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MAXIMUM NORM ANALYSIS OF OVERLAPPING NON-MATCHING
GRID DISCRETIZATIONS OF ELLIPTIC EQUATIONS*

XIAO-CHUAN CAIf, TAREK P. MATHEW! AND MARCUS V. SARKISS

Abstract. In this paper, we provide a maximum norm analysis of a finite difference scheme
defined on overlapping non-matching grids for second order elliptic problems. We consider a domain
which is the union of p overlapping subdomains where each subdomain has its own independently
generated grid. The grid points on the subdomain boundaries need not match the grid points from
adjacent subdomains. To obtain a global finite difference discretization of the elliptic problem, we
employ standard stable finite difference discretizations on each of the overlapping subdomains and
the different subproblems are coupled by enforcing continuity of the solutions across the boundary
of each subdomain, by interpolating the discrete solution on adjacent subdomains. If the subdomain
finite difference schemes satisfy a strong discrete maximum principle and if the overlap is sufficiently
large, we show that the global discretization converges in optimal order corresponding to the largest
truncation errors of the local interpolation maps and discretizations. Our discretization scheme and the
corresponding theory allows any combination of lower order and higher order finite difference schemes
in different subdomains. We describe also how the resulting linear system can be solved iteratively by
a parallel Schwarz alternating method or a Schwarz preconditioned Krylov subspace iterative method.
Several numerical results are included to support the theory.

Key words. Domain decomposition, non-matching grids, composite grids, finite difference dis-
cretizations, elliptic equations, schwarz alternating method, iterative methods
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1. Introduction. Inrecent years, much interest within the domain decomposition
literature has. focused on techniques for obtaining global discretizations of elliptic equa-
tions by combining discretizations on local non-overlapping or overlapping subdomains
triangulated by non-matching grids. If each subdomain is independently triangulated
using grids most suitable to its geometry or the local smoothness of the solution, then
the resulting grids may not match at the boundaries. In the domain decomposition
literature, techniques based on “Lagrange multipliers” and “mortar spaces” have been
. devised to “glue” together high accuracy local discretizations (for instance, based on
spectral methods or p-version finite elements), see for instance, [2, 4, 5, 8, 9, 23], and
also lower order local discretizations based on A-version finite elements, see for instance,
[1, 7, 20, 31]. By contrast, in the finite difference literature, even prior to the devel-
opment of domain decomposition techniques, several early works have focused on dis-
cretizations on non-matching composite grids, see [11, 16, 18, 28, 29]. Even though the
available theory is limited, several large computations have shown that non-matching
grid techniques have tremendous advantages over the traditional matching grid meth-
ods due to the time saved on the grid generation stage of the computation, especially
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for problems with complex geometry ([19, 29]).

In [28], Starius provided an analysis for the two subdomain case, and our purpose
in this paper is to extend the result of Starius on the maximum norm stability of global
finite difference discretizations of elliptic equations, to the case of many subdomains.
The extension we consider will be applicable to domains with general shapes, involve
an arbitrary number of composite subgrids, and allow local finite difference schemes
of any order, provided the discretizations satisfy locally a maximum principle and the
overlap between the subdomains is sufficiently large. Further, the analysis, based on
constructing a contraction mapping, will permit parallel solution of the subgrid problems
iteratively. )

The linear elliptic equation we consider will be of the following form on a domain
Qin R? or R

(1) { L@ = —Au+b(z) Vu+ c(z)u = f(z) inQ
u = g on Of).

Throughout the rest of this paper, we will assume that c(xz) > ¢y > 0 on ), and that
the forcing term f, the boundary value function g, the coefficients b and ¢, and the
exact solution u are smooth. On each subdomain, we will consider local discretizations
that satisfy a discrete mazimum principle.

One of the fundamental issues in studying non-matching grid methods is to un-
derstand the relation between the order of the global discretization error, the orders
of the subdomain discretization errors, the orders of the interpolation errors between
non-matching subgrids, and the size of the overlap.. Suppose that € is the union of P
overlapping subdomains Q. . ., Q;). Let h; be the mesh size of subdomain 2, and let p;
and ¢; be the orders of the discretization and interpolation errors on €}, then we show
in this paper that the maximum norm of the global error is bounded by

@ 0 (1 775 ) (S thne + S )

1=1

Here ¢ is a bound for the maximum norm of the subdomain interpolation operators.
do < 11is a parameter that depends on ¢ and on a contraction factor p associated with
homogeneous solutions of subdomain elliptic equations. For elliptic equations with
c(x) > ¢p > 0, it is known that the maximum norm of a homogeneous solution in
the true interior of a domain is bounded by the maximum norm of its boundary data
multiplied by a factor 0 < p < 1, see for instance Smoller [27] or Lions [22]. For the
discrete case, see [15, 25]. The parameter dy is the product of o with the largest factor
p from different subdomains. Thus, factor §, may depend on the size of the overlap
between the subdomains, while ¢ may depend on the choice of the local grids.

The method and the theory described in this paper are quite different from the
mortar based approach developed in [7]. In the mortar method, the discretization error
is proved to be totally independent of the overlap size. Whereas the method to be
studied in this paper has some degree of dependency on the overlap size and is a lot
easier to implement than any of the mortar type methods. The mortar theory of [7]
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is valid only for the two-subdomain case involving simple interfaces without corner
points, while the maximum principle based theory developed in this paper applies for
any number of subdomains in both R? and R3.

Although the focus of this paper is on the accuracy of the overlapping non-matching
grid method, we will include a short discussion on Schwarz type iterative methods
for solving the resulting linear system of equations. We prove that if the overlap is
sufficiently large, the convergence of the Schwarz method is independent of the mesh
sizes. Related topics can also be found in the book [26].

The rest of the paper is organized as follows. In Section 2, we describe a finite
difference procedure for obtaining a global discretization on non-matching composite
grids, see [11, 28]. In Section 3, we describe a technique for analyzing the stability
of the global discretization. In Section 4, we apply the stability result of Section 3
to derive bounds for the accuracy of the global discrete solution. In Section 5, we
describe two iterative procedures for solving the resulting linear system satisfied by the
global discrete solution, by using a parallel Schwarz alternating method and an additive
Schwarz preconditioned Krylov subspace iterative method. Finally, in Section 6, we
present the results of sample numerical tests.

2. Discretization on overlapping non-matching grids. The global discretiza-
tion method we use is the composite grid method, see for instance, Starius [28] and
Cheshire and Henshaw [11]. It involves independently discretizing the elliptic equation
Lu = f on each of the subgrids and coupling the discretizations by requiring continuity
of the solutions across the boundaries.

- Given a domain 2, we first choose a partition of Q into p non-overlapping subdo-
mains such that

Q=U_Q, QunQ=0, for j+#i.

We then enlarge each subdomain §2; to include all points in © within a distance 8 > 0
and denote the resulting enlarged subdomain by €

Q= {(z,y) € Q: dist ((z,y), Q) <6} .
Thus the enlarged domains will satisfy

Qc(Qu---uq,).

P

On each subdomain Q; we independently construct a grid of size hi. We will use Q;hl
to denote the grid on Q;, for 2 =1,...,p. The grid points on the boundary o8, need
not align with the grid points in the adjacent subdomains, see Fig 1.

On grid Q;,hiv we use Up, to denote the discrete solution approximating the exact
solution u on Q;hz The global solution Uy, is then denoted as the collection of local
solutions '

Uy = (Uhl,...,Uhp).
3
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F1G. 1. An example of a global grid consisting of four overlapping non-matching subgrids.

We use the notation I'; to denote the portion of the boundary 9€; intersecting 412,
le.,

[; = 0Q; N on.
We can then partition 8&2; into two pieces, I'; and its complement 69; \ Iy

o5,

= (09,no9) U (s2nQ
= T, U (09 \T;

We use I'; ,, to denote the grid on T;.
To motivate the composite grid discretization, we observe that the solution u(z) of
the elliptic equation (1) satisfies

Lu; = f;, on(
u = g, onljy
u;g = u  ondQ;\ Ty,

where u; denotes the continuous restriction of u to Q;, where f; is the restriction of f
to 2, and ¢; is the restriction of g to I';. ‘

Analogous to the continuous case above, the local discretization on Q;ht of prob-
lem (1) in the composite grid method will approximate the above problem

LpUn, = fn, on Q;hl
(3) Uy = Ghiy  on Lyp,
Uh~ = IzUh on BQ;,M \Pi,hi)

where fp, is the restriction of the forcing term f to the grid points in Qi n,;, where gy, is

the restriction of the Dirichlet boundary data g to the grid points in I'; , and I*'Uj, will

be suitably chosen as an interpolation of the discrete solution U to enforce continuity
4



of the local solution. If a grid point in 9§, h; Matches with a grid point in an adjacent
grid Q n; then I *Uy, would ideally be chosen to equal the grid value of Uy, at that grid
point. However for non-matching grids, we define I'U}, as an mterpolatwn of the grid
values of Uj,, on adjacent grid points.

Assumption Al (Truncation error of local discretizations): We assume that the
local discretizations have a truncation error oy;(z) of order p; at a point x in Q;,hi.

More specifically, if u(z) is a smooth function, and uy, denotes the restriction of
u(z) to the grid points in Q;,hi, then we define the local truncation error a;(z) at grid
point x by ‘

(4) (Lngun,) (2) = (L) (2) + au(z).

We assume that the local discretization scheme is chosen so that the truncation error
a;(x) satisfies the following bounds

lea(2)lloo < Ch [Jull

pl+1,oo,Q: ’

Here |lull, 1 < denotes the Sobolev Wi+l (Q;) norm of v (Grisvard [17]).

We require mtergrld interpolation maps I’ for i = 1,--- . p, to define the boundary
data I'Uj in the global discretization (7), where I'U, uses the value of UhJ at grid
points in the adjacent domains Qj b for j # 7. This interpolation map I* is a linear
transformation

I Un = Uy, sonr, -

Assumptions A2 (Subgrid interpolatlon) We assume that the interpolation map
I' does not use values of Uy, in Q2 hes and further, that I' only uses nodal values at grid
points x in U#,th , e, It does not use nodal values at grid points in the domains

{Q \ Q; }J#l

As an example, consider Fig 2. Let x denote a grid point in 891 n, and let o denote
grid points in Qh ; for some j # 1. If x lies in the convez hull of the grid points o, then
the interpolated value at x can be obtained by linear interpolation of the nodal values
on the triangle with vertices o. We need to define a similar interpolation rule for each
grid point on 99Q; \ I';. For a suitable ordering of the grid pomts in Uj_ Q;-’hj and in
891 n, the stencil is stored in the matrix I°.

REMARK 2.1. The intergrid interpolation maps I' may also be defined by matching
various moments of the traces of the subdomain functions on the interfaces, as in mortar
methods [7].

The mazimum norm of each interpolation map I* is denoted by ||I*||s. It corre-
sponds to the largest absolute row sum of the matrix I*. We use o to denote the largest
of the maximum norms amongst all the interpolation maps

(5) o = max || I*|eo.

5



F1c. 2. Example of an interpolation stencil

For example, if I'Uj, are all obtained at each grid point by piecewise linear interpolation
of nodal values of U, on adjacent domains, then the linear interpolation stencil will
correspond to a conver combination of three nodal values of U, in adjacent domains.
For such a stencil, we obtain

HIIHOO:]W fori:l?'“apy
and consequently o = 1.

Assumption A3 (Interpolation error): The error I —1I' of the wnterpolation operator
I' is of order g;.

Let u(z) be a smooth function. Then the interpolation error 8;(x) at a grid point
T € 89;’,” is defined as :

Bi(z) = u(z) — (I'v) (2).

This interpolation error §;(z) can be estimated using a Taylor series expansion of
u(z). We assume that the interpolation map I’ is chosen such that the following bound
holds for the interpolation error 3;(x) at the point =

(6) Gi(z)] = [ =TI')u|
< O |lullgroon;
where || - ||4, 11,000 denotes the Sobolev W%+ (Q) norm and C is a constant indepen-

dent of h;.

The global discretization for U, = (Uhl, N Uhp) in the composite grid method is
obtained by coupling the local discretizations by requiring that the solution “matches”
the interpolation of the discrete solution from adjacent grids on 09;,}” \ Tin,

LnUng = fa,  on Q.
(7) U, = gn, onlyp,

Uy, = I'Uy, on 89, \Tis

T

for ¢ = 1,---,p. The above linear system can be solved iteratively, for instance, by
using the Schwarz alternating procedure, see Section 5.
6



For example; in the case of two composite grids, our global discrete solution is
denoted by Uy, = (Uy,, Uy, ), and it satisfies

Lh1 Uhl = fh17 on Q1,}11

Uhl = Ghys on Fl,hl

1 7
Uhl = 1 (Uhn th) , on an,hl \ Pl,hl’
and
~/

Lhz th = fh27 Qn QQ,hz

Uhg = Gho) on FZ,hg

Up, = I*(Un,,Uny), on 0Q,, \ Tap,.

If there are n; grid points in ﬁfl’h , and ny grid points in Q;’ n, (including all the grid points
on the boundaries), then the above global discretization yields a system of n; +ns linear
algebraic equations for the discrete solution Uy, = (Up,, Uy,), including the boundary
conditions on 0f2.

REMARK 2.2. Due to the non-symmetric nature of the interpolation maps, the
above global discretization does not yield a symmetric linear system in general, even if
the local discretizations are symmetric.

REMARK 2.3. If the subgrids match, then the global discretization Just introduced
reduces to the usual discretization on the whole domain. The global linear system can
also be reduced by removing the redundant variables.

3. Maximum norm stability of the global discretization. In this section,
we prove that the global discretization (7) is solvable, and further that it is stable in
the maximum norm. We first state the assumptions under which this analysis is valid.

Assumption B1 (Local stability): We assume that the local finite dzjj‘erence dis-
cretizations (8) are chosen so that they are stable in the mazimum norm.

More precisely, for i = 1,---,p, we assume that there exists a constant K; indepen-
dent of h; such that if Uy, solves

. ’
LhiUhi = fhi) m Qi,hi
Uh‘ = Gh;, on 6Fi,hm

2

’
Uh. = Zn on 891-7,” \Fi,hia

1

then for i =1, -
1Unlloo,0 < Kz‘”fhiltoo,gg + max{||gn,[|oor, ., H’?hi“oo,aﬂz’hv\lji’hi}‘

We note that in the special case that f,, = 0, then the above stability assumption
requires that a homogeneous solution Uy, satisfies a weak discrete maximum principle -

10n Mooy < masc{lgnlooryn, lznllo g, v, -

7



Assumption B2 (Contraction factor for homogeneous solutions): We assume
that the local discretizations satisfy a strong discrete mazimum principle of the following
Jorm. If ey, is the solution of the following homogeneous problem on the overlapping
“domain

’
Lhiehi = O, on Qi,hi

ep, = 0, on I's p,,

Chy = Zhys on 8&2;7,” \Fi,hi:
then in the non-overlapping domain S,
(®) ' len oo, < Pillznll o v

where 0 < p; < 1 is a contraction factor for the error on the i’th grid.

We note that such a contraction estimate can be shown to hold for elliptic equations
that have a nonzero zeroth order term c(z) > ¢y > 0 provided the overlap parameter
0 is sufficiently large where Q) = {(z,y) € Q : dist ((z,y), %) < 6}, and provided h; is
sufficiently small, see [12, 24, 25].

Assumption B3 (Product of ¢ and p;): Recall that p; denotes the mazimum norm
contraction factor for each subdomain as in (8), and o denotes the largest mazimum
norm of the interpolation maps, as in (5). We assume that

max (p;0) = 8o < 1.

We now describe the stability result for the global discretization. ’
LEMMA 3.1. Let W), = (Whl, cee Whp> satisfy the following discrete equations

Lhi Whi = fhi H on Q;,hi
(9) W = 9n onTin
Wh,; - IZWh - Zhi) on 6Q2,h1 \\ Fivhi'

I

If assumptions Al, A2, A3, B1, B2 and B3 hold, then

P . ju P P
> Wiy, < (14 75) (Z Killfrllao oz + 3 mac{lgn o uzhmm,m;m}) ,
i=1 T =1 i=1

where K;, o and éy are independent of h;.

Proof. We apply Picard’s theorem on the existence of a fixed point for contraction
mappings as follows, see for instance [3]. Let H be a complete metric space endowed
with a metric d (-,-), and let 7 : H — H be a contraction mapping satisfying

d(TU,TV) < 6d (U, V),
8



for all U and V in H, where 0 < & < 1. Then, 7 has a unique fixed point U* € H
satisfying

TU* = U*,
and given any initial iterate U° € H we have the estimate

d(U°, TU?)

oforr) < AT

In order to apply Picard’s contraction mapping principle, we define H, a metric
d(-,-) and a contraction mapping 7 : H — H such that the solution of the discrete
problem (9) is the fixed point of 7. Accordingly, we define H as follows

H: Wh:(Whl’...’WhP): forizl,ot-ap )
Wi, = gn, only,
and endow H with the metric
d (Uh, Wh) = max; ”th - Whi“oo a, h
= max; ||Up, — Whi”oo,@ﬂ; hs
= max; HUhl - Whi”oo,@ﬂz,h,\ri'

We note that the second and third definitions of the metric (involving maximum on the
boundary 89;,,“ or boundary segment 8¢, \ T; ., respectively) are equivalent to the
former by an application of the discrete mazimum principle since

{ Lo U, = fo, in

LWa, = fi im0, U= W) =0, 0y,

and so by assumption B1

Ui =Wiill o = 1Un = Wi
= ”th - th”

!
)
oo,aﬂi’hi

/ N
OO,aQi’hi \Fi,hi

The latter holds since Uy, — Wh, = 0on I'jp,.

We note that H is complete under the given metric, since 7 is an affine set (defined
by linear constraints) in a Euclidean space endowed with the maximum norm. Given
U, = (Uhl, cee Uhp) € 'H we define our mapping 7U), = W), as follows

LhiWhi = fhw on Q;yhi
(10) Wh, = gn,, on I p, :
Why = I'Up+2n;, om0, \Lyp,.

Clearly 7 : H — H.



We now verify that 7 is a contraction mapping. Accordingly, consider X, e H
and Y, € H. We estimate d (7 X),,7Y},). Let Uy, = TX), and V}, = 7Y}, Using the
definition of 7 in equation (10) we note that :

Lhi (UM - Vhl) = 0, in Q;’hi
Un, — Vi, 0, on I'; 5,
Un, = Vi, = I'(Xp=Yh), indQ, \Ti,.

Consequently, we obtain

(X5 = Ya) |
o[ Xn = Y4l
omax;; || X, — V3|

I

1Uni = Villoooe!  \r, 00,09, , \yp,
i,h; g i,h; g
00,Uj3#iQ,n

OO,Qj)h,

AN IA

o max;; p;|| Xy — Yh”oo,BQ;h,
R

VAN

do max;z; || Xp — Yh”oo,ag;’h‘
do d(Xn, Ya),

IA

where the fourth line follows by an application of assumption A2 on the contraction of
homogeneous solutions. Taking maxima over all 4 on the left hand side, we obtain

d(Un, Vi) = max; Uy, — Wunoo,asz; AN
S 60 d(Xh7 )/;l) .

Since Uy, = T X}, and Vj, = TY}, and since &, < 1 by assumption A3, this verifies that
T satisfies a contraction property with contraction factor &y < 1.

Next, we verify that U, is a fixed point of this contraction mapping: Using the
definition of 7 in equation (10), we note that if Uy, is a fixed point of 7 then U,
satisfies '

LhiUhi = fh-n on Q;,hi
Uni = 9, on [y p,

(2

Uh‘ = IiUh + Zhi, on 89;,}“; \ Fi’h‘i'

I3

Thus, the solution U, of system (9) is a fixed point of 7.

As a final step in establishing the stability of the discrete system (9), we need to
determine the distance d (U°, 7U?) for a suitable choice of initial iterate U° € . We
choose U? = (U,?l, e U,?p) as follows

LaUR, = fu, on Qi
Up, = gn», onTip,
U}?i = 2z, on aQ;,hi\Piylli'
Then, TU° satisfies
Ly (TU%n, = f, onQ,
(TU%,, = gn, on L'y g,

(TUO)hi — ]iUO = Zhn; on 89;’}” \ Fi,hi-
. 10



Thus, Uf. — (TU°),, satisfies

L,

3

(U°—TUY,,. = 0, on ),

(U =TU% = 0,  onlyp
(U° = TU%,, = I'U°  ondQ, \Tip.

3

Using the discrete maximum principle we obtain that

07 = TOWI < IE0_y
| < U
< o (Sl +max{ oo lonle))
Thus
(07, 70) < (S o el o )
and so
10,0 < 175 (S Kl + max{ion fonlle})

and using the definition of d (-, -), we obtain that

Y W0, < (14 755) (3 Kl + o o))

This establishes the global stability of scheme (9). O

4. Accuracy of the global discretization. In this section, we estimate the
accuracy of the global discretization (7). We assume that the solution u(z) of the
original elliptic problem (1) is sufficiently smooth. We have the following Theorem.

THEOREM 4.1. Let up(z) denote the restriction of the ezact solution u(x) of prob-
lem (1) to the composite grid. Let U, denote the discrete solution. If assumptions B1,
B2, B3 hold, and if assumptions Al, A2 and A3 hold, then the error Up; — Uy, in the
discrete solution satisfies the following bounds

P o L . -
> lun = Unlleo < C (1 — 50) (2 K el .00 + Zh?’llul!qiﬂ,oo) :

where C', o, K; and &y are independent of h;.
Proof. We substitute uy into the global discretization to obtain

7
{ Lpsun, = fo, + i, on Q.

Up, Ihis on I'; 5,

1

up, = I'up+B;, on aQ;,hi \Tihs

7

11



where «; are the local truncation errors. We define the error e, by subtracting the
exact solution uy, = (uhl, e ,uhp) from the discrete solution U, = (Uhl S, Uhp), with
€h; = Up, — Up,. By subtracting the above equations from the global discretization (7)
we obtain ’

’
'Lhiehi = &;, On Qi,hi

en, = 0, onlTy,

’L

€h; — Iieh = ﬂi, on 89;7}” \Fi,hi~
By applying the stability of the global scheme from Section 3 we obtain that

Mlendke < (14755 ) (S Kl + 311
< 0 (14 7 25) (SRt + A i)

This establishes the accuracy of the global scheme. O
REMARK 4.1. We may alternatively use the largest of the mazimum norms on the
subgrids since

P
max [|enJlo < 3 llenifloo-
i=1

REMARK 4.2. The parameters C, o cmd 0o are mdepende’nt of the ratios h; /h of
the mesh sizes.

5. Iterative methods for solving the global discretization. In this section we
discuss two iterative methods for solving the linear system corresponding to the global
discretization (7). One is a Schwarz type iterative method and the other is a Krylov
subspace iterative method with the additive Schwarz method as a preconditioner.

5.1. A parallel Schwarz iterative method. The iterative procedure we de-
scribe is a parallel variant of the Schwarz alternating method, see for instance [6 10,
13, 14, 21, 26, 32] and involves solving problems on each of the subgrids Q . We
describe the iterative procedure using the contraction mapping 7.

Fori=1, -, p compute Uy as follows:

0 . ’
Lh‘Uhi == fhm on Qz‘,hi
0 _
Us, = 9n;, onlyy,
0 !

I

Until convergence, for {n =0,1,---} do:
Compute U™ = TUP fori=1,---,p in parallel, as follows:

LUEY = fu,  on@,
Un+l = ghn on Fih
U = DU, on 0%\ T

12



Define Up*t = (UpH!, -+, URHY).
End do

The following theorem provides an estimate for the rate of convergence of Ul to
the exact discrete solution Uj,.
THEOREM 5.1. Let dg be the contraction factor of T. Then, the iterates {ury
converge geometrically to the exact discrete solution Uy. i.e.,
d (U, Un) U, Uy)

<
< (U}w Uh)

dod
opd

Proof. This is a standard result about contraction mappings, see for instance [3].
0

REMARK 5.1. If the overlap 6 between the domains 0 is sufficiently large, then,
Jor hi sufficiently small, the contraction factor &y can be chosen uniformly less than 1,
see [12, 25], and consequently, the convergence rate of the iterative procedure is uniform
in the mesh parameters. '

REMARK 5.2. The dependence of the contraction factors p; on the overlap param-
eter 0 and the lower bound ¢y is known, see for instance [24]. For sufficiently small h;,
the discrete contraction factors p; satisfy

—afcg
3

pi e

where o > 0 is independent of co and 6.

5.2. An additive Schwarz preconditioned GMRES method. The Schwarz
iterative method introduced in the previous subsection does converge, but is generally
slow, as one can see from the examples in Section 6.1 of this paper. It turns out a
slight modification of the algorithm in Section 5.1 offers a very good preconditioner
for any Krylov subspace type iterative methods, such as GMRES [30]. To define the
additive Schwarz preconditioner, we let A; be the stiffness matrix corresponding to the
discretization of

O _ ’
Lhth — fhi? on inhi
. Ghyy  on Ly p,
0 _ ’
Uhi — O, on aQi,hi \ Fi,hi.

=3
I

Note that zero Dirichlet boundary condition is used on all subdomain boundaries. We
define

M~ = diag(A7Y, ASY, .. A;l)
as a block diagonal matrix. Let

AUy = F,

13



be the matrix form of the global linear system (7). Then the additive Schwarz precon-
ditioned GMRES reads as follows. Find the solution U, by solving

M7'AU, = M'F,

using GMRES.

We remark that this is a block diagonal preconditioner, and is fully parallel. In
a parallel implementation, if the submeshes and the associated vectors are assigned to
different processors, then the preconditioner is communication free. We also note that
our maximum principle based theory is not applicable for analyzing the optimal conver-
gence of the additive Schwarz preconditioned GMRES. Numerically, we do observe that
when the overlap is fixed, the number of GMRES iterations is independent of the level
of refinement. And for a fixed mesh, the number of iterations decreases as we increase
the size of the overlap. Several numerical experiments with this method are reported
in the next section. ’

6. Numerical results. In this section, we present some results of sample numer-
ical tests involving non-matching, overlapping grids. The elliptic equation we consider
is of the form

—Au+cu = f, in (),
v = 0, ondQ,

where ¢ is a constant given below. The domain 2 is the union of some rectangular sub-
domains. On each of the rectangular subdomains, we use a uniform mesh as indicated
in the tables. The local discretization is the standard 5-point finite difference scheme,
which satisfies a discrete maximum principle and is stable in the maximum norm.

6.1. Two-subdomain case. We first exam the two subdomain cases. Let Q =
0,2] x [0, 1], and we consider a partition involving two subdomains with Q, = [0,1] x
0,1, and Q, = [1,2] x [0,1]. The overlapping domains Q) and Q, are chosen as
indicated in the tables. The forcing term f is chosen so that the exact solution is
u(z,y) = (sin(rz) + sin(5x)) sin(my). For the interpolation maps I' and I?, we use
piecewise linear interpolations, and consequently we have

1o =1,  [[7%||oe = 1.

The global linear system is solved by the Schwarz alternating method introduced
in Section 5, and the stopping criteria for the iteration is to reduce the maximum norm
of the initial residual by a factor 1072

In our first test, we fix the overlapping parameter to be # = 0.45. The mesh size
in subdomain 1, is chosen to be h; = 0.2 x 27% and in subdomain 2, it is chosen to
be hy = 0.25 x 27!, where [ is the level of refinement to be given later. The resulting
global grid is non-matching. In Table 1 below, we list the maximum norm of the global
errors, and also list in brackets, the number of Schwarz iterations for the values of ¢
listed. As predicted by the theory, since the overlap is fixed, the contraction factor &,
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TABLE 1
Global error in the mazimum norm when varying the level of refinement as hy = 0.2% 27!, hy =
0.25 27! The number of Schwarz iterations is given in (-). | is the level of refinement.

[ c=10 c=01 ¢ =001 c=0.0

0 | 4.128D-2(11) | 4.312D-2(11) | 4.331D-2(11) | 4.333D-2(11)
1| 1.203D-2(11) | 1.262D-2(11) | 1.269D-2(11) | 1.269D-2(11)
2 3.075D-3(11) | 3.235D-3(11) | 3.252D-3(11) | 3.254D-3(11)
3 | 7.831D-4(11) | 8.246D-3(11) | 8.200D-3(11) | 8.295D-4(11)
4| 1.907D-4(11) | 2.006D-4(11) | 2.017D-4(11) | 2.018D-4(11)
5 | 4.886D-5(11) | 5.144D-5(11) | 5.172D-5(11) | 5.175D-5(11)

TABLE 2
Global error in the mazimum norm and the number of Schwarz iterations when varying the over-
lapping size. The mesh sizes are hy = 0.2 x 27°, and hy = 0.25 x 279,

c=1.0 c=0.1 c=10.01 c=0.0

5
1 [ 1.207D-3(264) | 1.250D-3(275) | 1.255D-3(277) | 1.255D-3(277)
2 | 7.014D-4(137) | 7.241D-4(142) | 7.265D-4(143) | 7.268D-4(143)
4 |2.338D-4( 71) | 2.419D-4( 74) | 2.427D-4( 74) | 2.428D-4( 74)
8 | 1.219D-4(37) | 1.249D-4( 39) | 1.253D-4( 39) | 1.254D-4( 39)
16 | 3.977D-5( 20) | 4.142D-5( 21) | 4.159D-5( 21) | 4.161D-5( 21)
32 | 4.886D-5( 11) | 5.144D-5( 11) | 5.172D-5( 11) | 5.175D- 5( 11)

is independent of the mesh sizes h;. It can be easily verified that the global accuracy of
the resulting scheme is of 2nd order, and the number of Schwarz iterations is bounded
independent of the mesh sizes.

In our second test, we fix the mesh sizes in the subdomalns to be hy = 0.2 x 275
and hy = 0.25 x 275, The overlapping parameter @ varies as § = 0.45 x 2-° v for some
7 to be given in Table 2. Note that for v = 32 = 25 we recover the overlap used

“in our previous tests. We tabulate the maximum norm of the global error for several
values of ¢. The number of Schwarz iterations is given in brackets. We note that as the
overlap increases, the global accuracy increases, and the number of Schwarz iterations
decreases. It can be shown that the contraction factor 8§ of the mapping 7 increases
to 1 as the overlap decreases, see for instance [25]. Thus the results are consistent with
the theory.

In both of the tests, we note that the error and the number of iterations do not de-
pend strongly on the parameter ¢ which was assumed to be positive in [25] for obtaining
the desired theoretical bounds. :

6.2. Many-subdomain case. We next run several tests for the cases of many
subdomains. Let € = (0,1) x (0,1). We choose the forcing term f so that the exact
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: TABLE 3
Error in the mazimum norm for the case of 4 = 2 x 2 subdomains. The initial submeshes are of
sizes 6 X 6, 7x 7, 8 x 8 and 9 x 9. ovlp denotes overlap size and n is the total number of unknowns.

l 0o - 1 2 3
ovlp 1 2 4 8
n 294 1044 3924 15204
c=0.0
Error | 4.312D-2 | 1.162D-2 | 2.912D-3 | 6.699D-4
Order 3.7108 3.9904 4.3469
GMRES | 11 12 12 13
c=1.0
Error 4.219D-2 | 1.134D-2 | 2.849D-3 | 6.560D-4
~ Order 3.7205 3.9803 4.3430
GMRES | 11 12 12 13

solution is u(z, y) = sin(wz) sin(ry). We first divide Q into kxk equal subdomains in the
checkerboard form, and each subdomain has its own mesh size h; j,7,j = 1,..., k. The
overlapping subdomains are obtained by extending each subdomain outward by ovlp
layers of size h; ;. Bilinear interpolations are used for all the subdomain boundaries.
We shall restrict ourselves to the case ¢ = 0.0. We solve the preconditioned system with
GMRES and we stop the iteration when the initial preconditioned residual is reduced by
a factor of 107°. The subdomain problems are solved exactly with the sparse Gaussian
elimination.

Table 3 summarizes the four subdomain case. The initial mesh contains four sub-
grids of sizes 6 x 6, 7 x 7, 8 x 8 and 9 x 9 and is refined 3 times. The order of accuracy,
Order, is obtained by comparing the error with the error of the previous refinement
level, as in row 4 of Table 3. n is the total number of unknowns. ovlp denotes the
number of elements in the overlapping domain. As the level of refinement increases,
we increase ovlp so that the physical size of the overlap stays the same. Clearly, the
order of accuracy is 2. The number of GMRES iterations is nearly independent of the
refinement levels. ‘

For the same 4 subdomain case, we fix the mesh sizes at the refinement level [ = 2
and vary the overlap sizes. The results are given in Table 4. As one can see, better
accuracy can be obtained by using larger overlap, though this accuracy will not improve
beyond the accuracy of the local discretizations and interpolation maps. The number
of GMRES iterations decreases ‘as we increase the size of overlap.

We remark that it may be noted that when the local grids match, and the standard
interpolation map is used (with zero error), the global discretization is equivalent to
the standard discretization on the global matching grid. Consequently, increasing the
“overlap will not improve the global accuracy for matching grids.

We next consider a case when the solution has a much larger gradient in the center
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TABLE 4
With same initial submesh sizes as in Table 3, and two levels of refinement, we vary the overlapping
s12€es.

ovlp 1 2 3 4 5 6

n 3216 3444 3680 3924 4176 4436
c=0.0

Error 1.005D-2 | 5.729D-3 | 3.526D-3 | 2.912D-3 | 2.080D-3 | 1.832D-3

GMRES | 22 17 14 12° 11 10
c=10

Error 9.738D-3 | 5.558D-3 | 3.433D-3 | 2.849D-3 | 2.042D-3 | 1.803D-3

GMRES | 23 17 14 12 11 10

of the domain, i.e., we set the exact solution of the problem to
u(w,y) = 100 sin(27x) sin(2my)e~100(#=0.5+(y=05)%)

Note that a finer mesh is needed in order to resolve the sharp front of the solution in
the center of the domain. We compare the accuracy of the solution with two uniform
meshes of sizes 128 x 128 and 256 x 256, with two non-matching overlapping meshes
with nine subdomains whose mesh sizes are given in Table 5. In the non-matching
grid case, we use a finer mesh in the center of the domain. As shown in Table 5, a
nine subdomain mesh with a total of 3536 mesh points produces a comparably accurate
solution as that of a uniform mesh with 16384 mesh points. A non-matching grid with
13465 points gives a more accurate solution than a uniform mesh with 65536 points.
Both methods have better than 2nd order convergence for this particular test case.
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