence are very effective
at predicting what a system will do next. However, they do not model the
underlying physics in a human-comprehensible form. It is very difficult to
learn anything useful about a system by examining a neural net that has
been “trained” on that system, so this technique has been omitted from this
discussion. Their ability to predict, however, makes neural nets potentially
useful to intelligent data analysis in a somewhat counterintuitive fashion: if
one needs more data, one can train a neural net on the time series and then
use it to augment that data set, generating new points that are consistent with
the dynamics[9].

Nonlinear dynamics techniques like the ones described in this chapter may
be more difficult to understand and use than the more-familiar linear ones,
but they are more broadly applicable — indeed, the latter can be viewed as
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a subset of the former. This family of theory and technique is valuable not
only for time-series analysis, but also for many other tasks, such as modeling
and prediction[10]. The kind of local-linear model mentioned in the previous
paragraph, for instance, has been successfully used to predict the behavior
of systems ranging from roulette wheels[4] to physiological disease patterns,
currencies markets, and Bach fugues[48].

Acknowledgements: Matt Easley, Joe Iwanski, and Vanessa Robins con-
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